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ABSTRACT

Aims. We study the spatial damping of linear compressional MHD waves in a homogeneous, isothermal, and unbounded prominence.
Methods. We derive a general dispersion relation invoking the Newtonian radiation and turbulent viscosity. The turbulent viscosity
is derived from SUMER and CDS observations for Kraichnan and Kolmogorov turbulences. Since we are interested in the spatial
damping, the dispersion relation is solved numerically considering ω as real and k as complex corresponding to slow, fast, and
thermal modes.
Results. Both the slow and fast modes show strong damping, but the thermal mode is absent. The turbulent viscosity derived from
observations can be a viable mechanism for the spatial damping of slow and fast modes. For a wave period of 1 s, the damping
length for slow and fast modes is found to be 1.1 × 102 km for the Kolmogorov turbulence. Correspondingly, the damping length of
slow modes is 1.3 × 101 km and for fast modes 1.9 × 102 km for the Kraichnan turbulence. From the damping length study of slow
modes, it is found that Kraichnan turbulence dominates for short wave periods between 10−7 to 102 s, and the Kolmogorov turbulence
dominates for longer wave periods between 103 to 105 s. From the damping length of fast modes, it is found that the Kraichnan
turbulence dominates from very short to long wave periods.
Conclusions. The Kraichnan and Kolmogorov turbulence can be a viable damping mechanism for the spatial damping of short-period
oscillations. In particular, the short-period oscillations (5−15 min) observed in quiescent limb prominences, which seem to be due to
internal fundamental slow modes, have damping lengths in the range 1.9−3.7×103 km for Kolmogorov turbulence and 3.5×103−3.1×
104 km for Kraichnan turbulence. Correspondingly, for fast modes, the damping length is in the range 2.6 × 105−2.3 × 106 km for
Kolmogorov turbulence and 1.7 × 107−1.5 × 108 km for Kraichnan turbulence. This study underlines the importance of turbulent
viscosity for explaining the damping of both slow and fast modes, which, hitherto, has not been explored.
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1. Introduction

Prominences are masses of relatively cool (T ∼ 104 K) and
dense (ρ ∼ 10−10 kg m−3) material suspended in the corona (ρ ∼
10−14 kg m−3, T ∼ 106 K). The spectra of prominences hold the
key to understanding their physical conditions e.g., temperature,
density, pressure, orientation, and strength of magnetic field. The
internal structure and physical properties of prominences, how-
ever, can be studied best through prominence seismology.

Small amplitude waves (or oscillations) with velocity ampli-
tudes from 0.1 km s−1 to 2−3 km s−1 have been observed (e.g.,
Bashkirtsev & Mashnich 1984; Molowny-Horas et al. 1999).
The analysis of time series of line width, line intensity, and
Doppler velocity reveals the local nature of the oscillations,
which have been classified, according to their periods as, short
(P < 10 min), intermediate (10 min < P < 40 min), and long-
period oscillations (P > 40 min), although very short periods
of 30 s (Balthasar et al. 1993) and extreme ultra-long periods
of more than 8 h (Foullon et al. 2004) have been reported. There
have been few determinations of wavelength and phase speed for
standing/propagating waves in prominences. Molowny-Horas
et al. (1997) observed the oscillations in different parts of
the quiescent prominence, and assuming the plane wave

propagation, obtained the maximum values of phase speed
(≤44 km s−1) and the perturbation wavelength (≤20 000 km).
Terradas et al. (2002) detected two propagating waves in a polar
crown prominence, one with λ ∼ 67 500 km, vph ∼ 15 km s−1

and the other with λ ∼ 50 000 km, vph ∼ 12 km s−1, and found a
standing wave with λ ∼ 44 000 km, vph ∼ 12 km s−1.

There are several proofs of the damping of oscillations in
prominences. Using the Vacuum Tower Telescope (VTT) at Sac
Peak Observatory, Molowny-Horas et al. (1999) found veloc-
ity perturbations with periods between 28 and 95 min at dif-
ferent locations in a prominence. The amplitude of these os-
cillations was found to decrease in time with damping times
between 101 and 377 min. Terradas et al. (2002) investigated
the temporal and spatial variations of oscillations and reported a
strong damping of oscillations with damping times between two
to three times the wave period. On the theoretical side, Terradas
et al. (2001) considered energy losses through Newtonian cool-
ing to study the temporal damping of prominence oscillations
and found that only slow mode waves are strongly damped, leav-
ing fast mode waves almost undamped. Further explanations
of the temporal damping of prominence oscillations have been
offered by considering energy losses due to thermal conduc-
tion, optically thin radiation and heating (Carbonell et al. 2004;
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Terradas et al. 2005). However, a similar study of the spatial
damping of prominence oscillations has not been done.

Temporal and spatial variations of prominence oscillations
are the two different manifestations of the wave damping phe-
nomenon. Observationally, damping time obtained from the
decaying velocity perturbations are utilized (Molowny-Horas
et al. 1999). Physical mechanisms such as radiative, viscous,
electrical, or thermal losses are then invoked in the MHD equa-
tions. In spatial damping, however, one uses both indirect and
direct methods, as well as the upper observed limit to the per-
turbation wavelength (Molowny-Horas et al. 1997) or the dis-
tance over which the amplitude of the wave is completely at-
tenuated. For instance, Ballai (2003), in an order of magnitude
estimation, studied the spatial damping of magnetoacoustic
waves using the observed limit to the perturbation wavelength
as the damping length. Recently, Carbonell et al. (2006) used
the observations of Terradas et al. (2002) to show that the prop-
agating wave amplitude decreased in a substantial way over a
distance of 1−5 × 104 km for a wave period of 5 to 15 min.
Moreover, the thermal mode that arises due to thermal conduc-
tion is purely damped in the temporal study but propagating in
the spatial damping study of prominence oscillations.

The damping mechanisms considered in earlier investiga-
tions (Ballai 2003; Terradas et al. 2001; Carbonell et al. 2004)
only explain the damping of slow modes, so it is necessary to
look for other viable damping mechanisms to explain the damp-
ing of fast mode waves. One of the possible candidates could
be collisions between ions, electrons, and neutrals in partially
ionized plasma. However, the damping of MHD waves by ion-
neutral interactions is much stronger for the fast-mode wave than
for the slow-mode wave (Forteza et al. 2007). Given the poor
knowledge of density and ionization fraction in prominences,
it is hard to quantitatively estimate the role of partial ioniza-
tion in the damping of fast-mode waves in prominences. The
other possible candidate could be the wave damping due to the
MHD turbulence that seems to be present in several emission
lines of many different ionization states observed with SUMER
and CDS. From these lines, the variation in non-thermal veloci-
ties with temperature in the range 2×104 to 7×105 K has been de-
termined for the first time (Cirigliano et al. 2004). Similar varia-
tions in non-thermal velocities in CCTR and PCTR indicate that
heating mechanisms in both could be the same with regard to
wave propagation and MHD turbulence. De Boer et al. (1998),
have calculated non-thermal velocities and found these to in-
crease towards the periphery of the prominence. From temporal
and spatial analysis, Terradas et al. (2002) observed damping of
oscillations as a common feature in large areas, especially close
to the edge of the prominence. Interpretation of non-thermal mo-
tions in terms of MHD turbulence is attractive because all non-
thermal motions are isotropic and have very small scales that are
often displayed on the basis of their observational characteris-
tics and physical conditions in prominence, PCTR, CCTR, and
the solar corona. Inhomogeneous structures caused by density
stratification and magnetic field may also play a role in driving
turbulence (Chae et al. 1998). The presence of non-thermal ve-
locities and damping of magnetoacoustic waves can be explained
by MHD turbulence, so the compelling body of observational
evidence points towards the MHD turbulence for the likely ex-
planation of both slow and fast-mode waves. In this paper, we
derive a general dispersion relation invoking the Newtonian ra-
diation and turbulent viscosity. The turbulent viscosity is derived
from the observations of SUMER and CDS for Kraichnan and
Kolmogorov turbulences in Sect. 2. We present the results and
discussion in Sect. 3 and conclusions in the last section.

2. General dispersion relation

We consider a homogeneous equilibrium configuration with a
magnetic field in the x-direction. Neglecting the effect of gravity,
we have

p0 = const., ρ0 = const.,

T0 = const., B0 = B0x, and V0 = 0, (1)

where p0, ρ0, T0, and B0 are the equilibrium values of the pres-
sure, density, temperature and magnetic field.

The basic equations for the discussion of linear MHD waves
are
Dρ
Dt
+ ρ∇ · V = 0 (2)

ρ
DV
Dt
= −∇p +

1
µ

(∇ × B) × B + ρηt∇2V (3)

ργ

γ − 1
D
Dt

(
p
ργ

)
= Qviscous − Qradiation (4)

∂B
∂t
= ∇ × (V × B) (5)

∇ · B = 0 (6)

p = ρRT (7)

where ηt (=υobsδ) is the coefficient of turbulent kinematic vis-
cosity and γ the ratio of specific heats. Also, υobs is the turbulent
velocity from SUMER and CDS observations (Cirigliano et al.
2004) and δ is a typical turbulence length-scale in prominences
that has been inferred to be 15 km for Kraichnan (Kraichnan
1965) and 1000 km for Kolmogorov turbulence (Kolmogorov
1941). The Newtonian radiation has been invoked by means
of the simplified energy equation ργ̂

γ̂−1
D
Dt

(
P
ργ̂

)
= 0, where γ̂ is

given by γ̂ = 1+iωτRγ
1+iωτR

(Bunte & Bogdan 1994) and τR is the ra-
diative relaxation time. The MHD equations are linearized and
perturbations of the form exp i(ωt + k · r) are taken where ω
is the frequency of oscillations and k the wave number. Using

x = lx̄, k̄ = lk, V = CsV , ω = Cs
l ω̄, B = B0B̄x, p =

B2
0
µ p̄,

ρ =
γB2

0ρ̄
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s

, and ηt = η̄tCsl, equations are cast into the dimension-
less form where l (=5236 km) is a “dimensionless length” and
the quantities with a bar on top denote non-dimensional quanti-
ties. The resulting general dispersion relation is

a4k4 + a2k2 + a0 = 0, (8)

where the coefficients are given by

a0 = ω
5 − i

1
τR
ω4,

a2 = −2iηtω
4 −

(
1 + V2

A + 2
ηt

τR

)
ω3

+i
1
γτR
ω2 + i

V2
A

τR
ω2,

and

a4 = −ηt
2ω3 + iηtω

2 + iηtV
2
Aω

2 + i
ηt

2

τR
ω2 +

ηt

γτR
ω

+
ηtV2

A

τR
ω + cos2θV2

Aω − i
cos2θV2

A

γτR
·



K. A. P. Singh et al.: Spatial damping of compressional MHD waves in prominences 933

Fig. 1. a) Wavelength b) damping length and c) damping per wavelength as a function of wave period for slow (shown by a dotted line) and fast
mode wave (shown by a solid line) for Kolmogorov turbulence.

In case of turbulent viscosity alone, the dispersion relation has
the similar mathematical form as Eq. (8) with

a′0 = ω
5,

a′2 = −2iηtω
2 − (1 + V2

A)ω3, and

a′4 = −η2
tω

3 + iηtω
2 + iηtV

2
Aω

2 + cos2θV2
Aω

with kx = k cos θ and k =
√

k2
x + kz

2.

Since we are interested in the spatial damping of magnetoacous-
tic waves, we consider the frequency,ω, to be real and seek com-
plex solutions of the wavenumber k expressed as k = kr + iki.
Equation (8) is a fourth-order polynomial for k as a function
of ω, and from it we can obtain four complex roots correspond-
ing to slow and fast modes, but thermal mode is absent. In prin-
ciple, an important difference in the spatial damping case with
respect to temporal damping is that the thermal wave is a propa-
gating wave instead of a simple decaying oscillation. The wave-
length of the waves is given by λ = 2π

kr
, the damping length by

dL =
1
ki

, and the damping per wavelength is DL =
ki
kr

, which
we have explored using typical values of the density, tempera-
ture, and magnetic field for prominences from Carbonell et al.
(2006).

3. Results and discussion

The dispersion relation (8) has been solved numerically for a
magnetic field of 10 G and a propagation angle of π/4. Before

considering the range of periods typical of the detected os-
cillations in prominences, we solved Eq. (8) for prominence
regime 1.1 (Carbonell et al. 2006), considering a period ranging
from very short (10−7 s) to very long (107 s). The behavior of the
wavelength, damping length, and damping per wavelength as a
function of wave period is shown in Figs. 1a−c. Figure 1a shows
the wavelength of slow and fast modes as a function of the wave
period. Figure 1b shows that the damping length of slow and fast
modes is almost the same for short wave periods, while Fig. 1c
shows that both the slow and fast modes are strongly damped for
shorter wave periods. We also see that the fast modes propagate
undamped at higher wave periods (105−107 s).

We then consider the behavior of damping lengths of magne-
toacoustic waves as a function of wave period for various cases.
In Fig. 2a, we compare the damping length of slow modes as
a function of wave period for Kraichnan and Kolmogorov tur-
bulences. This shows that for short wave periods between 10−7

to 102 s, Kraichnan turbulence dominates because the damping
length for Kraichnan turbulence is shorter than the Kolmogorov
turbulence. However, Kolmogorov turbulence dominates for
long wave periods (103−105 s). Figure 2b shows the damping
length of fast modes as a function of wave period for Kraichnan
and Kolmogorov turbulence, and it is the Kraichnan turbulence
that dominates from very short to long periods. In Fig. 3a, we
compare the damping length of slow modes obtained due to
Newtonian cooling and due to Kolmogorov turbulence. This
shows that the Kolmogorov turbulence strongly dominates for
short wave periods and approaches the Newtonian cooling case
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Fig. 2. Damping length for Kraichnan (shown by a dashed line) and Kolmogorov (shown by a solid line) turbulences as a function of wave period
for a) slow mode and b) fast mode.

Fig. 3. Damping length for Newtonian radiation (shown by a dashed line) and Kolmogorov turbulences (shown by a solid line) as a function of
wave period for a) slow mode and b) fast mode.

for long wave periods. As shown in Fig. 3b, the Kolmogorov
turbulence also dominates for the fast modes.

We have modified the values of the physical parameters, such
as magnetic field, temperature, density, and the propagation an-
gle in an attempt to show their dependence on the damping
length of slow and fast modes. Figure 4 shows the variation in the
damping length for different values of magnetic field strength.
As shown in Fig. 4a, the damping length of slow modes remains
unaffected by the variation of magnetic field strength. However,
for fast modes, the damping length increases with the increase
in the magnetic field strength at longer wave periods but re-
mains unaffected at shorter wave periods (Fig. 4b). The varia-
tion in damping length for different values of the prominence
temperature is shown in the Fig. 5. The damping length of slow
modes remains unaffected at shorter wave periods but increases
at longer wave periods, as shown in Fig. 5a, and the fast modes
remain unaffected (Fig. 5b). In Fig. 6 the damping length for dif-
ferent values of prominence density is shown. Figure 6a shows
that the damping length of slow modes remains unaffected by an
increase in density, whereas it decreases for fast modes (Fig. 6b).
The variation in damping length for different values of propaga-
tion angle are shown in Figs. 7a, b. This shows that the damp-
ing length of slow and fast modes remains unaffected at shorter
wave periods but decreases at longer wave periods with increase
in propagation angle.

4. Conclusions

In this paper, we have studied the spatial damping of linear
magnetoacoustic waves by deriving a general dispersion rela-
tion invoking the Newtonian radiation and turbulent viscosity
for Kraichnan and Kolmogorov turbulences that is derived from
the SUMER and CDS observations of Cirigliano et al. (2004).
The dispersion relation has been numerically solved to study the
damping length of slow and fast modes.

The main conclusions that can be extracted from our study
are:

1. Slow and fast modes are strongly damped by turbulence but
the thermal mode is absent.

2. From the damping length study of slow modes, it is found
that Kraichnan turbulence dominates for short wave periods
between 10−7 to 102 s during which time Kolmogorov turbu-
lence dominates for longer wave periods (103−105 s).

3. From the damping length of fast modes, it is found that
the Kraichnan turbulence dominates from very short to long
wave periods.

It is now interesting to compare the theoretical damping length
with the value derived from the observations. In Terradas et al.
(2002), the dominant period of the oscillations, interpreted
as slow modes, was around 75 min, and correspondingly the
damping length is found to be 1.7 × 104 km for Kolmogorov
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Fig. 4. Damping length for B = 1 G (shown by a dotted line), B = 5 G (shown by a dashed line), and B = 10 G (shown by a solid line) as a function
of wave period for a) slow mode and b) fast mode.

Fig. 5. Damping length for T = 5000 K (shown by a dotted line), T = 15 000 K (shown by a dashed line), and T = 8000 K (shown by a solid line)
as a function of wave period for a) slow mode and b) fast mode.

Fig. 6. Damping length for ρ = 1×10−11 kg m−3 (shown by a dotted line), ρ = 10×10−11 kg m−3 (shown by a dashed line), and ρ = 5×10−11 kg m−3

(shown by a solid line) as a function of wave period for a) slow mode and b) fast mode.

turbulence and 7.1 × 105 km for the Kraichnan turbulence. For
fast modes, the damping length is 5.8× 107 km for Kolmogorov
turbulence and 3.8 × 109 km for Kraichnan turbulence. For the
wave periods between 5 min and 15 min, the damping length cor-
responding to slow mode is 1.9−3.7 × 103 km for Kolmogorov
turbulence and 3.5 × 103−3.1 × 104 km for Kraichnan turbu-
lence. Correspondingly, for fast modes the damping length is in
the range 2.6 × 105−2.3 × 106 km for Kolmogorov turbulence

and 1.7 × 107−1.5 × 108 km for the Kraichnan turbulence. For
a wave period of 1 s, the damping length for slow, and the
fast mode is found to be 1.1 × 102 km for Kolmogorov turbu-
lence. Correspondingly, the damping length of slow modes is
1.3×101 km and of fast modes is 1.9×102 km for the Kraichnan
turbulence.

In summary, we underline the importance of turbulence on
the spatial damping of prominence oscillations for both slow and
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Fig. 7. Damping length for θ = 10−2 (shown by a dotted line), θ = π/3 (shown by dashed line), and θ = π/2 (shown by a solid line) as a function of
wave period for a) slow mode and b) fast mode.

fast mode waves. The previous investigations either explain the
damping of slow or fast modes in prominences. The inclusion of
turbulence explains the damping of both slow and fast modes.
This is a novel element based on a compelling body of evi-
dence from the SUMER and CDS observations for the cases of
Kraichnan and Kolmogorov turbulence. New observations from
the Hinode spacecraft may shed new light on the turbulence
prevalent in all the solar structures.
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