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Abstract. The secular solutions of Robe’s restricted three-body problem is dealt in
this paper when the first primary is an oblate spheroid-rigid shell, filled with
homogeneous, incompressible fluid, with its equatorial plane coincident with the
plane of motion and the second primary is a source of radiation. The collinear
equilibria have conditional retrograde elliptical orbits around them in the linear
sense, while the triangular points have long or short periodic retrograde elliptical
orbits for the mass parameter, 0 <L <[ .., the critical mass parameter, which decreases
with the increase in oblateness and radiation force. However, retrograde elliptical
periodic orbits exist for the case L = p;, through special choice of initial conditions,
the eccentricity of which increases with oblatenes and decreases with radiation force
for oblateness, which is not zero.
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1.”Introduction

Restricted three-body problem as: conceived by Robe (1977) describes the motion of an
infinitesimal mass, moving inside the rigid spherical shell, filled with homogeneous,
incompressible fluid, which is the first primary and the mass outside the shell at a distance is
the second primary. The two primaries move in circular orbits around their centre of mass on
account of their mutual attraction and the infinitesimal mass not influencing the motion of the
primaries. The Robe model is meant to provide some insight into the problem of small oscillations
of the earth’s core in the gravitational field of the earth-moon system. But in our model we have
assumed further that the rigid shell is an oblate spheroid and the body, located outside, is
radiating one and we attempt to study the effects of oblateness and radiation of the primaries
on the infinitesimal third point in Robe’s problem.

Here we consider the case when the gravitation prevails. The resultant force acting on the
infinitesimal mass due to gravitational force of first primary and radiation pressure of the
second primary is given by
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F:Fg-Fp = Fg (l—Fp/Fg) = ng, where q = (l-Fp/Fg) is the mass reduction factor,”which is
constant for a given particle.

We obtain the locations of the triangular points, which form isosceles triangle with the
distance of the first primary and L, 5 being less than one and other distances are unity. We
obtain the characteristic equation of the linearised equation of motion, which has four roots. We
observe further that the roots are functions of U, q and A, ; | being the mass parameter.

When the discriminant of the characteristic equation is positive, the roots A, , = *is,, Ay,
= +iss, are found to be pure imaginary. '

The solutions consist of short and long period terms when angular frequencies are s, and
ss. The value of mass parameter i. e critical mass, [ have been calculated when discriminant
becomes zero. The series solutions of the critical mass, [ in terms of €, € A have been found
to be a accurate as we have included terms upto €2, €2A,, in the series expansion.

Then on substitution of the value of B = p_; from equation (13) to equation (20) and
retaining only linear terms in A, and terms €2 for finding eccentricity we discover that it
improves the eccentricity or secular solution. Again we could compare eccentricities or secular
solution by taking small values of A, and W in equations (20) and (21).

2. Equations of motion

Following the terminology and notations of Szebehely (1967) and choosing the unit of mass
equal to the sum of the masses of thc primaries, the unit of length equal to their separation and
the unit of time such that the Gaussian constant of gravitation is unity, the perturbed mean
motion of the primaries is given by

n? = 1’+%AI

where A, is the oblateness coefficient of the bigger primary and

A= (A._Ez, — A_Pz,) / 5R? where AE, is the equatorial radius and AP, is the polar radius of
the bigger primary and (R ='1) is the distance between the primaries.

The equations of motion in the dimensionless barycentric-synodic co-ordinate system (x,y)

.. . 0dQ

are x—2ny=—a?

. . 0Q
Y+2nx=—§§- M
Whei o 2 g Me, 1 (WA ,
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The Jacobian integral of equations (1) is X2 + y2 = 2Q-c; ¢ being the Jacobian
constant. The curve of zero velocity are given by 2 Q (x,y) = ¢ and since Q (x,y) = Q (x
y), the curves are symmetric with respect to x-axis. The singularities of the
manifold of the states of motion are located at those points of the curves of zero

velocity where _8_& =0= _89_
ox ay

hg (- 3 (1A

; 2 _ 2 —_
r.e x[(n* - 2k) r32 r}} > r5| ]
 (w=Dpq  (O-p 3 (A : (3)
kg - r - r 2 r =0 ’
1- 3 (1WA
and y[(n* - 2k) - e+ 2 (A, 1=0 4)

r r 2 r

2 1 1

3. Equilibrium points location
For y # 0, Equations (3) and (4) disclose that
ry=q/mn?; r =1 (5)

Equations (5) locate the other two points L, and Ls. These points forming isosceles triangle
with the primaries are known as triangular points; it may he noted that r, < 1.

For y = 0, equation (3) determines the location of the collinear points, L, (x,, 0), L, (x,,
0) and L; (x5, 0). . ‘ :

4, Stability of the triangular points

Putting x = x, + €, y = y, + 1 in the equations of motion (1) for studying the motion near any
of the triangular points, L (x,, y,), we get the variational equation as (Sharma, 1987).

E - 2mi = Q,, (xg, Yo) & + Q,, (X0, Yo

fi+2n=Q, (xg yo) & + Q,, (X YoM , (6)
The characteristic equation of equations (6) is .

A+ (4n2 - Q0 - Q0 )2+ Q0 Q0 —(Q° )2 =0 ©)

At the triangular points L, and L, we have :
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Q) =f(x =1+ p?+ g(x +pn? -2k,
QJ, =+ y[fx = 1+ ) + g(x + )]

Q0 = y2f + g] - 2k > 0,

3*:2"' >Oaﬁdg;3(1—u)(1+%A])>O

2

where f =

Hence, with A2 = A the characteristic equation (7) becomes :

A+ (4n?—fr2-g+4k) A +y2 fg -2k [fr,2+ g -2kl =0 (8)

or, A2 + [n? = 3(1 — WA, + 4k] A + 9 (1 — wn2 (1 +—§— A) (@1 - -Ei-z-)

- 15Ak + 3uAk +4k2=0 9)

We obtain further from the above equation

A, = —%— [{3(1 - WA, - n? - 4k} = {(3(1 — WA, — n? — 4k)?

- 36 Wl —wn2 (1 + % A) (- -r4i) — 60Ak + 12uA k + 16k2}12]

It is observed that the roots of the equation (8)

M =A% N == A% A =A% A =— A% (10)
are function of U, q and A and their nature depends upon the nature of the discrirﬁinant

A = [n? + 4k - 3(1 — WA,1? - 36p(1 — wn? (1 + %A’,) 1= —rj?—)

— 60A, k + 12uA| k + 16K

The following three cases arise for discussion :

(i) Whe.n A is positive, A, , are negative and the roots (10) as

Aoy = .ii(—— AD'2 = £ isy, Mgy #i (- A2 = iss

show that the triangular points are linearly stable. The solution of equations (6) in this case can
easily be seen to consist of short and long period terms with angular frequencies s, and s
respectively.

(ii) When A is negative, the real parts of two of the four roots (10) are positive and equal;
hence, the equilibria are unstable.
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(i1i) When A = 0, both the values of the four roots (10) in pairs are equal. So the solution
of the variational equations contain secular terms and consequently the triangular point is
unstable. However, with suitable selection of initial conditions, periodic motion can be achleved
in the linear sense, which approaches the equilibrium point asymptotically.

5. Critical mass
The discriminant of quadratic equation (9) is zero

' 2
when [9A2 + 36n%(1 + % A (- -rj—)]m — [18A% - 6024,
5 r? )
— 12AK + 3601 + 5 A (1= =)l + nt + 9A]

— 6n2A, + 8kn? + 36Ak = 0 ' )
When A, = 0, Equation (11) coincides with that of Chernikov (1970).

Solution of Equation (11) for 0 S u < 172 is

o—B'2
Merie Y (12)
where _(1—12/-3—)(1+3A)—ATk
g » =273
B=10 -2 (1 +3A)- A3k a1 - L) (1 +3A) + A

1. A 2 4
—_— -1+ _k+—AK]=
[36 12 9 3 ik]

REF (T q4 ) (1 +3A)) + A]

Let q = 1- €, where € is small. Restricting computations with linear terms in A, upto
quadratic terms in € and retaining terms upto €2 A;, we obtain.

3 1 1 9 k 1 1

- = RIS I V. S N . TN
0=l € +tgeel+ (G-3) + 5€ +5eA
23 2 25 4 43 .
e A T AT TR
235 133 313 513
- A — s —— 2
gz -+ G5k e + (g7 -5 RetlA
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By

1 1 13 e?
_ 2 e -
Y’_[2 +3€+]8€)+[2 +E+6]A1

and the expression of W ;, in (12) becomes

2 3 23 2 1 25 4
o [ [ ((— e — 12 e (e _ —I\12 .
Mo = B~ {7 = (g =570} + 3 {— - (g — 570"

1 43 2 2 9 k. 235 133
—_— e (— 12 2 (e (N2
B {gg (g gr V" €N+ [zl —=3) - (57 - g™

13 13 15 13
e (e — s 172 — (iR 2
Pl -G g B e+ 6 {g5 - (57— 570" €4, (13)

Expanding the expression under the small bracket binomially and neglecting the small
powers of k and then simply reducing them to decimal we get

ie  p = [(0.0385211 + 0.3210289K)
~ (0.9433756 ~ 0.4618802 k) € -
~ (4.1368092 — 0.8626621 k) €2]
+ [(0.0682121 + 0.2633248 k)
— (0.7247448 — 0.5896918 k) €
~ (3.3729833 — 1.1188614 k) €2] A, ' (14)

The above equation shows that the variability of critical value [ _;, of the mass parameter
also depends upon the perturbations caused by oblateness effect and radiation of the respective
primaries, however small.

6. Secular solutions

When A = 0, we note that A and A, are equal and negative and the roots (10) of characteristic
equation (8) are pure imaginary and equal in pairs.

Ay = K2, Ay, = -ikI7 (15)

| 3 '
) {1 +7 1-2WA} >0

Rotating the co-ordinate axis at L, 5 at an angle © through the transormation

where K=

E=ECos®—TSin®,n=¢Sin 0+ Cos 0
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and subsitituting in equations (6), we have :

where I‘m = (20’ - ¥) * 2n (n? - X)'?

149

(16)

The double roots (15) give secular terms in the solution of equations (16) and the triangular

points are unstable.

_As in Sharma and Subba Rao (1979), the solution of equations (16) can be obtained with

the aid of Laplace transformatidn as :

]

E=[E, +{(x+X)E /2x -k, / K}t]Cosk't
+ [{nX'mO [x%2— (N - %) &, 1 2x7)

+ {(x + X)E, / 22 + n T, / x'2}t]Sin k't
=M, + {(x + 7:’;) ﬁo 2K + n_X;EO / K}I]COS‘K”Z\t

+ {0 = X, / 263 — k2, / x%2)

+ (K + 7{‘1) n, / 2x"* - ngo / x'2}t] Sin x'2 t.

(17)

where Eﬂ, Ny Eo ﬁo are initial position and velocity components at t = 0. The solution (17) is
unstable due to the presence of the secular terms in t. If, however, arbitrary initial

conditions EO, T, are combined with special velocity components.

‘_ﬁo = k"7, / m, ﬁo =— ! mEo,
where m = (K +5.‘2)”2 (x +7J1)”2

fhe secular terms in (17) are eliminated and we obtained

€ = E Cosk" t + (7], / m)Sin x'2 t

- = 173 T Qin 2
M =1, Cosk" t — m&, Sin k' t

(18)

(19)
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Eliminating t from Equations (19), we get .

m B+ =m g+ T
which represents an ellipse with eccentricity (1-m2)'2. At & = EO, 7, = 0, the velocity
components in (18) are

Eo =0, i_']o =-x" mE—W

and since k2 m > 0, the sign of ﬁois negative of &, which proves that the periodic orbits,
described by equation (19), are retrograde. The eccentricity

e=(1-m)"”?= (7"*1 __;";)”2 _ 2(n® - k)i»
(K + -X‘;)”z n+(n2 _ k)”'_;

2 n’ - x)\? 1 3
( ) =1+=( +—2—uAl),

2-e? n \'/5
or €2 = 2(\5 -1 +\/%' (\j_Z - DpAal
3 : |
— D2 _ 1/2 —_— —
ore=2"26[2- )21 + " (\/—? DA (20)

Substituting the value of i = p from equation (13) into (20) and retaining only linear
terms in A, we get

e=2"2-1"[1+ 3(\1_2 N '\I /
1 25 4
”"2"‘3\/@“27“)“,( '\,648 57 0l @

The equation (21) shows that the eccentricity e increases with oblateness and decreases with
radiation for non-zero oblateness.
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7. Conclusion

The above study of the critical value p . of the mass\parameter and secular solution in the
Robe’s three body problem reveals that the range of stability of the triangular points increases
and decreases according as variability in oblatness and radiation of the primaries, considered
in this model.
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