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Abstract. Different approaches for automated spectral classification are critically reviewed.
We describe in detail ANN based methods which are very efficient in quick handling of the
large volumes of data generated by different surveys. We summarize the application of ANN
in various surveys covering UV, visual and IR spectral regions and the accuracies obtained.
We also present the preliminary results obtained with medium resolution spectra (R ~ 1000)
for a modest sample of stars using the 2.3 m Vainu Bappu Telescope at Kavalur observatory,
India. Our sample contains uniform distribution of stars in temperature range 4500 to 8000
K, log g range of 1.5 to 5.0 and [Fe/H] range of 0 to —3. We have explored the application of
artificial neural network for parameterization of these stars. We have used a set of stars with
well determined atmospheric parameters for training the networks for temperature, gravity
and metallicity estimations. We could get an accuracy of 200 K in temperature, 0.4 in log g
and 0.3 dex in [Fe/H] in our preliminary efforts.
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1. Introduction

The MK spectral types are classical descrip-
tion of stellar spectra. Although the two dimen-
sional MK spectral type (SpT) and luminosity
class (LC) are related to temperature and grav-
ity of a star, the SpT is not assigned based upon
these parameters but use visual appearance of
stellar spectra. The MK classification involves
comparing spectra to be classified with those
of classification standards of defined class. The
advantage of MK system has been that it is
model independent and works well even with
spectra of modest resolution. N. Houk and her
collaborators have done a monumental work of
determining SpT and LC for all stars in HD
catalog (~ 12,000 stars up to Vmag ~ 11) with
RMS error of 0.6 in SpT and 0.25 in LC. This

data has been used as reference for automated
classifications (see for example von Hippel et
al. 1994, Bailer-Jones et al. 1998).

Many large telescopes are now equipped
with multi-object spectrometers enabling cov-
erage of a large number of objects per frame
for stellar systems like globular clusters. On-
going and future surveys, and space missions
would collect a large number of spectra for
stars belonging to different components of our
Galaxy. Such large volume of data can be han-
dled only with automatic procedures which
would also have the advantage of being objec-
tive and providing homogeneous data set most
suited for Galactic structure and evolutionary
studies. Another outcome would be detection



Sunetra Giridhar et al.: Automated classification

of stellar variability and finding of peculiar ob-
jects.

For a classification method to be effective,
it should give precise SpT and LC for a wide
range of spectral classes in a non-interactive
way. The method should be precise enough not
to assign earlier SpT to a metal-poor star.

2. Methods of automated spectral
classification

The most commonly used automated spec-
tral classification methods are based on
(a) Minimum Distance Method (MDM) (b)
Gaussian Probability Method (GPM), (c)
Principal Component Analysis (PCA) and (d)
Artificial Neural Network (ANN).
Quantitative methods involving measure-
ment of equivalent widths of certain lines, line
strength ratios, etc., and calibration of these
quantities in terms of stellar parameters have
also been used. For example, Stock and Stock
(1999) used equivalent widths of 19 absorp-
tion lines, (B-V) colors and My derived from
Hipparcos catalog for a sample of 487 stars for
calibration of My. Their algorithms can predict
My from these line strengths for spectral types
O-M with an average error of 0.26 mag.

2.1. MDM

The classification is done by minimizing dis-
tance metric between the object to be clas-
sified and each member of a set of tem-
plates. The object is assigned the class of
the template, which gives the smallest dis-
tance. If the star spectrum is represented by

a vector X =(X[,X2.....Xjperereuns Xy) and tem-
plate c is represented by another vector S¢ =
(ST,85 e e8] survnn. sy), the distance D, is evalu-
ated

1/p
p:|

where WEC} is the weight assigned to spectral el-
ement i of the class c. Spectrum X is assigned
class c for which D, is minimum. Weights are
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assigned to spectral elements based on their
relative importance in determining the spectral
class. In this approach the number of templates
used to define subclasses limit the accuracy
of classification. Interpolation can be made to
make intra-class assignment.

Katz et al. (1998) used this method with
x* weighing on high resolution Elodie spec-
tra using a large number of reference stars of
known Ty, log g and [M/H] to derive atmo-
spheric parameters of target stars. These au-
thors achieved accuracy of 86 K in T,sf, 0.28
in log g and 0.35 in [M/H]. Vansevicius and
Bridzius (1994) used MDM with y? weigh-
ing to estimate SpT and My from Vilnius
photometric indices. An accuracy of 0.7 was
achieved for SpT and 0.8 mag for My over
spectral type range O5 to M5.

2.2. GPM

It is a statistical approach of multivariate clas-
sification explained very clearly in Bailer-
Jones (2001). It was employed by Christlieb
et al. (2002) to estimate T.rr, log g and
[M/H] for stars observed in objective prism
Hamburg/ESO survey with an accuracy of 400
Kin T.ss, 0.68 dex in log g.

2.3. PCA

It is a method of representing a set of N dimen-
sional data by means of their projection onto
a set of optimally defined axes. Since these
axes (Principal components) form an orthogo-
nal set, a linear transformation of the data is
achieved. Not all components are important.
Components that represent large variance are
important while those that represent least vari-
ance can be ignored and data set can be re-
placed by significant components alone there-
fore resulting in reduction of the data size.
These compressed data sets are used as input
for neural networks. Bailer-Jones et al. (1998)
had demonstrated that precise calibration could
be done using these compressed spectra and
that the optimal compression also results in
noise removal. Singh et al. (2006) have used a
variation of PCA technique to restore missing
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Fig.1. A basic network configuration with
three layers is presented.

data in a sample of 300 stars in Indo-US coudé
feed spectral library.

2.4. Neural Network

As explained very well in numerous papers of
Bailer-Jones, Ted von Hippel and others, it is a
computational method which can provide non-
linear parameterized mapping between an in-
put vector (a spectrum for example) and one or
more outputs like SpT, LC or T, log g and
[M/H]. The method is generally supervised, it
means that for the network to give required
input-output mapping, it must be trained with
the help of representative data patterns. These
are stellar spectra for which classification or
stellar parameters are well determined. The
training procedure is a numerical least square
error minimization method. The training pro-
ceeds by optimizing the network parameters
(weights) to give minimum classification er-
ror. Once the network is trained the weights are
fixed, the network can be used to produce out-
put SpT, LC or T,sy, log g and [M/H] for an
unclassified spectrum.

As shown in figure 1, the neural network
has one input layer containing stellar spec-
trum. Each of the input nodes connects to ev-
ery node in the next layer of nodes called the
hidden layer. The neural network architecture
may contain one or more hidden layers. Each
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of these connections has a weight w associated
with it. A given node in hidden layer forms a
weighted sum of its inputs. It then passes this
sum through a non-linear signoid transfer func-
tion to give final output from this node. The
outputs from nodes in the hidden layer serve
as input to the node in the output layer, which
again forms weighted sum of its inputs. The
training takes place as follows. The weights are
initially set with random values over a small
range. When the spectrum is fed into the net-
work, the output would also be random. By
comparing this output with the target output
we can adjust the weights to give an output
that is closer to the target value. The network
is trained iteratively by successive passes of
the training data through the network and on
each pass the weights are perturbed towards
their optimal value. The network training is
performed by minimizing the least square er-
ror. Since the output from neural network is
some non-linear function of all of the network
input, it implies that the network output is
based upon the appearance of whole spectrum.
Depending upon the training data the network
will learn which wavelength features are more
significant than others in determining the cor-
rect spectral parameters and correspondingly
would assign appropriate values to the network
weights. Here the weights are updated back-
words from the output layer through the hid-
den layer hence the algorithm is called back-
propagation method.

3. Applications of the neural network
in spectral classification

ANN has been used in a very large number
of stellar applications. Vieira and Ponz (1995)
have used ANN on low-resolution IUE spec-
tra and have determined SpT with an accu-
racy of 1.1 subclass. although they attempted
classification also with MDM, the errors of
classification were larger than that of ANN.
In visual region Bailer-Jones, Irwin and von
Hippel (1998) used ANN to classify spectra
from Michigan Spectral Survey with an accu-
racy of 1.09 SpT. Visual-near IR spectra were
classified by Weaver & Torres-Dodgen (1997)
using a two step approach. A first, coarse clas-
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Fig.2. A few spectra representative of the temperature range covered are presented. The metal-

poor stars are plotted with red color.

sification is done to get the main spectral class,
say F, then it is further classified by a more spe-
cialist network for that class. This approach re-
sults in an accuracy of 0.4 to 0.8 for SpT and
0.2t0 0.4 in LC.

Allende Prieto et al. (2000) used ANN in
their search of metal-poor stars. Snider et al.
(2001) used ANN for the three dimensional
classification of metal-poor stars. Willemsen et
al. (2005) have used ANN to estimate metallic-
ity for main sequence turn-off, subgiants and

red giant stars in the globular clusters M55 and
w Centauri using the medium resolution spec-
tra of cluster members.

4. Parameterization of OMR Spectra

We have made a modest effort to use ANN for
parameterization of a sample of stars in the
temperature range 4500 to 8000 K. We have
used a medium resolution Cassegrain spectro-
graph with the 2.3 m Vainu Bappu Telescope at
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VBO, Kavalur, India. The spectrograph gives a
resolution R (~ 1000) when used with a grat-
ing of 600 grooves/mm and a camera of focal
length 150 mm. The spectra have a wavelength
coverage of 3800-6000 A. The pre-processing
of spectra was carried out following a proce-
dure very similar to that of Snider et al. (2001).
We have observed stars from the list of Allende
Prieto and Lambert (1999) and Snider et al.
(2001) to develop a library of stars with known
temperatures, gravities and metallicities. These
spectra were used for training and testing the
network. We have also observed stars from
the lists of metal-poor candidates to estimate
the metallicity for them. Although more than
200 stars are observed, here we report results
for 90 stars for which atmospheric parameters
T.rr and log g are well determined, [Fe/H] was
known for 47 of them. We have used a soft-
ware developed by B.D. Ripley based on back
propagation technique. Figure 2 shows a few
representative spectra. The preliminary results
based on 680:11:3 architecture are presented
in figure 3. The RMS error for T.rr = 200K,
[Fe/H] = 0.3 dex, and that of log g = 0.4 dex.
We propose to experiment with an architecture
containing two hidden layers instead of one to
further reduce the errors of these estimated pa-
rameters.

5. Future Goals

It is very important to envisage an approach
that would give quick, reliable spectral classi-
fications (or stellar parameters) for stars falling
in all regions of the HR diagram. A single
ANN architecture may not give the same de-
sired accuracy over full range of spectral types
and luminosity classes. A pilot program us-
ing photometric inputs, e.g. Stromgren indices
or special photometric indices measuring the
strengths of molecular bands for late type stars,
could serve as preprocessor and help in identi-
fying a set of specialist networks which would
lead to classification of desired accuracy. A
specialist system also needs to be evolved for
A-type stars for a quick identification of chem-
ically peculiar, magnetic or emission line stars.
An expert system should also give strength of
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Fig. 3. The results from our preliminary analy-
sis are presented. In the top panel we compare
our ANN based estimates with those derived
from high resolution analysis. A similar com-
parison is made for temperatures and gravities
between our ANN based estimates and pub-
lished results.

a elements or that of carbon using CH, CN
bands.

Special network needs to be developed for
objects displaying complex spectra such as
symbiotic stars, novae and supernovae. Here
the network must be trained on flux calibrated
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spectra and must use emission line strength as
well as shape and structure of the continuum
(composite for symbiotic stars and novae) for
classification purposes.
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