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Abstract. We study the effect of oblateness and radiation pressure forces of the
primaries on the location and the stability of the triangular points in the restricted
three body problem. We observe that the equations of motion and locations of the
triangular points are affected by the radiation pressure forces and oblateness of the
primaries. It i is further seen that these points are stable for 0 < | < L, and unstable
for uo S U < 5 It is also seen that for these points the range of stability increases
or decreases according as p > or < O where p depends upon the radiating and
oblateness coefficients.
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1. Introduction

Radzievskii (1950) formulated the photogravitational restricted three body problem. This
arises from the classical problem when one of the interacting masses is an intense emitter of
radiation. He discussed it for three specific bodies : the Sun, a planet and a dust particle.
Chernikov (1970) extended his work by including aberrational deceleration (the Poynting -
Robertson effect). He found that despite the absence of a Jacobi integral, the equations of
motion admit of particular solutions corresponding to six libration pomts He demonstrated
the instability of the solutions by Lyapunov’s first method.

Schuerman (1980) generalized the restricted three body problem by including the force of
radiation pressure and the Poynting - Robertson effect. The Poynting - Robertson effect
renders the L, and Ls points unstable on a time scale (T) long compared to the period of
rotation of the two massive bodies. For the solar system, T is given by T =~ [(I-B) Z3/B]x 544
a? year, where B is the ratio of radiation to gravitational forces, .and a is the separation
between the Sun and the planet in AU.
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He also discussed implications for space colonization and a mechanism for producing
azimuthal asymmetries in the interplanetary dust complex.

Sharma (1982) studied the linear stability of triangular libration point of the restricted
three body problem when the more massive primary is a source of radiation and an oblate
spheroid as well. He found that the eccentricity of the conditional retrograde elliptic periodic
orbits around the triangular points at the critical mass W increases with the increase in the
oblateness coefficient and the radiation force and becomes unity when | is zero.

Simmons et al., (1985) gave a complete solution of the restricted three-body problem.
They discussed the existence and linear stability of the equilibrium points for all values of
radiation pressures of both luminous bodies and all values of mass ratios.

Ragos and Zagouras (1988) found two families of periodic solutions about the ‘out of
plane’ equilibrium points in the photogravitational restricted three-body problem.

Shaboury (1990) gave a possibility of nine libration points for small values of oblateness
in the photogravitational restricted three-body problem when the infinitesimal mass is of an
axisymmetric body and one of the finite masses be a spherical luminous body while the other
be an axisymmetric non-luminous body.

Todoran (1993) claimed that the “out of plane” equilibrium points (out of the orbital plane
of the primaries) in the restricted three-body problem as concerned radiation pressure, do not
actually exist. This question was answered by Ragos and Zagouras (1993). Liou and Zook
(1995) investigated asteroidal dust ring of micron - sized particles trapped in the 1 : 1 mean
motion resonance with Jupiter. They with Jackson(1995) examined the effects of radiation
pressure, Poynting-Robertson (PR) drag, and solar wind drag on dust grains trapped in mean
motion resonances with the sun and jupiter in the restricted three-body problem. Khasan
(1996) studied the existence ‘of libration points and their stability in the photogravitational
elliptic restricted three-body problem. .

The classical problem of three bodies was generalized by considering the various aspects
such as the shape of the bodies, influence of the perturbing forces other than the forces of
mutual gravitational etc., to make the problem more realistic. In the solar system, some of

* the planets, like Saturn and Jupiter are sufficiently oblate. It has been seen that oblateness of

the body plays an important role in the restricted three-body problem.

Hence, the idea of the radiation pressure forces together with oblateness of the body raises

. a curiosity in our mind to study the “stability of triangular points in the generalised

photogravitational restricted three-body problem”. The problem is photogravitational in the
sense that both the primaries are sources of radiation. The problem is generalised in the sense
that both primaries are taken as oblate spheroid.

We use A, (i=l, 2) for oblateness coefficients of the bigger and the smaller primaries
respectively such that 0 < A; « 1 and

A, = (AE’ - AP?) / 5R?
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A, = (AE] - AP)) / SR?

where AE, and AE, are the equatorial radii, AP, and AP, being the polar radii of the bigger
and the smaller primaries respectively.

We further denote the radiation repulsive force by q(i=1, 2), which are given by the equation
FP_:Fg ( 1 —q1)7
1
F, being the gravitational attraction forces, q; = 1 and so
0<l-q «l

Here Poynting - Robertson drag effect is ignored. We are neglecting the perturbation in the
potential between m, and m, due to the radiation pressure, because m; is supposed to be
sufficiently large.

2. Equations of motion

Let m; and m, be the masses of the bigger and smaller primaries, m is the mass of the third
infinitesimal body. We assume that both the primaries are oblate spheroids and radiating as
well. Let R be the distance between the primaries, r; and r, be the distance of m; and m, from
m respectively.

The potential V between m,; and m, is given as

(A +A)
R ™ | M

Let (x, y) be the coordinate of m, with respect to m,, its equations of motion are.

V=-Gmm, [+

. m, + m, oV
X = - ———F ——
mm,  gx
. m +m, oV (2)
Y= mm, gy

The particular solutions of (2) can be written as R = constant, X= R cos 6, Y = R sin 0, 6=nt,
where the mean motion n is given as

(m, + m,) [ 1 3 (A +A) ] (3)

n=G—L—=% [— +=

R R? 2 R*

Let (x, y) be the coordinate of the third body in a rotating coordinate system with the
origin at O and the line joining the primaries being the x-axis and the line perpendicular to
it being the y-axis.
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The kinetic energy T of m is given as
T=Ty+ T, + T,
with T, = % mn2 (x2 + y2),
T, = mn (xy - ky),
1

Ty = 5m (& + ).

The potential V between m and m; and, m and m, is given as

— Agq q Ag
V=-G0mm(—+ —)+m,( — + —=)]
r, 2r} r, 2r}
where r? =(x - x))? +y?
r22 =(x - x,)2 + ¥4,
(x,,0) and (x,,0) are coordinates of m, and m, respectively.
| 2 1 2 TESp
Let the modified potential energy be
ﬁ = \_/ bt TO’
— q Agq
U=-Gm[m(—+ 00 e m (2 22
T, 2r} r, 2r;

The Lagrangian can be put in the form
L=T,+T, -0,

The equations of motion of the third body are

o 1 a0
XTAYE T ox
G 1 a0
J-2mi= -

4)

(5)

Now, we choose the unit of mass equal to the sum of the primary masses. For this we take
m, = I-u and m, = Y, where [ is th]e ratio of the mass of the smaller primary to the total
mass of the primaries and 0 < L < 5. The unit of length is taken as equal to the distance
between the primaries and the unit of time is so chosen that the gravitational constait G is

unity.

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1999BASI...27..415S

DBASI I 1Z7; JAI5ST

rt

Stability of triangular points in the generalised photogravitational restricted three body problem

419

Let the origin be the bary - centre of mass m, at (x;,0 ) and m, at (x,, 0). Then we have

x; = W and x=—(1-).
Therefore, the equations (5) can be written as

oU
X — 2ny = g

Yy —zn —ay

with
(1  H%

L

U= ;— n2(x>+y?) + q( ——+ — +
1

Aq,n
2r?

2

£ ey
ré = (x+1 — W)? + y3

n2=1+) (A +A)

(6)
A q,(1-w)
2,
(7
(8)
9

Multiplying the first equation by 2x and second equation by 2y of (6) and then adding

them, we have

d_'2 2} — @
g &y =25

Its integration gives

x24y2=2U - C

where C is the Jacobian constant.

(10)
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3. Location of triangular points

The locations of triangular points are the solutions of
dU _ e18]

——~ =0,_- =0, y20ie,
ox oy
R 3, 0w 3 Aaw
4 3 2t S 2 s
L L 1 I
+ (1 - H)ll q| P—(l - u)qz + 3_ A1q1u(1 - P-)
3 - 2
r r n
AqH(1 - )
-3 M 1=0 (11)
I
and
0 a-wagq, _ Hq, 3 Aqy(1 - ) _ 3 Aq,H -0
r r 2 2r3 2 5
which give

=0 (12)

2 _&_ 3 Ay
n_r3_2——;5]~:() (13)
1
Combining (12) and (13), we have
, 3 Al
n? — —r?-— 2 5 =0 : (14)
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Knowing r, and r, from the equations (13) and (14), the coordmates of the trxangular points
are found by solving equations (8) for x and y.

The exact co-ordinates of the triangular points corresponding to L, and Ly are given by

1, 5-1
X=Ul- = 2 ,
K 3 2
2 2
y=x[r2';rz—%—(’z;‘f)2]/’ (15)

When the primaries are neither radiating nor oblate spheroids i.e A=0, g;=1 (i=1, 2), the
solutions of the equations (13) and (14) are r; = 1.

Therefore we can assume that solutions of (13).and (14) are
r, =1 +¢;
where €;’s are very small.

Restricting only linear terms in €, A;, 1 - q; and coupling terms in A,q; and A,q,, we have

1 3
elz '§ [—%(A]"’Az) - (l*q]) +"2'A1q1],
1 3 3
€,= %z [-5(A1+A) - (14,) +5 Axq,],
A +A 1-q, 1
I'] = 1 - ’2 2 - 3 L 7 Aq] E)

1 1 1
,=1- 7(A1 +A,) - —3;(1 - q,) +75Agq,

putting the values of r; in (15), we get

1 1 1 1
X—_—M*E'*'_j(l_q])_g (1—q2)+§(A2q2_A]q])’

1
V3[ (A +A)+ ¢ (Ag +Ag)

«
I
H

1
2

1
3
1 1

3( -q,) - 9 (1 -g)] a7
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4. Stability of the triangular points
The characteristic equation of the variational equations corresponding to (6) is
A= (UL + U —dn) M = (UL) + U U0 =0 (18)

where the second partial derivatives of U are denoted by subscripts, and the subscript 0
indicates that those derivatives are to be evaluated at the triangular point (x, y,), coordinates
of L.

U2X=%+al+ubl,

9
U(y’y=Z+a2+ub2,,

3 3
Ugy:\ﬁ_[—z+a3+u(§+b3)],

with a, = ;: [ %S'(A, + A,y - 2(1q)) + 4(1—q,) + 6(A,q; — A,q,)]
by = 7 16(1a)) - 6(1-q) + 12(A,8; ~Aa))]
2= 315 (A + A+ 6(AQ, + Agy + 2(1-q,) - 4] ,
by = 5 [6(1-q,) — 6(1-q)] .
ay= 5 - 5 (A + Ay) + 21-q,) — 4(1-qy)] + 6A,0, - 12A4,q,] ,
b3 = 112 [33(A; + Ay) + 2(1q;) + 2(1-gy)] + 6(Aq; — A,q,)] (19)

Here each of la, Ib;l is very small as Al << 1, I1-ql <<1, (i=1,2,3). Putting the values

of UY , U0

% » Uyy s Ugy found above and the value of n? from (9) in (18), the characteristic equation

becomes
M—-AN[ub, +b) -1 +a, +a,-6(A +A,)]
—% [3(3 + 4by) u? + (-9 — 3b, — b, + 12b,
~ 6by)U — (3a; + a, + 6a;) ] =0

Its roots are

A2 = % [ -1+ ub+by) + 2, +a, — 6(A; + A,)) + \/Z], (20)
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where A is the discriminant and

A = 9(3 + 4b;) u? - (27 - 36a; + 11b; + 5b, + 18by)u

+ 1 -11a, - 5a, — 18a; + 12(A| + A,) (21)
Now

da 1 N ;. 23

gu <Ofor0O<p <y, Wy o=1 Byl =7

Therefore A is a strictly decreasing function of p in the closed interval (0, ¥2) and has values
of opposite signs at the end points:t =0 and B = Y. Consequently, there is one and only one
value of [ say U in the open interval (0, %2) for which A vanishes.

There are three possible cases :

@) When 0 < L < U, A s positive, the values of A? given by (20) are negative and all the
four roots of the characteristic equation are distinct pure imaginary. This shows that the triangular
point in question is stable.

(i)  When U = ¢, A is zero. Both the values of A? given by (20) are same. So the solutions
of the variational equations.contain secular terms and consequently the triangular point is
unstable.

(ili) When p, < U < %, A is negative. This indicates that the real parts of two of the
characteristic roots are positive and so the triangular point is unstable. Hence for 0 < . < L,
we have stability and for - < 1 < V2, we have instability.

S. Critical mass
The critical value p. of the mass parameter is a root of the equation A = 0, and we find
He =Ko + P

with

u(,=%(1—J%% ) = 0.03852 .......

1 11
P=-_2 (A+A)- _2 l—q) - L
Nes T v W (1 gg) A

2 1 11
- —= (1- - (1= —=
27ge 17 g V69 A,

e . . >
The range of stability increases or decreases or remains unchanged according as P < 0.
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