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Abstract. With reasonable assumptions and approximations, we solve analytically
the full set of Chandrasekhar’s (1956) MHD equations in the convective envelope,
for steady part of rotation and toroidal component of the magnetic field which may
vary on diffusion time scales. Depending upon the two assumptions made about the
boundary condition at the lower boundary, viz., base of the convection zone, we have
the following two solutions.

In the first solution, we assumed that the Sun may be rotating uniformly at base
of the convection zone. Except in the magnitudes of rotational velocities near the
polar regions, the first solution yields similar rotational isocontours as that of
helioseismology. Near the poles, the resulting solution yields faster rotation rates
compared with that of the rotation rates inferred by helioseismology. Moreover, the
chi-square fit of the resulting rotational results with the helio-seismologically inferred
rotational results is also not so good. These results lead to the second solution in
which we made the assumption that the Sun may be rotating differentially at base of

_the convection zone.

Compared with the helioseismic inferred results, the second solution yields almost
similar rotational isocontours everywhere in the convective envelope. The chi-square
fit improved significantly in this solution. This result suggests that, at base of the
convection zone, differential rotation is more likely than uniform rotation.

Correspondingly, it was necessary to solve the toroidal component of the magnetic
field. Except near base of the convection zone, both the solutions yield similar field
structure for the steady component of the toroidal magnetic field. This consists of a
two-zone like field structure of intensity ~ 1G near the surface and a four-zone like
field structure of intensity ~ 104 G near base of the convection zone. However, near
base of the convective envelope, compared to the field structure obtained from the
first solution, the resulting field structure from the second solution is closer to the
sites of sunspot formation.
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Implications of these results in the context of lithium depletion and solar activity
phenomena are briefly discussed.

Kev words : sun-internal : sun-rotation : sun-toroidal magnetic field

1. Introduction

Nearly 400 years ago (soon after the discovery of the sunspots), Sun’s rotation was discovered
from the movements of Sunspots over the Sun’s disk. Pioneers of this discovery were Goldshmit
(1587-1615); Galileo Galilee (1564-1642); Thomas Harriet (1560-1621) and Schiener (1575-
1650).

Systematic study of the Sun’s rotation was started after the 18th century onwards. It was
Richard Carrington (1826-1875) and Gustav Sporer (1822-1895), who undertook the long
series of observations of the apparent motion of sunspots. They confirmed that on the surface
Sun rotates differentially.

Presently, Sun’s surface rotation is determined from the measurements of positions of the
sunspots (Newton & Nunn 1951; Balthasar & Wohl 1980; Godoli & Muzzucconi 1979; Gilman
& Howard 1984) and the magnetic features as tracers (Wilcox & Howard 1970; Stenflo 1977;
Snodgrass 1983). It is also measured from the Doppler shift in the spectral lines (Howard &
Harvey 1970; Livingston & Duvall 1979; Scherrer, Wilcox & Svalgaard 1980).

Though, the Sun’s surface rotation is known with better accuracy, the sun’s internal rotation
was poorly understood until the advent of helioseismology. Helioseismologically inferred results
show that the Sun rotates differentially with a weak dependence on radius throughout its
convection zone and has a nearly uniform rotation in the radiative core (Christensen-Dalsgaard
& Schou 1988; Brown et al. 1989; Dziembowski, Goode & Libbrecht 1989; Gough et al. 1993;
Thompson 1990; Schou et al. 1992; Korzennik et al. 1995; Antia, Basu & Chitre 1998; Corbard
et al. 1998; Howe 1998; Mauro, Dziembowski & Paterno 1998).

The differential rotation in the convective envelope has been modeled earlier in the frame
work of hydrodynamics by taking into account the meridional circulation, Reynolds stresses
and viscous stresses. Basically, thése works can be classified (Chan & Mayr 1994) as ‘semi
analytical’ and ‘latitude-dependent heat transport’ models. Semi analytical models are based on
the earlier works of Wasiutynski (1946), Biermann (1951) and Kippenhahn (1963). In these
models, it is proposed that the anisotropic Reynolds stresses in the momentum equation plays
the dominant role in maintaining the differential rotation. Based on this idea, many models were
developed for the explanation of the surface differential rotation (Kohler 1970) and the internal
differential rotation (Pileva 1985; Pulkkinen et al. 1993; Kuker, Rudiger & Kichatnov 1993).
Another school of thought is based on the idea that the interaction of rotation with the convection
leads to meridional flow which in turn generates and maintains the solar differential rotation
(Gilman & Miller 1981; Glatzmaier 1985; Brummel, Hurlburt & Toomre 1998; Elliot et al.
1998; Robinson & Chan 2001).
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The aim of present study is to solve analytically and consistently the full set of
Chandrasekhar’s (1956) MHD equations for steady part of rotation and toroidal component of
the magnetic field by taking into account the effects of important agencies, viz., eddy viscosity
also. We assume that dominant part of the Sun’s rotation at the present epoch could be mainly
‘steady’ (which may vary on diffusion time scales, i.e., ~ billion yr), superposed on which is
a ‘fluctuating’ part whose amplitude of variation is very small over the solar cycle. In fact,
observational evidences (Gough et al. 1993; Woodard & Libbrecht 1993) show the amplitudes
of such variations in the internal rotation to be ~ 4 nHz. Very recent results (Howe, Komm &
Hill 1999) confirm the earlier inferred results. This amplitude of variation is very small compared
to the large-scale rotation which is ~ 460 nHz. Though conventional belief that the observed
differential rotation is a consequence of compressible convection in a rotating body, these
observed inferences suggest other way that large-scale rotational structure is not much affected
by the movement of the solar plasma due to short term variations in pressure or density scale
structures. This is one of the main reason that we are reasonable and safe in adopting the
assumption of incompressibility in the following study. Thus we consider the Sun’s rotation at
the present epoch is approximately steady which may be of primordial origin (Alfvén 1942;
Cowling 1953). In this study, we have not computed diffusion time scales for the steady part
of rotation and toroidal component of magnetic field. Since, form of the equations for rotation
and toroidal magnetic field are same as that of equation used in solving the poloidal component
of the magnetic field (Hiremath & Gokhale 1995a), we expect similar order of diffusion time
scales.

By neglecting viscous terms in Chandrasekhar’s equations (1956), Nakagawa (1969) modeled
the differential rotation in an incompressible spherical shell of infinite electrical conductivity
in the presence of an absolutely steady toroidal magnetic field, without the presence of any
poloidal field. Though, it is reasonable to assume that either the rotation or the toroidal magnetic
field is absolutely steady, it is unreasonable to assume that poloidal component of the magnetic
field is completely absent. In case of the Sun, presence of such a steady part of the magnetic
field of primordial origin is neither ruled out nor detected observationally.

In the present study, we consider the terms related to eddy viscosity (Nakagawa &
Swarztrauber 1969) and magnetic eddy diffusivity in the full set of Chandrasekhar’s MHD
equations for steady part of rotation. These important terms are the representative physical
terms of the convection and solar convective envelope. We emphasize the property of the solar
convection zone that the large magnitudes of aforementioned terms enabled us to solve analytically
momentum equations. At the surface, we use boundary conditions for the rotation and toroidal
magnetic field similar to those assumed by Nakagawa (1969). However, depending upon the

-following assumed two boundary conditions at base of the convection zone, we have two set

of solutions. In the first solution, we assume that the Sun is rotating uniformly at base of the
convection zone. In the second solution, we assume that the Sun is rotating differentially at the
base. Except in magnitudes of rotational velocities near the polar regions, both the solutions
yield rotational isocontours similar to the rotational isocontours inferred from the helioseismic
data. By comparing goodness of fits with the available helioseismic inferred rotation rates
(Antia, Basu & Chitre 1998), we conclude that the second solution for steady part of the
rotation is closer to the real rotation. This indicates that at base of the convection zone,
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differential rotation rather than the uniform rotation is more likely to be present. Preliminary
results of this study were presented elsewhere (Hiremath & Gokhale 1995b; Hiremath & Gokhale
1996; Hiremath & Gokhale 1998). In the present paper, we give mathematical details and
discuss the implications of these results in the context of solar lithium depletion and solar
activity phenomena.

Though aim of this paper is mainly to study the internal rotation of the Sun, for the sake
of completeness and consistency of the solution of MHD equations, it is necessary to solve
toroidal component of the magnetic field. This study indicates that in addition to the isotropic
eddy viscosity a suitable toroidal field structure is necessary in order to maintain the solar
differential rotation in the convective envelope. This view will be cleared and strengthened as
the reader goes through this work. It is to be noted that reader should not be confused with
steady field with time dependent part of the magnetic field which may be generated by dynamo
or any unknown mechanisms. Except near base of the convection zone, both the aforementioned
solutions give similar field structures. This consists of a two-zone field structure of strength (~
1 G) near the surface and a four-zone field of strength (~ 10* G) near base of the convection
zone. Near base of the convective envelope, compared to the first solution, the second solution
yields the field structure closer to the sites of sunspot formations. It is interesting to know
whether such a basic steady toroidal field structure in the convective envelope is responsible
for the time dependent part of the magnetic field which is supposed to be generated by the
dynamo mechanism (Parker 1993; Charbonneau & Mac Gregor 1997; Mac Gregor &
Charbonneau 1997; Durney 1997; Dikpati & Charbonneau 1999) and emerge as bipolar magnetic
regions towards the surface (Fan et al. 1999), though many doubts regarding the applicability
of so called dynamo mechanisms for the solar case have been raised by the different studies
(Bhattacharjee & Yuan 1995; Cattaneo & Hughes 1996; Cattaneo & Vainstein 1991; Gruzinov
& Diamond 1994; Kleeorin, Rogachavskii & Ruzmaikin 1995; Levy 1992; Parker 1995;
Piddington 1971; Piddington 1972; Piddington 1973; Piddington 1976; Piddington 1983;
Vainstein & Cattaneo 1992; Andrew and Thomas 1999).

The plan of the paper is as follows. In section 2, we present assumptions made and the
resulting form of Chandrasekhar’s MHD equations. We give assumed boundary conditions in
section 3 and, solution of the resulting form of equations in section 4. In section 5, we present
the numerical results. Conclusions and discussion are presented in section 6.

2. Assumptions and resulting form of the basic equations

As in our previous work (Hiremath & Gokhale 1995a; Hiremath 1994), we assume that, in the
convective envelope, the fluid is incompressible and the large-scale magnetic fields and the
fluid motions are symmetric about the rotation axis. We also assume that the magnetic eddy
diffusivity m and the eddy diffusivity due to viscosity v are constants with values represented
by the appropriate averages.

Following Chandrasekhar (1956), the magnetic field B and the velocity V for the axisymmetric
system can be expressed

I
h = maz xm+(a)’1")1(p+m e (TP, (1)
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where h = B/(4ntp)!’2, p is the density, @, @, z are the cylindrical polar coordinates, with their

axes along the axis of solar rotation; 1, 1, 1, are the corresponding unit vectors and; P, T, V,
and U are the scalar functions which are independent of ¢.

Further we make the following assumptions and approximations.

(i) Steady parts of the poloidal magnetic field P and poloidal component of the velocity
field U (meridional velocity) are very weak compared to the steady part of the rotation Q. In
fact such a steady part of poloidal magnetic field is found to be ~ 1 G from the observation
(Stenflo 1993) and ~ 0.01 G from theoretical calculations (Hiremath and Gokhale 1995a).
Thus, by taking average density of the sun, Alfvén velocity varies between ~ 1 - 0.01 cm
sec™! which is very negligible compared to the dominant part of rotational velocity (~ 10° cm
sec™!). This leads us to safely assume that P is approximately zero and for the sake of making
the problem simple we put P = 0 in the following Chandrasekhar’s MHD equations. Similarly
poloidal part of the velocity (meridional circulation) over the surface found to be ~ 0.001 -
0.01 times the rotation velocity. Though we can not neglect the terms of meridional velocity
in MHD equations, it can not be equated with the terms of dominant part of the angular velocity
Q. We clso assume that strength of steady part of toroidal field T is less than (or at most
comparable to) that of the steady part of rotation. These assumptions lead to decoupling of
poloidal part of velocity equation and, thus we have the following modified Chandrasekhar’s
(1956) MHD equations which take into account the eddy viscosity (Nakagawa and Swarztrauber
1969) also

3AU
VOAL(ASD) + [BPU, AU] - © 5 =0 3)
oT
NWAT + [®U,T] - ® 7 =0, )]
oQ
VAL + [B2U,5°Q] - &° =5~ =0 (5)
0
o— (T"-QY) =0, (6)
0z
Jof dg o dg
h , = _
where Uxd dz B 0B 9Jz ' @
0? 3 0 J?
and A S (8)

== + + 5=,
02 ® om  on?
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It is very crucial to be noted that in the absence of magnetic field and meridional circulations,
the equations (5) and (6) are almost similar to the equations used in the axisymmetric
hydrodynamic theories (Kichatinov 1990). Thus, inclusion of magnetic field in the
hydrodynamical equations implies that in addition to isotropic eddy viscous stresses, a suitable
structure of toroidal part of the magnetic field which contributes Maxwell stresses is necessary
in order to maintain differential rotation in the convective envelope.

We neglect the Reynold stresses (~ gradient of averages of pv, v,’, where v, and v,” are
the fluctuating parts of the velocity over the mean flow) terms in the momentum equations for
the following reasons. For the steady state solution and by considering helioseismic inferences
(Basu, Antia & Tripathy 1998) of the residual velocity (which is supposed to be fluctuating
parts of velocity fields), we found that magnitudes of terms pv/ v,” are very much smaller than
the dominant terms @*vAQ and [®*U, ®2Q] in equation (5). Thus one has to be cautious (see
also Tassoul 2000) in clalmmg that “Reynolds stress 1s the major driver of solar differential
rotation”.

The buoyancy term in the above derived equations is absent due to the fact that these
equationsa are derived by taking curl of the basic MHD equations (Chandrasekhar 1956). On
the other hand, buoyancy term is important when one wants to study the dynamlcs of localized
structures like sunspots. :

Assumption of incompressibility, large diffusion time scales of rotation compared to the
time scale of the sound speed and, assumed form of axisymmetric velocity (eg. eqn 2) in the

present study lead to ll))p and pdiv (V) terms zero in the continuity equation. Except the

condition of incompressibility, in a way, vanishing of Tp and pdiv (V) terms in the continuity
equation is almost akin to the anelastic approximation used in some of the numerical simulations
of rotation in the convective envelope (Elliot et al., 1998 Gough 1969). Assumption of
incompressibility also means that there is no change in density variations of the moving plasma
which implies that sound speed is very much greater than the Alfvén speed. This condition is

almost true in case of the solar convective envelope.

We neglect the equation of the temperature structure for the following reasons. The heat
equation implies that the rate of increase of heat for a unit volume as it moves in space is due
to the net effects of energy sinks and sources. The same statement can be expressed (Priest

1982) as pT ? = —'L, where T is temperature, S is the entropy per unit mass of the plasma
and L is energy loss function which includes the net effects of all the sinks and sources of
energy and is defined as L = V.q + L, — j%/G — H, where q is the heat flux due to conduction,
L, is heat due to radiation effects, j2/c is the ohmic dissipation due to currents, H is the term
which represents all other heating sources. In case of the solar convective envelope, the first
three terms (although L, term near the surface may be effective) in L are negligible. The heating
source term H includes heating due to nuclear energy, heating due to turbulent viscosity and
heating due to any dissipation of waves in the medium. We can neglect the first term in case
of solar convective envelope. On the other hand heating due to turbulent viscosity will be
effective only when strong ﬂows‘ or rotational gradients in the convective envelope exist.
Except strong shear in the rotational gradient at base and near surface of the convective
envelope, helioseismic inferences rule out any such strong flows. Finally it is not clear whether
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dissipation of waves, especially due to ubiquitous sound waves, do contribute to the heating of
the solar plasma. Thus overall one can conclude that L term in the solar convective envelope
is almost zero which implies that entropy remains constant and hence the energy equation
decouples from rest of momentum and induction equations.

(i1) The magnetic eddy diffusivity ) and eddy diffusivity due to viscosity v are very large

(~ 10"2 - 10'* cm?¥sec) in the convective envelope. This valid assumption leads to neglecting

of second and third terms in the equations (3), (4) and (5) respectively. This is because the

second terms ([sz AU ~ U2/vR} [®2U,TVn ~ UT/MR, [@2U, ®*Q)/v ~ UQ/VR) and the
aQ

last terms (v*l T U/VRQ‘C n! T Tint, v —5r ~ {¥vt, where R, is the radius and T is

the diffusion time scale which is assumed to be ~ 1010 yr) are very negligible compared to the

first terms in the respective equationé. Finally we have following simplified equations for
probing the structure of the steady part of rotation and toroidal component of the magnetic field

A(ASD) = 0, | 9)
AT = 0, | (10)
AQ=0, (11
and g— (o (12)

It is interesting to know the solution of equation (9) which yields meridional velocity in the
sun’s convective envelope. Since equation (9) is decoupled from the rest of the equations we
plan to solve separately in near future. Along with the constraint, viz., equation (12), solution
of the equations (10) and (11) yield steady part of toroidal component of the magnetic field and
the rotation. The analytical solutions of equations (10) and (11) are as follows :

Teop) = D Thx' + e *1C (), (13)
n=0

QU = 2 [V + W o=1C ), (14)
n=0

where b, c,, V,, W, (n =0, 2, 4, ..) are constants, x = r /R, R is the radius of the Sun, u
= cost), ¥ is the co-latitude, C¥2 (u) are the Gegenbaur polynomials of order 3/2. These
Gegenbaur polynomials are related to the axisymmetric Legendre polynomials P, (1) in the
following way

dPn+l (‘u )

C” (w) = —du (15)

According to equation (12), equations (10) and (11) are subject to the constraint

Q=T + w), (16),
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where f() is an arbitrary function of @ = xsin}. We assume f(I) to be in the form

oo

@) = D, a0 (17)

n=0

The tunction f{®) and the constants b, ¢,, V,, W,, a,, (n =0, 2, 4, ..) are 10 be determined
from the boundary conditions.

Nakagawa (1969) assumed each of the functions 7 and Q to be a series in Legendre
polynomials and applied his boundary conditions. In the present study, T and Q are solutions
(13) and (14) of equations (10) and (11).

3. Boundary conditions

For the rotation and toroidal part of the magnetic field, we assume following boundary conditions
at the surface and at basec of the convection zone.

3.1 Boundary conditions at the surface

At the surface, we adopt the following boundary conditions for rotation and magnetic field, viz.,

Q=Q and T=0, (18)

obs

where Q , is the observed surface rotation and is expressed in the form

obs

Q. =A + Bcos?® + Ccos*d + ..., (19)

wherein A, B, C,.. are the coefficients of rotation determined {rom the observations.

The boundary condition 7 = O is derived from continuity of the current at the surface,
assuming that the field outside is current free (Nakagawa & Swarztrauber 1969).

Equations (13) and the boundary condition (18) for T yield, (since Gegenbaur polynomials
are mutually orthogonal),

CO = —bo, Cz = _bz, C4 = ‘_b4, reey (20)

where the coefficients by, b,, .... etc have to be determined from the boundary conditions at base
of the convection zone.

Thus we get the solution for the toroidal part of the magnetic field in terms of only one set
of unknown coefficients (b,), as :

oo

T = 2 b [ - x 9]0 (. @n
n=0
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3.2 Boundary conditions at the base

As for boundary condition for the magnetic field, we consider magnetic field h and current
(cur/h) are continuous. Since P is assumed to be zero, these conditions and from the equation
(1) lead to T continuous. Similarly as for boundary condition for the velocity field, following
Nakagawa and Swarztrauber (1969) we assume that tangential velocity is continuous at base of
the convection zone. Since U is very much less than Q in the convective envelope, assumption
of tangential velocity and from the equation (2) lead to  continuous. That means convective
envelope and radiative core are coupled and transfer of angular momentum takes place from
one region to another region or vice versa. We assume the rotation to be of the form :

Q. =A + B cos?® + .., (22)

where A’, B’, ...are the coefficients in the law of rotation which are obtained from the internal
rotation inferred from the helioseismology.

3.3 Constraint on the lower boundary condition

Initially, we made an attempt to solve the coefficients in equations (13, 14, 16 and 17) with the
terms up to cos?9 in both the boundary conditions at surface and at base of the convection zone.
This gave an inconsistent solution, i.e., the number of equations are more than the number of
unknowns. For the existence of solution, the polynomial in cos?9 expressing Q(x, ) at the base
must contain one term less than at the surface. Thus, inclusion of Lorentz force puts the
constraint on the boundary condition to be taken at the lower boundary, viz., at base of the
convection zone. Thus, if we consider the rotational law at the surface up to cos*9, then at the
lower boundary, one must consider the rotation law up to cos?® only. Physically this means that
strong Lorentz force near the base of the convective envelope try to make the rotation less
differential.

4. Analytic solution of the MHD equations

Stability of the Sun’s angular momentum requires that internal rotation should increase outwards
from the interior (Schatzman & Praderie 1993). This type of solution is possible only when we
neglect the terms which contain negative powers of x in equation (14). It is to be noted that
the validity of using aforementioned stability criterion for the present problem can be questioned
simply because the study which we have undertaken is for the case of rotating, viscous and
MHD fluid. It is interesting to know whether such a stability criterion exists for the case of
present study. Ideal situation is to consider two terms for the solution of steady part of rotation.
In fact we tried to solve by including two terms in the equation (14), however, we could not
reproduce the rotational isocontours of similar magnitude as those of rotational isocontours
inferred by the helioseismology. Moreover we also found out from the solution that the coefficients
W,, in equation (14) are very small compare to the coefficients V,. Hence, we neglect the terms
which contain negative powers of x in equation (14) for the solution of rotation in the convective
envelope. Since, there is no such a stability constraint on the magnetic field, we consider both
positive and negative powers of x in equation (13).
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In the following, we have two solutions depending upon the two boundary conditions
assumed at base of the convection zone.

4.1 Uniform rotation at the base

Since, the observed dominant part of the rotation is symmetric about the equator, we consider
even values of n (n = 0, n = 2 ..)) in equations (13, 14, 16 and 17). We assume that the Sun
may be rotating uniformly at base of the convection zone. Then equation (22) yields the
following relation

Q. =A. (23)

At the surface, as explained in section 3.3, we are forced to consider the rotation law up to
cos?¥ only. Using equations (14) and (19) with the terms up to cos?*9 yield the unknown
coefficients V,, and V, in terms of the surface rotational boundary values

V, = (2/15)B, (24)
and

Vo =A + (3/2)B. (25)
Similarly, at the lower boundary, equations (14) and (22) yield the coefficient

Vy = A (26)

Using surface boundary values, we solve equations (16) and (17) to get the unknown
coefficients

a, = 21V5 — 15V,V, 27
and
ay = Vi + (9/4) V3= 3V,V, - a, (28)

By using equations (16), (17) and (21), we have the following solution for the unknown
coefficients b,, (n = 0, 2)

2
026

b, = R 7 (29)
10(e? - €7) [VO’2 - (q, + a, et)

(10V,2 - 10a, - 9a, €?)
b, = — (30)
151 — e [V,2 - (a, + a, €]
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where € represents the depth of the convection zone.
4.2 Differential rotation at the base

In this second solution, we assume that the Sun is rotating differentially at base of the convection
zone. In this case, we take differential rotation to be of the form

Q. = A + B cos?d. - (31)

At the surface, we have to consider the rotational law up to cos*9 for reasons given in section
3.3. By solving equations (14) and (19) we get the following three unknown coefficients in
terms of observed rotation from the surface boundary conditions

V, = 8/15)C, o (32)
V, = (2/15) [B + (210/8)V,], (33)
and .
Vo = A + (312)V, — (15/8)V,. (34)

Similarly, using equations (14) and (31), we get two unknown coefficients at base of the
convection zone

V') = (2/15) B, (35)
and
Viiy=A"+ (3/2)B €2 (36)
Using equations (14), (16) and (17) we have the following coéfficients
a, = (225/4)VZ + (53550/64)V% — (4095/8)V,V, + (315/4)V,V,, 37)
a, = (45/2)V3 + (3150/32)V; - 15V,)V, — (855/8)V,V, + (210/4)V,V, - 2a,, (38)
and
ay = Vi + (9/14)V3 + (225/64)V3 - (45/8)V,V, — 3V, V, + (15/4)V,V, - a, — a,. | (39)

By satisfying the boundary conditions at base of the convection zone, we solve the equations
(16), (17) and (21) for the coefficients b,, (n = 0, 2, ....) in terms of the coefficients a,
(n =024, ....), in the following way '

N 4f, 72
bi= T [ 3157, 315 ] (40)
_ ] L 14, 1477 (41)
P [ Isf T 315F, 1260f-}] ’
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wherein

£ = [V ©)esvi-3e2v)V, - ay - ae? - a4e4]l/2, (43)

fo =~ (45/2)e*V? + 15¢ ?VO'Vz' + aye? + 2a,e4, (44)
anq |

fy = (225/4)e*V;? - aet. (45)

5. Numerical results

Knowing the coefficients V,, a, and b, (n = 0,2, ..), we compute the steady part of rotation and
toroidal component of the magnetic field using equations (14) an (13). With the assumption that
dominant part of the Sun’s internal rotation is steady, we compare our rotational results with
the rotational data inferred from the helioseismology (Antia, Basu & Chitre 1998). In order to
compare with the helioseismologically inferred rotation rates, we' compute rotation rates with
a step widths of 0.05 R, along the radius and intervals of 57 in latitude. While computing the
x2, first we compare the whole (totally 1080 values) helioseismic inferred rotation rates with
the rotation rates obtained by solving the MHD equations and then with inferred rotation rates
(totally 780 values) in the region of 60° — 90° of co-latitude, where the inferred rotational
results are more reliable.

For the rotation, we use the boundary values at the surface and at base of the convection
zone deduced from the helioseismic data (Goode & Dziembowski 1991). We take depth of the
convection zone € to be 0.713 which is determined by Christensen-Dalsgaard, Gough and
Thompson (1991). Since there are small variations in determinations of depth of convection
zone, we varied the depth of the convection zone from x = 0.699 to-x = 0.715 and found in
the following almost similar results. With the two different boundary conditions, viz., at base
of the convection zone, we have the following results.

Table 1. Components of the steady parts of rotation and toroidal part of the magnetic field.

Coefficients of Rotation“ Coefficients of magnetic field?
Solutions Vo v, V., by b, b,
Solution 4.1  2.83e-04  -5.07e-06 137.29 61.91
Solution 4.2 2.79e-04  -9.63e-06  -1.30e-06 174.74 56.92 12.77

Components obtained by modifying the rotational boundary conditions
Solution 4.2  2.78e-04  -1.05e-05  -1.55e-06 178.07 55.05 8.12

a Coefficients of rotation in rad/sec.
b Coefficients of magnetic field in gauss.
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Table 2. ¥2? and it’s significance for all the points.

Solutions X2 Significance of %2
Solution 4.1 5394.24 ~ 0%
Solution 4.2 934.82 (608.90) ~ 99.90%

The value of %2 in bracket is obtained by changing values of coefficients
in the rotation law.

5.1 Results from “solution 4.1”

We take the boundary values (Goode & Dziembowski 1991) A = 462.4 nHz and B = —-60.5 nHz
at the surface and. A" = 438.7 nHZ at base of the convection zone. In Table 1 we present the
coefficients of steady part of rotation and toroidal component of the magnetic field. For all and
for 780 computed rotation rates, the value of chi-square and the significance of chi-square are
given in Table 2. and Table 3. respectively. The rotational isocontours in the meridional cross
section is given in Fig. 2. For the sake of comparison, in Fig. 1, we present the isorotational
contours obtained from the helioseismology (Antia, Basu & Chitre 1998).

Table 3. x2 and it’s significance for 780 points.

Solutions G Significance of %2
Solution 4.1 977.50 ~ 45%
Solution 4.2 167.45 (119.7) ~ 100%

The value of 2 in bracket is obtained by changing values of coefficients
in the rotation law.
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Figure 1. Meridional cross section of the solar rotational profile in the convective envelope inferred from the
helioseismology (Antia, Basu and Chitre 1998). Isorotational contours are in nHz.
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/R,
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Figure 2. Meridional cross section of the rotational profile in the solar convective envelope obtained by the solution
(4.1) of MHD equations. Isorotational contours are in nHz. '

Note that except in magnitudes of rotational velocities at the both poles, this solution
reproduces similar rotational isocontours as that of helioseismologically inferred rotational
isocontours. However, the solution yields faster rotating poles compared to the helioseismic
results. Also chi-square fit with the inferred helioseismic rotational rates is poor (~ 0% for all
the points and ~ 45% for 780 points). This leads us to consider the second “solution 2”.

In the Chandrasekhar’s equations, toroidal magnetic field 7 is normalized to the Alfvén
velocity which in turn depends upon the density structure. By taking the density values from
the solar seismic model (Shibahashi, Hiremath & Takata 1998), we compute steady component
of the toroidal magnetic field whose iso-gauss (i.e, ®@T) contours are presented in Fig. 3. The
solution yields a two-zone like field (~ 1 G) structure near the surface and a four-zone like field
(~ 10* G) structure near base of the convection zone. It is interesting to note that the distribution
of toroidal magnetic field is concentrated in the belts where most of the Sun’s flux emerges.

5.2 Results from *“‘solution 4.2”

We consider the boundary values of rotation (Goode & Dziembowski 1991) A = 462.4 nHz,
B = -60.5 nHz, C = —-81.7 nHz at the surface and , A" = 438.7 nHz and B’ = -11.2 nHz at base
of the convection zone. In Table 1., we present the steady parts of rotation and components of
toroidal magnetic field. The values of chi-square and significance of chi-square are given in
Table 2. and Table 3. respectively. Compared to the previous solution (section 5.1), the chi-
square value is improved further. The rotational isocontours in the convective envelope are
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Figur 3. Meridional cross section of the steady part of the toroidal magnetic field in the solar convective envelope
obtained by the solution (4.1) of MHD equations. Isogauss contours are in 10* G.

presented in Fig 4. Compared to the previous solution, the present solution yields nearly the
same results (significance x2 for all the points is 99.903%) even near the polar regions and
almost same results (significance of x2 for 780 points is ~ 100%) in the region where inferred
results are more reliable. Thus, this result indicates that at base of the convection zone, differential
rotation is more likely rather than uniform rotation. This result also agrees with the other
helioseismic inferred rotation results (Thompson et a. 1996; Sekii et al. 1997; Kosovichev et
al. 1997; Korzennik et al. 1997) at base of the convection zone. We present the results of iso-
gauss contours in Fig 5. Though, this solution also yields similar field structure, it has following
difference compared with the previous solution. In the present solution, at base of the convection
zone, the strong toroidal belts are more closer to the sites of sunspot formations compared to
the field distribution presented in Fig. 3.

Note that the resulting rotational isocontours (Fig 4.) are matching with the
helioseismologically inferred rotational isocontours very well upto the middle latitudes. However,
the magnitudes of computed rotation rates near the polar regions are slightly different than the
magnitudes of rotaion rates inferred from the helioseismology. This could be due to the large
uncertainties in the C and the B’ coefficients obtained by (Goode & Dziembowski 1991). The
uncertainties could be either positive or negative values added to the best fitted values. Since,
C and B’ coefficients are negative, we add negative uncertainties to the best fitted values. When
we take into account the uncertainties in both the coefficients, the resulting solution yields
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Figure 4. Meridional cross section of the rotational profile in the solar convective envelope obtained by the solution
(4.2) of MHD equations with the imposition of boundary condition that base of the convection zone rotates differentially.
Isorotational contours are in nHz.

perfect matching with the helioseismic rotational profile. Thus, when we consider the coefficients
C = -97.0 nHz and B’ = -31.0 nHz which take into account the uncertainties, we have low
value of chi-square (608.90 for all the points and 119.7 for the 780 points). The resulting
solutions for rotation and toroidal part of magnetic field, by changing coefficients in the boundary
conditions, are presented in Fig 6. and Fig 7.

6. Concluions and discussion

The hclioseismic inferences from the observed rotational frequency splittings brought up a
wealth of information regarding rotation in the solar convective envelope. There are many
theoretical works and simulations which try to reproduce the solar internal rotation. Using
property of the solar convective envelope and with the assumption that steady part of rotation
represents helioseismologically inferred rotation, depending upon used two boundary conditions
at base of the convection zone, we solve analytically Chandrasekhar’s MHD equations and the
results are as follows.

In the first solution, which is obtained by using assumed boundary condition that the Sun
may be rotating uniformly at base of the convection zone, we obtain similar rotational isocontours
as those of helioseismologically inferred rotational isocontours with the important difference of
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T/Ke

Figure 5. Meridional cross section of the steady part of the toroidal magnetic field in the solar convective envelope
obtained by the solution (4.2) of MHD equations with the imposition of boundary condition that base of the
convection zone rotates differentially. Isogauss contours are in 10* G.

faster rotating poles. These important results lead us to the second solution which we obtain
from the assumed boundary condition that the Sun may be rotating differentially at base of the
convection zone.

In the second solution, we obtain rotational isocontours much closer to the helioseismic
inferred rotational isocontours yielding a very good 2 fit. This suggests that the Sun’s rotation
is more likely to be differential rather than uniform rotation at base of the convection zone. In
fact. in one of our previous studies (Hiremath & Gokhale 1996) and using different
helioseismologically inferred rotation rates (Dziembowski, Goode & Libbrecht 1989), we also
arrived at the same conclusion.

Our conclusion that the Sun may be rotating differentially at base of the convection zone
is mainly based on the comparison of results of the second solution (section 4.2) with the
helioseismic inferred rotational results (Antia, Basu & Chitre 1998) obtained at the single
epoch only. In order to study steady part of rotation and toroidal component of magnetic field
and, for the sake of comparison of the these results with the helioseismic inferred results, it is
necessary to compare with a suitable average rotational profile obtained from averaging over
one solar cycle data. This may eliminate the fluctuating part of rotation which may contributes
to the bumps and kinds in the inferred helioseismic rotational profile, especially near the
surface.
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Figure 6. Meridional cross section of the rotational profile in the solar convective envelope obtained by the solution
of MHD equations by modifying the coefficients of C and B’ in the rotational boundary conditions. Isorotational
contours are in nHz.

Though aim of the present work appears to be similar to the work presented by Nakagawa
& Swarztrauber (1969) (here afterwards NS69), the following important differences in the
resulting solution exist. Our solution of rotational isocontours is almost similar to the rotational
isocontours as inferred by helioseismology. Where as there is a serious discrepancy between
NS69 solution of rotational isocontours and helioseismologically inferred rotational
isocontours. Solution of NS69 yields the direction of meridional circulation from pole to
equator contrary to the observations and helioseismic inferences near the surface which
show that direction of the flow is from equator to pole. This could be due to unphysical
boundary conditions used in the solution of meridional circulation. In reality one should take
the observed surface boundary condition for the meridional circulation and inner solution has
to be obtained. We plan to solve in this manner for the meridional part of the velocity. Moreover
the work of NS69 has following physical inconsistencies also : (a) unphysical boundary conditions
at base of the convection zone, i.e., P = 0 and T = 0; (b) there is no clear answer for their
assumptions that A; P = 0 and A5 Q = 0 in the whole convective envelope. However, these
equations are valid and are obtained from the reasonable assumptions and approximations
(section 2) which we incorporated in our work. For example, we assumed that magnitudes of
eddy viscosity and magnetic eddy diffusivity are very large in the convective envelope which
is not a bad approximation. Hence we believe that our solution is closer to the reality than the
solution of NS69. '
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Figure 7. Meridional cross sccuion of the steady part of the toroidal magnetic field in the solar convective envelope
obtained by the solution of MHD equations by modifying the coefficients of C and B’ in the rotational boundary
conditions. Isogauss contours are in 10* G.

The aforementioned result that sun may be rotating differentially at base of the convection
zone has implication for understanding the problem of lithium depletion in the Sun. If we
assume that there is no rotational discontinuity at base of the convection zone, aforementioned
result implies that radiative core may have a weak (it is very difficult to ascertain how much
weak the differential rotation in the radiative core from the p mode rotational splittings) differential
rotation superposed on the strong uniform rotation, both of which could be of primordial origin.
At the present epoch, differential rotation appears to be weak in the radiative core. However,
in the past epoch it could have been strong enough to induce the rotational mixing (Zahn 1983;
Zahn 1992; Pinsonneault 1994) that might have lead to lithium destruction at base of the
convection zone.

In the present study, we have compared the results of internal rotation with the internal
rotation obtained from the inversion of helioseismic data. However, most of the helioseismic
inversions depend mostly on the assumed free parameter used in the computations. For example,
different free parameters in the inversions may yield slightly different topological rotational
isocontours (Sekii 1995). Thus, we should use the rotational data, which is free from such
modelling. Another way of checking our results is to compute directly rotational frequency
splittings using solar kernels and our resulting rotational profile. These computed rotational
splittings can be compared with the observed rotational splittings a;, (I = 1,3, ...).
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Ritzwoller and Lavelly (1991) have shown that, in the inversion methods, if differential
rotation is cxpanded in terms of the selected basis functions, viz., derivative of axisymmetric
Legendre function of degree /, rather than commonly used ad hoc basis functions, then several
significant problems currently facing in the inversions will disappear. It is interesting to note
that the basis functions C*? (1) in the rotational solution which are derivatives of axisymmetric
Legendre functions of degree (/ + 1) are similar to the basis functions used in the Ritzwoller
and Lavelly (1991) method. We propose here that, it would be physically more appropriate if
we use the C32 (u) basis functions of degree (I + 1) in the Ritzwoller and Lavelly (1991)
method of inversion, rather than the basis functions which are of degree / only.

Note that the equations used in the solution of solar rotation can be extended for the case
of studying the stellar internal rotation, especially, late type main sequence stars which are
supposed to be fully convective. Recently, we (Hiremath 1999) have undertaken such a study
for understanding the internal rotation of AB Doradus. Thus, this study will be useful in
understanding the internal rotation of the late type stars which in turn will be helpful in
understanding the rotation of the core. In fact this study can be used as the feedback (by
calculating the rotational splittings using the respective modeled stellar structure) for
understanding the rotational splittings obtained from the asteroseismology. In this study, we
have taken the depth of the convection zone € as a free parameter. However, if one knows the
surface boundary conditions. by varying the boundary conditions at the base and by iteration
one can determine the cxtent of the thickness of the convective envelope also.

Aim of the present work is mainly on the study of internal rotation of the Sun. However,
present solution of MHD equations also yields steady part of the toroidal magnetic field in the
solar interior. This consists of a two-zone structure of toroidal field (~ 1 G) near the surface
and a four-zone structure of toroidal field (~ 10* G) near the base of the convection zone. Apart
from these components in the second solution, we get an additional component (n = 4) with
eight-zone structure of toroidal field. However, combination of all the components give similar
field structure as that of the first solution.

Note that near base of the convection zone, the latitude belts of strong toroidal fields are
concentrated where sunspots are supposed to be originated. The obtained field structure may
give answer to the following important observational results viz., (i) the maximum flux eruption
during the solar cycle is concentrated between the heliographic latitudes 5° and 75° (Howard
& LaBonte 1981), (ii) the time variation of even degree splittings has strongest peak amplitudes
near the belts of 50° — 60° heliographic latitude (Woodard & Libbrecht 1993) and, (iii) the
dominant modes of MHD oscillations which may be contributing to the solar cycle and activity
phenomena (Stenflo & Vogel 1986; Gokhale & Javaraiah 1992).
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