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Abstract. This paper deals with the periodicity of the generating solutions of the
restricted three-body problem in three-dimensional coordinate system in KS-variables
in the light of Krashinski (1963), Kurcheeva (1973) a_nd Ahmad (1995).
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1. Intrdduction

Krashinski (1963) established generating solutions in the restricted problem of two bodies. -
Kurcheeva (1973) studied the existence of periodic solutions of the restricted three-body
problem representing analytic continuation of Keplerian rectilinear periodic motions. She
established periodic and isoperiodic solutions in different cases reducing to the generating one
for u=0. The period of these solutions is analytic function of |, the mass ratio of the smaller
primary to the total mass of the primaries, where 0 < p <la.

Ahmad (1995) reproduced the work of Kurcheeva in a well furnished way in the light of
Mandelstam and Papalexi (1932). In his work he has shown that the isoperiodic solutions are
stable and all the other solutions are unstable. All the above authors made their efforts in planar
case only but no one took up the three-dimensional coordinate system.

In the recent era KS-transformations are playing an important role in the field of celestial
mechanics. It is an established fact that in celestial mechanics the representation of many
formulae in terms of KS-variables is much simpler and more compact than in Levi-Civita’s (1906)
variables. In three-dimensional space, to test the periodicity and the isoperiodicity of the
generating solutions is generally impossible, if the equations of motion be regularized with the
help of Levi-Civita’s parabolic transformations. It is only possible when the equations of motion
in three-dimensional space be regularised by the KS-transformations which transform the three-
dimensional space into four-dimensional phase space of real numbers. In this paper, for the first
time, we have produced a new system of periodic generating solutions of the restricted three-
body problem in terms of KS-variables in three-dimensional synodic coordinate system and also
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established the period of the generating solutions. In the first and second sections we have
established the regularized equations of motion by KS-transformations. In the third section we
have produced the periodic generating solutions in KS-variables. In the fourth section, the

periodicity of each of the generating solutions have been examined and it is found that all the

generating solutions produced in our work, are periodic with the period %,’ k is any positive
integer.

2. Equations of motion

The equations of motion in canonical form of the infinitesimal mass (x,, X,, X;) moving in the
gravitational field of two massive bodies of unequal masses moving in circles in the synodic

system, are & oH dX, 3H (o123

at oxX dt | ox 0 0
where Hamiltonian is given by

Hem 2%+ (X Ly Lok m 2

=T IX AKX ) -w - = - O
1l =x2+ X7+ X2
r;=(x,+1)?x2+x2
dx

and Xlzd—tl_,xz, X2=&— x, X, =& , (X Xy Xj) are gengralised momenta

dt dt

corresponding to (X5 X9 X3). All the conditions of the restricted three-body problem remain the
same.

3. Regularization

There are many methods of regularization to make the energy function free from the singularity
or singularities. Here at collision, the energy function H has two singularities at r; = 0 (i=1.2).
In order to remove the singularity at r;=0, let us regularize the equations of motion by KS-
transformations given by

x=L(q)q o ®
where the orthogonal KS-matrix

ql _q2 —,—q3 q4
. qg ql _q4 _q3
L(q) = i q3 q4 ql- q2
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LT(@L(q) = (q.9)I = L(q)LT(q), Lis the unit matrix, x = (x,,X,X3) and q = (q;,q,q3,q).
The explicit representation of (3) are
Xp =4 - g% - q52 + q? (Steifel & Schiefle, 1971 p-24)
Xy = 249 - 9394)
X3 = 2(q,9; + 9,9,

The associated generalized momenta

i-1

3 ox.
= X — j=12,34
Q=2 X, i )
(Kurcheeva-1977) and (Steifel & Schiefle, 1971 p-28)

where X.’s are given by

L, [@
))232 = EF_ L(‘I) g& Q = (QpQ2’Q39Q4)

(Steifel & Schiefle, 1971 p-239)
Explicitly (6) reads

X =

1

(q1Q1 - quz - q3Q3 + q4Q4)

- £

X2 2le (q2Q| + q]Qz - q4Q3 - q3Q4)

and 3 = ﬁ(q_&. +qQ, +q,Q, +q,Q)
In all the above relations a key role was played by the biiineax relation
T(9-Q) = (94Q1-9:Q,+9,Q5-9,Q) = 0
Also 1 =(q.q) =g = q;? + g, + g% + q2 = p?
and  r2=1+2x +Ig¢ (QQ) =IQP =Q2+ Q2+ Q2 +Q2
Let us now connect the physical time t and the pseudo time s by the formula

dt=4p%ds (t=0ats=0)

17

Q)

&)

©)

M

®
®
(10)

1n

Thus the regularized canonical equations of motion of the infinitesimal mass given by

Kurcheeva (1977) are
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dq, dK dQ, dK )
-0 4 - g (i=12349 (12)

where the new Hamiltonian K (regularized at r; = O only) is given by

K = 4p2(H+ % o) = % (Q2+Q2+Q+Q)) + 20%(Qq,- Q,0,+Q,a,~ Qa, ) — 4

1 1 1 3
+4u[1_P2 (qlz_qu_q32+q42 +'———-C1 —'—)]
r, 2 2
4. Generating solutions
For generating solutions, considering p = 0, the reduced Hamiltonian is given by
1 : :
Ko = '2_ (Q12+Q22+Q32+Q42) + 2p2(qu2—Q2q1+Q3q4—Q4q3+co)—4 4
Also the Hamilton equations of motion for the reduced Hamiltonian K, are
dq. oK, dQ. dK,
— = ’ - =- i = 17233’4
ds Q, ds aq. ¢ ) (13)

T

Thus the equations of motion of the infinitesimal mass in three-dimensional synodic
coordinate system can be derived from (9), (14) and (15) as

Gy — 4(p? + q;7 + D)y + 4(q)q, ~ 993095 — 43 + 909004 = 49;3p* —cp),  (16)
Ay + 4(P? + % + 47)q; + 4193 + 9294003 + 4(Q19s — 9295)34 = 4q,3p* — ¢, (17)
s — 4(q;4, — 995)d; — 4(q,93 + 9094, — 4(P? + Q3% + q,2)q4 = 495(3p* — ¢p), (18)
A + 49193 + 929907 — 4(q194 — §93)d2 + 4(P? +q5% + q47)q3 = 49,(3p* - ), (19)

where (.) denotes the differentiation with respect to the pseudo time s.

- Multiplying (16) — (19) respectively by 41,92,:93.94 and integrating their sum, we get

4
22', q,2=4p° - 4c p? + 8. : (20)
.

Here 8 is the constant of integration, taken same as in the two body problem by Krashinski
(1963) and in the restricted three-body problem by Ahmad (1955).

Again multiplying (16) — (19) respectively by q,,q;,44,q; and subtracting the sum of the
second and fourth from the sum of the first and third and then integrating, we get
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4,9, — 949 + 9344 — 93q4 = 2p* + b 20

Here b is the constant of integration to be determined by the initial conditions. Now we
wish to represent the generating solutions in rotating coordinate system in KS-variables
expressed in terms of orbital elements.

If Q is the longitude of the ascending node, ¢ is the angular distance of the infinitesimal
mass from the node and J is the inclination of the orbital plane of the infinitesimal mass with
the plane of motion of the primaries then the compact parametric representation of KS-variables
in the non-rotating (sidereal) coordinate system in any plane curve having its orbital plane in

. general position are given by (Steifel & Schiefle, 1971 p-67).

e J Q- o J . Q-0
q, = sin > cos (——2 , G, = sIn > sin (—2 ),
22)

Q+o — 3 Q+c
> ), q, = —cos > COSs 5 ),

- L
q3 = COS T sin (
It may be noted that J and Q are constants.

The equations of motion from (16)—(19) are in the rotating (synodic) coordinate system and
q;’s (22) are in the sidereal system, so to solve the equations of motion one has to change the
KS-variables of (22) in rotating cordinate system and accordingly Q;’s.

In terms of orbital elements J, €, ¢ the non-rotating three-dimensional coordinates x;’s are
X, = sinz(—;—) cos ( — O) + cos? (%) cos (2 + 0)

. J . ] . (23)

X, = smz(T) sin (QQ — G) + cos? (T) sin (2 + ©)

X, = sin J sin 6 (Steifel & Schiefle, 1971 p-68)

If x,x,-plane rotates about x;-axis with the mean angular motion n, then at time t, in the rotating
three-dimensional coordinate system the position of the infinitesimal mass (X,,X,,X;) are given
by transformations

X; = X,€0s nt + X,sin nt
X, = — X,sin nt + X,cos nt 24)
X3= X,

From (23) and (24)

X, = sin? (—%—) cos (Q — ¢ — nt) + cos? (—;—-) cos (2 + 6 — nt)

X, = sin? (-;—) sin (Q — ¢ — nt) + cos? (%) sin (QQ + ¢ — nt)

X;=sinJsin o
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From (4) and (9), the inverse of KS-transformations in rotating coordinate sj'stem, the variables
g;’s can be obtained either from

I +X
R
B Xyq,+ X539,
%= I +X%, ‘ 26)
S T T Y
%= % =
1 1
or from q, +q; = l —2x]
q, = i2qz+ i3q3
X19,— X,q
q = _3r.2—_le_3_ if otherwise

Thus by suitable choosing we can easily show either from the combination {(25), (26)} or {(29),
(27)} that
nt )

J Q-0 -
= p sin — cos
2 ( 2
J Q-0-nt
= p sin—= sin
2 ( 2 )
+ O -

(28)
3£pcos—;- sin(Q “t)

q,=—p cos -—;_—cos (Qi_g_“i)
where also 1; = VX2 + X2 + 32 = q;2 + q,2 + G52 + q2 = p&.
.From (11) & (28) one can easily find that

ﬁ‘, g2 = p7 +2 (6 + 16np* - 8np? & cos ) @9)
and = '

419, -9, 9z + 43 q, — q; 44 = 20p* —-;—pzécos J. (30
the combination (20, 29) and (21, 30) yield

67 +-8- (6 + 16n%* — 8np? & cosl) = 8-4c, p? + 4p® 31)
and 2np* — %pzdcosl = 2p*+b. 32)
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Following Krashinski (1963) and Ahmad (1995) at s=0, p=0, (32) gives b=0 and consequently
G =4(n - 1)p2secJ. 33)
From (31) and (33)
P2 =8 — 4cyp? — 4(n — 1)?pS tan? J. 34

As our purpose is to produce periodic generating solutions, so without loss of generality we
can choose the ideal frame i.e. n = 1, for the generating solutions in the circular restricted
problem of three bodies in three-dimensional synodic coordinate system and hence from (33),
6 = 0 i.e. 0 = constant = G (say).

Thus the equation (34) yields
P2 =8 - 4cyp2.

On integration P =4 ’ 72— cos(24/Cy s — o) (35
0

where s, is the constant of integration.

=psin—J—cos (oc—t),
2 2

=psin—;—sin (a—t)’ .
2 (36)

= pcos % sin (P;—t),

q, = — Pcos — cos (%) ,

2

Thus from (28)

and from (11), (15) and (36)

Q= psm—cos( 2)

Q,= psm— sin >
€2))
— beos - sin { B=L
Q, = pcos > sm( > )

Q, = — pcos —;—- cos(b),

where a0 = Q — 6, & B = Q + O, are constants as Q and G, are constants.
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1

e [4v, s + sin(4c, s — 25)] + 5,

t =

(38)

where s, is the constant of integration and cyVc, = n = 1 the mean angular motion. Hence the
equations (36) & (37) together with (38) represent the generating solutions of the system (12).

5. Periodicity

With the conditions of generating solutions, we have

and

p(s) = V2 cos (2s - sp), (co=1
p(s) = 272 sin (2s - sg),
t(s) = 2[2s+sin2s.cos2(s - Sp)].

Let us introduce a number s* = =5 k is any positive integer, then

Similarly,

Therefore,

P(s* + ) = V2 cos[2(s*+s) - so] = (-1)k p(s)
P(s* + s) = -2V 2 sin[2(s*+s) - 5] = (-1)k p(s)
t(s* + s) =4(s*+s) + 2sin2(s*+s) cos2(s*+s - sp)].
= 2KT + ((s).
cos % [o— t(s* + 5)] = cos%[a — (2Zkr + t(s)]
= cos[ kr — Q_Tt(s)

2

= (~=1)* cos [—a — ) '

-

cos —;- [B — t(s* + s)] = (=1)* cos -13—_5-(—8-)- ‘

sin % [0 = t(s* + 5)] = (~1)* sin | & —zt(S)J

=

2

‘ w
sin = [ ~ t(s* + )] = (-1¥ sin | B_HE)

L

q,(s*+s) = p(s*+s) sin(%-) cos % [0t — t(s*+s)]

(39)
(40)
@D
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= (=1)* p(s)sin (%) (~1) cos[ o - t(s)]
- 2

= p(s)sin (%) cos [ o - t(s)]

2
= q,(s)
Therefore, ql(s*+s) = q;(s)
1=12,34 42
Also Qs*+s) = Qs).

Thus q,’s and Q,’s given in (36) and (37) represent the periodic generating solutions with the

period s* = —k27—t— where k is any positive integer.

6. Conclusion

From the above discussions we conclude that in the circular restricted problem of three bodies
in three-dimensional rotating coordinate system the per:odic generating solutions are possible
only when the orbital elements J,{2,c are constants i.e., when synodic frame of reference is ideal
and the mean motion n and unperturbed Jacobi’s constant ¢, are unity.
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