WKodaikanal Obs Bull (1988) 9 55 62

SOLLAR  SUPERGRANUILLATION AND TWO-DIMENSIONAL HYDRODYNAMIC
TURBULENCE

vV  Krishan
Indian Institute of Astrophysics
Bangalore 540 034, India

Abstract

In a two-cimenstonal wcompressible fluld, the lotal energy as well as the total
squared vorticity called enstrophy are conserved It (8 found that the energy spectrum in
two-dimensional hydrodynamic turbulence cascades to smaller wavenumbers In the presence
of wiscous dissipation and therefore the energy {8 expected to accumulate at the longest
wavelengths that the system allows The <nstrophy on lhe other hund cascades to shorter
wavelengths and 15 continuously dissipated  I'his conclusion 19 reached by finding the
nertual range of the turbulent spectrum [lowever, cvon in the absence of dissipation, one
can show that the energy spectrum condewales (o largest scoles as a consequence
of conservation of energy and enstrophy durtng the cascada through the nonlinear term
[ty VI It s found thal if the enstrophy vanishes then the totul energy rematns constant
even n the presence of dissipation Thus lhe sysicm evolves to a stale of mimumum
enstrophy with constant energy

The observed two dimensional nature of the wlocity flelds in supor granutation
permits us to make use of the characleristics of iwo-dimansional hydrodynamic turbulence
Thus 1t 18 proposed that supergranulation s pioluced fiom granulation by the selective
decay process in which the energy tends to accumulate al the largest scales [his targest
scale 15 determine ! from the ratio of energy lo enstiophy and presumably determines the
scale of the solar supcrgranulation Inclusion of magnetic fleld will tal e us to magneto-
hydrodynamic turbulence which also permits the formation of orgamzed structures

1  Introduction

The solar wurface shows cellular pattorn prominently on lwo scelos Lhe granuiation
and the upergranulation The granular cells have been inlerpreted to bo the manlfestation
of convective processes in the hydrogen romzition region and the supergranules have
been associtetcd with the helium fonization region of the conveetion zone, although, thero
18 no direct evidence for the latter assoclslion (Sirmon anl L eighton 1964, Slmon and
Weiss 1968, Howard and Bhatrnaijar 1969, Howaid 1971, Nelsan and Musman 1977, 19704,
Cloutman 19791,b and Bray, Loughead and Dorrant 1984) In this papor, we have allempled
to answer the question Can supergranules be made from granules through Lhe cascading
processes tn a turbulent midium ? The ohserved rearly two dimensional velocity fleld
assoclated with supergranules Juides us Lo investigate Lhe very special properties of tho

two dimensional hydiadynamic  turbulence, which may play an Imporiant role in tho
formation of supergranules

In a two dimensional hydrodynamic  turbulence, the energy cascades Lowards
large spatial scales and enstrophy towards small spalial s.eles where L suffers heavy
dissipation It 15 this property of selective decay that facilitates tho formation of large
structures, whose dimensions are dgtermined from the ratio of energy and enatrophy The
inertial range of Llurbulent spectrum s derived 1n secLion 2 Section 3 deals with the
lnverse cascade through moade mode iteraction The concept of self organizatlon in two

dimensional turbulence ts discussed in section 4 A model of supergranulation 18 proposed
in section 5

55



56 vV Krishan
2. Inertial Range of the Turbulent Spectrum

The hydrodynamic equations describing the motion of 1n element N an i omprt i
sible fluid are

gg_ _ %g s BT mTT 4 U2y ("
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Here V 1s the velocity, T 1s the temperature and y 1s the kinemalic viscosity The equation
for vortieity vector 2 can be derived from Equations (1) and (2) as
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In two dim ngiens V may be expressed by a scalar stream function §
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Here Z 15 a unit vector Equation (3} can be rewritken in terms of ) as
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If the viscosity 18 small 1 e the Reynolds nurnher is large, the Lime evolution of LU
velocity field 1s dstermined by the second tepm n Equation (6) For large Reynolds num
ber the various spatial Fourier components interact strongly and a turbulent Late
develops The equatian for mode coupling 18 obtained from equation (6) by expressing Y a3

1 Lkx
b= sl I o te + ce (8)
k
where k 1s a two dimensional wave vector and Y 1s the Fourter amplitude Equalion {(6)
can be rewritten as
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The conservation of total energy and enstrophy can be easily proved from equations

(1} (2) and (3) Taking the scalar product of V with equation (1) and uging veetor alegobro,
one gets

av2 2 i~
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If the flud 1s urrounded by either a periodic boundary or a rigid boundary so Lhar the
normal component of the velocity Vi, vani hes on the boundary equation (11) gives

aW d V2 & g
5t ° ﬁjﬁdarzfﬁv(\fxﬁ) ds Jyﬂzd3r (12)
Taking the scalar product of equation (3) with @  one finds
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The consctvation of en trophy 1s abtained ag

2
ou . @ J%— dr i v& x @ x®)ds Jy(‘?xﬂ)z & r (14

Now, the mertiil range of the turbulent spectium ecan be determined by using ialmogoroy
faw I V|, 1 the Fouricr amphtude of the velocity field, the 1ate ol which Lhe  pectrum
gageades is qiven by KV, (the. stcond term an equation (11)) The Omnaidird clional energy
spoctrum W) 1 do lincd uch thal SWIK) dk give  the total cnergy Therofore WK)IK  has
the dimensiong of Vf< Kolmogoov  arqued Lhat 1n a qua 1 steady  tale, there  shaold
be a stationiry flow ol cnergy in k gpace from tho soured to the nk, 1 e the encrgy

density flow {pV.*)KV)) hould be conalant and 1a equal Lo the cissipation rate € of the
agncrgy densily il Uhe sink

DV; K g {12
and KWK Vli

gves WK - C65) Frd (16)

where C 1s 2 univer al dimensionless constant In three dimensional turbulenec only the

energy ts conservid i the inertial range and the energy spoctrum cascades Lowards
large wavenumbers whore 1t sulfers viscous disslpation

In two dimensional lubulence theio 1s an additional, invartant, the en trophy Heneo
two types of incrtial ranges are oxpected, one for cnergy and the other for enslrophy
The anslrophy denaity g given by szﬁ y the inertial ranfe for cnstrophy requires that

(p KPVE XKVY) = ¢' = constant (17

The energy spectrum 1n Lhis range 18 given by

W(K) = c:'e%'—)‘}‘x ? (18)

Kraichnan (1967) showod that 1f W(K) ~ K °, there Is no energy cascade and 1f WK} ~K ?
there 18 no enstrophy cascade Hence a source at K = K, will set up two Inertial ranges
K>Kg and K <Ky Since enstrophy because of its stronger K dependence (K2VE),
18 dissipated al lorge K ab a rate faster than the energy, the K > K, region would be
the mnertial range for enstrophy, which implies that K < Kg reqion would be the 1nertial
range Tor encegy Thus the energy spectrum has two parts :

WK~ K®, K >Ks (19)
~ K 3, K< K, (20)
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Kraichnan argues that since there 1s no energy cagcade for K> Kg, the encrgy :“:Il;m
cascade towards the smaller wavenumbers for K <Ky An inverse cascade 1s pxpecied The
enstrophy cascades toward the large wavenumber regime I8 K > Kg

Now, In the small wave number regime, there (3 no encrqy die ipation and in
inertial range for energy may not be established if K< K
3 Inverse Cascade through Mode Mode Coupling
Let there be a source at K. K with energy W Through mode mode coupling

this would decay to two modes with wavenumbers K and Rz Since cnergy and ¢ nstrophy
are conserved one can calculate the energles W, and Wz of the modes K; and Rz 08

Wy - Wi+ Wp (21)
KZWg  KE Wi+ KEw, (22)

From these , ,
W Kz Kg W, (%

LI 76 T < 1
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For W, W,>0, we see that
Ki »KE > Kt
and for K%>K} (79
Thus K4 decays to two modes with wavenumber K < Kg and to another modc with 1< 19,
For maximum decay ratc, Hasegawa and Kodama (1978) find thal p = [K#KE1- (/2 1,
KE - K« K ,Wi=pWgand Wa= (1 plW,
In the next step of the cascade, the mode Kf decays to mode at piK§ - pPK2 and (1)~ ¢
p(1+p)KZ  The mode at K3 decays to pKi = p(1¢p)KE and (1ap)KE= (1ep)2KE  The conne
ponding_energy partitions are p?Wg, 2p(1 p)Wgand (1 p)*W, for wavenumber at (P12,

p(1+p)KZ and (1+p)K 2 respectively Continuing to the nthstep the encrgy di Irthution g
given by a binomial distribution for a parameter (r/n) such that

W= p" T (el K2 = () p" T (1 p) W (26)

Equation (26) gives the energy spectrum which resull from & eres of o eados ol
a fixed ratio of (K}YK2) = p at each step, where K} + K2= K3 1L can be casily ihown
that the energy spectrum condensates at K=+ 0 as n-+o Pealk of 7 binormial dr Tnbution
occurs at {r/n) +{1 p) as n+

Therefore the K2 = K; as n+w 13 found from cquation (26) as

K; nl;IT: pr‘l r (1+p)r Ksz

_ Lim [p“ r/n) (1+p)r/n I K;

n+ «

(27
Letting (r/n} » (1p) as n+ =
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2 Lim P TP qn 2

P T nare (PO+P) T 17K
+ 0

Since pp(1kp)1p <1 for 0 <p<1

Thus the peak of the energy distribution moves to K-+ 10) aa n*® Hence an inverse
cascade and condensation of the pectrum at K +0 is expected from this model Inverse
cascade ohtained this way 18 a con.eque nce of conscrvation of energy and enstrophy

4 Self Orgamsation i Two Dunensional Turbulence

Kraichnan s hypotheses of nverse coscade and inettial range spectra (Krawchnan
1967) have heen Lested by solving equation (9) numerieally (Batchelor 1969, Lilly 1969
Fornberg 1977), as shown in figure (1) The smoolh structure of the stresm Funclion
shown tn figure (2a8) 18 a consequence of the inverse cascade of the energy Lo longer
wavaelenglhs, while the chaolic state of the vorticily shown in figure (2B) 18 a result
of the enstophy cascading Lo smaller wavelenglhs The creation of leige scale structure
in the stream funclion in two dimensional fluids has also boen nhscrved in laboratory
experimants The condensalion of energy at the longest wavelengths pormitted either
due to Lhe finite s1z¢ of the contalnor or due to the permadic houndary condition has been
reproduced in computer mulations (Hogsain el al 1983)

From equation (12), {f the enstrophy f 22 d®r vamishes during normal cascada,
(@W/3t) approiches zero cven in the presonce of viscasily This together with tho exper:
meantal evidence for the inverse casrade Indicates that the aystem will evolve to a stale
of mintmum ensliophy with constanl energy Such o dissipotion process I8 called seleclive
dissipation (Kriichnan and Monlgomery 1980) Thus the large scale stiucluie appoars as a
result of mimimization of wnstrophy with the constraint of conastant enerqgy This 18
expressed as

AU~ AW - D (28)
or S S(VxVELr A8 SVEdN = D (29)
Integrating by parts one gotd

SOVIUx Ux V) AV 1 d% 16(6V xWds = 0 {30}

For periodic boundary condilions or for o visrous bouadary sueh that §£= (0 at the boundary,
equalion (30) givos

TxWxH av-o (31)
which can be solved by using Lhe stream function which s determined by

Vi + Ap - 0 (32)
Since A gives the ratio of enstrophy to energy, equstion (32) should be solved for a

minimum eigunvalue A 17 the fluld has & periadic boundary conditton with the periods 4
and b in the x and y diroctions then

$ = by cos Z,T_;ﬁ cos—z—g—y (33)
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i Fig.1 An ompidirectional  energy
\5‘,3 ]! of two dimensional Navier Stokes tur
10! L , bulence obtained numerncally (Lilly
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Fig.2 (a) The stream function and
(b) the vorticity at the 2360th time step
of simulated Navier Stokes turbulence
{Lilly 1969)

dominated lby the source specirum at

the source wave k, 18 shown to relax

to the mmertial range pectra for enstro
phy al k > ks and energy at k < kg




Two Dimensional Hydrodynarme Turbulence 61

The self orgamized tate obtamned here s also a stationary solution of the dynamical
equation (1) Substituting equation (31) into (1} and setting [(@V/3t) - 0] and v = 0 one gets

2 2
V[—g— |-T+%]=[] (34)

Ttug gives the temperature profile T(x y)

Appheation to Solar Supergranulation

The observed two dimen 1onal nature of the velomity fleld in the supergranules
permits us to use the result of Lhe sechtions (2), (3) and (4) Bascd on this, we like to
propose and test the following model for formation of supergranular cell on the solar
surface

n The supergranulation 1s produced as a result of redisiribution of en rgy assocrated
with ganulation

(2) The recistribution of energy Lakes place In & region wvilh predominantly horizontal
ve'ocity fields 1 o brtween muddie chrome phare and pholosphicre belowr which the
velocity field becomes three dim nsional and 1satropic

(3) The redistribution of energy responsible for supergranulation i1s through the inverse
cascade of encrgy towards larger scales, a consequence of Lhe mode mode inler

action in 1 two dimensional system with two invariants, the wnergy and the an
straphy

(@ The largest spatial scade 1 detcrmined from the ratio of onergy and enstrophy
From equations ($2) and (33}, we Tind

21 2 amy?
e (55) 0 ()
whert 8 and b arc Lhe dimensions of Lhe orgenized strucluros, heie the supergranular

cell A is the 1atio of enstrophy to energy Therofore for a~b ~1, the size of the cell,
one finds

2 2
L - @ L @

For horizontal velocilios, V ~ 0 5 km/ere, Lhe energy per unit. dansity, per unil volume |
~ 3 (05 x 1092 (em see )* Therefaro lo get L ~ 33,000 Km, the value of ensirophy per
unit density per umt volume 18 equiied Lo be 10 8 (seo 2) It 18 inslruclive to comparc
this number with the square of the average velocily gradient in the supergranular cell e
wlth

V.2 0. x 10% 2 2 2
("f“) ~ [W] ~ 028 x 10 © (aoc <)

Thus the required value of the enstrophy vorresponds to a stronger veloclily eirculation

(5) The spatial variation of temperatuie within the supergranular cell is givon by
vquations (34) and (33)

(&) The disiributions tn encrgy and enstrophy would give a range of spatial sceles, the
targest of which may correspond to the qiant cells
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Tests for the val:dity of the model

1

If the energy input for supergranulation 1s at the granular scale (K.) then the
energy spectrum  hould show a break at K, the spectrum should go s K ¥ for
K >Kgand a. K for K <Kg Duvall (1987) has proposed two experimenis lo
check the spectral behaviour (1) Doppler shift measurcments which have the
advantaje of providing a high precision map of motions over the surface The
disndvantage 1 that one gets only one companent of the horizontal motion =
Lhe Noppler effect gives only the line of sight velocity (1) the tracer measureme nl
in which small magnetic elements can be followed and both horizontal components
can be measured The disadvantage 1s that one does not obtain a very den ¢
grid of tracers and this would yield a noisy measurement Under the assumption
that the two components of the horizontal motion are approximately equil,
the Doppler method looks quite promising

The ob erved spatial vimation of temperature when compared with the prediction
of equatton (34) will provide another test of our proposal

Conclusion

The 1nverse cascade of energy in twa dimensional hydrodynamic turbulence favour

the formation of large organized structures Application of this idea to the praduction

of suporgranulation eemas to account for the observed spatial scale of the esllular
motion Other tests of the validity of this model remain to be investigated
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