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The electric quadrupole moment for the 5d2D3/2 state of 1"'Yb™, has been calculated using the
relativistic coupled-cluster method. Earlier a similar calculation was performed for the 4d 2D5/2
state of ®¥Sr™ which is the most accurate determination to date [PRL, 96, 193001 (2006)]. The
present calculation of the electric quadrupole moment of ' Yb™ yielded a value 2.157ea? where the
experimental value is 2.08(11)ea(2); ap is the Bohr radius and e the elementary charge. We discuss in
this paper our results in detail for *"*Yb™ and highlight the dominant correlation effects present. We
have presented the effect of inner core excitations and their contribution to the electric quadrupole
moment, which is a property sensitive to regions away from the nucleus.

PACS numbers: 31.15.Ar, 31.15.Dv, 32.30.Jc

I. INTRODUCTION

The frequency of any periodic event like the mechan-
ical oscillation of pendulum or stable atomic frequencies
can be used to define the unit of time. The frequencies
derived from selected atomic resonant transitions are par-
ticularly preferred due to various advantages they offer
compared to mechanical oscillations. They are extremely
stable, accurately measurable and reproducible. Though
the cesium atomic clock frequency ﬂ, E] is accurate to 4
parts in 10'6, a variety of atoms and ions have been pro-
posed as candidates for the next generation of frequency
standards [3, 4]. Of these candidates, certain ions with
forbidden transitions in the optical regime are of special
importance. Trapped and laser cooled single ions and
neutral atoms trapped in optical lattices are currently
the leading candidates for atomic clocks [3,6]. Frequency
standard experiments with trapped ions require consid-
erable skill and ingenuity. It is a indeed very challenging
to measure the clock frequencies to a high degree of pre-
cision. Effects like the second-order Zeeman, the electric
quadrupole shift, etc. arise from the interaction of the
ion with stray fields. It was shown recently that the sys-
tematic effects caused by these shifts will not limit the
accuracy of the optical clock ﬂ]

It was shown earlier that Yb™ is one of the suitable
candidates for defining a frequency standard ,E] Other
candidates like Sr* [10, [11], Ca*t [12], Ba® |13], Hg*t |5
etc have also been considered for setting up the frequency
standard. In particular, Yb™ is a very versatile candi-
date, having the clock transitions in the visible, IR and
microwave regions. The transition which is being con-
sidered for the frequency standard experiment is the for-
bidden electric quadrupole (E2) transition between the

*Electronic address: latha@iiap.res.in
TElectronic address: csur@astronomy.ohio-state.edu

ground state (65281/2,F = 0) and the metastable ex-
cited state (5d2D3/2,F = 2). Precise measurements of
the electric quadrupole moments of these ions have been
performed ﬂ, K], 19, 14, ﬁ] Comparison of the experi-
mental values of electric quadrupole moments with those
calculated theoretically, would serve as excellent tests
of relativistic atomic theories. An earlier calculation of
this quantity for Sr™, using relativistic coupled-cluster
theory yielded a value (2.94 +0.07)ea? [16] for the 4d
2Dy /2 state, which was in very good agreement with it’s
measured value (2.6 £ 0.3) |14], where e is the electronic
charge and ag is the Bohr radius. This was the most ac-
curate calculation of the quantity for the 4d 2D5 /2 state
of Sr* to date and the excellent agreement of the mea-
sured and the calculated values indicates the potential of
the method used. In this paper, the electric quadrupole
moment of Yb™T in the state 5d? Dy /2 has been calculated
using relativistic coupled-cluster (RCC) theory. Indeed
a comparison of this property of a heavy ion like Yb™
with accurate experimental data is a far more stringent
test of RCC than the corresponding comparison for Srt.
The calculation of EQM for Yb™ is computationally more
demanding due to the presence of a large number of oc-
cupied orbitals. In our calculation, the entire core has
been excited. This leads to a rapid proliferation in the
number of cluster amplitude equations with the size of
the virtual space considered, and therefore a very large
increase in the number of computations necessary to de-
termine these amplitudes. Obtaining convergence for the
large number of cluster amplitude equations with an ap-
propriate iterative method is a daunting task for heavy
atomic systems like Yb™. The calculations on such sys-
tems hence involve the combination of the power of the
relativistic many-body theories with the state-of-the-art
high performance computational techniques.

An outline of the application of the RCC method to
calculate atomic electric quadrupole moments has al-
ready been presented in @] The details of this theory
have been discussed in several papers m, @] Here we
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shall give the salient features of the method for complete-
ness. This paper is organized as follows : Section [[Il and
Section [III] deal with the theoretical methods we have
employed and the details of our calculation respectively.
In Section [Vl we present our results and compare with
the available data. We have also discussed the effects of
different many-body contributions. Finally we conclude
in Section [Vl and highlight the important findings of our
work.

II. THEORETICAL METHODS

A. Relativistic coupled-cluster theory for closed
shell atoms

We start with the N-electron closed-shell Dirac-Fock
(DF) reference state |®), which is the Fermi vaccuum for
the present formulation. In coupled-cluster (CC) theory
the exact wavefunction for the core sector in terms of this
reference state is given by,

(W) = exp(T) @), (1)

where T is the cluster operator which takes into account
the excitations from the closed-shell core to the virtual
orbitals. In singles and doubles (SD) approximation, the
cluster amplitude 7" is written as

T=T+T, = Z{a aq tp+42{a abayaa } tog; (2)
abpq

Ty and T» being the cluster amplitudes for single and
double excitations respectively and the curly brackets
denote the normal ordering with respect to the Fermi
vaccuum. This is known as coupled-cluster with sin-
gles and doubles, namely CCSD. Here t? and '} are the
corresponding single particle amplitudes and a, b..(p, q..)
stand for occupied (virtual) orbitals and {---} denotes
normal ordering with respect to the common reference
state (vacuum) |®). For a one-valence one-dimensional
model space the label ‘v’ is used to represent a valence
orbital. In our approach we deal with the normal ordered
Hamiltonian which is defined as

H=H— (®|H|®) = H — Epp, (3)

where Epr is the Dirac-Fock energy.

B. Open shell coupled-cluster theory for single
valence system : Electron Attachment (OSCC-EA)

To determine the wavefunctions for the open shell or-
bitals we employ open-shell coupled-cluster method for
electron attachment (OSCC-EA) for the valence particle
(Oh, 1p) sector. Using the scheme of electron attachment

(EA) we obtain the (N + 1)-electron open shell system
as

Atom(0,0) + e — Ton(0,1). 4)

For a single valence system, we start with the reference
state

|o)*!) = al |®) (5)

where v denotes the valence orbital as mentioned in the
previous section and the operator a! represents creation
of a particle in the valence space. The many-body exact
open-shell wavefunction for the (N + 1)-electron open
shell system now becormes,

W)+ = exp(T) {exp(S,)} [#2F1) . (6)

where the curly brackets denote the normal ordering with
respect to |®). For a single valence system, the operator
exp(S,) turns out to be (14 .5,)

W) = exp(T) {(1+ Su)} [@)7F1), (7)

with

Sv—Slv+S2U—Z{a: av}sp Z{a a abav}sgg

v#ED bpq
(8)

Here S, corresponds to the excitation operator in the va-
lence (v) sector and and st and s?] are the singles and
doubles amplitudes respectively. The evaluation of the
cluster amplitudes are discussed elsewhere [? ]. Apart
from singles and doubles, only approximate triple excita-
tions (CCSD(T)) have been included. In this calculation,
we have used OSCC-EA to obtain the 5d2D3/2 state of
17y h T which is followed by property calculations as given
in sub-section [[TCl

C. Calculation of Expectation values

The expectation value of any operator O with respect
to the exact state is given by

<\I/N+1|O‘\IJN+1>

<\I/N+1| \IJN+1>
B (ENH {1+ ST} O {1+ S} |@N+T) "
T {(®NHL {1 4 St}exp(TT) exp(T) {1 + S} [@N+

(0) =

where O = exp(TJ)Oexp(T.) is the dressed operator.
The first few terms of the operators in the above ex-

pression (Eq. (@) can be identified as O, OS;, OSs,



S’I 0S8 etc. The corresponding matrix elements are re-
ferred to as dressed Dirac-Fock (DDF), dressed pair cor-
relation (DPC) and dressed core polarization (DCP) re-
spectively. We use the term ‘dressed’ because the opera-
tor O includes the effects of certain core excitations, i.e.,
core-correlation effects. In addition to the above, we can
identify a few other terms which play a non-negligible
role in determining the correlation effects. One of those
terms is S]OS) + c.c which we call the dressed higher or-
der pair correlation (DHOPC) since it directly involves
the correlation between a pair of electrons. Diagrams
representing these terms have already been presented in
ref. [16] but we have nevertheless given them here for
clarity.
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Figure 1: The diagrams (a) and (c) are subsets of dressed pair
correlation (DPC) diagrams. Diagram (b) is one of the direct

dressed core-polarization (DCP) diagram.

D. Electric Quadrupole Moment

The interaction of the atomic quadrupole moment with
the external electric-field gradient is analogous to the
interaction of a nuclear quadrupole moment with the
electric fields generated by the atomic electrons at the
nucleus. In the presence of the electric field, this gives
rise to an energy shift by coupling with the gradient of
the electric field. Thus the treatment of atomic electric
quadrupole moment is analogous to its nuclear counter-
part.

The quadrupole moment ® of an atomic state
| (v, J,M)) is defined as the diagonal matrix element
of the quadrupole operator with the maximum value M ;
and is expressed as

e = <\I/(FYJFMF)| 0. |‘IJ(7JFMF)> . (10)

Here ~ specifies the electronic configuration of the atoms
which distinguishes the initial and final states; J is the
total angular momentum of the atom and F is the sum-
mation of nuclear and atomic angular momentum with
Mp its projection. The electric quadrupole operator in
terms of the electronic coordinates is given by,

e
0., = —5 Z (32]2 — 7“?) ,
J

where the sum is over all the electrons and z is the co-
ordinate of the jth electron. To calculate the quantity
we express the quadrupole operator in its single particle
form as

o = Y g (1)

and the single particle reduced matrix element is ex-
pressed as [19]

Gslla 1) = Gl O ) [ dr 2 (PyPi+ ;0.

(12)
In Eq.([12]), the subscripts f and ¢ correspond to the final
and initial states respectively; P and Q are the radial part
of the large and small components of the single particle
Dirac-Fock wavefunctions respectively and j; is the total
angular momentum for the ith electron. The angular
factor is given by

(_1)(jf+1/2)

Gl CE |1y = (277 + 1)/ (25; + 1)

jf 2 Jz ’
x<_1/2 0 1/2)7r(l,k,l) (13)
where

n_J 1 ifl4+k+1 even
(i, k, V) = { 0 otherwise

! and k being the orbital angular momentum and the
rank respectively.

Finally using the Wigner Eckart theorem we define the
electric quadrupole moment in terms of the reduced ma-
trix elements as

. . e 2 g .
sl 0 i = -1y (08 ) Gl e )
(1)

III. COMPUTATIONAL DETAILS

This calculation is performed in the following steps :
The first step being the generation of single particle basis
for Yb™* using the Gaussian basis set expansion. This
is followed by the generation of the coupled cluster am-
plitudes (T) for the closed-shell Yb** system. In the
next step, the virtual orbitals 6s and 5d3/, are generated
using the open-shell coupled cluster method for electron
attachment (OSCC-EA). This is followed by the property
calculations as given in subsection [['Cl

The orbitals used in the present work are generated by
kinetically balanced finite basis set expansion (FSBE) of
Gaussian type orbitals (GTO) [20]

Fi i (r) = 7F exp(—ayr?), (15)



with £ =0,1,2--- for s,p,d,--- type functions, respec-
tively. The exponents are determined by the even tem-
pering condition [21]

; = O[()ﬁiil. (16)

The starting point of the computation is the generation
of the Dirac-Fock (DF) orbitals [20] which are defined on
a radial grid of the form

ri =19 [exp(i — 1)h — 1] (17)

with the freedom of choosing the parameters ro and h.
All DF orbitals are generated using a two parameter
Fermi nuclear distribution

_ Po
1+exp((r—-c)/a)’

p (18)
where the parameter ¢ is the half charge radius and a
is related to skin thickness, defined as the interval of the
nuclear thickness in which the nuclear charge density falls
from near one to near zero. Table [l contains the infor-
mation about the basis functions used in the calculation
to determine the electric quadrupole moment of 5d2 D5 /2

state of 1"YDb™T.

Table I: No. of basis (NB) functions used to generate the even
tempered Dirac-Fock orbitals and the corresponding value of
ao = a X 107° and B used. NP and NH stand for number or
particles and number of holes respectively.

S1/2 P1/2 P3/2 d3/2 d5/2 f5/2 f7/2 gr/2  99/2
NB 38 35 35 25 25 25 25 20 20
a 305 325 325 335 335 315 315 345 345
G 2.106 2.116 2.116 2.316 2.316 2.216 2.216 2.135 2.135
NP 7 8 8 7 7 7 7 8 8
NH 5 4 4 2 2 1 1 0 0

IV. RESULTS AND DISCUSSION

The contribution of the important physical effects to
the electric quadrupole moment of '"'Yb™ is given in
Tablellll The total value that we have obtained for this
quantity Oj/s(calculated) = 2.157ead is within the er-
ror bounds of the measured value ©3/;(measured) =
(2.08 & 0.11)ead [9]. It would be instructive to com-
pare our present calculation based on the RCC theory
with a previous calculation performed by Itano using the
relativistic configuration interaction (RCI) method [22].
The value obtained by Itano is O3/, = 2.174ead [22].
The RCI calculation of Itano uses a multiconfiguration
Dirac-Fock (MCDF) extended optimized level (EOL) or-
bital basis. The configurations included in the latter
calculation constitute a subset of the configurations in
our calculation. In particular, they correspond to the
correlation effects arising from the single and double ex-
citations from the core and the valence, i.e., terms in-
volving Ty, To, S1 and Sy in our RCC calculation. In

our calculation, the above effects have been included to
all orders. The virtual orbitals considered by Itano were
{(6—10)s, (6 —10)p, (6—10)d, (5—"7)f,(5—6)g,6h}. The
calculation carried out by Itano involves 2 main steps. In
the first step, the SPOs are obtained by minimizing an
energy functional in a limited orbital space in the frame-
work of MCDF-EOL. The second step involves a fairly
large RCI calculation to account for the correlation ef-
fects. Itano’s calculation incorporates the valence-core
correlation (single and the double excitations) arising
from the {5d} and {4f,5s,5p} shells and single excita-
tions from {4s,4p,4d,3d} (core-core correlations). Inspite
of these differences, the results are in good agreement.

For each symmetry we have considered more virtual or-
bitals than Itano. In addition, we have considered single
and double excitations from all the core orbitals where
Itano has considered only single and double excitations
from 5d and {4f,5s,5p} core orbitals, but not more than
one single core excitation at a time.

From Table. [ we see that the dressed Dirac-Fock
contribution is the largest and it is a substantial fraction
of the total EQM, inspite of the large number of core-
valence excitations. The second largest contribution is
from the DPC effects and third being DCP effects. DPC
effects arise from the terms like OS; and SI@SL Sub-
section [T Clgives the details of these different many-body
terms. S is an operator of rank 0 and the valence orbital
in 'YDb" is a 5ds/, orbital and hence it excites the va-
lence electron to a virtual orbital of the same parity and
angular momentum giving a large contribution through
the virtual d orbitals. Clearly the effects of the valence
5d3 /o excitations are the most important in the case of
71ybh*. It is interesting to note that though "1Yb™
has more filled shells than for 88Sr+, the contribution of
the DDF, DPC, DCP terms follow the same trend for
T1ybt and 88Srt. The core-virtual electric quadrupole
excitations/deexcitations contributing to the DCP dia-
grams involve excitations from f - ford-dor f - p, etc
orbitals. The DCP diagrams involve the contributions
from the O and the S, matrix elements. Though the O
matrix element could be large in some cases, the contri-
bution of the matrix element of the product OS; turns
out to be two orders of magnitude smaller than that of
the DDF term, inspite of the possibility of large number
of core-virtual excitations. Similar trends were observed
for the EQM of 3Sr*. Table [[ has more details about
the virtual orbitals and the active space. From Table. [[I,
we find that the contributions of the terms DDF, DPC,
DCP and DHOPC to the final value are 119%, -14%, -
2.2%, 1.2% respectively for 88Srt and are 116%, -13.3%,
-1.3%, 1.34 % respectively for '"'YbT. Also, the total
contribution of DPC, DCP and DHOPC to DDF is -1.1
%. DPC is ~ 11% of the DDF. DCP is ~ 1% of DDF for
the case of 17'Yb*. It has been observed that this trend
is similar for #Sr* even though "' Yb™ has a larger core.



Table II: Contributions from the electric quadrupole moment
(in eag) of the 5d*Dy/, state of '"'Yb™ and the 4d°Ds s
state of ®8Sr™, corresponding to different many-body effects
in the CCSD calculation. The terms like DDF, DCP, DPC,
DHOPC are explained in the text.

Ion DDF DPC DCP DHOPC Total Expt. [9]

2.157 2.08+0.11
294 2.6+ 0.3

Yb* 2.500 -0.287 -0.0280 0.029
Srt 3.496 -0.4306 -0.0642 0.0353

V. CONCLUSIONS

In summary, we have used relativistic coupled-cluster
theory to calculate the electric quadrupole moments
(EQM) of the 5d?Dj/ state of '"'Yb*. Our determi-

nation of EQM of the 5d2D3/Qstate of 1"'YDb™* is within
the experimental limits. It highlights the ability of RCC
to capture the interplay between the relativistic and the
correlation effects in heavy single valence ions. We have
also determined the various leading many-body effects
arising in this calculation. To our knowledge this calcu-
lation yields the most accurate theoretical value of EQM
of the 5d2D3/25tate of '"1Yb*to date. It is a useful theo-
retical supplement to the experimental search for optical
frequency standards.
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