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ABSTRACT

The center of a Keplerian disk is an irregular singularity for the eigenfunctions of magnetorotational in-
stabilities. The system is studied using the small-radius approximation, which by no means implies that the anal-
ysis is valid only in the vicinity of the center of the astrophysical disks. In fact, the singularity has an effect on the
entire disk and yields continuous eigenvalues (growth rates in the unstable regime and real frequencies in the
stable regime) with rather intriguing implications for the non-Hermitian nature of the rotating plasmas. Through
the Laplace transform, as well as numerical simulations, interesting long-term behavior of the instability has been
found.

Subject headinggs: accretion, accretion disks — instabilities — plasmas

1. INTRODUCTION

The magnetorotational instability (MRI; Velikhov 1959;
Chandrasekhar 1960) in accretion disks (Balbus & Hawley
1998) is considered as the driving mechanism of turbulence
that can bring about anomalous angular momentum transport
(Balbus &Hawley 1991). In Balbus &Hawley (1991), the dis-
persion relation of the MRI was studied by ‘‘local analysis,’’
assuming sinusoidal waves in both the radial and the height di-
rections of the accretion disk. Taking into account the inhomo-
geneity of the equilibrium in the radial direction, Dubrulle &
Knobloch (1993) and Curry et al. (1994) studied the radial mode
structure by solving a second-order differential equation. While
the eigenvalue problem looks rather standard (especially for the
axisymmetric modes, the determining equation can be cast into
the form of the Schrödinger equation), some mathematical diffi-
culties are hidden under the superficial appearance of the simple
form.

First of all, we remark that the waves and instabilities in a
rotating disk obey a non-Hermitian evolution equation, and
hence, the standard method of normal-mode analysis does not
apply. The eigenvalue problem, derived by replacing @/@t by
�i!, may give only some particular solutions to the evolution
equation. However, the general solution may not be given by
the linear combination (sum or integral over the whole spectra)
of these eigenmodes. Each eigenmode is not independent of
(orthogonal to) the others, and the set of eigenmodes may fall
short or exceed to span the whole space.

The eigenvalue problem becomes more difficult when an es-
sential singularity occurs, which represents a compound of an
infinite number of ‘‘coupled (nonorthogonal)’’ degrees of free-
dom. Indeed, this is the case when we consider a Keplerian disk
(or, more generally, if we assume a rotation frequency that de-
creases faster than the inverse of the radius)—the center of the
disk turns out to be an ‘‘irregular singularity’’ (S. M. Mahajan
2006, private communication). Of course, the radius R ¼ 0 is a

mathematical artifact. We have to consider a finite-radius inner
boundary for the idealized model of the disk dynamics. How-
ever, the existence of a singularity atR ¼ 0 implies that the radial
structures of the modes are highly sensitive to the boundary con-
dition to be imposed near the axis. Therefore, we are motivated
to analyze the effect of the singularity to understand the structure
of modes near R ¼ 0.
In this paper we will show that the irregular singularity gen-

erates a continuum of eigenvalues (point spectra). The corre-
sponding eigenmodes have finite energy (square integrable),
while their spatial frequency is infinite in the vicinity of R ¼ 0.
The uncountable potency of the eigenmodes does not contradict
the property of the countable degrees of freedom of the Hilbert
space, because the orthogonality of the eigenmodes is broken
by the non-Hermitian property of the system.
As mentioned above, we have to carefully interpret the results

of the eigenvalue problem. By studying the initial-value problem
(invoking the Laplace transform, as well as numerical simula-
tion), we will reveal the physical implication of the continuum of
the eigenvalues. The radial structure of the instability continues
to change slowly for an appreciably long time.
This paper is organized as follows. In x 2 we derive the

basic equation of our analysis on the basis of incompress-
ible magnetohydrodynamics (MHD). Several properties of
the system, such as its non-Hermitian nature, the reality of the
eigenvalues, and the existence of the irregular singular point,
are described. The corresponding eigenvalue problem is solved
in x 3. We find the continuum of real eigenvalues. The time
evolution of such a system is analyzed in x 4 via the Laplace
transform. We find that the spatial structure of the linearly
growing wave continues to change slowly for a significantly
long time due to the densely populated poles of the grow-
ing solution. Section 5 describes the numerical results of both
eigenvalue and initial-value approaches, which agree well
with the analytical results. Concluding remarks are given in
x 6.
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2. BASIC EQUATIONS

In this study, we start from the incompressible version of the
linearized magnetohydrodynamic equations including equilib-
rium plasma flow (Frieman & Rotenberg 1960),

�
@ 2x

@t 2
þ 2�v = :

@x

@t
¼ : < B̃
� �

< Bþ (: < B) < B̃

�:p̃þ x = :(�v = :v)� �v = :(v = :x); ð1Þ

: = x ¼ 0; ð2Þ

where � is the mass density, v andB are the equilibrium velocity
and magnetic field, respectively, x and p̃ are the plasma dis-
placement and the perturbed pressure, respectively, and B̃ is the
perturbed magnetic field defined by

B̃ ¼ : < (x < B): ð3Þ

These variables are normalized by their typical values, such as
the magnetic field B0, the mass density �0, and the Alfvén time
�A ¼ R0/vA with vA ¼ B0/ �0�0ð Þ1/2. The pressure is normalized
by the magnetic pressure. It is noted that we assume the plasma
rotation is Keplerian (� 2 ¼ GM /R3) in this paper, where G
is the gravitational constant and M is the mass of the central
object. If we normalize the representation of the Keplerian
rotation by using a scale length R0, we obtain � ¼ R�3 with
� 2
AGM /R3

0 ¼ GM /v2AR0 ¼ 1. This relationship determines the
scale length R0 as

R0 ¼ GM=v2A: ð4Þ

Figure 1 shows the contour plot of R0 in meters. The mass of the
Sun is about 2 ; 1030 kg and the diameter of the largest accre-
tion disk detected to date is about 2 ; 104 AU or 3 ; 1015 m
(Chini et al. 2004). For a considerably wide range of parame-
ters, the scale length R0 may be much greater than the size of the
accretion disks. Assuming a Sun-like star of 1M�, the approx-
imation RT1, or RTR0 in the physical dimension, which
will be used in the following analysis, does not necessarily mean
that we concentrate only on the region very near to the massive
central object.

As the simplest equilibrium in which MRI can occur, we
assume the constant mass density � ¼ 1, the constant magnetic
field B ¼ BẐ with B¼ 1, and the equilibrium velocity v ¼
R�(R)â. The self-gravity is neglected. Here �(R) is the angu-
lar rotation frequency normalized by using the Alfvén time,
(R; �; Z ) are the cylindrical coordinates, and â and Ẑ are the
unit vectors. The Alfvén velocity in the normalized variables is
unity. If we assume the axisymmetry of the perturbation x, p̃,
and B̃ and apply the Fourier representation in the vertical di-
rection as exp (ikZ ), we obtain the evolution equation

i
@

@t

� �2 L1 I

L2 0

� �
�R

�R

� �
¼ !2

A

�L0 0

0 I

� �
�R

�R

� �
; ð5Þ

where �R is the radial component of the plasma displacement,
the definition of �R is given by the bottom half of equation (5),
!A ¼ k is the normalized Alfvén frequency, k is the wave-

number normalized by the system size, and the operators Lj
( j ¼ 0; 1; 2) are defined by

L2 ¼
@

@R

1

R

@

@R
R

� �
� k 2; ð6Þ

L1 ¼ �2
@

@R

1

R

@

@R
R

� �
þ k 2 2þ R(�2)0 þ 4�2

!2
A

� �
; ð7Þ

L0 ¼
@

@R

1

R

@

@R
R

� �
� k 2 1þ R(�2)0

!2
A

� �
: ð8Þ

The boundary conditions are �R ¼ 0 at R ¼ 0 and R ¼ Ra 6¼ 0,
where Ra denotes an outer boundary. The matrix operator on
the right-hand side of equation (5) is Hermitian with a boundary
condition �R ¼ 0 at the boundaries. However, the matrix op-
erator on the left-hand side is non-Hermitian. Multiplying the
inverse of the matrix operator on the left-hand side, we see that
the time evolution of the variables �R and �R is governed by a
non-Hermitian operator. It is known that systems governed by
non-Hermitian operators exhibit varieties of interesting phenom-
ena such as nonexponential growth of instabilities (Tatsuno et al.
2001; Furukawa & Tokuda 2005; Hirota et al. 2005). In addition
to such transient phenomena, several interesting properties are
found via the eigenvalue approach. Thus, we analyze the eigen-
value problem in x 3.

3. IRREGULAR SINGULARITY AND CONTINUUM
OF REAL EIGENVALUES

Adopting the Fourier representation in time exp (�i!t) in
equation (5), the eigenvalue !2 can be generally complex, since
the eigenvalue problem is characterized by the non-Hermitian
operator. The coupled equations are summarized as

@

@R

1

R

@

@R
R�Rð Þ

� �
� k 2 1�

R �2
� �0

!2� !2
A

� 4!2�2

!2� !2
A

� �2
" #

�R ¼ 0;

ð9Þ

where the prime denotes the radial derivative. If we assume that
the radial derivative is negligible, the local dispersion relation
of the classical MRI is recovered as

!2 ¼ !2
A þ �(2�þ R�0)� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!2

A þ 2�þ R�0ð Þ2
q

: ð10Þ

Fig. 1.—Contour plot of the typical scale lengthR0 (inmeters) given in eq. (4).
For a considerably wide range of parameters, R0 is much greater than the size of
the accretion disks.
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Multiplying equation (9) by (!2� !2
A)

2R��R, where �
�
R is the

complex conjugate, and integrating over R in an appropriate
domain, we obtain

!2 ¼
�(2!2

Aaþ bþ c)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bþ c) 2þ 4!2

Aac

q
�2a

; ð11Þ

where a, b, and c are defined by

a¼
Z

dR
1

R

@(R�R)

@R

����
����
2

þ k 2Rj�Rj2
" #

; ð12Þ

b ¼ k 2

Z
dRR2(�2)0j�Rj 2; ð13Þ

c ¼ 4k 2

Z
dRR�2j�Rj2: ð14Þ

We see that a and c are positive; thus, !2 becomes always real.
Therefore, this eigenvalue problem is a special class among
non-Hermitian systems in which !2 can be generally complex.

By introducing ’ ¼ R1/2�R, equation (9) can be rewritten in a
form of the Schrödinger equation as

d 2’

dR2
� V (R;!2)’ ¼ 0; ð15Þ

where if the equilibrium rotation is Keplerian (�2 ¼ R�3), the
potential V is given by

V ¼ 3

4
R�2þ k 2 1� !2 þ 3!2

A

(!2� !2
A)

2
R�3

" #
; ð16Þ

which diverges as R�3 near the center. We see that R ¼ 0 is an
irregular singular point. It is noted that this is written in a form
of the Schrödinger equation. However, we need to be careful
since the ‘‘potential’’ V includes the eigenvalue !2 as given
above. Thus, we should interpret this equation as d 2’/dR2�
V (R;!2)’ ¼ E’ with E ¼ 0, i.e., we try to find a wave with
zero energy (E ¼ 0) in a potential V which changes its shape
if !2 is changed. It may also be worth pointing out that
two values of !2 give the same potential V. For example, if
(!2þ 3!2

A)/(!
2� !2

A)
2 ¼ 1/A ¼ const, then !2 ¼ !2

Aþ A/2�
1
2
½A(Aþ 16!2

A)�
1/2
. When a constant A gives a pair of positive

and negative !2, the stable and unstable eigenmodes share the
mode structure.

In order to investigate the behavior of the eigenmode around
the massive central object, we approximate the potential in
equation (16) for RT1. Then the R�3 term becomes dominant,
and the eigenvalue problem can be written as

R3 d
2’

dR2
þ k’ ¼ 0; ð17Þ

where k is given by

k ¼ k 2 !2 þ 3!2
A

(!2� !2
A)

2
¼ const: ð18Þ

This is similar to an equation of motion of a pendulum with
variable mass: m(t)ẍ(t)þ kx(t) ¼ 0 with positive k. If m(t)T1
when tT1 and m(t) increases in time, the oscillation is rapid at
the beginning and it becomes slower in time. Then we expect

that equation (17) with positive k gives oscillatory solutions for
which radial variation is rapid around R ¼ 0, and it becomes
slower as R increases. Transforming the coordinate as x ¼ R�1/2,
we find the solution of equation (17) analytically for k > 0 as

’ ¼ c1R
1=2J1 2(k=R)1=2

	 

þ c2R

1=2Y1 2(k=R)1=2
	 


; ð19Þ

where J1 and Y1 are the Bessel functions of the first order.
Figure 2 shows the eigenfunctions �R ¼ R�1/2’ for k ¼ 1. We
see that the radial variation around the origin is quite rapid and
it becomes slower as R increases. This kind of solution cannot
be approximated by the ‘‘local’’ dispersion relation where the
radial variation is neglected. It is noted that the radial variation
is so rapid that the numerical resolution is not enough in the
plotting software. The important point is that these two in-
dependent solutions both go to zero as they approach R ¼ 0
for continuous values of positive k, i.e., continuous values of
!2 > �3!2

A. It is noted that these eigenfunctions are square
integrable asZ Ra

0

dRR �Rj j2

¼ 2

Z 1

R
�1=2
a

dx x�5 c1J1 2
ffiffiffi
k

p
x

	 

þ c2Y1 2

ffiffiffi
k

p
x

	 
��� ���2; ð20Þ

where Ra denotes an outer boundary. In Hermitian systems, on
the other hand, such a continuum appears only at the stable side
!2 > 0 with singular (nonYsquare-integrable) eigenfunctions.

Fig. 2.—Eigenfunctions �R ¼ R�1/2’ given in eq. (19) for k ¼ 1.
(a) J1(2(k /R)

1/2); (b) Y1(2(k /R)1/2). Both of them satisfy the boundary condition
�R ¼ 0 at R ¼ 0. The radial variation is rapid around R ¼ 0, and it becomes
slower as R increases.
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For k < 0 or !2 < �3!2
A, J1 and Y1 in equation (19) are

changed to the modified Bessel functions I1 and K1. Then the
boundary conditions cannot be satisfied, and no eigenvalue
exists.

The reason why we obtain such a continuum of eigenvalues
is because the transformation of the coordinate x ¼ R�1/2 maps
a finite domain in R to a semi-infinite domain in x. This is sim-
ilar to the spectrum of the one-dimensional Laplacian operator
(e.g., d 2/dx2); in an infinite domain it is continuous (Fourier
transform), on the other hand, it is discrete in a finite domain
(Fourier expansion). This coordinate transformation works well
only when R ¼ 0 is an irregular singular point. Therefore, the
non-Hermitian property and the irregular singular point gener-
ate the continuum of eigenvalues with square-integrable eigen-
functions even at the unstable side !2 < 0. It is noted that such a
continuum of eigenvalues with square-integrable eigenfunctions
can be obtained for more general rotation-frequency profiles
�2 ¼ Rp with p<�2 (see the Appendix).

The number of eigenfunctions is uncountably infinite, which
is too much to decompose a perturbation or a regular function.
Also, the eigenfunctions are not orthogonal with each other.

Finally, we discuss the relationship between the instability
found in this section and the classical MRI. First of all, the local
dispersion relation of the classical MRI is derived by neglecting
the radial derivative of �R as mentioned below equation (9).
Thus, if the radial derivative of the global eigenfunctions can be
small enough to be neglected, the eigenvalues can be approxi-
mated by the local dispersion relation. However, the globalmodes
found in this section are always constructed by balancing the
radial derivative term with the potential term, and the eigen-
functions oscillate rapidly inR especially aroundR ¼ 0. Therefore,
the local dispersion relation cannot approximate our global instabil-
ities. Furthermore, themaximum growth rate,

ffiffiffi
3

p
!A ¼

ffiffiffi
3

p
k, be-

comes larger for larger k, which is different from the classical
MRI; the classical MRI is stabilized for large k because of the
magnetic tension. However, in our analysis, we have a region
where the plasma rotation shear can be large enough to desta-
bilize the MRI even for such large k. Of course, if k becomes
too large, we have to include higher order derivative terms, such as
viscosity, which has not been taken into account in the present
study. Then there will be a limiting k value above which our
analysis is not valid. It is also noted that the maximum growth
rate looks independent of the plasma rotation frequency, how-
ever, it is not true; it comes from the plasma rotation frequency
profile �. For the general rotation profile, �2 ¼ Rp with p<�2,
the parameter k is modified as (see the Appendix)

kp ¼ k 2 ( pþ 4)!2� p!2
A

(!2� !2
A)

2
; ð21Þ

and therefore, we find the continuum at !2 > p/( pþ 4)½ �!2
A

for �4 < p < �2. Thus, the maximum growth rate becomes
�p/( pþ 4)½ �1=2!A. For the Keplerian rotation p ¼ �3,

ffiffiffi
3

p
!A

is recovered. It is noted that the growth rate (frequency) in our
paper is normalized by the Alfvén frequency (see the text below
eq. [3]). It is important to note that the global instabilities in the
present paper cannot be found if we impose the boundary con-
dition artificially at finite R. If we change the location of the ar-
tificial boundary, the growth rate and the eigenfunctions change.
Also, the local dispersion relation of the classical MRI is not a
limiting case of our global instabilities. However, the origin of
the instability is the same as the classical MRI.

4. TIME EVOLUTION OF MRI

In the following we study the time evolution for the case
of the Keplerian rotation by solving the initial-value problem
via the Laplace transform. For RT1, the evolution equation
becomes

@ 4

@t 4
R3 @

2’

@R2

� �
� @ 2

@t 2

�
� 2!2

AR
3 @

2’

@R2
þ k 2’

�

þ !2
A !2

AR
3 @

2’

@R2
þ 3k 2’

� �
¼ 0: ð22Þ

Defining the Laplace transform of ’(R; t) as

�(R; !)¼
Z 1

0

dt e i!t’(R; t); ð23Þ

we obtain

R3 @
2�

@R2
þ k�¼ i!

(!2� !2
A)

2
R3f (R; 0); ð24Þ

where f (R; 0) ¼ @ 2 @ 2’(R; 0)/@t 2½ �/@R2 is only retained as an ini-
tial condition for simplicity and k ¼ k 2(!2 þ 3!2

A)/(!
2 � !2

A)
2.

The homogeneous solution to equation (24) is exactly the
same as found for equation (19),�(R; !) ¼ c1�J þ c2�Y , where
�J and �Y are given by �J ¼ R1/2J1(2(k/R)

1/2) and �Y ¼
R1/2Y1(2(k/R)

1/2), respectively. By using the variation of pa-
rameters, we obtain the following equation for determining
c1(R) and c2(R):

�J �Y

@�J

@R

@�Y

@R

0
@

1
A c01(R)

c02(R)

 !
¼

0
i!

(!2 � !2
A)

2
f (R; 0)

0
@

1
A: ð25Þ

Integration of these equations requires two boundary con-
ditions for the determination of the two integration constants c̄1
and c̄2. The first boundary condition is �(0; !) ¼ 0, which is
satisfied trivially, since�J and�Y both go to zero at R ¼ 0. The
second boundary condition, �(Ra; !) ¼ 0, can only give the
relationship between c̄1 and c̄2. Then we obtain

�¼ ��i!

(!2� !2
A)

2

�Z R

0

�
dR0 f (R0)½�J (R

0; !)�Y (R; !)

� �Y (R
0; !)�J (R; !)�

�
þ �Y (R; !)

�Y (Ra; !)

Z Ra

0

�
dR0 f (R0)

; �J (Ra; !)�Y (R
0; !)� �Y (Ra; !)�J (R

0; !)½ �
�

þ c̄1 �J (R; !)�
�J (Ra; !)

�Y (Ra; !)
�Y (R; !)

� ��
: ð26Þ

The inverse Laplace transform of� gives the time evolution;
we have to analyze the poles of� in the complex !-plane. In the
following we take c̄1 ¼ 0, since the c̄1 term does not include the
initial condition. If we allow this term to remain, a perturbation
can arise even for zero initial condition f (R; 0) ¼ 0, which never
occurs physically. This choice reduces the number of eigen-
functions from uncountably infinite to countably infinite.

By using the asymptotic form of the Bessel functions for
2 k/Rð Þ1/231, we find that poles of infinite order exist at ! ¼
�k. In addition, we also find poles at! satisfying�Y (Ra; !) ¼ 0.
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If we assume 2 k/Rð Þ1/231 again, �Y can be represented by a
sinusoidal function, and we obtain the poles at ! satisfying

2

ffiffiffiffiffiffi
k
Ra

s
� 3

4
� ¼ m�; ð27Þ

where m is an integer and k is a function of !2. Figure 3 shows
!2 obtained by solving the above equation. Note that although
m is an integer, it is treated as a continuous variable in the plots.
We see that there are a lot of poles at the unstable side !2 < 0. In
the parameters used in Figure 3, Ra ¼ 0:01 (or Ra ¼ 0:01R0 in
the physical dimension) and k ¼ 1, we find more than 20 poles
at !2 < 0. The minimum value of !2 is approximately �3!2

A

for which m ¼ �1, which means the maximum growth rate is
approximately

ffiffiffi
3

p
!A. We also see that !2 diverges at m ¼ �3

4
if m is continuous; however, m cannot be �3

4
, and therefore, !2

is bounded. For large m, !2 approaches !2
A, which means ! ¼

�!A are accumulation points.
Let us estimate the spacing among the poles around !2 ¼

�3!2
A. If they are densely distributed, the most unstable mode

needs a significantly long time to dominate the others. This
means that the initial condition can affect the following time
evolution for a long time. The poles originates from the nodes
of �Y (2(k/Ra)

1/2). Thus, the poles can be represented as

!2 ¼ !2
Aþ

2k 2

Rar
2
j

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k 2

Rar
2
j

4!2
Aþ

k 2

Rar
2
j

 !vuut ; ð28Þ

where rj are the nodes of the Bessel function Y1. Figure 4
schematically shows the poles in the complex !-plane. The
minus sign in equation (28) can yield poles at the unstable side
!2 < 0. We see that the maximum growth rate is approximatelyffiffiffi
3

p
!A for the smallest node r1 ’ 2:2. As j increases, jIm!j

decreases and passes the origin, and ! becomes pure real. Then
they eventually accumulate to ! ¼ �!A. This accumulation of
the point spectra to the edge of the Alfvén continuum is known
in MHD systems (Bondeson et al. 1987; Keppens et al. 2002).
The plus sign in equation (28) always gives positive !2. For the
smallest node r1, jRe!j is huge, which is not plotted in Figure 4.
As j increases, jRe!j decreases and eventually accumulates to
! ¼ �!A.

When RaT1, we obtain

!2
1 � !2

2 ¼ 2k 2Ra r 21 � r 22
� �

; ð29Þ

where !1 and !2 are poles related to the nodes r1 and r2, re-
spectively. Therefore, the mode with !1 cannot dominate the
others for a long time when k is small.
For example, k ¼ 1 and Ra ¼ 0:01 gives !2

1 ¼ �2:8231!2
A

and !2
2 ¼ �2:2364!2

A. Thus, the difference between the max-
imum growth rate and the second is about 0:18!A, which means
that the most unstable mode dominates the others after several
tens of Alfvén time. On the other hand, for k ¼ 0:01, !2

1 ¼
�2:8231 ; 10�4!2

A and !2
2 ¼ �2:2364 ; 10�4!2

A. Thus, the
difference between the maximum growth rate and the second
one is about 1:8 ; 10�3!A, and the most unstable mode domi-
nates the others after more than 103 Alfvén time.

5. NUMERICAL RESULTS

We have solved the eigenvalue problem in equation (15)
numerically. It is noted that the approximation RT1 is not
used in solving it numerically. The computational domain was
chosen as RT1. Actually, it was chosen as R ¼ 0 to R ¼ Ra ¼
0:01. The boundary condition is set as ’ ¼ 0 at R ¼ 0 and
R ¼ Ra. The wavenumber was chosen as k ¼ 1.
Figure 5 shows the eigenfunctions related to (Fig. 5a) the

first through the fifth smallest and (Fig. 5b) the 11th through the
15th smallest eigenvalues. The eigenfunctions are normalized
by their norms. We see rapid oscillations of ’ near the origin,
especially in Figure 5b. The eigenvalues are expected to be con-
tinuous from the preceding analysis; however, the discretization
procedure for the numerical treatment makes the eigenvalues
discrete. The values of the first and the 15th smallest eigenvalues
are !2 ¼ �2:9997!2

A and �2:8024!2
A, respectively. These val-

ues approach !2 ¼ �3!2
A if we increase the number of grid

points, which may numerically indicate the existence of the con-
tinuum of eigenvalues. In Figure 5 we took 1000 grid points inR;
however, the resolution is not enough to capture the rapid oscil-
lations near the origin. It is impossible to capture them correctly
by the numerical scheme, since the analytic solution shows that
the oscillation of ’ becomes infinitely rapid near the origin.

Fig. 3.—Poles !2 as a function ofm. Note thatm is an integer, but it is shown
here as a continuous variable.

Fig. 4.—Schematic picture of the poles in the complex!-plane. The countably
infinite number of poles exist, and the maximum growth rate is approximatelyffiffiffi
3

p
!A. They accumulate to ! ¼ �!A.
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As a reference, we also calculated the eigenvalues and eigen-
functions for the rotation profile

�2 ¼ (R2þ "2)�3=2; ð30Þ

where " is a small parameter. Then this profile does not diverge
at the origin and approaches the Keplerian rotation as " goes to

zero. Figure 6 shows the first to the fourth smallest eigenvalues
as functions of

ffiffiffi
"

p
. We see that the eigenvalues approach the val-

ues for the Keplerian rotation " ¼ 0 as " is decreased. It is noted
that the numerically obtained !2 for " ¼ 0 is slightly different
from the values by equation (28). This is because equation (28) is
derived by assuming the potential V in equation (16) by the R�3

term only; however, the R�2 term can be comparable even for

Fig. 5.—Numerically obtained eigenfunctions. (a) Eigenfunctions related to the
first through the fifth smallest eigenvalues. (b) Eigenfunctions related to the 11th
through the 15th smallest eigenvalues. Rapid oscillations near the origin are seen.

Fig. 6.—First to fourth smallest eigenvalues as functions of
ffiffiffi
"

p
. The eigen-

values approach the values for the Keplerian rotation " ¼ 0 as " is decreased.

Fig. 7.—Eigenfunction corresponding to the smallest eigenvalue is shown as a
function of ". They are normalized by their norms.

Fig. 8.—Same as Fig. 5, but for " ¼ 10�4.
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small but finite R if !2 is close to �3!2
A. The computational

domain is chosen to be from R ¼ 0 to R ¼ Ra ¼ 0:01, and 1000
grid points are used. It should be important to note that the
eigenvalues do not change for " 6¼ 0 when the number of grid
points is changed. This means the eigenvalues obtained numer-
ically here are discrete. In contrast, for " ¼ 0, the eigenvalues
become closer to !2 ¼ �3!2

A as the number of grid points be-
comes larger. Thus, these eigenvalues should be a numerically
discretized continuum. In addition, the eigenfunctions for the
smallest eigenvalues are also shown in Figure 7. As " decreases,
the peak of ’ approaches its value for the Keplerian rotation. It is
noted that those eigenfunctions are normalized by their norms.
Figure 8 shows the eigenfunctions for " ¼ 10�4 belonging to
(Fig. 8a) the first to the fifth smallest eigenvalues and (Fig. 8b)
the 11th to the 15th smallest eigenvalues.We see rapid oscillation
in R, which is similar to the eigenfunctions for " ¼ 0; however,
the rapid oscillation disappears near the origin. The range of this
disappearance becomes narrower as " becomes smaller.

Next, we show the numerical solution to the initial-value prob-
lem in equation (22) for the same computational domain. The
wavenumber was chosen as k ¼ 1. Similar to the eigenvalue ap-
proach, �R is changed to ’. The number of grid points in R was
chosen as 1000.

Figure 9a shows the time evolution of the norm. The ini-
tial conditions were chosen as @ 2’/@t 2 ¼ sin (�R /Ra) and ’ ¼

@’/@t ¼ @ 3’/@t 3 ¼ 0.We see that the norm oscillates at the very
beginning and it starts to grow as approximately exp (2

ffiffiffi
3

p
!At). As

a reference, a function proportional to exp (2
ffiffiffi
3

p
!At) is also plot-

ted. Thus, the growth rate of ’ is approximately
ffiffiffi
3

p
!A, which

agrees well with the smallest eigenvalue !2 ¼ �2:9997!2
A in the

eigenvalue approach.
Figure 9b shows the time evolution of the initial perturbation.

At t ¼ 20�A the norm grows as exp (2
ffiffiffi
3

p
!At), and we may rec-

ognize that the instability is in the linearly growing phase. How-
ever, we find that the spatial structure of the perturbation continues
to change slowly in the ‘‘linearly growing phase.’’ The peak of the
mode moves toward R ¼ 0. This phenomenon is expected from
the analysis via the Laplace transform. Since the poles are dis-
tributed densely, the most unstable mode needs a significantly
long time to dominate the others.
Figure 10 shows the time evolution of the norm and the spa-

tial structure of the perturbation for another set of initial condi-
tions, @ 2’/@t 2 ¼ exp (�R /Ra) sin (3�R/Ra) and ’ ¼ @’/@t ¼
@ 3’/@t 3 ¼ 0. The wavenumber was chosen as k ¼ 1. The norm
grows as exp (2

ffiffiffi
3

p
!At) again while it oscillates in the beginning.

The growth rate of the norm is determined by the smallest eigen-
value in the eigenvalue approach and does not depend on the ini-
tial condition. However, we see an interesting phenomenon in
the spatial structure of the perturbation; it is significantly dif-
ferent from that in Figure 9b at t ¼ 20�A, although the norm is
growing exponentially with the maximum growth rate obtained
by the eigenvalue approach. Therefore, we find that the time
evolution of the spatial structure of the perturbation strongly

Fig. 9.—Numerical solution of the initial-value problem. (a) Time evolution
of the norm. The lines almost overlap. (b) Spatial structure of the perturbation
(normalized). Even though the norm grows exponentially, the spatial structure
continues to change slowly.

Fig. 10.—Same as Fig. 9, but for a different initial condition.
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depends on the initial condition even in the ‘‘exponentially growing
phase.’’ After a significantly long time, the spatial structure of the
perturbation becomes similar to that in Figure 9, and the peak of the
perturbation continues to move slowly toward R ¼ 0.

Finally, we show the time evolution of the norm in Figure 11
taking the initial form of ’ as an eigenfunction and @’/@t ¼
@ 2’/@t 2 ¼ @ 3’/@t 3 ¼ 0. Thewavenumberwas chosen as k ¼ 1.
For example, if we choose the eigenfunction for!2 ¼ �!2

A as an
initial condition, the norm evolves as exp (2!At) at the beginning.
However, around t ¼ 20�A, the growth rate of the norm changes
to 2

ffiffiffi
3

p
!A. Similarly, we see a sudden change in the growth rate of

the norm from 0 to 2
ffiffiffi
3

p
!A if the initial condition is the eigen-

function for !2 ¼ 0. This could be explained by the discretizing
and round-off errors. Let us suppose that we choose the eigen-
function for !2/!2

A ¼ 0 as an initial condition. A numerical error
can be included in the last digit in the double-precision compu-
tation, and the error might include the component of the fastest
eigenmode. This means that the magnitude of the fastest eigen-
mode is approximately 10�16 smaller than the ‘‘real’’ perturbation
we are interested in. The real perturbation does not grow; how-
ever, the error component grows with its growth rate

ffiffiffi
3

p
!A.

Then the magnitude of the error can reach the order of unity
after time t/�A ’ ln 1016/

ffiffiffi
3

p
’ 21. This seems to be of the same

order as the value observed in Figure 11. It should be noted, how-
ever, that this estimate does not necessarily deny that the observed

phenomena come from the nonorthogonality of the eigenfunctions
in the non-Hermitian system.

If we choose the eigenfunction corresponding to the sta-
ble mode (!2 > 0) as the initial condition, the norm grows ex-
ponentially in Figure 11. The growth rate is approximately
2 1:78ð Þ1/2!A. As pointed out in x 3, two values of !2 give the
same potential V, and the stable and the unstable modes can share
an eigenfunction. The pair of roots !2 ¼ 10!2

A and �1:78!2
A

have a common eigenfunction whose norm has a growth rate of
2 1:78ð Þ1/2!A.

6. CONCLUSIONS

We have studied the linear stability of a Keplerian disk against
the magnetorotational instability (MRI), whose time evolution
is governed by a non-Hermitian operator. The axisymmetry of
the mode especially simplifies the eigenvalue equation, and it
superficially looks like the Schrödinger equation. However, the
irregular singularity at the center of the disk due to the Keplerian
rotation cooperates with the intrinsic non-Hermitian property
of the system to generate the continuum of eigenvalues in both
stable (purely oscillating) and unstable (exponentially growing)
regimes. All the eigenfunctions are square integrable, vanish at
the center, have rapid radial variation near the center of the disk,
and satisfy the boundary condition there intrinsically. In our
analysis, the small-radius (RT1 or RTR0 in the physical
dimension) approximation is used, and a suitable choice of R0

can extend the region of the instability throughout the disk.
Although this eigenvalue approach gives us particular solutions
to the evolution equation, we must interpret the results carefully,
since not only is the number of eigenfunctions too large, but they
are also not orthogonal to each other. Thus, we have analyzed the
time evolution of the MRI via the Laplace transform as well as
the numerical simulations. The maximum growth rate differs
significantly from its value found from the local analysis. We
have found that the spatial structure of the perturbation continues
to change even as the norm of the mode grows exponentially.
This is because the poles are distributed densely on the unstable
side, and therefore, the most unstable mode needs an appreciably
long time to dominate the others.

The authors would like to thank S. M. Mahajan for a fruitful
discussion.

APPENDIX

GENERAL ROTATION PROFILE

In x 3we obtained the eigenfunctions for the Keplerian rotation.We can obtain the eigenfunctions for more general rotation profiles.
When the equilibrium rotation frequency is given by �2 ¼ Rp, the potential V becomes

V ¼ 3

4
R�2þ k 2 1� ( pþ 4)!2� p!2

A

(!2� !2
A)

2
Rp

" #
: ðA1Þ

Thus, p < �2, including the Keplerian rotation ( p ¼ �3), yields the irregular singular point at R ¼ 0. The rotation speed R� de-
creases with radius in this case. If p��2, R ¼ 0 becomes the regular singular point. Then the conventional Frobenius series solution
can be constructed. In this appendix we concentrate on p < �2 or the irregular singular point.

In the region with RT1, the Rp term becomes dominant, and then the eigenvalue problem can be written as

R�p d
2’

dR2
þkp’ ¼ 0; ðA2Þ

Fig. 11.—Time evolution of the norm when an eigenfunction is chosen as the
initial condition. The lines for !2/!2

A ¼ �2 and 10 almost overlap.
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where kp is given by

kp ¼ k 2 ( pþ 4)!2� p!2
A

(!2� !2
A)

2
¼ const: ðA3Þ

By transforming the coordinate as x ¼ R( pþ2)/2, we find the solution analytically for kp > 0 as

’ ¼ c1R
1=2J1= pþ2j j

2k1=2p

j pþ 2j R
pþ2ð Þ=2

 !
þ c2R

1=2Y1= pþ2j j
2k1=2p

j pþ 2j R
pþ2ð Þ=2

 !
: ðA4Þ

Both of the eigenfunctions go to zero as R goes to zero. The eigenfunctions are square integrable asZ Ra

0

dRRj�Rj2 ¼
�2

2þ p

Z 1

R
2þpð Þ=2
a

dx x 2�pð Þ= 2þpð Þ c1J1 2
ffiffiffiffiffi
kp

p
x

	 

þ c2Y1 2

ffiffiffiffiffi
kp

p
x

	 
��� ���2: ðA5Þ
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