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SOLAR AND STELLAR CONVECTION
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Tata Instilute of Fundamental Research
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Bombay 400 005, India

Abstract.

The flow fleld wn stellar conveclion zones, characierised by high Rayleigh number,
low Prandtl number and lar ge Reynolds number, 18 time dependent and turbulent, consisting
of eddies having a range of scule lengths upto the size of the convection zone The muxing
lengths approximation has been the most widely used formalism to model such a flow, in
spite of all its shortconings [t is possible to test the consistency of this approach as well
as to get a good estunaie of the muxing length n the framework of Linear stabtlity analy-
518 The salient featwes of stellar convection distinguishing tt from the laboratory flows
are discussed The underlying physical wdeas behind the local and non-local muxng-length
theortes and tests of the resulbant models are outlined Some of the results from other

attempts to treal stellar convection using truncated modal analysis and funite difference
schemes are briefly summarised

I Onset of Convection in Stars

Cnergy 1s transported inside stars mainly by two processes (1) radiative, where
photon 18 scallored or absorbed and reemitted by matter at random until it escapes

into space (1) convective, by the explicit motion of parcels of fliud which carry energy
Lo Lhe cooler outer parts of the star

The favourmble mode of energy transporl is determined by the thermal slructure
of the slar While analysing the stcllar glructure it Is wseful to think 1n terms of three
timo scales

1 The nuclear time scale, T, over which the chemical compesitton of the star
changes ap  preciably due to nuclear rcackions (T ~ 10*? yr for the sun)

2 The Kelvin time scale Ty , which governs Lhe 1esponge time of the star Lo changing
thermal rescrvorr (T ~ 107 yr, for the sun)

3 The dynamical time scale, Tg, which 18 Lhe 1elaxation time when Lhe mechanical
equihibrium of Lhe slar 15 disiuibed (tg~ 1 hry for the sun)

The star hould salisfy Lwo conditiona in order Lo remain In a steady state over
time period comparable Lo tls nuclear time scale

a Mechanical equilibrlum  which demands that the outward force of pressure s
balanced by the Inward force due to gravity everywhere 1nside the star 1 e

dP/dr= pGMI({) /r? (1

where P 1s the total pressure, p Is the density, r, radius, G, gravitational conpstant and
M(r) is the mass enclosed within the radius r
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b Thermal equilibrium requiring that the energy gencrated in the steilar intrior is
tnnsported outwards 1 e

duir)fdr = 4mepr? (2)

where L(r) 1s thc net enesrqgy generated within the radiwa v and € 15 the rate of energy
generation per unit mass per umt time [igure 1 give a physical 1dea of Lhe Tactors
governing the stellar structure

Generally the energy genetaled in the stellar interior 1+ Lran ported oulwards by
radiation  However  under the following two cireumn Lance  this proce s lone eannol
transport the untire energy

1 When thcre 15 a large nuclear energy gencralion rote
2 When hydrogen {or some time even hclium) 14 partinlly iomzod, the opacily of Lhe
matter in the stellal envelope increawe  haweply 1nward

In the above tases the temperature gradient become  un tible 1gain L conve ction
In stars once convection ¢t 1n the modium becomes turbulent and eddies having 2
range of size uplo Lhe thickne s of the convection zone are (xcited They kransport oncrgy
i the convechive laycr  In massive stars the core 1s canvective white the wnvelope is
radiative or convective depending upon the cvolubionary status | lowc ver, Lthe envelope
of lhe less mas wve  lars has a convoction zone A schemalic 1epresentation of the
Lructure of typiea! solar type star ind moas tve star s given an Cigure 2 The solor
type tars have 2 convection zone starling almo L from the photo phore The granutation
(smnll  eale nten 1ty pattain con o ting of bright granule 3 cparated by dork lanc.) and
upergr anulation (cell having large horizontal outflow) arc con 1dered Lo be the manifo
tation of convection in Lhe subphoto phoric layera of the un {ef noles o) Mam propertics
of the solar convection zone are given 1n Table 1

Table 1

Propertics of Solar Convectlon Zone

Outer radius IR, (/% 10 5 k)
Inner radius ~0 /R, (> x 10° k)
Depth of the Convection Zone ~03 R (2 x 11° km)
Temperature at the base ~ 2 % 108 I

Density al the ba o ~ 07 gmfce

Observed Convective Velority st the Photosphere ~ 13 kmface

II Condition for Radiative Equdibrium

A region of the star is said to be in radialive equalibrium when the energy transport
ta entirely by rachation This happens 1n a region where convection 1s absenl When g Lhe
temperature gradient unstable egainal the onsel of convection?

Consier the density profile of a star of uniform chemical compasilion given
in Figure 3a (from Cox and Giuly, 1968) L.el a flid slement be distuibed slightly so
that its density decreases ( represented by the downward ariow) The fluieh element moves
outwards quasistatically due to the buoyancy force,

F = Apg

{(where Ap 1s the decrease in density and g is the acceleration due to grovity) If 1t do
not exchange heat with the surroundings, its trajectary can be determined by noting Lhat
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the entropy of the mobile fluid element 18 conserved (adiabatic motion)

1. maintains pressure equilibrium with 1ts new surroundings abt each instance of
time (in view of the mallness of the dynamical time) This trajectory is displayed
by the dashed curve pas ing thiough the end of Lhe arrow The fluid parcel can
atlain a new equilibrium f 1ts trajectory crosses the curve denoting the steady
state profile since 1ts density as well as pres ure will be equal to the equlibrium
value at the cross over point In practice the fluid will oscillate about 1ts new
equiltbrium position as a gravity mode (ef  Antia, this proceedings) until 1ts
excess energy 1s dissipated The heat exchange only makes the system more
stable Note that the curve representing the actual trajectory (denoted as perturbed)
meets Lhe equilibrium profile earlier

Hence from physical arguments we conclude that the density stratification s
stable agunst conveclion 1If the outward density gradient 18 decreasing mare steeply
compared to 1ts adiabatic value, 1 ¢

@o/dr) gy > (do/dr) g > (doldr) o 3
Using the equation of state for Lhe medwm the corresponding relalion for the tempera
ture profile can be obtained (but 1t 1+ nol so basic as the condition an density) igure 3b
portrays the physical situation Nollng that d T/dr s always negative, the following
mathemalical relation can be derived

d in T] I:d In 1]
I > T (4)
|:d In Rl 4 d In P -

(We shall dencle the logarithmic temperature gradient with respect to pressure [d In T/
d In P] by the symbol V)

This 18 the famous Schwarzschild emiterion for slability against conveclion One can
convinge onescll that tho stratification 18 unstable against convection 1f Lhe density
profile 19 flatter than the correspanding adiabatic profile, or,

v > Vad

{F or mathematical tieatment of Lhe cendition for radiative equilibrium refer Lo noltes 2)

In Lhe presence of A chemical composilion giacdient the correspancing condition
can be derived Lo take the Torm (Ledoux, 1947)

dinT dlo T (a In P/3 lnu)T] r 1 (5)
din P dIn I GNP/ InT Thp dInP

{where s Lhe mean molecular weight), 1T woe assume Lhat Lhe chemical diffu ton time
scdle for the spocies 18 large compared to the dynamical time However, in view of
the othor possible instabilities ¥ < V.4 1s probably the more appropriate criterion even in
this case 19 indicated by theoretical consideralions (cf Kalo, 1966) as well as detailed
numerical treatment of slellar convection (cf Xiong, 1981)

III Sahent features of Stellar Convection
Let us define a few characteristic numbers of the convection zone

1 The Rayleigh number which can be thought of as Lhe ratlio of the forces due
to buoyancy and viscosity,
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where d 1s the typical length scale (or a scale height} of the convection zone, Al 1s the
excess temperature diffeence, v1s the kinematic viscosity and kpag lgothe tg\l: rmometrie
conductivity of the medium In typieal stellar convection zones, R ~ 10 10

2 Prandt! number which 1s the ratio of the kinematic vi cosity to the therml
diffusity
- v (7
g =
krad

The stars generally have very low Prandt! number, typically of the order of 10 7 ta 10 °
as compared to of the order of umity for the terrestrial flurds (¢ should nat be confu cd
with the turbulent Prandtl number, which 18 a measure of the cfficiency of momentum
exchange between the turbulent eddies as compared to the cfficiency of thor thermal
exchange)

3 Reynolds number which 1s the ratio of efficiency of momentum exchange be tween
turbulent eddies to the momentum exchange by molecular viscosity
Wi
- — ]
Re = 73 )

where W s the typical speed of the fluid and |, its scale length In the st llar ¢ onved tion
zones, R 1 the arder of 10'?

From theoretical studies and laboratory experiments it 18 known that a stratificd
medium becomes convectively unstable when the Reyletgh number approache ~10% Tix
the exact value depends on the boundary condition but 1L 1s not sensitive to the Prandi!
number The critical Rayleigh number at which convection set 1n and the wave numbei
of the most unstable convective mode (see, notes 1 for the di cus 1on of normal modi )
at the critical Rayleigh number are displayed in Table 2 As the Rayleigh number 19

Table 2

Onset of Convection in Plane Parallel Fluid Layer for various boundary conditions
(Chandraaekhar, 1961)

Boundary condition Critical Wavenumber of maximally glcmrﬁ]
Rayleigh number convective mode far a layer of unil
depth
Free Free 657 3 222
Rigid Free 1100 7 268
Rigd Riqid 1707 8 312

increased convection becomes progressively more unsteady When the Prandtl number 18

In the viscimty of 07 (as in the case of dry air) the development of instability is as
follaws (cf Spieget 1971)

a R <22 600 steady cellular pattern {rolls)
b R ~ 50 000 time dependent but periadic flow
c R ~10® aperiodic motion

When the Rayleigh number is far greater than 10° fuily developed turbulence sets in
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However when the Prandt] number 1s very small Lhe Lransition from stcady state
cohvection to turbulence 1s abrupt, with the absence of above three ntermedialed
stages Also the flow pattern 1s different for two and thee dimensional convection
though the time averaged convective heat flux 1 nearly the same (Weiss, 1976)

'rom Lthese results it 15 clear that stellar convection 1s time dependoent, nperwodic
and highly turbulent A range of convective modes having verticnl length eale ¢omp vable
to the depth of the convection zone are excited 1n the convectlon layer In a solw
type tar typically 10° modes persist, representing eddies of wlze smaller Lhan 1 few hund
red kilometers upto Lhe size of the thickness af the conveclion zonc They carry almo L
the enlire heat flux 1n the bulk of the convective layer At ench point 1t 18 po sible to

divide them into energy storing, emergy Lansporting and energy dissipnting eddies (Xiong,
1981)

Apart from the turbulent nature of Lhe fluid motion, three more complhications
arise while inve tigating the stollar convection

1 The conveclion zone extends over several cale helghts A fluid element having a
density of, say,0 2 gm/ce while starling from the hase of Lhe conveclion zone will end up
having - density of only 10 7 gm/ec when it s stopped in the 2tmoeaphere of a solar type
star Clearly Lhe effects of compres ibihity cannol  be complelely neglected

2 The charactert Lic quantities like the Rayleigh number and Prandtl number are nol
a priort known, In Lead they are delermined by the stellat  tructure Con equenLly the
problem 1s one of dynamie rathor than kinematies in contrast with the othar problom
of turbulence Henee the laboralory studies giving cell paltern o converlive heal [lux
in terms of the Raylagh number and Prondill number are not  worey informalive o
the steller canvection

3 The non lincar advective torm  (see notes 3) 1in the difforential cqualions govermag
Lhe conveclive flow biing 1n two additional complications

(1) They control the growth rate of instabilily
(1) They couple various modes intraducing now length acales

On account of those constraints a full hydrodynamical caleulation af the Lime
dependent compre sible conveclion covering a range of lenglh s ales s not foa ible Thore
have been malnly three kinds of =pp oaches Lo sludy the conveclive flow 1} Mixing
tength theories, b) Truncaled madal expansion and ¢) Direct Lwo dimensional or thro
dimensional numerical simulation  Since moest of Lhe stellar convection zone modele
have heen computed using some form of the mixing length approximabion the main
features of this treatment will be outlined in Lhe next scolion

IV The Loeal Mixing-Length Theory

Mathematically the mixing length theory + a single mode approximation of Lhe
atellar convection described 1n terms of 2 characteristic lenglh sealo of the siralified
flmd The scale length, 1n goneral, [s a constant multiple of some local scale height {e g

H =

the pressure scale height,
dr
p din P

or the distance to a boundary Physically the mixing lenglh approximation ts developed
along the line of the kinetic theory of ga es The convection zone 1s supposed lo be
composed of turbulent eddies and the heat and mormentum oxchange between them is
treated 1n a manner similar Lo the transport phenomena in gases Cach eddy moves through
a characteristic dislance, L, called the mixing length with a characteristic veloeity, W
bafore 1t merges with the amblent medwm, depositing the excess heat and momeontum In
the conventional theorles both the size of the mean eddy and its mean free path are
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assumed to be the same The typical value of the mixing length for the Sun (tnking
l. = 2Hp) changes from ~300 km at the top of the convection zone Lo ~10% km al
its base Hence the wavelength of the aversge mode (or the size of the representative
eddy) changes by nearly two orders of magnitude Thi essentially represent  the progre
sive transfer of energy from larger to smaller eddies In a crude sense the mixing length
approximation also takes into account the compressibihty of the medium through the
variation of the mixing length

The present form of the rmxing length theories can be divided into two groups
local and rnon local theories In the local theory the mean velocity of the convectivo
eddies, the convective heat flux and similar variables are specified in terms of the physi
cal variables and the mixing length at that point On the other hand, in the non local
theories the derivatives of the velocity or temperature fluctuations, their correlabion
and the convective energy Llransport are determined from the local quantities The
various models differ in the way the geometry of the representative eddy, Lhe enti un
ment  erosion of the eddy, the efficiency of the energy transport and such cdetailsg
are handled The gross features of Vitense a mixing lenglh model (Vilense, 19,3, Bobhm
Vitense, 1958) will be outhined below

In Vitense's model a parcel of fluid or turbulent eddy travels through a distance |
before 1t gives up 1ts excess of heat to the surroundings The sizc of the eddy is also
teken to be L though in her works the geometry of the cell 1s considercd floxible
As we have already noted in sectton I the outward moving eddy becom=s progressively
lighter compared to its surroundings and consequently it expcriences larger buoyancy
force In the model of Vitense the buoyancy force is assumed to nerease linearly with
the distance of fhight It continuously radiates energy durtng its flhight in view of it4
excess temperature over the surroundings After Lraversing thiough the ditance |,
all the excess energy 1s given up to the medium and the parcel loscs ks identity Tha
energy deposited at th end of the flight represents the convective flux transpoitcd
by the eddy Using a still simpler picture (which 1s vahid except near the aoundaries of
the convection zone or in the highly superdiabatic layers regions where the tempet alure
gradient is much steeper than its adiabatic value) w can derive the following exprossions
for the velocity and heat flux

Acceleration of the parcel of fluid 18 given by,

ros g—‘%p (9

where Ap 1s the density excess over the surrounding medium  Since the, buayancy farce

ts assumed to be linearly proportional to the distance traversed, work done by Lhe buoyancy
force over a distance L can be comnputed to be,

U=g—%9~'§-

Fractional density excess of the parcel of fluid after the flight 1s,

Ap , y[de (g
o} ! _dr ( dr )ad:i dr
. dinT dinT
® @[ i (57 )Bc;[ L (10)
where

Q - I:dlng
dInTP
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Hence the work done 1s,

U J..Qg._l:_z. (V— 9 ) {11}
2 - ad
P
_dInT
(Recell the definition of V = TP )

A suming that 2 fraction of this energy B is converted into the kinetic energy of vertical
mation

w2= Q9 “r%i“g,(v Voo (12)
Stmilarly the canvective hcat flux is obtaned from Lhe excess energy of the eddy just
before i1ts merger with the ambient medium The expression for the convective ehergy
flux ts found to be

r® = apWC, LV Ve F~1T‘,3 (13)

where Cp 19 the specific heat at constant pressure and @ is an efficlency factor or order
unity

The stcllar strueture can be computed by solving equations (12) and (13) together
with the ususl equations of stellar struclure (cf notes 4) The reader Is referred to
the references mentioned 1n notes 4 for more delailed treatmenl of the local mixing
length theory Main fealures of a typical solar convection zone model obtained using
the focal mixing lenglh approximation 1s given 1n Table 3

Table 3
Solar Convection Zone model using the local mixing length theory ignoring the effects
of turbulent pressurc (from Narasimha 1983)

Maodern parameters mixing length* z v 459 km
o 1/4
R 1/8
Maximum convective velocily 385 km/see
v Vad)max 033
Depth of the convection zone 196 x 10° km

Phyaical quantities at the base of the
convectlon zone

Temperature 218 x 108 K
Density 0 25 gm/cc

* 7 18 the depth from the photosphere

V Tests of the Mixing-L.ength Approximation

From the discussions of preceding section, it 18 clear that (&) turbulent eddies
scanning length scales over more than four arders of magmtude n a cornpressible medium
have been modelled in terms of a single scale length of the convection zone (b) The
scale length itself is prescribed externally
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Basically we are asking two kinds of questions
1 The practical question how do the mndels stand against the observable tests ?

2 The theoretical problem s the ruxing length approximation theoretically sound
or atleast self consistent 7

V 1 Ohservable Tests of the Convection Zone Models
The sun provides a good testing ground for the convection zone models owing to 1ts

proximity to the earth and the ideal location of its convection zone A successful model
should explain the following observational resilts

1 The preferred length and time scales of granules and supergranules {cf Bhatnagar,
Sivaraman 1n this Workshop, also notes 5)

2 The frequency of solar oscillations of large wavenumber (cf Antia, In this Work
shop) and the observed instability band

3 The observed convective velocity profile in the solar atmosphere (Kell 1980)

We shall summarise the analyses of Antia, Cnitre and Pandey (1981), Antia,
Chitre and Narasimha (1983) and Narasimha and Antia (1982) pertaining to the linear
convective modes excited in the solar envelope Essentially they constructed convection
zane models 1n the mixing length appoximation and then studied the speclrum of turbulent
eddies by appealing to the equations of fluid dynamics They construcied a series af
the models of the solar convection zone sppealing to the local mixing length formalism
for a range of values of the mixing length parameters The normal mode analysis was
carried out by examining the basic equationa of fluid dynamics (conservation of mass,
momentum and + nergy) and heat transport i1n the linear approximation (cf netes 1) The
linear stability analysis for the convective modes was carried out afler including tho
mechanical and thermal effects of thu background turbulence on the mode parametrized
through turbulent transport coefficients (turbulent pressure, turbulent wviscosity and
turbulent conductivity) To this extent the analysis should be termed a quasi linear appro
ximation The growth rate of the convective modes as & function of the horizontal
harmomc number (cf notes 1) is displayed In Figure 4 The growth rate of the modos does
not show any preferred length scale when no exchange of heat or momentum takes
place As the radiative and turbulent proceses are included the wavelengih of the maxi
mally growing convective mode progressively Increases It 1s lhe cumulative effecl
of the various intersetions and dissipative processes that determines the most rapidly
growing modes As 1s evident fromn [igure 5, for a switahle choice of the turbulent
Prandt! number (which Is the ratic of the turbulent viscosity to the turbulent conductivity
It 18 a free param ter In the analysis though in principle the mixing length model shoulid
determine this quantity) the growth rate of the mades as a function of the horizontal
wavelength exhibits two peaks The existence of these peaks 15 an =vidence for tho
preferred modes in the solar convection zone The observed length scales and time scales
of granules and supergranules are given 1n Table 4a, while the horizontal wavelength
and the e folding time (inverse of the growth rate) of the computed peaks of convective
modes are given 1n Table 4b Thus for a narrow range of the parameters of the mixing
length models, they were able to show that the madels do explain the observed features
of solar convection Tt turned out that the same models also give correct frequencies
of the solar osclllations trapped 1n the convection zone From the results of thess numer:
cal computations the following inferences could be drawn

a The wavelength of the maximally growing convective maode is governed by its radi
ative exchange with the ambient medium as well as the momentum and heat
exchange with the background eddies

b The horizontal momentum exchange is a crucial factor governing the existence of
two preferred length scales
c The results are somewhat sensitive to the profile of the superadiabatic temperature

gradient 1n the top layers of the convection zone where the degree of superadia
baticity 18 high
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Table 4a

Observed properties of the Solar Convective Cells

Granulation Supergranulation
Characteristic size 1050 km 32 000 km
Average life trme 8 10 min 1 day
Tahle 4b
Praperties of the maximally growing fundamental mode excited in the Solar Convection
Zone Mode!

{Tubrulent Prandt] number = 0 23 Turbulenl pressure = -f:— pw?2)

Primary maximum Secondary maximum
Wavelength 2100 km 33 000 km
e folding time 13 min 36 hr

V2 Consistency of the Mpang-1 ength Theory

Suppose we are given a mode) of the convection zone of o star ronstructed using
the mixing length Lheory We can stoedy the dynamics of conveclion by normal mode
analysis after examining -l the convective modes as described 1n the previous ubsection
Evidently the entire pectrum of Lhe turbulent eddies rewponsible for tho Lransporl
of energy flux can be obtained in term of the normal modes The que tion we wauld
ltke to address the Ledoux problem (Ledoux, et al, 1961) a8 the following Is the
convection zone model consistent with the model incorporating the dynamics of convec
tion ? Alternatively, are the madel convective flux and velocity profites consi lent wilh
the respective profile obtained by s superposition of the coniributions fiom individual
convective modes ? lart (1973} convincingly demonstialed thal no superposition of
lincar adiabatic inviscid modes (1 e modes obtmined by neglecting the momentum as
well as heat exchange with the surroundings) can even remotely reproduce the model heal
flux because the amplitude of all the modes pesks 1n the mo t superadiabatic layer (the
reqgion where (V. Vgd) 1s the largest) Mis result 19 not urprising because 1f the percola
tion of energy from the larger eddies Lo the smaller ones 1s neglected, all the cddies
experience only the buoyancy farce which i1s normally maximiam near the most superadia
batic point However, in order to establish the hterarchy of the turbulent eddies one
should take proper account of the thermal and momentum exchange between Lhe convec
tive eddies Narasimha and Antla (1982) who modelled this interaction through turbulent
transport coefficients did find that at each depth we can indeed distinguish between
the energy storing, cnergy carrying and energy dis ipaling eddies The energy dissipating
eddy wn one layer gradually transforms into the energy transporting eddy in anolher
layer, as 18 evident from the Figure & In this Tigure the normealised convective energy
flux transported by individual linear modes, given by

FE = a"ﬂ< Py Tovpse + Povy > (14)
18 plotted against the logarithm of the equilibrium pressure Here ag s the normalisation
constant, pyand T, are the density and temperalure while vy, sg and Py are respectively
the radial velocity, entropy and pressure eigenfun tions corresponding to the normal mo.le
of horizontal harmonic number £ Since the modes p ak at different layers, with each
maode transporting flux matly over a regqion of thickness comparable to the local mixing
leng n, 1t 15 clear that, by choosing suitable real constants ay we can always get agree
ment between the model convective flux and the superposed flux In addition to this,
Narasimha and Antia were also able to show that the superposed rms radial velocity
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agreed with the model convective velocity very well for most part of the conveclion zone
(Figure 7) Thus it was convincingly demonstrated that the model convective flux computed
by appealing to the muxing length theory is consistent with the superposition of energy
transport by individual convective modes, provided, the mixing length was chosen suitably
The concluston was found to be valid even for & ymptotic red glant stars where the
stratification of the convection zone 1s qualitatively different from that of the sun
in many respects (Antia, Chitre and Narasimha 1984) Some additional results of the
investigation were the following

a The mixing length at a pownt can be identified with the equivatent width of
the convective flux profile of the dominant convective mode at that depth The agreement
between the mixing length and the equivalent width of the convective mode 18 good
throughout the convection zone (Cigure 8) Thus the physical basis for the mixing length
theory 1s vindicated Lhrough a hydrodynamicel computation

b The superposed convective velocity compenent 1n the vertical direction 1s 1n
good agreement with the observed value in the solar atmosphere (Flgure 9)

The analysis also gives an indicalion of some of the drawbacks of the local mixing
length theory

1 There 18 substantial overshooting of the eddies 1nto the overlying atmosphere
resulling 1n large superposed convective velocity But the local theory cannol treat the
overshooting with any degree of reliability The differences between the model velocity
profile and the superposed profile 1n the highly superadiebatic zone of the solar convec
tion zone and the overlying atmosphere 18 apparent 1n Figure 7

The overshooting 18 also important for mixing between chemically 1nhomogeneous
layers during the ovolution of a star The importance of mixing tn gaverning the stellar
gvolution has been siressed by many researchers

2 The normal mode analysis jndicates a large horizontal velocity 1n the boundary
between the convective and radistive region in the photosphere The formation of this
nerrow boundery layer 1s an ertefsct of the local mixing length theory, end 18 also
a consequence of a continuity equation

Thus we find that an investigation of Lhe consistency of the local mixing length
theory naturally leads us to the consideration of a non local theory of convection

VI Non-l.ocal Theories

A major hmitation of the local mixing length approximation 1s that the velooity
of the convective eddy and lts temperature difference over the surroundings depend
only on the local propertiss of the medium In a non local theory, efforl 18 made to
obtain the acceleration of the eddy, rather than its velocity, 1n terms of the temperature
fluctuation and the local veriables The temperalure fluctuation of the convective ele
ment, in turn is governed by its dynamics Consequently one ohtains differential equations,
instead of algebraic relations, goverming the Lemperature excess and velo ity of an out
gowng parcel of flud, which directly lesds to the phenomenon of oversheoting due to
the inertia of the eddy In essence, the various non local approaches can be divided into
two groups ! (a) Convective eddy or fluid element approach (b) Fluid dynamical approach
Here one or more "mixing lengths" are introduced to express the third arder ?orrelatlon
coefflcients oceuring 1n the governing equations (like, for instance [v;(3/3 x,)vjv in terma
of lower arder terma

We shall avoid any specific non local theory (cf notes & for refercnces) but
only give an 1dea of the sbove two groups In the convecilve eddy approach the spint
of the local mixing length theory 1s retained The non localhity appears in the form of the
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fimte s1ze of the eddy due to which the convective flux or the velooily at a dupth z,
are sampled over all eddies centred at (z 1-/2) to (z + L/2) Alternatively the flux
transport from all the fluid elements originating from various ponts and dissolving at tho
depth z 18 evaluated by taking weighted average of the contribution from fluid elements
formed at different depths The integral chtained in this way can be converted into u
second order differential equation for the canvective flux (Spiegel, 1963) of the form

2
P

B o 5
ds? T e Fc local (1%)

where s 1s the radial coordinate in dimensionless form, and Fg |peal 18 the convective flux
In the corresponding local mixing length formali.m A profile of the convective flux
obtained using the non local formulation of Spiegel (Antia and Chitre private ¢ommume
tion) 1s displayed in Figure 10 Note that when convection i. very efficient nd Vyq1a
nearly constant i1n the conveclion zone, the flux profile differs from its local counlerparl
only near the boundaries The convective veloeity profile (di played 1n Figure 11) show n
similar behaviour Thus it 1s clear that in the convective eddy approach the non local
maodel differs from the local one mainly at the boundaries and 0 the adjrecent out idi
layers where a significant amount of penetration takes place

In the flud dynamical approach, the role of the muxing length is roughly 1ncorpor)
ted in the computation of various diffustvities The formalism 1. useful if onc cn o xpros
the various correlation scale lengths 1n terms of a single lungth scale of the conve chion
zone Xiong (1981 ) who ha gqiven an extensive formalism of ron locil theory u ¢
results from 1sotropic turbulence to relate the vaitous scale iengths The anplogy bolweon
tho resultant system of sixteenth order differential equation and the goverming « quation;
of fluid dynamies 15 easy to recognize FHowever the cquations awre 4 bit cumber ome In
handle 1n the computations of stellar evolution  Also, here the mixing in the che mically
inhomogeneous layer out ide the convection zone 18 governed by seale lengths obt uncd
from the theory of isotropic turbutence which 1s not valid in these Liyer Neverthol s
the fluid dynamical approach of non local theory, using the mixing length de bormined
by the self consistency requirement (discussed 1n the previous section) should be contdered
as a definitive progress in the treatment of stellar convection

Does this mean that the important problerms of stellar convection are solvod
by the non local theory? No To name a few of ithe uncomfortable features

1 The concept of a aingle acaele length (or 1ts constant multiplc) to describe th
turbulent convection appears to be a simplistic view

2 The time dependency of the stellar convection becomes important when tnlc rac Hor
with other physical processes are to be analysed The Lreatment of time de pe nedent
convection ts not at all in a satisfactory state in the conventional mixing longlh
theories

3 The effects of compressibility are important specially when convection 14 near
the somic himit but they are filtred out 1n the usual approximations

Obviously we need a more rigorous lreatment LCven Lhough such thcorios may
not help computation of realistic stellar convection zone models they should neverthelc sa
help us understand various features of stellar convection (like the rale of pressure fluctun
tion or the interaction with magnetic field) The main results of some of such attempis
will be summarised In the next ection

VII1 Truncated Model Analysis

With the availability of powerful computers two methods are bgcoming popular In
the numerical study of non hinear convection finite difference schéme and truncaled
model analysis In section V we have already discussed the normal mode analyzia, whete
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the fluctuating component of the flow was assumed to be small and the governing equa-
tions are linearised. In the model analysis a similar expansion in terms of normal modes
is carried out, but the amplitude of the modes is not supposed to be small. The non-
linear terms consequently need to be retained, which physically represent the formation
of new scales of flow due to the interaction between turbulent eddies. Howeve.r, a
few approximations are necessary to manage the large scale numerical computations;
the chief among them are :

a. Only a small number of modes are manageable. Hence there is a cut-off in the
smallest horizontal wavelength of the modes.

b. The mechanical and thermal effects of the motion of smaller length-scales ha_ve to
be parametrized in terms of turbulent transport coefficients as discussed in section V.

c. The full effects of compressibility of the fluid are not taken into account.

We shall summarise a few of the results from the works of Toomre et al. (1976),
Marcus (1980), and Massaguer et al. (1984).

i Even in the outer convection zone of A-type stars where energy is largely tanspor-
ted by radiation, the penetrative convection is found to be important.

ii) The penstration is an outcome of large pressure fluctuations in the superadiabatic
layers.

iii) When the Rayleigh number is greater than 10'° and Prandt! number ~ 1, the
small scale flow (the "inertial range") is nearly isotropic though the large scale
motion is time-dependent and shows no spatial syminetries.

iv) Intermittent bursts in the convective flux were found, which cascade energy
from the largest scale of convective motion to the inertial range.

It should be noted that these investigations are still far from the type adopted for
solar-type convection zones. The turbulent motion involving more than a few million
modes is represented by less than a few hundred modes. Nevertheless these studies
have helped to gain a better understanding of a few important aspects like the penetration
and time-dependency of the flow.

VII.2. Finite-Difference Methods

The finite-difference method of analysing convective flow becomas a powerful tool
at low Rayleigh numbers. As we have already noted, when the Rayleigh number increases
from Rgp to more than hundred times the critical value the convection developes from a
laminar pattern to time-dependent turbulent flow. A finite-difference scheme is well-
suited to the analysis of the new scales that emerge during this transition. Graham
(1976) and Unno and Urata (1987) numerically studied the flow pattern in an idealised
geometry for a range of Rayleigh number and Prandtl number beyond the normal labora-
tory limits. Graham (1976) considered a convection zone that extended over several scale
heights and included the effects of compressibility though most of his work was restricted
to two dimensional flow. His main conclusions were that :

a) In two-dimension, a steady flow exists though the time taken to attain steady state
increases as the Prandtl number is lowered.

b) The only length-scale the convective flow samples appears to be the depth of
the convection zone, even when the convection zone extends over several pressure
scale-heights.

c) The upward and downward moving eddies are asymmetric, with the heavier down-
ward moving eddies having larger velocity. This result, though surprising, appears
to be consistent with the observed solar granulation where a rising broad column of
gas is surrounded by narrower but rapidly sinking ring of cold gas.
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d) The three dimensional flow Jhows two dimen 1onal flow pattern when the horizontal
extent 1s comparable to the depth But when the width 18 increased the two
flows arc qualitatively different, with the three dimensional motion becoming
time dependent Unno and Urata find that for certamn values of the Rayleigh number
small reqions 1n the convection zone become subadigbatic for shart time scales
before again turning 1nto a superadiabatic flow Though surprl ingly, both Craham,
and Unno and Urata find that when the convection zone allows modes of several

wavelengths the flow does nol develop so as to maximise Lhe convective flux
transport

Though the numeneal computations have been carried out In situalions that
are far from real tic stellar conditions, they have alroady given a Tew urprising results
Already attempts have been made to study two dimensional time depondent convection
dring carbon ind helium burmng by fimite difference techmque With Lhe advent of

more powerful computer and progre 9 1n the theory of lurbulence, the finite difference
method 15 Jtkely Lo gl more prominence

VIII  Summary and MNuture Outlook

Conveclion can develope n stars mainly due Lo two processes When the noclear
energy generalion rake 18 large enough, the core o nuclear burning shell be comes convece
tively unstable When Lhe hydiogon or helium 1n the outcr envelope undergoes paitial
ranization, the opacily incieases and diabalic lemperature grachent becomes flatter This
results in the occurrcnes of an outer conveclive envelope The Schwarzachild criterion
appears to bo the adequate condilion fm the atatihily ageinst conved Lion

The slellar convection s characternsed Ly large Raylogh number, low Prandtl
number and high Reynold number The conscquent (low pattern s Lthiew dimensional,
Lime dependent and Lurbulont showing no spatial symmetry In view of these complhications,
untit recently rhe only practical melhod for the computalion of stellar conveclion zones
has been the local mixing lenglh approximalion L 18 a modol of the heat and memantum
transpart by cddies or parccls of fluids 1wmular to the transport phonomena in the kinelic
theory of gases Ils cxlention Lo Lhe non local theory gels over some of Lhe shortcomings
of the maodul, though the mixing length maodel still remaina Loo simphstic when the
iertia of the individual eddies becomes important  The truncaled model analysis and
finite difference scheme s havo inereascd our understanding of the phonomenon of stellar
conveclion though o far they have had himited succoss in Lhe compulations of stellar
structiure

In the near future the non local mixing length theory would appear to ho the
best avallable for the construciion of stellar convection zone modols., at losst upto
the end of core helium burming It 1 Lherefore highly desirable to construcl as rehable
a formulation as po sible A theory, wilth the mixing length and other parameters deter
mined from the conaistency requirement should bo trustworthy al leasl for its overall
gross desciiption of the slollar convection tlowever, when tho interaction bi lween convec
tton and other phy ical processes like, pulsation needs to be investigaled, the Lime
dependency hecomes very Impartant

With the avallablity of powerful computeis we expect Lhe finite cdifference schemes
to be increasingly more popular in the computation of stellar convection zones While
certannly it 18 a big lep foreward from the conventional local mixing length formalism,
we should be aware of the qualitalive difference between two and thiee dimensional
convection Possibly we still need to undertake a slmphfied approach for isolaling and
analysing the underlying physica In this respect we think a study of non linear convection
in a polytropie fluid would be worthwhile an attempt
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Notes

, The perturbations n a system can be tnvestigated 1n terms of a complete sct of
elgenfunctions, called normal modes {cf Chandrasekhar 1961) The spherical harmomes
YJ' form a complete set in the (8,¢) surface for a star which hes spherical symmetry in
the steady state Each value of #{called horizontal harmenic number) correspond Lo )
mode of horizontal wavelength X = [21rg/ /R({2+1)], where rx 18 the radius of the star The
convective and oscillatory modes excited in the sun can be studied in terms of Lhe aphor
cal harmonics at least in the hnear regime It 1s useful to expand the variables In Leim
of a complete set of eigenfunctions only in the (6,§) direction but nol along the radius
This 1s due to the fact that the steady state has no dependence on (8¢) Hence Lht
hnearized equations separate into different spherical harmonics which can be studied
individually

2 Lebovitz (1965 a)b) derived the condition for stability against convection by
normal mode analysis starting from the Lagrangian for adiabatic motion of the fluid
and appealing to the variational principle Chandrasekhar (1965) showed that the condition
18 applicable even to relativistic fluid

3 Consider the equation of conservation of momentum,
dv
P *+ely Vv = ¥P pg+ Vo (16

where @ 15 the stess tensor {cf Unno et al, 1979} The non Linear Lerm (xz)x denote s
the advection Physically 1t represents the change 1n mementum at a point due to the
inflow of fliid from other regions as against the change brought about directly by the
variation of local conditions

4 The text book 'Principles of Stellar Structure', (Cox and Guuli, 1968) gives o
very readable account of some of the physical 1deas and mathematical treatments presen
ted In this article A good description of the local mixing length theory can be found in
Chapter 14 The equations of stellar structure and an outhine of the computation of
models are given in Chapters 20 and 21

Gough (1976) presents an elaborate and reasonably upto date description of iho
local mixing length formalism in his review article Spiegel (1971, 1972), Gough (1977) and
Xiong (1978) are worth studying for a feeling of the non hnear convection

5 Beckers (1981) gives a fairly detailed description of the different types of observeel
velocity fields i1n the solar atmosphere and also outlines the techntque involved 1n
the analysis

6 Gough (1976) gives a brief account of the non local mixing length formulation An
idea of the range of the physical and mathematical approximations nvoked can h
derived from the following sample of references Spiegel (1963), Ulrich (1976) Mac dcr
{1975), Kuhfuss (1986), Xiong (1981)
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