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Abstract. We have examined stability of collinear equilibrium points in the generalised
photogravitational elliptic restricted three body problem. The problem is generalised
in the sense that the smaller primary is considered as an oblate spheroid and the
bigger primary is taken as a source of radiation. We have found the characteristic
equation of the problem. We conclude that collinear equilibrium points are unstable
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1. Introduction

Radzievskii (1950) investigated the restricted problem of three bodies taking account of the
light pressure. Arnold (1961) studied the stability of equilibrium points in the general elliptic
case. Broucke (1969) studied the stability of periodic orbits in the elliptic restricted three-body
problem.

Bein (1970) gave stationary solutions in simplified resonance case of the restricted three-
body problem. Katsiaris (1973) studied the three-dimensional elliptic problem. Hadjidemetriou
(1975) investigated the stability of periodic orbits in the three-body problem. Schuerman (1980)
studied the restricted three-body problem including radiation pressure. Hadjidemetriou (1988)
investigated periodic orbits and stability. Hagel (1989) gave the integration theory for the
elliptic restricted three-body problem. Vokrouhlicky, et. al (1993) studied solar radiation pressure
perturbations for earth satellites. Khasan (1996) investigated librational solutions to the
photogravitational restricted three body problem by considering both primaries as radiating.

Hence, we thought to investigate the stability of collinear equilibrium points in the generalised
photogravitational elliptic restricted three-body problem.

The problem is generalised in the sense that the smaller primary is considered as an oblate
spheroid. The bigger primary is taken as a source of radiation. We have found the locations of
collinear equilibrium points of the problem. We also have calculated the characteristic equation
of the problem and conclude that collinear equilibrium points are unstable.
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2. Locations of collinear equilibrium points

The equations of motion for the photogravitational elliptic restricted three-body problem in a
dimensionless, barycentric, rotating co-ordinate system with the smaller primary as an oblate
spheroid and the bigger primary radiating, are as follows

E” - 20" = 9Q*/d
n” + 28 = 0Q*/on 2.1
¢ = dQ*/dL

where Q* = [(E2 + M2/2 + 1/n2 {(1 - Wq/r; + Wr, + RAY2r%,}1/(1 - €)1

Also, q; is the mass reduction factor constant, ‘

A, is the co-efficient of oblateness and n is the mean motion given by the relation
n? = (143A,/2) (1+e)'?
a(l - €

By an analysis similar to Mc Cuskey (1963) for the existence and positions of equilibrium
points we have.

oQ* 0Q*
= O = 0
9§ o

which gives,

L 0-wa (Grw  wEru-D  3pALE+R-D o (29

2 3 3 5
n r’ r 2r2

2 1=0 (2.2)

where r1,2=(§ + pp2 +n?+ 2
=@ +u-12+n*+

The Lagrangian points of the x-axis are given by setting 1 = 0, { = 0 in the equation (2.2). We
have

2n2(E + W2 (& + - D*- 271 - wq, € +p- 14
2@+ @ - 12 -3uAE 2 =0 2.4)
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For three libration points on the x-axis we have one root of & be greater than &,, another root
lies between &; and &, and other root is less than &,

T 1
&, 0) c &, 0) L& 0)
Case 1:

Let& > &, and consider § - &, =p;s0&-& =1+p;also&=1+p-u; Substituting
these values in the equation (2.4) we have ‘

2n2p7 + 2n%(3 - Wps + 2n%(3 - 2u)p5 + {2n%(1 - p) - 2(1 - W) q; - 2p}p* - 4ppd -
(2 + 3pA)p%- 6pALp - 3pA, =0 (2.5)

Let vy, be the value of p in the classical case. i.e. when e =0, A, =0 and q; = 1

For the presence of these terms let the value of p be slightly changed and let the new value
of p be defined by

p=vy +9,and §; << 1;
Nextletq, =1-8,, B, <<1
Substituting the value of p in the equation (2.5) we have
8P, + QB, + RA) =L, + M,B, + N,A, (2.6)
where Py = 14n%y,% + 12n2(3 - pyy,® + 10n%(3 - 2u)y,* + 4{2n2(1 - ) - 2}y,
- 12uy,2 - Apy,
Q=8 - Wy’
Ry =-6ul+v);
Ly =-2n%y7- 2023 - Wy, - 2023 - 20)y,5 - {2n2(1 - W) - 2}y + dpy)® + 20,2
M, =-2(1-wm*;
and N; = 3u(l + 2y, + 7,2,
Now, from the equation (2.6) we have
L +MB, +NA,
"7 P, +QB, + RA,

= [ @, + M;B;, + NJA){1 + (Q,/P)B, + (R,/P)A,}'] /P,
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=[ (L, + M,;B, + NJAO{T - (Q,/P))B, - R,/PDA,}/P,
[neglecting the higher order terms]
= [L, - QL\/P)B; - RL/PPA, + M;B; + NjA,] /P, A
= [L, + (M, - Q.L,/P)B, + (N, - R,.L,/P,)A,)/P, 2.7)
since n2 = (1 + 3A,2)1 + e¥2)(1 + e?)/a

= (1 + 3e%2 + 3A,/2)/a [Neglecting the higher order terms, since A, and e? ‘are
small]

we have P, = 14n%y,5 + 12n2(3 - p)y,° + 10n2(3 - 2u)y,* + 4{2n%(1 - p)
-2}y - 1202 - dpy,

Substituting the value of n? we have -

P, = 14y,%a + 123 - w)y,’/a + 103 - 2p)y,Ya + 8{(1 - wya - 1}y,
- 12 py,? - 4py, + e?{21y,%a + 18(3 - wyy,/a + 15(3 - 2pyy,Y/a
+ 1201 - py,¥a) + Ay{21y,%a + 18(3 - wyy,/a + 153 - 2p)y,Y/a
+ 12(1 - pyy,¥/a} ;

P =X+ Y e+ YA,

Where X, = [14y,5/a + 123 - pwyy,%7a + 103 - 2uyy,%a + 8{(1 - wya - 1}y,

- 12uy,? - 4uy ]! |

{21y,%a + 183 - Wy, %a + 15(3 - 2p)y,%a + 12(1 - pyy,¥/a}
Y, =-

[14v,%a + 12(3 - wyy,>/a + 103 - 2p)y,Ya + 8{(1 - pwya - 1}y,3 - 12uy,2 - 4py;]
similarly L, = - 2n%y,7 - 2023 - w)y,® - 2n2(3 - 2u)y,° -{2n2(1 - ) - 2}y, + 4y, +2uy%
= U, + V,e? + V,A, [Substituting the value of n?].
where U, =-2{y,la + 3 - wy,% + (3 - 2wy, 7a + (1 - wy,¥a - v,* - 2uy,? - uy,?}
Vi=-3{y" + G-yt + G -2y’ + (1 - wy*a
Hence substituting the values of L, M, N, P;, Q, and R, in the equation (2.7) we have
3, = UX, + (U)Y, + V,X)De? + 2X,(u - D)y (v, + 4U,X)B, + {U|Y, + VX, +
3Xiu( + v + v, + 2U XA,

we have p = v, + 9,
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=7, + UX, + (U)Y, + V,X)e? + 2X (1 - Dy, (v, + 4U X)B, + {U)Y, + VX,
+3X, (1 + 7)1 + 7, + 2U, XA,
where v, is the value of p in the classical case.
Uy = -2{y,7a+ G- wy,%a + G - 2wy, %a + (1 - wy¥a - v* - 20y, - uy,?}
Vi= 30+ G-+ G- 2wy + (- wytla
X, = [14y,%a + 123 - wy,%a + 103 - 2p)y,4a + 8{(1 - W/a - 1}y? -
12uy,? - 4py) ]
{21y,%a + 183 - Wy, 7a + 15(3 - 2wy, *a + 12(1 - pwy,¥/a}

[14y,%a + 12(3 - wyy, /a + 10(3 - 2p)y,Ya + 8‘(?1 - Wa - 1}y - 12uy,2 - 4py,)
H = mass parameter, \

B,=1 - q,, where q, is radiation parameter,

A, = oblateness parameter,

e = eccentricity,

a = semi major axis

3. Stability of collinear equilibrium points

The motion of an infinitesimal particle will be stable near the Collinear equilibrium points when
given a very small displacement and small velocity, the particle oscillates for a considerable

- time around the said points.

Let o, B denote small displacements of the infinitesimal particle from the Collinear equilibrium
point L, then,

E=5 +a
n=1n+f
Now Q*, = Q%(§, n) = Q% (§ + o, Ny + B)
Expanding by Taylor’s expansion and considering only first order terms, we have
.(2*g = Q*Og + (XS'Z*()gg + BQ*O@n
Q¥ = Q0+ Q¥ + PO

Where Q*9; is the value of Q¥ at the point (§, 1) and similarly the other values Q*0p, Q¥0,

Q*0,, Q*0 ; and Q*0 are the respective values at the point (&, ).
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At the equilibrium point (§,,1)y), we have

'Q*Oé - 'Q*oﬂ =0
Hence from (3.1) we have

Q*é = O‘Q*(’gg + BQ*OE,n

Q* = aQ*OnE, + BQ*OTm (3.2)
The equation of motion then takes the form as

B - 200 = aQ*0, + BQXO (3.3)

To solve the equation (3.3) let o = AeM and B = BeM, where A, B and A are parameters
to be found. Substituting the values of o, B, &, B, & and B in the equation (3.3) we have

A2 - Q0 )ek + B(-2 - Q¥ jeM = 0
A@A - Q¥ eM + B(? - Q¥0 jeM = 0 (3.4)

These will have a nontrivial solution if

A2 - Q*Oéi 2 - Q*Oén
M - Q*Oén A2 - Q*Onn |
or M - (Q*Onn+ 7»*055 - HA? + Q»conQ*oeég - (Q*Ogn)Z =0 3.5)

Toiﬁnd the stability of collinear equilibrium points, let Q*0, Q*0, Q*0  are of the
following forms.

Q*O&_,n = hle2 + h,A, + h3[31
Q¥ = S12 + Spe? + S3A; + S,B,
and

In classical case, 0 < < 172 and Q*%,_ = 0, Q*%; > 0, Q*0 < 0; But in our case three
possibilities may arise.

Case 1:
Q*Oén =0, Q*Ogg >0, Q*Onn < 0;

which is same as the classical case and is unstable according to Szebehely (1967).
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Case 2 :
Q*Oén >0, Q*°éé > 0, Q*‘)Tm < 0;
From the equation (3.5) we have the characteristic equation which is of the following from
A4 (Q*Oﬂn + Q*O.&é - HA? + Q*oan*O&, _ (Q*OEH)Z =0
In this case Q*0 OQ¥0 - (Q*0 )2 <0
Also, the characteristic equation can be written in the following from
A2+ 2B,A - B2 =0 (3.6)
where B,=2- Q¥ + QX0 )2
B2y = (Q*0, )2 - Q¥ Q%0
and A=A '
A= (A)” 3.7
Now from the equation (3.6) we have
A=-PB,x B2+ BN
Let Ay =- By + B2+ B2 |
Ay=- B - B+ B

For positive or negative value of B,, A is always positive and A, is always negative, i.e. they
are of opposite sign. ‘

Again from the equation (3.7) we have
A, = £4{A )2 = = real (since A, is positive)
and
Ay 4 = = (A2 = + imaginary (since A, is negative)

Hence, for only one real positive value of A = A, (say) the solution & = AeM and 1 = BeM will
be unbounded.

Therefore the equilibrium point is unstable.
Case 3 :

0 0 0 .
Q* £n < 0, O* e > 0, Q* i < 0;

In this case also Q*O&Q*OTm - (Q’*‘Oén)2 <0;
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By the same process of case.2, the equilibrium point is also unstable.
Similarly, we can show that L, and L, are also unstable.
Conclusion

We conclude that collinear equilibrium points are unstable which give the same result of the
classical case.
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