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Abstract

Observations and numerical simulations of magneto-convection show a highly variable solar magnetic field. Using a statistical
approach, we analyze the effects of random magnetic fields on Stokes profiles of spectral lines. We consider the micro and macro-
turbulent regimes, which provide bounds for more general random fields with finite scales of variations. The mean Stokes parameters
are obtained in the micro turbulent regime, by first averaging the Zeeman propagation matrix Φ̂ over the probability distribution
function P (B) of the magnetic field and then solving the concerned radiative transfer equation. In the macro-turbulent regime,
the mean solution is obtained by averaging the emergent solution over P (B). It is assumed that B has a Gaussian distribution
defined by its mean field B0, angular distribution and dispersion. Fluctuations parallel and perpendicular to B0 are considered.
Spectral lines are parameterized by their strength β, which is varied over the range 1 to 104. A detailed comparison of micro and
macro-turbulent limit with mean field solution shows that differences are important for β ≥ 10. When β increases, the saturation
behavior of micro-turbulent profiles are significantly different from that of mean field profiles. The Stokes profiles shapes are
explained in terms of the non-linear β-dependence of the Unno-Rachkovsky solution using approximate expressions for the mean
absorption coefficients. These expressions when inserted in the Unno-Rachkovsky solution can predict Stokes profiles that match
with the numerical result to a good approximation.
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1. Introduction

Quantitative analysis of spectro-polarimetric data en-
tered an active phase with the analytical solution of
Unno (1956). This solution considers only the absorp-
tion/emission of polarized radiation in a magnetized
medium. The extension by Rachkovsky (1962a, 1962b)
includes magneto-optical effects due to differential shifts
between orthogonal polarization states, which appear dur-
ing the propagation through the medium. Magneto-optical
effects are important when Zeeman shifts are of the order
of Doppler widths and affect Stokes parameters mainly
around the line center. The analytical solution of the Stokes
vector transfer equation known as Unno–Rachkovsky so-
lution (hereafter referred to as UR solution) implies a
uniform magnetic field and approximations regarding the
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atmospheric model known as Milne–Eddington approxima-
tions - namely that the line strength is independent of the
depth in the atmosphere, and that the line source function
varies linearly with optical depth. The Milne-Eddington
approximation has provided insight into the physical pro-
cesses taking place in line formation. Its specific analytical
character is its most powerful feature. A new area in the
analysis of polarization spectra was opened with numerical
solutions of the polarized radiative transfer equation for
realistic atmospheres involving depth-dependent physical
quantities. It started with the work by Beckers (1969),
Wittman (1974), Landi Degl’Innocenti (1976). See Rees
(1987) for a historical review.

However the UR solutions continue to be used in as-
trophysics, in particular in inversion codes aimed at the
automatic reconstruction of magnetic fields and atmo-
spheric parameters from large sets of polarimetric data
(e.g. UNNO-FIT technique – Landi Degl’Innocenti & Lan-
dolfi 2004, p. 634 and references cited therein; Bellot Ru-
bio 2006 and references cited therein). It can, as recently
shown, provide a systematic approach to evaluate the sen-
sitivity of Stokes profiles to atmospheric and magnetic
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field parameters (Orozco Suárez & del Toro Iniesta 2007).
Let us also mention that a widely used atlas of theoretical
Stokes profiles was constructed with the help of UR solu-
tion (Arena & Landi Degl’Innocenti 1982). An excellent
description of UR solution, extensions and practical appli-
cations, are presented in del Toro Iniesta (2003) and Landi
Degl’Innocenti & Landolfi (2004).

In this work we present a systematic study of the UR
solution for random magnetic fields. The UR solution, can
be employed for random fields in two limiting regimes : (i)
the regime of micro-turbulence in which the characteris-
tic scale of variation of the random magnetic field is much
smaller than a typical photon mean free-path, and (ii) the
regime of macro-turbulence where one has the opposite sit-
uation. The micro-turbulent approach, suggested in Sten-
flo (1971), has been employed in e.g. Stenflo & Lindegren
(1977), Sánchez et al. (1996). Multi-components models are
special versions of the macro-turbulent limit (see e.g. Sten-
flo 1994 and references cited therein). Here we assume that
the magnetic field fluctuations are described by a proba-
bility distribution function P (B). In the micro-turbulent
regime, the coefficients of the polarized transfer equation,
in particular the Zeeman propagation matrix (also called
absorption matrix), can be locally averaged over P (B).
Dolginov & Pavlov (1972) and Domke & Pavlov (1979)
were the first to examine Zeeman line transfer for micro-
turbulent magnetic fields and proposed explicit expressions
for the mean values of the coefficients of the Zeeman prop-
agation matrix. An up-to-date presentation of their results
and some extensions can be found in Frisch et al. (2005;
hereafter referred to as Paper I). In the macro-turbulent
regime, the magnetic field is uniform over the region where
the spectral line is formed but takes random values dis-
tributed according to P (B). The averaging over P (B) is
performed on the emergent UR solution itself.

The micro and macro-turbulent limits cannot describe
situations where the mean free path of photons is of the
same order as the characteristic scale of variation of the
magnetic field. This more general situation requires the
solution of polarized radiative transfer equations with
stochastic coefficients (Frisch et al. 2006a, hereafter re-
ferred to as Paper II; see also Frisch et al. 2007; Carroll &
Kopf 2007). The corresponding mean Stokes parameters
always lie between the micro and macro-turbulent limits.
The latter have thus a significant interest for assessing the
effects of random magnetic fields.

In this paper we examine the micro and macro-turbulent
limits for isotropic and anisotropic Gaussian magnetic field
distributions. The velocity field is assumed to be micro-
turbulent, and uncorrelated to the magnetic field. The re-
sults are compared to the UR solution corresponding to the
mean magnetic field, henceforth referred to as the mean
field solution. The comparison is carried out for lines with
different line strength β = κl/κc (κl the frequency aver-
aged line absorption coefficient, κc the continuum absorp-
tion coefficient). In a Milne–Eddington atmosphere β is a
constant. The UR solution varies linearly with β when β

is small or around unity, but non-linearly when β becomes
large. We investigate in detail this non-linear behavior for
turbulent magnetic fields.

In Sect. 2 we consider the micro-turbulent limit and in
Section 3 the macro-turbulent limit for longitudinal and
transverse propagation. In these sections and all the follow-
ing ones, the results are shown for a residual Stokes vec-
tor r = (rI, rQ, rU, rV)T, independent of the slope of the
source function. In Sect. 4 we compare micro and macro-
turbulence effects for an arbitrary orientation of the mean
field and in Sect. 5 we discuss mean Stokes profiles calcu-
lated with isotropic and anisotropic distributions. In Sect. 6
concluding remarks are given. An Appendix is devoted to
describe the basic equations.

2. Micro-turbulence with isotropic Gaussian
fluctuations

In the micro-turbulent limit, the Stokes parameters and
residual Stokes vector defined in Eq. (A.5) can be calcu-
lated with the UR solution given in Eqs. (A.7) – (A.13)
where all the absorption and dispersion coefficients are re-
placed by their averages over the probability distribution
function (PDF) P (B) of the vector magnetic field. In this
paper we consider PDFs that are cylindrically symmetrical
about the direction of a mean field B0. They are defined in
a reference frame with the Z-axis along the mean field di-
rection and then transformed to the line of sight reference
frame with the Z-axis along the line of sight (see Fig. A.1).
The transformation from the magnetic to the line of sight
reference frame can be found in Frisch et al. 2007.

In this section we consider a random magnetic field with
a mean value B0 and fluctuations that are Gaussian and
isotropic (other angular distributions are considered in
Sect. 5). The PDF may thus be written as

P (B) dB =
1

π3/2
e−(y2

0+y2) e2y0y cos Θ y2 dy sinΘ dΘ dΨ, (1)

where Θ is the angle between the vector magnetic field
B(θ, φ) and the mean magnetic field B0(θ0, φ0) and Ψ the
azimuth of B in a magnetic reference frame in which the
Z-axis is taken along B0. The non-dimensional quantities
y and y0 are defined as y = B/(

√
2σ), and y0 = B0/(

√
2σ),

with σ being the rms fluctuation given by 3σ2 = 〈(B −
B0)2〉. Two important parameters of the model are ∆ZB0

and γB = ∆Z

√
2σ, the Zeeman shifts due to the mean mag-

netic field and to the rms fluctuations (measured in Doppler
width units). Here ∆Z = ge/(4πmc∆νD), with g the Landé
factor and ∆νD the Doppler width which includes thermal
and micro-turbulent velocity broadening (see e.g. Mihalas
1978; also Paper I). The ratio f = 1/y0 = γB/∆ZB0 is a
measure of the strength of the fluctuations, with large and
small values of f corresponding to strong and weak turbu-
lence respectively.
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Fig. 1. Weak mean field limit. Dependence of 〈rI〉, and 〈rV〉 on line strength β for a = 0, θ0 = 0◦. Panel (a) : micro-turbulent limit with
∆ZB0 = 0.1, γB = 1 hence y0 = 0.1 and f = 10. Panel (b) : deterministic case with ∆ZB = 0.1. Frequency x in Doppler width units. See
Sect. 2.1 for discussions.

For a micro-turbulent magnetic field, the Doppler broad-
ening is replaced by a combination of thermal, velocity
and magnetic broadening described by the parameter γ1 =√

1 + γ2
B . We shall discuss separately two limiting cases

corresponding to γ1 > ∆ZB0 and γ1 < ∆ZB0. The first
corresponds to a weak mean field with strong fluctuations
and the second one to a strong mean field with weak fluc-
tuations. For the numerical calculations we have chosen
γB = 1, i.e. magnetic broadening equal to Doppler broad-
ening, and ∆ZB0 = 0.1 and ∆ZB0 = 3, to represent the
weak and strong mean field limits. The mean absorption
and dispersion coefficients are calculated by numerical av-
eraging over the PDF. In the limiting cases of weak and
strong mean field, it is possible to obtain fairly simple an-

alytical expressions for mean opacity and anomalous dis-
persion coefficients (see Paper I; also Dolginov & Pavlov
1972; Domke & Pavlov 1979). These analytic expressions
are used to analyze the numerical results.

In this section we examine in detail the dependence of the
mean residual Stokes profiles on the value of line strength
β. The results are presented for β in the range 1 to 104.
Very large values of β, around 104 can be found in magnetic
white dwarfs (see for e.g. Martin & Wickramasinghe 1981,
Nagendra & Peraiah 1985a,b, Wickramasinghe & Ferrario
2000). We assume that the mean magnetic field is in the
longitudinal (θ0 = 0◦) or in a transverse direction (θ0 =
90◦, φ0 = 0◦). Because the magnetic field fluctuations are
isotropic, 〈rQ〉 = 〈rU〉 = 0 when θ0 = 0◦ and 〈rV〉 = 0 when
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Fig. 2. Strong mean field limit. Longitudinal mean field case. Dependence of 〈rI〉, and 〈rV〉 on line strength β for a = 0, θ0 = 0◦ . Panel
(a) : micro-turbulent limit with ∆ZB0 = 3, γB = 1, hence y0 = 3 and f = 1/3. Panel (b) : deterministic case with ∆ZB = 3. Panel (c) :
macro-turbulent limit with the same model as in panel (a). See Sects. 2.2 and 3 for discussions.

θ0 = 90◦, for symmetry reason. In addition 〈rU〉 = 0 when
φ0 = 0◦. The notation 〈 〉 stands for average over P (B). All
the calculations have been performed with a line damping
parameter a = 0. Section 2.1 is devoted to the weak mean
field limit, Sects. 2.2 and 2.3 to the strong mean field limit.

2.1. Weak mean field (strong fluctuations) limit

Figure 1a shows 〈rI〉, and 〈rV〉 for θ0 = 0◦ calculated with
Eqs. (A.14) and (A.15). When β is small (β〈ϕI〉 ¿ 1 for all
x), one simply has 〈rI,V〉 ' β〈ϕI,V〉. For large values of β,
the shapes of 〈rI〉 and 〈rV〉 can be explained with the help
of approximate expressions for 〈ϕI,V〉. When γ1 > ∆ZB0,
we have (see Paper I),

〈ϕI(x)〉' 1
3
h(0)(x) +

2
3γ3

1

[
h(0)

(
x

γ1

)
+ 2γ2

Bh(2)

(
x

γ1

)]
, (2)

〈ϕV(x)〉'2∆ZB0 cos θ0
1
γ4
1

[
h(1)

(
x

γ1

)
+

2
3
γ2

Bh(3)

(
x

γ1

)]
, (3)

where h(n)(x) = xne−x2
/
√

π. When a is not zero, the h(n)

functions become generalized Voigt functions H(n) (for de-
tails see Paper I; also Sampoorna et al. 2007). We remark
that 〈ϕI〉 is independent of θ0 and 〈ϕV(x)〉 of the order of
∆ZB0. The mean values 〈ϕQ(x)〉 and 〈ϕU(x)〉 are of the or-
der of ∆ZB2

0 (see Paper I). The numerical results presented
in Fig. 1a can be reproduced with an error less than 1%,
when the approximations given in Eqs. (2) and (3) are com-
bined with the expressions of 〈rI〉 and 〈rV〉 for ∆ZB0 < 1
given in Eqs. (A.18) and (A.19).

The over all behavior of 〈rI,V〉 (namely, width of 〈rI〉,
and peak position of 〈rV〉) can be explained by simple scal-
ing arguments. For 〈rI〉, the width of the peak (Full width
at Half Maximum FWHM) can be defined by the condi-
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tion β〈ϕI(xc)〉 ' 1 with xc the half-width. In Eq. (2) the
terms with argument x/γ1 are controlling the width of 〈rI〉,
because they are decreasing more slowly with x than the
h(0)(x) term. Hence xc ∼ γ1

√
ln β. When |x| < xc, 〈rI〉 → 1

as β →∞ and when |x| > xc, 〈rI〉 behaves as β〈ϕI〉.
Equation (3) shows that the positions of the peaks of

〈rV〉 go like γ1

√
ln β and their height goes as

√
lnβ. These

predicted behaviors are very close to what is observed in
the numerical results. For example the peak positions of
〈rV〉 scale as 1.5

√
ln β whereas for our choice of parameters

γ1 = 1.4.
Comparison between the micro and mean field solution

(see Fig. 1b), shows that magnetic turbulence produces a
broadening of the peaks of 〈rI〉 and 〈rV〉 by a factor γ1 and
a decrease in amplitude of the 〈rV〉 peaks due to the factor
1/γ4

1 (see Eq. (3)).
When θ0 = 90◦, the effects of a micro-turbulent magnetic

field on 〈rQ〉 and 〈rU〉 are the same as for 〈rV〉, namely de-
crease in the amplitude of all three Zeeman components and
broadening plus shifts in the positions of the σ-components
away from line center.

2.2. Strong mean field (weak fluctuations) limit.
Longitudinal case

Figure 2a shows 〈rI〉 and 〈rV〉 and Fig. 2b the correspond-
ing curves for the mean field B0. It is clear that the profiles
are quite different. We stress that the curves with β = 1
give a good approximation of the coefficients ϕI and ϕV and
of their average values 〈ϕI〉 and 〈ϕV〉. Results presented in
Fig. 2a can be understood using approximate (asymptotic)
expression for 〈ϕI,V〉. For γ1 < ∆ZB0, we have (see Paper
I),

〈ϕI〉 ' ϕ̄0 +
1
2
(ϕ̄+1 + ϕ̄−1) +

1
2
(c̄+1 + c̄−1), (4)

〈ϕV〉 ' 1
2
(ϕ̄+1 − ϕ̄−1), (5)

with

ϕ̄0 ' 1
2y2

0

h(0)(x); ϕ̄±1(x) ' 1
γ1

(
1− 1

2y2
0

)
h(0)(x̄±1), (6)

c̄q(x) ' 1
4y3

0

γ1

(y0 + |xq|γB)
h(0)(x̄q), (7)

and x̄q = (x− q∆ZB0)/γ1, q = ±1. One notices in Eq. (4)
the appearance of a term ϕ̄0 at line center which is zero for
deterministic case (see Eq. (A.3) for θ = 0◦), and is created
by the averaging of sin2 θ over the random directions of the
magnetic field. Equation (6) shows that the σ-components
have a smaller amplitude and are broader by a scaling factor
γ1. The terms with c̄q were not considered in the strong
mean field limit expression for 〈ϕI〉 of Paper I (see Eqs. (40)
and (44) of Paper I). This term c̄q comes from the factor
3/(4y2

0y) in Eq. (34) of Paper I. The expression given in
Eq. (7) is an asymptotic expression for damping parameter

a = 0. For q = +1, it is valid for x around y0/γB and for
q = −1, it is valid for x around −y0/γB . In spite of being
small compared to ϕ̄q, this term plays an important role
around x ' ±∆ZB0, when β is large. Using Eqs. (4) - (7)
in Eqs. (A.14) and (A.15), we can reproduce the results
presented in Fig. 2a to a good approximation.

When β becomes large, the quadratic terms in the de-
nominator of the equations for 〈rI〉 and 〈rV〉 play an im-
portant role. For the analysis of the results, it is interesting
to write the denominator as

dl ' 1 + 2β[ϕ̄0 +
1
2
(ϕ̄+1 + ϕ̄−1)]+

β2{ϕ̄2
0 + [ϕ̄0 +

1
2
(c̄+1 + c̄−1)](ϕ̄+1 + ϕ̄−1) + ϕ̄+1ϕ̄−1}, (8)

retaining only the leading terms.
In the upper panel of Fig. 2a we see that 〈rI〉 approaches 1

at line center and that this limiting value is almost reached
for β = 103. At line center we have the exact relation

〈rI(0)〉 =
β〈ϕI(0)〉

1 + β〈ϕI(0)〉 , (9)

hence 〈rI(0)〉 goes to one when β〈ϕI(0)〉 À 1. Around the
line center, 〈ϕI(x)〉 ' ϕ̄0(x) ' e−x2

/(
√

π2y2
0) (see Eq. (6)).

Hence, 〈rI(0)〉 ' 1 when β À √
π2y2

0 . For y0 = 3, this
condition yields β À 30, in agreement with the numerical
results. It is the existence of a central component ϕ̄0 which is
responsible for the very large difference between the micro-
turbulent and the deterministic profiles.

The σ-components of 〈rI(0)〉 are well separated as long as
β ≤ 10, and their width is around γ1

√
ln β. For larger values

of β, one notices a plateau with a value about 1/2 and then
a further increase towards one. This can be understood by
considering Eq. (8). At frequencies around ∆ZB0, we have
ϕ̄+1 À ϕ̄0 À ϕ̄−1, hence

〈rI(∆ZB0)〉 ' 1−
β
2 ϕ̄+1

1 + βϕ̄+1 + β2[ϕ̄0 + c̄+1/2]ϕ̄+1
. (10)

The plateau around 1/2 is reached when βϕ̄+1/2 À 1, i.e.,
when β À 2γ1

√
π. Figure 2a shows that this plateau is

reached for 10 < β < 102, in agreement with the prediction.
The saturation to one will occur when the term quadratic
in β becomes larger than the linear term. This condition is
satisfied when β[ϕ̄0(∆ZB0) + c̄+1(∆ZB0)/2] À 1. For our
choice of parameters, this yields β À 103. Figure 2a shows
that 〈rI(∆ZB0)〉 is close to one for β = 104. In the deter-
ministic case ϕ̄0 = 0, hence the σ-components saturate to
1/2 as shown in Fig. 2b, upper panel.

The variations of 〈rV〉 with β are shown in lower panel of
Fig. 2a. The σ-components tend to 1/2 when β increases,
and their width goes as γ1

√
ln β. When the term β2[ϕ̄0 +

c̄+1/2]ϕ̄+1 becomes larger than βϕ̄+1, a dip appears at
frequencies x ' ±∆ZB0. It becomes clearly visible when
β = 103. For frequencies beyond ±∆ZB0, the effect of
[ϕ̄0 + c̄+1/2] decreases, the term of order β2 becomes small
compared to the term of order β and 〈rV〉 goes to 1/2. Fi-
nally, 〈rV〉 goes to zero as β〈ϕV〉 when the frequency is
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Fig. 3. Strong mean field limit. Transverse mean field case. Dependence of 〈rI〉, and 〈rQ〉 on line strength β for a = 0, θ0 = 90◦, φ0 = 0◦.
Panel (a) : micro-turbulent limit with ∆ZB0 = 3, γB = 1, hence y0 = 3 and f = 1/3. Panel (b) : deterministic case with ∆ZB = 3. Panel
(c) : macro-turbulent limit with the same model as in panel (a). See Sects. 2.3 and 3 for discussions.

large enough to give dl ' 1. The frequency at the peak,
determined by the condition β〈ϕv〉 ' 1/2 , is about |x| '
∆ZB0 + γ1

√
ln β. Thus, for β sufficiently large, the peaks

of 〈rV〉 lose their box like structure and the position of the
maximum is essentially controlled by the parameter β and
not by the Zeeman shift ∆ZB0, unlike in the deterministic
case (see Fig. 2b lower panel).

2.3. Strong mean field (weak fluctuations) limit.
Transverse case

Figure 3a shows 〈rI〉 and 〈rQ〉 in the strong mean field
(weak fluctuations) limit, for a mean field perpendicular to
the LOS, i.e. θ0 = 90◦. We also assume φ0 = 0◦. Hence
only 〈ϕI〉 and 〈ϕQ〉 are non zero. Figure 3b shows the cor-
responding curves calculated with the mean field. Again

we observe a large difference between micro-turbulent and
deterministic profiles.

To analyze the numerical results presented in Fig. 3a,
we consider approximate expression for 〈ϕI,Q〉. At leading
order (see Paper I),

〈ϕI〉 ' 1
2
(1− 1

2y2
0

)h(0)(x)

+
1

4γ1
(1 +

1
2y2

0

)[h(0)(x̄+1) + h(0)(x̄−1)], (11)

〈ϕQ〉 ' 1
2
(1− 3

2y2
0

)h(0)(x)

− 1
4γ1

(1− 3
2y2

0

)[h(0)(x̄+1) + h(0)(x̄−1)]. (12)
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The terms c̄q play no role in this case. The terms 3/2y2
0

and 1/2y2
0 are small compared to unity since y0 = 3. How-

ever, when we consider the difference 〈ϕI〉2 − 〈ϕQ〉2 in the
denominator of Eqs. (A.16) and (A.17) for 〈rI〉 and 〈rQ〉,
these factors cannot be neglected. We thus have

dt ' 1 + 2β〈ϕI〉
+β2

{ 1
2y2

0

[h(0)(x)]2 +
1

4γ2
1y2

0

[h(0)(x̄+1) + h(0)(x̄−1)]2 +

1
2γ1

h(0)(x)[h(0)(x̄+1) + h(0)(x̄−1)]
}

. (13)

When β is sufficiently small, dt ' 1 and we recover
the mean opacity coefficients β〈ϕI〉 and β〈ϕQ〉 which are
fairly well represented by the curves corresponding to β =
1. We remark that the Eqs. (11) and (12), when used in
Eqs. (A.16) and (A.17) for 〈rI〉 and 〈rQ〉 can reproduce the
numerical result in Fig. 3a to a very good approximation.

With Eqs. (11) to (13) we can explain why 〈rI〉 ap-
proaches unity at all frequencies fairly rapidly when β in-
creases. For x around the line center we can write

dt ' 1 + βh(0)(x)
[
1 +

β

2y2
0

h(0)(x)
]
, (14)

and for x around the σ-components

dt ' 1 +
β

2γ1
h(0)(x̄±1)

[
1 +

β

2y2
0γ1

h(0)(x̄±1)
]
, (15)

(the third term in the curly bracket in Eq. (13) can be ne-
glected). The β2-terms, which come from the small differ-
ences between the π and σ-components of 〈ϕI〉 and 〈ϕQ〉,
(see Eqs. (11) and (12)) become relevant when β/2y2

0 and
β/2y2

0γ1 become of order or larger than unity. For our
choice of parameters, this means that they play an impor-
tant role when β > 50. This implies that the second term
in Eq. (A.16) becomes small compared to unity because
the numerator scales as β and the denominator as β2. As
a consequence 〈rI〉 goes to unity at line center and around
the σ-components.

Roughly half-way between the π and σ-components , we
have the point where 〈ϕQ〉 = 0. Around this frequency,
denoted xm,

〈rI(xm)〉 ' β〈ϕI(xm)〉
1 + β〈ϕI(xm)〉 . (16)

This expression rapidly approaches unity when β increases.
Thus, when the mean field is in the transverse direction,
〈rI〉 approaches unity at line center, in the σ-components
and half-way between these two regions. This explains the
shape of the 〈rI〉 profiles shown in Fig. 3a, upper panel.

For 〈rQ〉, the micro-turbulent profile has qualitatively
the same shape as the mean field profile (see lower panels in
Fig. 3). There are however quantitative differences also due
to the β2-term in dt. At line center, when β is large, 〈rQ〉
is much smaller than the mean field solution. One observes
also that the wing minima move away from line center to
frequencies such that the β2-term in dt becomes negligible.

Their positions vary roughly as x ' ±(∆ZB0 + γ1

√
ln β).

The amplitude of the minima are not very sensitive to the
value of β and are approximately given by

〈rQ〉 ' 〈ϕQ〉
2〈ϕI〉 ' −1− 3/2y2

0

1 + 1/2y2
0

' −0.4, (17)

in fairly good agreement with the numerical results which
yield 〈rQ〉 ' −0.35.

3. Macro-turbulence with isotropic Gaussian
fluctuations

We employ the isotropic Gaussian distribution already
used to study the micro-turbulent limit (see Eq. (1)). We
consider only the case of strong mean field with weak fluc-
tuations (γB = 1, ∆ZB0 = 3). We show in Figs. 2c and
3c the residual Stokes parameters for a longitudinal and a
transverse mean field respectively. When the mean field is
longitudinal, we have for symmetry reasons 〈rQ〉 = 0 and
〈rU〉 = 0. It is easy to check that Q and U average to zero
when they are integrated over the azimuthal angle φ. When
the mean field is in a transverse direction, i.e. when θ0 =
90◦, averaging over an isotropic distribution yields 〈rV〉 =
0. When in addition φ0 = 0◦, one also has 〈rU〉 = 0.

In the longitudinal case, as shown by Fig. 2c, 〈rI〉 be-
haves much as in the micro-turbulent case (see Fig. 2a, up-
per panel). A weak central component appears, which is
created by the averaging over the angular distribution of
the magnetic field. It is already visible when β = 1 and its
value goes to unity when β increases. In the transverse case
(see Fig. 3c), 〈rI〉 behaves essentially as in the deterministic
case, except that the different components are somewhat
broader and have a smaller value for the same value of β
(compare upper panels of Fig. 3b, and 3c).

For 〈rV〉 (longitudinal case), the behavior is similar to the
micro-turbulent limit, but for very large values of β (β >
103), the profiles are less distorted compared to the micro-
turbulent case, and stay closer to the mean field value (see
Fig. 2, lower panels). One can remark also that the position,
height and shape of the peaks are largely independent of
the value of β in a wide range of values (1 < β < 103).

For 〈rQ〉 (transverse case), we observe a shift of the po-
sitions of the minima away from the line center when β
increases. It is stronger than in the deterministic case, but
much weaker than in the micro-turbulent case (see Fig. 3,
lower panels). Note also that the frequency at which 〈rQ〉 =
0 depends slightly on β. This comes from the averaging
process.

To summarize, for macro-turbulence the mean Stokes
profiles of strong lines have a behavior which is similar
to the micro-turbulent limit for the longitudinal case and
similar to the mean field solution for the transverse case.
For weak lines, β ' 1, or less, 〈r〉micro ' 〈r〉macro ' β〈Φ̂〉U
as shown by Eqs. (A.23) and (A.24). Weak lines are not
sensitive to the correlation length of the magnetic field.
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Fig. 4. UR solution for mean field (solid line), micro (dotted line), and macro (dashed line) limits. The line parameters are a = 0, and
β = 100. Panel (a) : Mean magnetic field with parameters θ0 = 60◦, φ0 = 30◦, ∆ZB0 = 3; weak magnetic field fluctuations (γB = 1). Panel
(b) : dependence of 〈rI〉 on θ0. The value of θ0 is indicated in each sub-panel. See Sect. 4 for discussions.

4. Micro and macro-turbulent profiles for
arbitrary orientation of the mean field

In this section we compare micro-turbulent, macro-
turbulent and mean field solution Stokes profiles for a mean
magnetic field with arbitrary orientation, and isotropic
Gaussian fluctuations characterized by y0 = 3, and γB = 1.
This model corresponds to the strong mean field limit with
weak fluctuations (f = 1/3). We know that for weak lines
(β ≤ 1), there are no differences between the micro and
macro-turbulent limit and differences start showing up for
β = 10, and they become quite large when β is around 100
or more. Hence the comparison is carried out for a spectral
line with β = 100 and damping parameter a = 0.

Figure 4 shows the micro, macro and mean field Stokes
profiles. In Fig. 4a we present 〈rI,Q,U,V〉 for θ0 = 60◦, φ0 =
30◦. The dependence of 〈rI〉 on field inclination θ0 is shown
in Fig. 4b. The behavior of 〈rQ,U,V〉 for micro-turbulent
limit at π and σ-components is quite similar to that ob-

served for longitudinal and transverse case (see lower pan-
els of Figs. 2a and 3a). For example appearance of a dip at
x = 3 and shifting of the σ-component peak position to a
larger x are due to the dominance of the β2 terms in the
denominator of 〈rQ,U,V〉 (see Eqs. (A.7) - (A.13)).

For all the Stokes components the micro-turbulent pro-
files are broader than the macro-turbulent and mean field
ones, and the difference between the macro and micro-
turbulent profiles are large, except for the case θ0 = 0◦.
This phenomenon is illustrated for 〈rI〉 in the upper panel
of Fig. 4b. The large difference between the turbulent and
mean field profiles for large values of β have already been
discussed in Sects. 2 and 3.

For an arbitrary orientation of the mean magnetic field,
the exact and approximate expressions for the mean ab-
sorption and dispersion coefficients under strong field limit
given in Paper I (see Eqs. (38) - (40)) give the numerical
result presented in Fig. 4 (dotted line) to a very good ap-
proximation for θ0 6= 0◦. In the case of θ0 around 0◦, one
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should also consider the term c̄±1.
Another parameter which may affect the difference be-

tween the micro and macro-turbulent limits is the value
of the damping parameter a. An increase in a produces a
broadening and a decrease in magnitude of all the Zeeman
components of the elements of the matrix Φ̂ and as a con-
sequence leads to a broadening and decrease in magnitude
of all the Zeeman components of rQ,U,V, for turbulent as
well as non-turbulent fields. For rI, the broadening of the
Zeeman components may lead to the formation of a single
peak.

5. Anisotropic magnetic field distributions

In the preceding sections we have considered a random
magnetic field with isotropic distribution. For simplicity we
refer to this model as 3D turbulence. This type of angular
distribution can be considered as a reasonable approxima-
tion to magneto-hydrodynamic turbulence. Randomness of
a quite different nature can be expected in sunspot umbra
where thin flux tubes corresponding to umbral dots will
probably be more or less oriented in the same direction
(Thomas & Weiss 2004). In this case, the magnetic field
fluctuates mainly in magnitude. For pure Gaussian inten-
sity fluctuations Eq. (1) reduces to

PL(B) dB =
1

π1/2
e−(y−y0)

2
dy, −∞ < y < +∞, (18)

a model which we refer to for simplicity as 1D or longitudi-
nal turbulence. For 1D turbulence, the fluctuations of the
magnetic field intensity affect the q = ±1 Zeeman compo-
nents ϕq, but not the central component ϕ0. The same is
true for the anomalous dispersion coefficients.

Intermediate between isotropic and longitudinal fluctu-
ations, as far as angular distribution is concerned, are fluc-
tuations transverse to the mean field. The corresponding
distribution function (see Paper I; also Domke & Pavlov
1979) may be written as

PT(B) dB =
1
π

e−(y2−y2
0)y dy dΨ, y0 < y < +∞. (19)

This case, referred here as 2D turbulence, is typical of
Alfvén waves. When the intensity of the mean field is zero,
this distribution can describe a magnetic canopy since the
random magnetic field remains in a plane perpendicular to
the direction (θ0, φ0).

We show in Fig. 5 the mean Stokes parameters for 1D, 2D
and 3D turbulence in the micro-turbulent limit for a line
with β = 100 and the same magnetic field model as in the
preceding section (φ0 = 30◦, θ0 = 60◦, ∆ZB0 = 3, γB =
1). The mean absorption and dispersion coefficients can be
written explicitly in terms of the usual Voigt and Faraday-
Voigt functions for 1D turbulence. For 2D turbulence they
also have explicit expressions but for a = 0 only (see Paper
I and also Domke & Pavlov 1979). Other numerical aspects
of the calculation are presented in Frisch et al. (2006a,b).

The upper panel of Fig. 5 shows that amplitude of 〈rI〉
is fairly sensitive to the anisotropy of the distribution
function. At line center, micro-turbulence always produces
an increase in amplitude due to the broadening of the σ-
components and to the averaging over the magnetic field
directions, the latter mechanism being effective in the 2D
and 3D cases only. Line center enhancement is present,
for any value of θ0 (see e.g. dotted lines in Fig. 4b). The
magnitude of the σ-components is larger for 2D and 3D
turbulence when compared to the mean field and 1D case
because of the important role played by the β2 terms.

For the polarization components, turbulence always
broadens the Zeeman components and reduces their mag-
nitude. For 1D turbulence, the π-component in 〈rQ,U〉 is
reduced, and the σ-component in 〈rQ,U,V〉 are broadened
compared to the mean field profiles. For 〈rQ〉 and 〈rU〉, 2D
and 3D turbulence reduce the π and σ-component rather
efficiently. For 〈rV〉, one can observe the same effect as for
the σ-components of 〈rQ,U〉 . The mean profiles for 2D and
3D turbulence are very similar, except for the width of the
σ-components which are smaller for 2D than for 3D or 1D
turbulence because the fluctuations are perpendicular to
the mean field.

We also investigated the case of macro-turbulence. Com-
pared to micro-turbulence, the averaged profiles stay closer
to the mean field solution (see e.g. dashed lines in Fig. 4b).

6. Summary and concluding remarks

In this paper we take the example of a normal Zee-
man triplet to explore the effects of a random magnetic
field with mean value B0 on polarized line formation. The
Unno–Rachkovsky solution which provides an explicit ex-
pression for the Stokes parameters at the surface of a Milne–
Eddington atmosphere is used to calculate the mean Stokes
parameters for random magnetic fields with scales of varia-
tions that are much smaller, or much larger than the mean
free path of photons. These micro and macro-turbulent
limits provide bounds for more general random magnetic
fields with finite scales of variation. Thanks to the Unno–
Rachkovsky (UR) solution, we could explore a broad range
of magnetic field and spectral line parameters. For the spec-
tral line, we varied the line strength β measured by the
ratio of the line to continuum opacity.

For the random magnetic field B, we have assumed Gaus-
sian fluctuations about B0 given by a distribution function
P (B). Isotropic fluctuations and anisotropic ones (parallel
and perpendicular to the mean field) are considered. The
distribution is characterized by two Zeeman shifts : ∆ZB0

due to the mean field and γB due to the rms fluctuations.
The ratio f = γB/∆ZB0 provides a measure of the strength
of the turbulent fluctuations. Most of the results concern a
strong field/weak fluctuations limit (∆ZB0 = 3, f = 1/3).

In the micro-turbulent limit (Sect. 2), using explicit ap-
proximate expressions for the mean coefficients, we could
follow in detail the variations of the Stokes profiles shapes
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Fig. 5. Effects of different models of magnetic turbulence under micro
turbulent limit. The solutions displayed are : deterministic mean
field (solid line); 1D turbulence (dotted line); 2D turbulence (dashed
line); 3D turbulence (dot-dashed line). The magnetic field parameters
employed are same as in Fig. 4. See Sect. 5 for discussions.

as β increases and explain various saturation stages. These
expressions along with the UR solution can predict Stokes
profile that matches with the numerical result to a good
approximation. For 〈rI〉 we have shown how fluctuations in
the strength and direction of the magnetic field can pro-
duce an enhancement of the π-component which can lead,
when β is large, to drastic changes in the profile shape as
compared to the mean field solution.

In the macro-turbulent regime (see Sect. 3) the Unno–
Rachkovsky solution is averaged over P (B). Hence it is
harder to perform a precise quantitative analysis of the
mean profiles. Numerical calculations show that the macro-
turbulent profiles have the same type of behavior as the
micro-turbulent ones, but on the whole stay closer to mean
field solutions.

Differences between the micro and macro-turbulent lim-
its (see Sect. 4) are sensitive to the values of the damping
parameter a and the line strength β. Non-existent for weak
lines, say β = 1 or less, they become significant for 〈rI〉
when β = 10, but stay marginal for 〈rQ,U,V〉. They become
really important only when β is around 100.

The sensitivity of the mean profiles to the angular dis-
tribution of the magnetic field is examined in Sect. 5 for

a line with β = 100 and a = 0 and weak fluctuations
(f = 1/3, ∆ZB0 = 3). Micro-turbulent profiles are very
sensitive to the choice of probability distribution function
P (B). The macro-turbulent profiles are however less sen-
sitive than the micro-turbulent ones. It is a general feature
of macro-turbulence in the case of weak fluctuations except
for θ0 = 0◦.

All the numerical results presented in this work have been
obtained with a Gaussian distribution function. There is
evidence for Voigt type distribution functions or stretched
exponentials for the magnetic field intensity (see e.g. Sten-
flo & Holzreuter 2003; Stein & Nordlund 2006). The prob-
ability of magnetic fields deviating strongly from the mean
field will be much larger in that case, than with a Gaussian
distribution and hence stronger polarization and broader
mean Stokes profiles are expected.
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Appendix A. The Basic Equations

We consider a semi-infinite one-dimensional medium and
to simplify notation concentrate on rays propagating in
the direction normal to the surface. The radiative transfer
equation for the Stokes vector I = (I, Q, U, V )T may then
be written as
dI

dτc
= [Ê + βΦ̂][I − S]. (A.1)

Here τc is the continuum optical depth. The line strength
parameter β and the 4 × 4 line propagation matrix Φ̂ are
constant. Ê is the 4×4 identity matrix. The source term S
has a linear variation given by S(τc) = (C0 + C1τc)U with
U = (1, 0, 0, 0)T, C0 and C1 being constants. In Fig. A.1 are
defined the polar angles of the random and mean magnetic
fields in a line of sight (LOS) reference frame.

X

Z

Y

φ φ

θ θ

0

0

B B0

Fig. A.1. Line of sight (LOS) reference frame (X, Y , Z). The LOS
is parallel to the Z-axis. The directions of random vector magnetic
field B and mean magnetic field B0 are defined by the polar angles
θ, φ and θ0, φ0 respectively.

The line propagation matrix can be written as (Landi
Degl’Innocenti 1976; Rees 1987; Stenflo 1994)

Φ̂ =




ϕI ϕQ ϕU ϕV

ϕQ ϕI χV −χU

ϕU −χV ϕI χQ

ϕV χU −χQ ϕI




. (A.2)

For a normal Zeeman triplet, in the LOS reference frame,
the absorption coefficients, ϕI,Q,U,V are given by

ϕI =
1
2
ϕ0 sin2 θ +

1
4
(ϕ+1 + ϕ−1)(1 + cos2 θ),

ϕQ =
1
2
[ϕ0 − 1

2
(ϕ+1 + ϕ−1)] sin2 θ cos 2φ,

ϕU =
1
2
[ϕ0 − 1

2
(ϕ+1 + ϕ−1)] sin2 θ sin 2φ,

ϕV =
1
2
(ϕ+1 − ϕ−1) cos θ, (A.3)

where ϕq (q = 0,±1) are Voigt functions shifted by q∆ZB,
with B the magnetic field strength. The anomalous dis-
persion coefficients χQ,U,V are given by the same relations
as ϕQ,U,V with Voigt functions replaced by Faraday-Voigt
functions.

A.1. Unno–Rachkovsky solution for deterministic fields

According to the UR solution (see for e.g. Landi
Degl’Innocenti 1976; Jefferies et al. 1989; Rees 1987) the
surface value of the Stokes vector may be written as

I(0) = [C0 + C1K̂
−1

]U , (A.4)

where K̂ = Ê + βΦ̂. We introduce the vector
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r(0) =
1
C1

[Ic(0)− I(0)], (A.5)

where

Ic(0) = (C0 + C1)U , (A.6)

is the continuum intensity at the surface. For simplicity
we call r(0) the residual Stokes vector, although the usual
residual Stokes vector, also called line depression Stokes
vector (Stenflo 1994, p. 244), is defined by Eq. (A.5) with
the intensity of the continuum Ic(0) in place of C1.

The UR solution yields

rI = 1− [κI(κ2
I + ρ2

Q + ρ2
U + ρ2

V)]/D, (A.7)

rQ = [κ2
I ηQ + κI(ηVρU − ηUρV) + ρQW ]/D, (A.8)

rU = [κ2
I ηU + κI(ηQρV − ηVρQ) + ρUW ]/D, (A.9)

rV = [κ2
I ηV + ρVW ]/D, (A.10)

where

κI = 1 + βϕI; ηQ,U,V = βϕQ,U,V; ρQ,U,V = βχQ,U,V,(A.11)

W = ηQρQ + ηUρU + ηVρV, (A.12)

D = κ2
I [κ

2
I − η2

Q − η2
U − η2

V + ρ2
Q + ρ2

U + ρ2
V]−W 2. (A.13)

We stress that W , D, (ϕ2
Q + ϕ2

U) and (χ2
Q + χ2

U) are inde-
pendent of the azimuthal angle φ. Hence rI and rV are inde-
pendent of φ whereas rQ and rU are φ-dependent. For rQ,
the first and third term in the square bracket of Eq. (A.8)
vary like cos 2φ and the second term like sin 2φ. For rU, it
is the first and third term which vary like sin 2φ and the
second term like cos 2φ.

UR solution takes a simpler form for longitudinal and
transverse fields. When the magnetic field is aligned with
the line of sight (longitudinal), the UR solution reduces to
rQ = rU = 0 and

rI = 1− 1 + βϕI

(1 + βϕI)2 − β2ϕ2
V

, (A.14)

rV =
βϕV

(1 + βϕI)2 − β2ϕ2
V

, (A.15)

with ϕI = (ϕ+1 + ϕ−1)/2, ϕV = (ϕ+1 − ϕ−1)/2.
When the magnetic field is in a transverse direction, the

UR solution yields rV = 0, and

rI = 1− 1 + βϕI

(1 + βϕI)2 − β2(ϕ2
Q + ϕ2

U)
, (A.16)

rQ,U =
βϕQ,U

(1 + βϕI)2 − β2(ϕ2
Q + ϕ2

U)
, (A.17)

where ϕI = [ϕ0 + (ϕ+1 + ϕ−1)/2]/2, and ϕ2
Q + ϕ2

U = [ϕ0−
(ϕ+1 + ϕ−1)/2]2/4. The zero-crossing points of rU and rQ

correspond to ϕQ = ϕU = 0. They have frequencies x =
±xm with xm defined by ϕ0(xm) = [ϕ+1(xm)+ϕ−1(xm)]/2.
The value of xm is independent of β.

When ∆ZB ¿ 1, one can take ϕI ' ϕ0 ' ϕ−1 ' ϕ+1.
Equations (A.14) and (A.16) for rI, and Eqs. (A.15) and
(A.17) for rV and rQ become

rI ' βϕI

1 + βϕI
, (A.18)

rV ' βϕV

(1 + βϕI)2
; rQ,U ' βϕQ,U

(1 + βϕI)2
, (A.19)

with

ϕV ' −∆ZB
dϕI

dx
; ϕQ ' −1

4
∆ZB2 d2ϕI

dx2
. (A.20)

A.2. Unno–Rachkovsky solution for turbulent fields

In the macro-turbulent and micro-turbulent regimes, the
UR solution becomes

〈I(0)〉macro = [C0 + C1〈K̂
−1〉]U , (A.21)

〈I(0)〉micro = [C0 + C1〈K̂〉−1]U , (A.22)

where the angle brackets denote the average over the dis-
tribution function of the vector magnetic field P (B). The
mean residual Stokes vector for macro and micro-turbulent
regimes are respectively,

〈r(0)〉macro = 〈βΦ̂[Ê + βΦ̂]−1〉U , (A.23)

〈r(0)〉micro = β〈Φ̂〉[〈Ê + βΦ̂〉]−1U . (A.24)

The methods to perform the averaging efficiently in the
micro and macro-turbulent limits are presented in Frisch
et al. (2006a) (see also Frisch et al. 2005, 2006b).
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