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Existence of periodic orbits of first kind in the photogravitational
circular restricted problem of four bodies
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Abstract. In this paper the existence of the periodic orbits of first kind in the
photogravitational circular restricted problem of four bodies has been established.
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Introduction

Bhatnagar (1971) studied the existence of periodic orbits of collision in the restricted problem
of four bodies. Since then the problem has been generalised by introducing different variations.

The stars are the sources of gravitational forces as well as the radiation pressures. So, in
this paper we have considered all the three finite masses to be the sources of radiation pressures
and have established the existence of the periodic orbits of first kind in the restricted problem of
four bodies on the assumption that the three finite masses move in circular orbits about their
centre of inertia forming an equilateral triangle and the infinitesimal mass moves under the
photogravitational field of the three finite masses without rendering the equilateral triangular
configuration of the three finite masses.

1. Equations of motion

Consider the motion of an infinitesimal mass P in the photogravitational field of the primaries
Pl’ P2, P3 of finite masses m 1> My My respectively in a plane on circular orbits and let the

mass of P be so small that the triangular configuration is not changed.

Let C be the geometric centre of the triangular configuration P,P,P, and G the centre of
mass of the masses m, m,, m4 situated at P,, P,, P, respectively.
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Let us take the line Gx parallel to CP, as x-axis and the line Gy perpendicular to Gx in the
sense of rotation as the y-axis. Let the co-ordinates of P be (x, y) and those of P, (i =1, 2) as
(x,y) in the rotating system.

If q,, 4,: g, be the radiation factors of the gravitational forces due to radiations, then the
Hamiltonian H is given by

1
=§(P% + P+ Py —pyx) —ay y/ry = dy )Ty — 43 Mafry

where r r,, Iy are the distances of P from P P2, P3 respectively.

r 3

Let us shift the origin to C, the geometric centre of the equilateral triangle P,P,P, through
parallel axes. Let (x,, x,) be the coordinates of P and (%, ¥,) the coordinates of the centre of
mass G referred to Cx, x, system. We have

(xp, %) = (X + X,y +%,).
In canonical form the equations of motion are

) | dp,  OH .
Eza—p:, ';— i,(l=1,2) (1)

where
=202+ P2 + [py(y ~ %) ~ Py, ~ )
=51 TP, 2) TPV~ %
- ql ﬂllr q2 uzl q3 [.13 =C. (2)
2. Regularization

For the elimination of the singularity at P, we shall use Levi-Civita's (1906) parabolic
transformation defined by

S=A+ 5% —5%)1’1 + 51 521’2
so that

7!:1—£ i=12)

&~
I
¥

where 7; are the momenta associated with hew coordinates §i, (i=12)and A= 1/\/5.
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Orbits in the photogravitational four body problem 167
We also introduce a new independent variable 7 instead of ¢ given by
dt=r;.dt, 7=0whent=0.
The equations of motion (1) become

5, gk 4% K .
dT_aﬂ,", d’r—_ail’(l_l,2) ‘ (3)

where K is the new Hamiltonian which is given by
K=r/(H- (8))
1 1
=3 s 2 N8 - m&) - Alm 6, + mG)
= (&) = my8)T, + (6, + MGy

— 4y Hy = Gokyry /1y — qaplryiT
- ’1(Co + Clul + C2u2 + C3u3) _ 0(ﬂ2) 4

2=1+E&+3A8-8)-2¢8,

r=1+&+3A - &) +28 ¢, 5)
E2=E3+ &,

ﬂ2=ﬂ%+ﬂ%.

Similar to Bhatnagar (1971), we suppose that p1, = 11, 4, = o so that g, =1 - u(1 + @),
where o is a significant constant.

We have
X = 2-3ou-3u) A/2,
%, = (a— D2
The Hamiltonian (4) can be put into the form

K=K,+ UK,
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where

——n2+ r(mé& - m &, - 2C0)—1+I——e<0 ©6)

Kl == Z(a; 1) (”151 262) A(a+ 1) (”152 él)

+(1 _Il) (a+1)-(1- 2) arlh‘2 -(1- 3) r1/r3 + rl(aCi + C;) @)
C0=C0+C1, C1=C1—C2, C2=C1—C3.

g;=1-I, IJ << 1.

Clearly, I, =1, = I, = 0 when the effect of the radiation pressures are neglected.

Now, K0 has almost the same expression as in Bhatnagar (1971) and with him we shall
assume that K, is negative which puts a restriction on the range of I,.

In order to solve the Hamiltonian Jacobi equation associated with Ky, let

ow
r.==—,(G(=1, 2) . ®)
i agi
and a=1—ll—e>0.

It follows that

(@)« @))% 0 5]

which by introducing polar co-ordinates

a

S ¢

with the help of the relations

&, = & cosg, &, = & sing,

i3] H G %)

This may be satisfied by

becomes

W= U +2G¢,
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where G is an arbitrary parameter. Hence

2
(% =~ [2(G + CyI2) F2) (10)
where
-
and

F(z) = [G*2(G + Cp] - [al(G + Cplz -2 8))

Hence, we have

¥4
UGz G, 0) = [-2(G + C]'? fF(;) ‘%

4
where zZ; is the smaller of the two roots of F(z) = 0.

Let the parameters a, e, and I be defined by

zy=a(l-e),z,=a(l +e)
— 2 .2
z=2; cos“li2 + z, sin“l/2 (12)
= a(l - ecosl).
The equations of motion associated with K| are

, oK 1 1 .
é":# =Zﬂi+§'§2§j(—1)’, (i=1,2;j=1,2;j#1i)

and from these it follows that

2 ’ 2
D& E=EE=1Y g x,
=1 i=1

On the other hand,
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2 dU
;é. n=t5F ag §d§ e

so that
tk

= [-2(G + C12 [F@'2,

from which we obtain

_ 12 o
f[F(C)] [2(G+C0)] (r 1'0)

where
z=z, AT=1,
Let us introduce L by the relation
a=L[-2(G+Cpl"*>0

so that

= L >0
[-2(G + C1'*

e= [1 _ GZ/LZ]UZ
Using equation (12), it is found that
F(@) = a*e? sinzl,

and equation (13) becomes

1= [-2G+ CY1'? (z- 7).
Furthermore

(13)

(14

15)
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Z
aw_au_ (_dt___,
oL dL - ) [FOW? T
Z)
oW _ ., dU _ @-ch"”
BG_2¢+BG_2¢+2 G+ C sinl—f=g

where

1212 dl
f=0-€) f(l—ecosl)'

Equations (16) & (17) establish the canonical set (/, L; g, G).
Since

K,

=a-1+1 T
it follows that

= 172
Ky=L[-2(G+CHI"“-1+1,,

171

(16)

amn

(18)

and therefore, for the problem generated by this Hamiltonian (regularised two-body problem in

rotating co-ordinates) one has

dL Ky 0
a9
a _ K, 0
dr dg

0.
-f—r ==—==[-2(G + CO)]I/ 2 = constant

dK
g‘;—: EO= -LI[-2(G + Co)]”2 = constant.

The argument ¢ is obtained from equation (17). It is given by
= %(f +8) - [* - GHYH(G + Cp] sinl.

19)

(20)
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The variables §l. and 7, (i = 1, 2) are then expressed by the canonical elements. In fact

§ =&cosp=1 212 cos¢

£, = Esing =+ 7" sing (21)
and
_9W _ dW _sing JW
M=o T E TTE o
aw dW cos¢ oW
. _ c03¢ oW 22
23,7 e o @2
Since
W _dU _ ,.dU _ .. 12 [ﬂél]_
= G- g(k 2 [-2(G + Cy]
oW
Fre 2G,
it follows that
W — 2 Lsin 1 /E£{A(1 - cosD)} 2],
E3
and therefore
+& =[a(l- ecos ]2 cosg
+ &, =[a(1 - ecos})]'? sing (23)
_ 2eLsinl cos¢ — 2Gsing
tm = [a(1 — ecos)]/? v

2eLsin! sing — 2Gsing
£, = 172
[a(1 ~ ecosl)]
where ¢ is given by equation (20).

The equations of motion for the complete Hamiltonian K are given by
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da_ok_% K
oL oL TH3L

i | s §

where K, and K| are expressed in terms of the canonical elements.

Equation (25) forms the basis for the general theory of perturbation for the problem under
consideration.

3. Existence of periodic orbits of first kind

x =L x,=G,y;=1Ly,=g.

Equation (19) may be written as

dx, dy,
=0 =1 =12
which gives

x(?) =a, y(?) = ﬂ((,-))‘f +w,.
These are "generating solutions" of the problem of two bodies.

Let the general solution in the neighbourhood of the generating solutions be periodic with
the period 7, (1 + @), where 7, is the period of the generating solutions and a is a negligible

quantity of order L.
The period of the general solutions will also be 7 if we change the independent variable 7

to 7° with the help of the transformation

v =1t /({+0).
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Equation (25) then takes the form
dx; oK
—=—(1+0)=5=,(=1,2
e —( ) %, ( )

dy, JK .
dt,—(l-fa)ax.,(z— 1, 2).

(26)

The general solutions in the neighbourhood of the generating solutions may be given by

x;=a+ B+ (1), (i=1,2)

=197 +w + 7+ (1), (= 1.2).

@7

Now following Bhatnagar (1969) we find that the orbits will be periodic for y # O if the

following conditions (Duboshin 1964) are satisfied :

A o it s
awi - ’(l_ ] )
—a[K‘]—o i=1,2
&ll- - 7("— b} )
where
T
[K,]= -LOJ Kl(t', a, n(‘?r' +w) dr
T
3(62,771, 712)
—2 ' 2 o whenu=8=7=0
3(72, ﬁl’ Bz) v enu B! y’

The condition (31) can be written as (Bhatnagar 1971)

AL

5—.D#0
oW

where

(28)

(29)

(30)

€2y

(32)
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’k, Ik,
b aa% aala"z
= 2 2
J K, 0 K,
a"2‘9"1 a"%
We have

Ky=a,[-2ay+ CI"2 - 1+1,.

D =-1/[2(G + Cp] #0.
Taking zero order terms, we have

=a
1% =1+ a® + 3aA cos2¢ — a sin2¢
=1+a” + 3aA cos2¢ + a sin2¢
&, 7 — & m,=-2G sin2¢
& m, + &, m =2G cos2¢

20=y,+y,

x=a,y,=107 +w, (=1,2)

L

| [K1]=%(a+ )G sin2¢—3TA(a+ 1) G cos2¢+ (1-1) (@+1)
~(-Lya ar,-(1-Lalr, +a(oC + C,

a[Kll 1 3A .
9w2 = E(a_ 1)G cos2¢ + T(a + 1)G sin2¢
+(1-1,) (-3aA sin2¢ — a cos2@)a a/rg

+ (1 -1,) (-3aA sin2¢ + a cos2¢)alr

For 2¢ =0, 7 etc., we have

175

(33)

(34)

(36)

€)
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K ,
a(;wz] 2@-1)G-(1-L) dannr + (1~ I &P (38)
where
?=1+a*+3aA (39)
5IK] . a2|: (alz “13)]
ow, =0.1fG="3 a-1 1
2 I, -1
For2@=0,n‘etcandG=a l:l —(az_s))],wehave
7 a-1
FIK.] 2 :
—%- 3%[(:11 +1 )—(a+1)]+32%;1(od2+13)¢0 (40)

Using (34) and (40) we find that the condition (32) is satisfied.

It can be easily seen that the other conditions for the existence of the periodic orbits are also
satisfied.

Therefore, there exists periodic orbits of ﬁrst kmd of the restricted four-body problem
considered in this paper.
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