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A spectral-ratio based trigger generator for TACTIC vertex elements
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Abstract. An unconventional hardware trigger-generator, based on an on-line
estimation of the spectral-ratio of the Cerenkov radiation, has been developed for the
three Vertex Elements of the TACTIC y-ray telescope array. The paper discusses the
operational principle of the trigger - generator and the test results from a prototype
circuit developed for demonstration purposes.
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1. Introduction

A 4-element array of Cerenkov telescopes, acronymed TACTIC (for TeV Atmospheric Cerenkov
Telescope with Imaging Camera), has been recently set up at Mt. Abu, Rajasthan (24.62°N,
72.75°, 1275m asl) for VHE y-ray astronomy and UHE cosmic-ray studies (VHE: Very High
Energy, UHE: Ultra High Energy). The experimental details of this instrument have been
already discussed elsewhere (Bhat, 1997; Tickoo et al, 1999). The 4 x 9.5m? area Cerenkov
telescopes of the TACTIC array are arranged in a triangular configuration (20m side), with a
349-pixel Imaging Element (IE) disposed at the centre and, 3 Vertex Elements (VE), at the
corners of the array. Each VE is provided with a 58- pixel duplex detector-array camera as its
focal-plane instrumentation. The hardware-trigger threshold energy for a typical Cerenkov
telescope is ultimately decided by the shot-noise induced in the photomultiplier detector by the
Light Of Night Sky (LONS). For the IE of the TACTIC, the hardware trigger is generated by
demanding that the Nearest-Neighbour Non-Collinear Triplet pixels of the imaging camera (3
NCT trigger-criterion, Bhat et al, 1994; Bradbury et al, 1997) should fire simultaneously (time
resolution ~ 20 ns). This leads to an estimated y-ray threshold energy of ~ 0.7 TeV (corresponding
y-ray image-threshold energy ~ 1 TeV). For the VE, an appreciably lower trigger threshold
energy of ~ 0.2 TeV is specified, so that, when operated independent of the IE, a reasonably
high sensitivity can be expected, particularly so in y-ray pulsar searches where the expected
periodicity feature in the signal arrival-epoch can help to suppress the random cosmic-ray
background (Bhat, 1996).
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To achieve the desired reduction in the threshold energy of the VE, their focal-plane
instrumentation and the back-end electronics have been appropriately configured to be more
compatible with the angular, spectral and timing characteristics of the detected Cerenkov
pulses (Fegan, 1996). Thus, as shown in Fig.1, a non-conventional focal-plane instrumentation
is used for each VE, consisting of duplex detector-arrays straddling an orthogonally-placed
dichroic-filter assembly . The dichroic filters reflect optical wavelengths A ~ 300-450 nm (Blue
or B-band) and transmit longer ~ 450-600 mm (Green or G-Band). Each detector array utilises
16 X 52 mm-dia photomultiplier tubes (type ETL 9954A) and 13 X 19 mm-dia photomultiplier
tubes (type ETL 9083 for the G-detector and type ETL D921 UVA for the B-detector). The
angular size of the larger PMT (~ 0.9°) is comparable with the dimensions of y-ray-induced
atmospheric Cerenkov flashes and they are used for generating low-threshold triggers for the
VE by demanding a concurrent fulfilment of the following additional conditions : (i) In keeping
with the spectral character of the Cerenkov light vis-a-vis LONS (Fig.2), the ratio of the
Cerenkov light flux received by a B-detector to that registered by the corresponding G-detector,
directly facing each other across the dichroic filter-plate, exceeds an optimum minimum value,
R, and (ii) the signal is present in all the 3 VE with relative arrival times which are consistent
with the event arrival direction. According to detailed Monte Carlo simulations carried out by
us (Sapru et al, 1997), R is greater than 1.4 in presence of the LONS fluctuations (R ~ 1.8 in
absence of the LLONS noise). We discuss here a prototype hardware circuit which has been
developed and successfully tested for being incorporated in the TACTIC array for generating
the desired spectral-ratio (B/G) triggers.

2. Prototype spectral-ratio detector

Fig. 1 schematically explains how the light radiation, reflected by a VE mirror, is divided
into B- and G-bands by the dichroic plate, placed in the focal plane of the reflector. As is
evident, the B- and G-band photon pulses are picked up by one or more pairs of B- and G-band
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Figure 1. A schematic representation of the trigger-generator scheme proposed for the TACTIC Vertex Elements for
y-ray threshold reduction.
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PMT. The resulting voltage signals from the PMT anodes are amplified (x 10) before being
amplitude-discriminated to yield a single’s rate of ~ 700 kHz. The discriminator output is fed
to a fast coincidence circuit (resolving time ~ 15 ns) to generate a first-level trigger which gates
the ratio-detector circuit to check whether the charge received by a Charge-to-Digital Coverter
channel (CDC counts) during the neighbouring 10 ns bin from the B-channel amplifier exceeds
the corresponding CDC counts from the G-channel amplifier by the preset ratio R. A second-
level trigger-pulse is generated in this way from each VE camera. The respective Spectral-Ratio
detector outputs from the 3 VE are finally collated for consistency with the expected arrival
direction of the atmospheric Cerenkov event and a master-trigger is generated in case this
condition is satisfied. This third-level trigger marks the registration of an atmospheric Cerenkov
event by the VE.
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Figure 2. Spectral distribution of the Atmospheric Cerenkov Events (ACE) and the Light Of Night Sky (LONS)
background for the wavelength range 300-650nm.
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Figure 3. Circuit details of the prototype B/G spectral-ratio detector.
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As shown in Fig.3, the prototype Spectral-Ratio detector circuit has been designed around
switching operational amplifiers (type OPA 678AP), followed by an intergrating circuit whose
output is held fixed for 5 us by a Sample & Hold (S/H) Circuit. The S/H circuit outputs of the
2 channels are compared using a fast latched-comparator which is made transparent to the input
only for a duration of 10 ns, thereby reducing the possibility of accidental noise-trigger. During
the testing of the prototype circuit in the laboratory, the photomultiplier detectors of the B and
G channels were operated at the same gain and were exposed to a steady source of light. The
discriminator output for either channel in this case is exclusively due to uncorrelated shot-noise
fluctuations exceeding the preset channel discrimination level. We shall refer to the counting
rat~ of this output as the single channel rate. The conventional 2-fold chance rate (case a) and
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Figure 4. Chance coincidence rate plotted as a function of the single channel rate : (a) 2-fold prompt coincidence,
(b) a + B/G spectral cut.
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Figure 5. Chance coincidence rate plotted as a function or single chanuer rate for tollowing three cases : (a) 2-fold
prompt coincidence+3-fold delayed coincidence, (b) a+ B/G spectral cut and (c) 3-fold delayed coincidence alone.

© Astronomical Society of India * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2000BASI...28..459K

DBAS - 7.2Z8: Z459K

rz

A spectral-ratio based trigger-generator for TACTIC vertex elements 463

the corresponding B/G rate (case b) are compared as a function of the SCR in Fig. 4. It is
evident from this figures that for B/G ratio R > 1.4, consistent with the spectral characteristics
of an ACE after duly accounting for the corresponding sky-noise modulation, the B/G trigger
rate is a factor 2.7 lower than the conventional 2-fold accidential coincidence rate (case a) for
all values of the SCR. This difference leads to a even more significant value (by a factor of
20, as shown in Fig.5) in the 3-fold chance rate, expected at the master trigger level amongst
the 3 Ve of the TACTIC. For a representative chance coincidence of 0.5 Hz at the master
trigger-level, it turns out that the operational SCR is 430 kHz and 720 kHz for cases (a) and
(b) respectively (Fig.5). The corresponding operational SCR (case c), when the above-referred
two versions of the 2-fold trigger-generation modes are not used, turns out be 5.6 kHz. This
implies that an atmospheric Cerenkov system, using B/G trigger generation scheme, can effectively
operate at a significantly lower discrimination level, (and hence lower y-ray threshold energy)
without running the risk of getting excessive shot-noise triggers.
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