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Abstract. A qualitative study of the two-body problem in Maneff's gravitational
field is being performed by representing the motion in the (1/r, i-plane. The phase
trajectories are found to be only conic sections (or arcs of them). Each allowed
trajectory is interpreted from the standpoint of physical motion. Concrete
astronomical exemplifications are made.
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1. Introduction

The general relativity theory succeeded in answering many important questions in physics and
astronomy; in particular it showed that the natural, unperturbed motion in the solar system is
precessional (the trajectories are conic sections whose focal axes rotate in the plane of motion).
Unfortunately, as regards the usefulness of such a tool for celestial mechanics, all attempts to
formulate a meaningful relativistic n-body problem have failed to provide valuable resuits
(Diacu et al. 1995). A gravitational model able to offer to astronomy the same answers as the
relativity and equally respond to the theoretical needs of celestial mechanics was therefore
necessary.

Such a model is that proposed by Maneff (1924, 1925, 19304, b) on the basis of physical

principles. Unlike other nonrelativistic laws, which generally fail (from an applicative
astronomical standpoint) in explaining simultaneously the perihelion advance of inner planets

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1997BASI...25..217S

7BASI - D225 ZZI7S0

rt

218 C. Stocia & V. Mioc

and the Moon's perigee motion, this law describes accurately both these issues. Fallen into
oblivion for half a century, then pointed out by Hagihara (1975) as providing - at least at the
solar system level - an equally good justification as the relativity, and finally reconsidered by
Daicu (1993), Maneff's field appeared much less commonplace and much more unusual than at
first sight. To quote some recent results within this framework, Diacu (1996) proved that
Maneff's case represents the only bifurcation of the flow among all quasihomogeneous
potentials. For the two-body problem, the analytic solution and the local flow near collision -
pointing out the black hole effect (spiral collisions) and the nonregularizability of collisions
with respect to the initial data - were obtained by Diacu et al. (1995), while Mioc & Stoica
(19954, b) gave the general solution of the regularized equations. The isosceles three-body case
was tackled by Diacu (1993).

Let us compare Maneff's model with Newton's one from the astronomical point of view, as
regards the solar system. The classical standpoint is that the orbit of an object around the Sun
must be an ellipse/parabola/hyperbola (depending on the initial conditions). But the
perturbations of the other objects in the system (modelled by a many-body problem) make the
orbit actually to be a precessional ellipse/parabola/hyperbola (or even a more complicated
curve). Unfortunately, within this classical framework, the theoretical calculations do not fit
the observations, especially for those objects which come close to the Sun; the perihelion
advance of Mercury and of the other inner planets cannot be fully explained by Newton's model.

The study of motions in the solar system (and not only) can be maintained within the
framework of classical mechanics if one resorts to Maneff's model, and this is particularly
convenient for celestial mechanics (Delgado et al. 1996). Moreover, using the KAM theory,
Lacomba et al. (1991) proved that if the motion equations corresponding to Maneff's law are
slightly perturbed by some outer force, not necessarily Hamiltonian, most invariant cylinders
and tori are topologically preserved under this perturbation. This physically means that the
unperturbed orbit of a celestial object around the Sun is a precessional conic section, the apsidal
motion becoming more evident the closer the orbit is to the Sun. Under the perturbations of
the other bodies, the orbit continues to remain, in general, a precessional conic section. (There
are, of course, exceptions, but they are unlikely, because the set of initial data leading to them
has measure zero.)

In this paper we perform a qualitative analysis of the two-body problem in Maneff's field,
based on the geometrical representation of the motion in the (1/r, i)-plane, where the
corresponding phase trajectories are found to be only conic sections (nondegenerate or
degenerate) or arcs of them. Each allowed trajectory is interpreted in terms of physical motion,
obtaining in this way a wide geometrical and physical picture of the problem. The results are
then considered from the astronomical viewpoint, using concrete astrophysical situations.

2. Equations of motion and first integrals

Consider two particles of masses m; and mj, separated by the distance r, which interact
according to Maneff's law featured by the potential function (see e.g. Daicu 1993)
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U = (Gmymy/n)[1 + 3G(m; + mp)/(2c%r)], ¢))
where G stands for the Newtonian gravitational constant, while c is the speed of light. It is

easy to see that, reducing the problem to a central force problem, the relative motion of mj,,
say, with respect to m; is planar and described by the following equations in polar coordinates

(, u):‘
i - ru? = — wr? - 3(wc)3, V)]
i + 2tu =0, _ 3)
where 1 = G(m; + my) and dots mark time-differentiation.

The force field being central, the angular momentum is conserved, and (3) provides the first
integral

2u=C, @)

with C = constant angular momentum. The first integral of energy can also be easily obtained,
by the usual technique, as

2 + 1202 - 2u/r - 3(w/c)? = h, )

where h = constant of energy. The constants C and h are fully determined by the initial
conditions (r, u, £, u)(ty) = (rg, U, o, Up)-

The analytic solution of the problem. can be obtained in closed form. For instance, in the
case of nonradial motion (C # 0), (2) and (4) lead to the Binet-type equation

d2(1/r)fdu? + [1 - 3(/c)2/C2)(1) = p/C2, (6)

with the initial data (1/r, d(1/r)/du)(ug) = (1/rg, — £¢/C). According to the values of the parameter
[1 — 3(u/c)2/C?], the general solution of the initial value problem attached to equation (6) will
be for (a) C2 < 3(u/c)?; (b) C2 = 3(u/c)?; (c) C2>3(u/c)?, respectively:

1 & ot g _ __w T
r(u) = [( 3([1/0)2 )Cu \/W Sy 3(#/(;)2_(:2] s (Ta)

. . 2
|} - gE)en - w7
r(u)—l:(l‘o B C2_3(u/0)2 Cu _m Su + C2_3(u/c)2] ’ (7C)
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where we abridged

Gy, € = (sinh, cosh) [V3(u/c)2 =/ C2— 1 (u - ug) ],

(Su, Cy) = (sin, cos) [ V1 = 3(u/c)2 7 C2 (u - ug)].

Equivalent formulae were obtained by Diacu et al. (1995) and Delgado et al. (1996), who
showed that these solutions can be interpreted as representing precessional conic sections.

The radial case (C = 0) can also be solved, by resorting to (5) with @ = 0. But, on the one
hand, the analytic solution of the respective equation will be of the form t = t(r), relation
invertible only in particular cases; on the other hand, we are more interested in the geometrical
and physical global properties of the motion. Anyway, the analysm we are going to perform in
the next sections covers both cases.

3. Geometrical description

To study the motion from a qualitative standpoint, we eliminate U between (4) and (5),
obtaining

[C2-3 (w12 -2ulr+i2-h=0. : (®)

This represents in the (1/r, £) - plane a family of conic sections whose kind (ellipses, parabolas,
hyperbolas) and nature (nondegenerate, degenerate) are respectively given by the parameters

8= C% - 3(uc)?, _ )

A=h[3(wc)? - C? - u2 = (hé + u?). (10
Observe that there exists a critical energy level

he = — u2/6, | | Can
for which A = 0 (degenerate conic sections).

Let C2< 3(,u/c)2’; this means 6 < 0 and h; > 0. If h < h¢, (8) represents a family of

hyperbolas (figure 1), centered in (1/8, 0), of semiaxes \/(h - h.)/8 and Vh - h, and with
foci lying on the (1/r) - axis. For h = h, (8) represents the corresponding asymptotes, and the
family of conjugate hyperbolas for h > h,.
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Figure 1. Phase portrait for §<0and : h<0(1); h=0(2);0<h<h,(3);h= h.(4); h>h,(5)

If C2 = 3(u/c)?, this implies & = 0, and (8) represents a family of (nondegenerate) parabolas
with foci lying on the (1/r)-axis (figure 2).

If C2 > 3(u/c)?, we have §> 0 and h, < 0. Equation (8) represents a family of ellipses with
foci lying on the (1/r)-axis (figure 3), and with the same centre and semiaxes as the above
hyperbolas. The ellipses are real for h > h, (A < 0), degenerate into the centre of the family if
h = h., and are imaginary (impossible real motion) for h < h.

Observe that figures 1-3 plot only the curves lying in the halfplane 1/r > O (only these ones
represent real motion in the physical plane). That is why in figure 1 the phase trajectories can
be: one branch of hyperbola for h < 0 (tangent to the r-axis if h = 0); arcs of one branch of
hyperbola for 0 < h < h.; portions of the asymptotes for h = h.; arcs of two branches of
hyperbola for h > h.. For the same reason, the phase curves in figures 2 and 3 are
parabolas/ellipses fully contained in the allowed halfplane for h < 0 (tangent to the r-axis if
h = 0), and arcs of such conic sections for h > 0.
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Figure 2. Phase portrait for §=0and : h<0 (1); h=0(2); h> 0 (3).
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Figure 3. Phase portrait for §>0and : h=h_(1); h, <h<0(2);h=03); h>0(4)
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The use of the (1/r, £)-plane to the geometrical description of the problem has a great
advantage: the trajectories are conic sections, whose behaviour is very well known (and this fact
facilitates the physical interpretation), while the usual (r, £) phase curves are more complicated.
Also, resorting to the (ru, r)-plane of the polar components of velocity, the trajectories are
found again to be conic sections (Mioc & Stoica 1995c¢), but the rectilinear motion cannot be
studied in such a way.

4. Physical interpretation

Let us first clear up the nature of the physical motion represented geometrically in figures 1-3.
By (4), u varies monotonically (if C # 0) or remains constant (if C = 0) all along the motion.
Consequently, every segment of trajectory in the upper/lower halfplane of figures (where 1/r
increases/decreases monotonically) physically means spiral (C # 0) or radial (C = 0) motion
performed outwards/inwards. This is valid only for figure 1; the physical motion corresponding
to figures 2 and 3 cannot be rectilinear because 6 > 0 implies C # 0, hence radial motion is not
possible.

Now, let us interpret the figures in terms of physical motion. Consider that C? < 3(u/c)?
(figure 1). If h < O the orbits eject from collision, reach a maximum distance rpy,x = W/[\r(he(he
—h)) — h.] (easily obtainable from the quantitative characteristics given in Section 3), and then
tend back to collision (no escape is possible). If h = 0 the orbits either eject from collision and
tend to infinity, or come from infinity and tend to collision.

If C2 = 3(u/c)? (figure 2) the scenarios are qualitatively the same as in the previous case.
However, radial motion is not possible, and ry,x = — 24/h for h < 0.

Finally, let C2 > —3(u/c)? (figure 3). If h = h, (< 0) we have stable equilibrium circular
orbits of radius re = —tt/h.. If hy < h < 0 the motion has periodic character (neither collision
nor escape are possible). The real, physical orbits are precessional ellipses lying inside an
annulus defined by rpi, = /[Vhe(he —h) — he] and rpax = —,u/[\/ h.(he —h) + h.]. The
motion is periodic (closed curves, rosette-shaped) or quasiperiodic (unclosed rosettes filling
densely the annulus). Expressions (7) show that most of such orbits are quasiperiodic (the set
of periodic solutions having measure zero). If h 2 0 the orbits come from infinity, reach a
minimum distance Iy, = 4/[Vhe(he —h) — h.], and then tend back to infinity (no collision is
possible).

To have a more detailed picture of the physical motion, if C = 0 the collision (ejection is
rectilinear. If C # O the situation changes: the particle (m;) spirals performing infinitely many
loops around the centre (m;) immediately before collision (after ejection). This is the so-called
black hole effect, whose occurrence makes the set of initial conditions leading to collision
(ejection) have positive measure (Diacu et al. 1995).

At collision (ejection) the velocity has an infinite value. As to the asymptotic velocity at
infinity, its value is zero for h = 0 and positive (\/—1—1) forh> 0.
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These results offer a wide picture of the two-body problem in Maneff's field from a twofold
standpoint: geometrical and physical. '

5. Astronomical implications

Our qualitative analysis was performed from the standpoint of the (abstract) celestial mechanics.
Let us now look briefly at these results from an astronomical perspective.

Observe that the second term in (1) can be regarded as being a perturbing function in a
Newtonian two-body problem. As the "perturbing force" is central, recall that the focal
parameter of the osculating conic sections remains constant all along the motion (p = pg).
Suppose that C2 (= upg) < 3 (u/c)?; this leads to py < 3u/c? = (3/2)Rgep (Where Rgep = 24/c?
is the Schwarzchild radius of the central body). In other words, in such cases the (global)
trajectories will necessarily be of the type collision-collision, ejection-escape, or infinity-
collision, as our qualitative results showed (figures 1 and 2).

Consider now the most interesting case, C2 > 3(u/c)?, in which, for point masses, the
motion is noncollisional. However, for concrete celestial bodies, of finite dimensions, the
situation changes a little. To exemplify, choose a typical pulsar of 1.4 solar masses and radius
R = 15 km, and a test particle moving under its gravitational action. With these values, the
condition for C? reads C2 > 1.15 x 1012 km#s-2, but this is an idealization. To be sure that the
motion is noncollisional (ry;, > R), we must consider C2 > 2.8 x 102 km4s~2 for h = h,,
while for other energy levels the following relation (easily obtainable from the formulae given
in Sections 3 and 4) must be fulfilled: h < C%/225 - 5.3 x 1012 (with h expressed in km?s~2
and C2 in km*s~2). Under these conditions, the scenarios presented in Section 4 are recovered.

To end this section, let us consider the evolution of a very well known astronomical two-
body system in Maneff's field: the binary pulsar PSR 1913+16. This system is acting very
close to the ideal of two point masses. On the basis of the characteristics given by Lyne &
Graham-Smith (1990), we found C2 = 2.1 x 1017 km?#s—2, 3(u/c)? = 4.6 x 1012km*s—2, h < 0,
hence the trajectory is a precessional ellipse. By (7c) it is easy to determine that, for an orbital
period of 27907 seconds, the rate of periastron advance is of order 4.3 degrees yearly, in
agreement with the measured value.

6. Conclusions

Compared with the Keplerian trajectories in the Newtonian two-body problem, those
corresponding to Maneff's field present the following main particularities: (1) they are not
fixed, but precessional conic sections; (2) collisions occur not only for radial motion (C = 0),
but also for curvilinear trajectories with C2 < 3(u/c)?; (3) while in Newton's field the
collisional rectilinear motion is the limit case of more and more eccentric ellipses, this is not
true in Maneff's field (see Diacu et al. 1995); (4) in both models there exists the equilibrium
solution of circular motion. Of course, in concrete astronomical situations, specific conditions

" (e.g. rmin > R for noncollisional orbits) must be observed for both fields.
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As regards a comparison with the relativity theory, Maneff's model provides the same
periastron advance, verified both qualitatively and quantitatively. Other effects predicted by the
relativity are also recoverable within this framework (see Maneff 1925).

Maneff's gravitational model is worth studying for several reasons concerning mainly
celestial mechanics and astronomy. It maintains the simplicity and the advantages of the
Newtonian model, and also provides the necessary corrections such that orbits coming close to
collisions match theory with observations. Within its framework the natural, unperturbed
motion of a celestial body is precessional, as relativity foresaw. In such a field, due to the
particularity (2) above, the set of initial data leading to collisions has positive measure (and in
the solar system the collisions are not so rare as the Newtonian model asserts). A
supplementary argument: the black hole effect, considered in astrophysics (see Lyne & Graham-
Smith 1990; Stephens 1996), is possible in Maneff's field, as well as in relativistic fields, but

As a final conclusion, to better understand (both quantitatively and qualitatively) many
astronomical situations, the powerful tool of relativity is not strictly necessary. Its predictions
are recoverable in the framework of classical mechanics by resorting to Maneff's model, much
rhiore suitable for the theoretical needs of celestial mechanics.
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