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ABSTRACT

We have developed a method for calculating the emission-line profiles from an expanding envelope.
The method applies to an envelope where the emission intensity varies with latitude. Some typically
illustrative cases are considered.

I. INTRODUCTION

There is little doubt that the breadth of the emission lines in Wolf-Rayet stars and
the novae arises from the relative motion of the atoms in a shell of gas surrounding the
core. The presence of catastrophic explosions, as in the case of novae, justifies the postu-
late of expanding shells of luminous gas which account for the observed profiles during
and immediately after the outburst. Menzel' and Beals? considered the simplest case of
a shell expanding with constant velocity. The profile from such an envelope is essentially
flat-topped. Gerasimovié? studied the line profiles from an expanding gaseous shell sur-
rounding a nova whose velocity of expansion is a function of the radius and whose
emission at a point depends on the density. Chandrasekhar* extended this earlier work
in an important study of expanding envelopes in general and was the first to stress the
necessity of considering the “occultation effect’” caused by the body of the star. Wilson®
modified Chandrasekhar’s method of analysis to facilitate the actual fitting of the ob-
served profiles of novae to theoretical ones. We develop here a general method for
the determination of an emission-line profile, based on certain specific assumptions. The
analysis facilitates the easy derivation of profiles in cases characterized by lack of
symmetry.

II. THE CONTOURS OF THE EMISSION BANDS

The problem has three distinct parts. The first is purely geometrical and refers to the
choice of co-ordinates and assumptions regarding the atmospheric structure. The
second is physical, defining the origin of luminosity and its dependence on density,
velocity, etc. The third is kinematical and fixes the variation of velocity in the shell.

We adopt a conventional system of polar co-ordinates, 7, 6, ¢, with the axis of sym-
metry directed toward the observer. Let i(r, 6, ¢) be the emission per unit volume. Then
the emission from the volume element will be

i(r,0,¢)r2sinBdrdbdeo . (1

If this element expands radially with a uniform velocity v, the projected velocity #, in
the line of sight of the observer, will be

= —1vcosf. )

Line-of-sight velocities toward the observer are conventionally negative. Now, since the
volume element extends over df, the velocity component will range over du, according
to the law

du= vsin 0d6 . 3)
L Pub. A.S.P., 41, 344, 1929,
2 M.N., 91, 966, 1931. 4 M.N., 94, 522, 1934.
8 Zs. f. Ap., 7, 335, 1933. 5Ap. J., 80, 259, 1934.
508

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1954ApJ...119..508V

J. - CI19T C508V 0

]

9527

EMISSION-LINE PROFILES 509

We can therefore change variables and say that the emission from the volume element is
. U d
z(r,;,db) r2drdo Tu’ “)

since, by virtue of equation (2), we can say that 6 is a function of (#/v). Chandrasekhar
eliminates » rather than 6, a choice that complicates slightly the selection of the integra-
tion limits. It also makes more difficult the extension of the model to nonuniform emis-
sion over the disk, a case that we shall discuss later.

If No is the position of the undisplaced line, the volume element will contribute to the
emission at a new wave length, X\, such that

>\=>\0<1+%). ®)

Atoms in the volume element, over the range du, will contribute radiation to the wave-

length interval

d)\z)\od—;u (6)

Therefore, we can say that the volume element contributes radiation at N over the range
d\, of amount

. )\"‘)\06 >C 9 d)\
1(7,T'57¢ ;rd?’d(ﬁ)\—o. (7)

To get the total emission in the range d\, we have to define 7 as a function of 7 and ¢,
allowing for possible dependence on 6 by means of equations (2) and (3). We next inte-
grate over the co-ordinates 7 and ¢. Or

_ . A—XNo ¢ <, an
E)?)\—/f% 7, AO ;,d)) 2 r drdd) TO. (8)
Let
A—No an
= dl =—=—
l Y ! ' ®

and measure the position within the line, so that / = O refers to the undisplaced center.

Then
. c c ,
E,d] ———/fz (r,l—v,gb) ” ridrdeodl. (10)

Our next concern is with the physics of the problem. We should expect that the emis-
sion in so highly ionized an atmosphere would depend on the square of the density. To
achieve slightly greater generality, we shall adopt

8
1=Cp? (l) , (1
Vo

where 2o is a constant that we shall shortly define. If radial currents are responsible for
the maintenance of the density distribution, so that v is radial and dependent solely upon
r, we have recourse to the equation of continuity,

dp

V-(pu)=—m. (12)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1954ApJ...119..508V

J. - CI19T C508V 0

o]

9527

510 M. K. VAINU BAPPU AND D. H. MENZEL
For a steady state, p is independent of ¢, and we get
d
& (or2e) =0- 13
7, (pr?v) =0 a3
and hence
r2pv = Constant = r2p v , (14)

where po and v, represent the values of these parameters at some specially chosen value
of the radius » = 7,. We shall eventually identify 7, with the effective inner boundary of
a shell surrounding the star. With this equation,

. 7o 4 2 \f 2
en () ()
v pO r 0
As far as our equations are concerned, po may still be a function of 6 and ¢ and therefore
of # and ¢. Hence we write

_Crgc 2 (702 / v\ 3 r
mat== 5[ [ (7)) () avar o

For the simplest case of all, wherein po is independent of § and ¢ and where v = Con-
stant = 9o, we get

3 2 Tmax
E,dl = Efcrocm[@] dl. an

Vo 7

"min

The coefficient of d/ is a constant, i.e., it is independent of / as long as
Vo
Il £ —. 18
TN (18)

If, for example, we take 7min = 7o and 7m,x > 7, for the inner and outer radii of the shell,
we have

27Criptc

Yo

E,dl = dl. (19)

This analysis pertains to the previously mentioned case, first discussed by Beals, where
the profile is flat-topped.

To make further progress, one must know the kinematical picture, or the dependence
of v upon r. We assume the following law, which lends itself to a variety of physical

interpretations:
(b—alry/r])

V= Vg h—a)7 (20)

The constants @, b, and v represent arbitrary dimensionless parameters. We have in-
cluded extra constants to facilitate substitution later on. Differentiating equation (20),

€ gEt

In terms of the variable v, equation (16) becomes

_Cric (b—a) 2<v>(1_7)/7+5_3 (v)
Eldl— ‘Z)o Tffpo 7}; d 70 d¢dl. (22)
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At first sight this integrand appears to be independent of the basic variable /. However,
the afore-mentioned stepwise character of the function is all-important. With po con-
stant, each velocity interval dv corresponds to a given interval dr, wherein we can con-
sider the velocity constant. A given element of velocity v contributes to the integral only
over the half-range,

A—Xo
Mo

I =

t/
=—. (23)
c

Thus, if our shell has minimum and maximum velocities, 7; and 2, the integral is the
limit of a sum, as indicated schematically in Figure 1. The lineis flat-topped from / =
0 to &1 = v1/c. Thereafter the intensity declines to zero at o = v3/c. The only values of

A

£=0 P —

F1c. 1.—Theoretical line profiles for the values of the parameters indicated

v that contribute to the intensity at a given / are those for which v > ¢/, when! > v,/c.
The integral, therefore, has two sets of limits. Over the range —! < v;/¢c < [, we inte-
grate from #; to v;, and the result is independent of /. Over the range u/c > |I| > u/c,
we integrate from v = ¢/ to v,. Thus

—_ at+1 a_ &

Bl = 2xCrd ol 0 Q(i) L=lg (1] <h);
Ya 0 a (24)
—_ at1 7% 7%

Eydl = 22Cript 10— 9 (i> b=l g L2z,
Ya o a

where
a=1____1’_|_5_2, (25)
Y
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ITI. NONUNIFORM DISTRIBUTION OF EMISSION

Before discussing the physical consequences of these formulae, let us consider one
further general case. Suppose that the emission is not uniform over the surface of the
sphere. Assume, for example, that

po= picostl’ , (26)

where 6’ is the angle measured from the pole. In other words, we assume that the emis-
sion is greatest near the poles, from which point it declines to zero at the equator. The
emission thus occupies a dumbbell-shaped volume surrounding each pole. We further

TO O
Wi
o

A

F1c. 2.—The co-ordinate system

take the axis inclined at an angle 6, to the observer’s line of sight, as shown in Figure 2.
By spherical trigonometry,

cosf’ = cosf cosfy-+sind sinfy cos ¢ (27)

which equation enables us to express cos 6’ in the co-ordinate system of the observer.
We substitute from equations (26) and (27) in equation (22) and integrate first with
respect to ¢. As

27
f cos?0’dp =7 [ (3 cos?6y— 1) cos?0 + sin28,] ,
0
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equation (24) becomes
, 8 — 2 2 a—1 '
Eldlzﬂ’croc (b d) Pi/[ (3 COSzeo— 1) ]2 6_2 (1@) +Sin2 60]<l> a (l) dl .(28)
Vo Ya NV Vo Yo

The limits of integration stand as in the earlier problem. Hence

, atl — a—2 a—2
Eldz=7rcr§p1< ) (b ") l2 _l21 (3 cos? 90—1)+_i sin’ |
SURYOE (29)
at1 _ a—39 _ a—9 a_ a
Edl—wCr0p1< ) (b “) l2a_12 l2(3c05200—1)—|—lzal sin200]
(2 h.

The symbol E; refers to the emission in the dumbbell-shaped region around the two poles.
As an alternative, if the emission is greatest at the equator and zero at the poles, we
can write, instead of equation (26),

pg = p% sin®6 . (30)
Denoting this emission by E;’, we get .
E/dl= (E,—E))dl, 3D

with p; substituted for po in equation (24). This emission occupies a doughnut-shaped
volume around the star’s equator.

IV. CHANDRASEKHAR’S MECHANISMS 4 AND B

Among the numerous possibilities governing the over-all dynamical situation, Chan-
drasekhar considers two main types of ejection which he calls mechanisms 4 and B. In
the first mechanism the atoms at the boundary of the star are repelled by some kind of
force that is proportional to the gravitational attraction. In mechanism B the atom at
the boundary of a star might receive a large initial velocity and, in escaping from the
star, be continually decelerated in the gravitational field of the star. The atom either
may escape from the star with a finite outward velocity or may fall back after ascending
a certain distance.

The postulate of mechanism 4 depended much on Milne’s theories of radiation pres-
sure. As is now well known, radiation pressure cannot exert such large forces as would
be necessary to produce such large-scale ejection, and hence mechanism 4 acquires an
artificial aspect if radiation pressure is to play a dominant role. However, it would be of
theoretical interest to consider the effects of a velocity law as postulated in mechanism 4.

We are now prepared to discuss certain of the cases in which the physical conditions
fix the parameters. The vis vive integral for matter moving in an inverse-square field gives

—_ 1/2
N (b__aLfo_/f_L)’ , 32)

b—a
This equation postulates the existence of a repulsive force so that the velocity increases

outward. If we take a = b, so that vo = 0 at r = 7, the solution degenerates to the
second equation of equations (24). Since ¥ = 3, we have a = —1 when 8 = 0. Then

Ejdlaps(b—a)(T —1Y dl 33)
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with

where v, is the terminal velocity. Here, as Chandrasekhar has noted, we encounter
several problems. The first is that (b — @) vanishes by hypothesis. The second is that
po becomes infinite at 7o, because 9o = 0. Third, we note that /= — o as /— 0, so that
the line attains infinite central intensity. The first two of these problems we can overcome
by making p§(b — @) = o« -0 approach a finite limit. The third difficulty, however, is
serious. After all, according to our analysis, we should expect infinite intensity from a
thin stationary layer of infinite density. The difficulty is formal, of course, and lies in
the character of the mathematical approximation.

l l I I I I |

800 700 600 500 400 300 200 00 O
kms / sec

F1c. 3.—Theoretical line profiles for the values of the parameters indicated

To obtain a solution, we may adopt a nonzero value of 8, as does Chandrasekhar, or
we can start the solution at some finite v, and get a finite, flat-topped profile in place of
the infinite, peaked one. Also, since o determines the form of the profile, we have the
choice of altering v or selecting a nonzero 8. If we adopt the former procedure, we obtain
an arbitrary velocity law corresponding to an arbitrary and noninverse-square field.

The case of mechanism B requires that the atoms move outward with a large starting
velocity. Thereafter, they are subject to deceleration. For an inverse-square field we take

b+ a(ro/r)\2
v= ——_b—-l‘—d_—> ’

where ¢ is positive. Then the character of the solution depends on the sign of b. If &
is positive, the envelope extends to infinity with a finite terminal velocity. If & is nega-
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F16. 4.—Theoretical line profiles for the values of the parameters indicated
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F1c. 5.—Theoretical line profiles for the values of the parameters indicated
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F16. 7.—Theoretical line profiles for the values of the parameters indicated
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tive, the velomty falls to zero at the finite distance r = —aro/b. Whenever v — 0, 1nde-
terminacy arises as before, because po must then be infinite.

Figure 3 demonstrates the change in form of the line contour for different values of 8.
The profiles result from the assumption that the emission envelope is spherically sym-
metrical and that the limiting velocities v, and v; are 700 and 10 km/sec, respectively.
With these same limiting values of velocity, the profiles calculated for cases of nonuni-
form distribution of emission appear in Figures 4, 5, 6, and 7.

To

[}
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O

F16. 8.—The occultationleffect
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OO 05 10 5 20 25 30

Fi6. 9.—The influence of the occultation effect on the line profiles
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V. THE OCCULTATION EFFECT

The co-ordinate system and the order of integration here used lend themselves
naturally to the consideration of the occultation effect. The geometry of the situation
is shown in Figure 8. The star occults the portion of the shell that lies behind it, this
region being defined by a tangent cylinder along the line of sight to the surface of the star.
We can take care of this effect by using proper limits for the evaluation of the intensity

at any value I. We get
2 2
1 —u—2= sin?0 = (LO> ,
v 4

where 7, is the radius of the star and 7 is the radical distance of a point along the limiting
visible boundary. Then the limiting value becomes

==

The part played by occultation is then merely to shift the intensities for any value /
to its correspondingly modified value, /;. Figure 9 demonstrates the effect when the mo-
tion in the envelope follows mechanism B with the previously considered limiting veloci-
ties and the assumption that the radius of the envelope is ten times that of the parent-
star.

VI. MISCELLANEOUS COMMENTS

We point out that laws (26) and (30), here used to describe the latitude variation, are
specific examples of a more general procedure, viz., expansion of the excitation function
in terms of spherical harmonics.

Menzel and Payne® noted certain peculiar characteristics observed in the spectrum of
Nova Aquilae 1918. They pointed out that the “dipped” and ‘“‘peaked” profiles ob-
served at different times in the spectral lines of this nova could be explained on the basis
of ejection or excitation that was a function of latitude.

8 Proc. Nat. Acad. Sci., 19, 641, 1933.
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