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Abstract. The method of ‘secondary’ helioseismic inversion, in which the
equations of state and the thermal balance are used in addition to the hydro-
static equations, have been applied to determine the helium abundance in the
Sun’s interior. By inverting the observed p-mode frequencies, direct evidence
for gravitational settling of helium has been obtained. The helium abundance
inferred from the BBSO data (Libbrechh et al., 1990) using the OPAL equation
of state (Rogers & Iglesias, 1993) is 0.248 £+ 0.006.
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1. Introduction

Helioseismology provides a unique tool for investigating chemical composition of the in-
terior of the Sun. There are two basic ways of obtaining the information. The first
calibrates theoretical solar models by comparing either the observed oscillation frequen-
cies with the eigenfrequencies of the models, or the primary seismic parameters (e.g.
the sound speed, the density and the adiabatic exponent) inverted from the observed
frequencies with the corresponding parameters of the solar models.

The second approach measures abundances by direct (‘secondary’) inversions of the
frequencies, incorporating additional equations of the stellar structure into the helioseis-
mic inverse problem. The additional equation to estimate composition of the convection
zone is the equation of state that relates variations of the adiabatic exponent in zones
of ionization of elements to their abundances. In the radiative interior where the most
abundant elements are almost totally ionized, the energy equations together with equa-
tions of the energy generation rate and the opacity are used to relate primary seismic
parameters with abundances. '
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2. The helioseismic inversion method

For the frequency inversions, the linearized integral equations relating frequency pertur-
bations, dv;, to variations of the solar structure are derived from a variational principle.
They are transformed to depend on a chosen pair of deviation variables f (e.g. f=
(6lnp,d1Iny) that are assumed to be functlons of radius, 7, alone (e.g. Gough & Koso-
vichev, 1988), yielding

L ()
E(vi) ’
Here dv; is the frequency difference between the eigenfrequency v; of a solar model and
the corresponding frequency of the Sun, R is the radius of the Sun, and Ej(v;) is the
mode inertia. The arbitrary function F' (V,) is added to take into account surface effects.
The subscript ¢ labels the modes; N is the total number of modes in a data set.

i=1,..,N. : (1)

The structure parameters f can be of two types: ‘primary’, e.g. the density, p,
and the adiabatic exponent ,v, or ‘secondary’, e.g. the hydrogen abundance, X, and the
heavy element abundance, Z. For the ‘primary’ parameters Eq. (1) is derived under
the basic assumptions about the solar structure: spherical symmetry and hydrostatic
equilibrium; whereas for the ‘secondary’ parameters additional structure equations must
be considered. Only two structure variables appear in Eq. (1) because in deriving them
the equations of hydrostatic support

dp Gmp

dr ~— 72 @)
dm 9 .
o = Ampr (3)

have been imposed.

Two main options for the ‘secondary’ parameters have been studied. The first in-
cludes the equation of state in the form vy = v(p, p, X;), where X; are element abun-
dances. Since the variations of the adiabatic exponent, 4, occur mainly in the zones
of ionization of helium and hydrogen at the top of the convection zone, the frequency
variations can be expressed in terms of the uniform helium abundance in the convection
zone (assuming that the abundances of the heavier elements are known) and one of the
hydrostatic variable, e.g. density or the ratio u = p/p.

The second option is to consider a full set of structure equations, including the
equations of thermal balance and of energy transport, thus introducing ‘non-seismic’
variables, such as temperature, elemental abundance and opacities in the radiative zone,
into the seismic equations.

Equations (1) can be transformed into a relation between ‘57”1 and composition de-
viations § X and 67 by additionally imposing the constraint ‘of thermal balance through

- the equations

dL

ol 4mprie, | (4)
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dT —5’—;613;‘ TL in radiative zones
ar ‘ . (5)
; (‘f,T—,)c in the convection zone

where L is luminosity, T" is temperature, € is the energy-generation rate per unit mas, £
is opacity and ¢ is the Stefan-Boltzmann constant. The function (d7'/dr). is provided
by the mixing-length formalism relating temperature gradient to energy transport in
the convection zone. In addition, the functions of ¢(p, T, X, Z) and k(p,T, X, Z) and
their partial derivatives are required. The transformation then yelds new perturbation
relations which may be written

51/, F(vi) .
/ Kg - gdr+El( )’ t=1,..,N (6)

where g = (6X,02).

It is a straightforward matter to compute the kernels in equation (6). The linearized
structure equations (2-5) formally can be written

Af =g, | (7)

where A is a linear differential operator. The equation must be supplemented with
appropriate boundary conditions, that are derived from the requirement that conditions
in the photosphere are unchanged, which we adopt in the form Inp = 0, InL = 0 at
r = R. Substituting equation (7) into equation (6) yields

dv; Re
o _ Ko Afd
Vi 0 g-Af r+ Ez V:)

/ A Kg fd+F(()) (8)

where A* is the adjoint of A By demanding that the expressions on the right-sides of
equations (1) and (8) be identical, we obtain

A'Kg=K f . (9)
Thus, the seismic kernels for the element abundances are obtained as solutions of the
adjoint linearized structure equations.

The inversion procedure basically consists of constructing linear combinations of Eqs (1)
or (6) for a set of observed modes, which provide localized averages of the structure
parameters f and g:

_ Ro : Ro
f(ro) = Af(rg, r)fdr, glro) = /0 Ag(ro,r)gdr. (10)

0

3. The inversion results

The inverted data used in this analysis are combinations of 16 frequencies of low-degree
modes ([ = 0, 1 and 2) in the frequency range 2.5 3 v <3 mHz taken from the IPHIR
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data set (Toutain & Frohlich, 1992) and 598 frequencies of intermediate-degree modes (!
= 4-140, v = 1.5-3 mHz) observed at BBSO in 1988 (Libbrecht et al., 1990).

The estimates of the helium abundance in the convection zone depend entirely on the
variation of v in the Hell ionization zone and are obtained using the equation of state. A
version of the ‘MHD’ equation of state (Dappen et al., 1988) gives the helium abundance
Y = 0.232 £ 0.006, whereas the OPAL equation of state (Rogers & Iglesias, 1993) leads
to Y =~ 0.254 + 0.006 (Fig. 1a). The most recent version of the OPAL equation of state
gives a slightly lower value: 0.248 & 0.006. The difference between the MHD and OPAL
equations of state has not been fully resolved. However, both estimates are substantially
lower than the standard model value, Y = 0.280, and therefore, consistent with the
general picture of the helium settling.

Further evidence for gravitational settling of helium is given by direct inversion for the
helium abundance Y in the radiative zone, showing that, compared with the standard
model, helium is underabundant outside the solar core (Fig. 1b). Details of the interior
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Figure 1: Optimally localized averages of the helium abundance Y in the Sun, inferred from the

combination of BBSQ and IPHIR data. The solid curve shows the abundance of helium in the standard
solar model

structure such as material mixing in the core, convective overshoot, diffusion of heavy
elements and the role of turbulence have yet to be established. Their determination
requires more accurate measurements of the frequencies of solar oscillations.
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