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Abstract. In a black-hole, the gravitational singularity at its centre is covered
by an event horizon. This singularity is hidden from an observer who is far
from the black-hole. On the other hand, a naked singularity is a gravitational
singularity which is not covered by an event horizon, and is visible to a far-
away observer. According to the cosmic censorship conjecture (CCC) of
Penrose, the general theory of relativity does not admit the formation of
naked singularities in gravitational collapse. Recently, Dwivedi and Joshi,
and others, have found examples of naked singularities in collapse. One
such example has been described in their paper, Dwivedi & Joshi (1992).
The singularities described in this paper are strong curvature naked
singularities.

Unnikrishnan (1993) has claimed that these examples are unphysical. He
claims that although a naked singularity does result in these models, it must
be a weak naked singularity rather than being strong. (Weak and strong are
technical terms referring to the rate at which curvature blows up, as the
singularity is approached).

The purpose of the present reply is to point out the mistake made by
Unnikrishnan (U) in his analysis, leading to his erroneous conclusion. We
point out here that the principal claim made by U in his paper, (namely that
the singularity in this model is weak when naked, and it is hidden when it is
strong) is baseless because it is not supported by any mathematical
derivation. In particular, we show that the class of solutions considered by
him is completely different from that of Dwivedi and Joshi and some other
naked strong curvature examples. Thus, U's objections have no
mathematical or physical validity.

Key words : gravitational collapse — cosmic censorship — naked
singularities — Tolman-Bondi models
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1. Introduction

The Cosmic Censorship Conjecture (CCC) was first proposed by Penrose (1969) and
it states that a singularity forming in gravitational collapse must always be covered by
an event horizon. This conjecture has not yet been proved. By now there are many
versions of the conjecture. It is not known which of the versions, if any, will finally get
proved. Thus the possibility remains open that naked singularities do result as the end
states of gravitational collapse, in the general theory of relativity. If a naked singularity
forms, then particle and photon trajectories starting at the singularity can travel all the
way up to infinity, and hence "“information" can be conveyed from the singularity to a
far-away observer.

For the purpose of our discussion, it is important to note that there are several
versions of CCC. Of these, the two that are relevant here are given below:

CCP-P : Naked singularities cannot form in gravitational collapse of matter
satisfying reasonable equation of state and under the reasonable conditions such as
the positivity of energy density.

CCC-N : Naked singularities, even if they form in gravitational collapse, must be
gravitationally weak. They cannot be strong curvature singularities.

CCC-P is the version due to Penrose. The version CCC-N is due to Newman
(1986). Note the very significant difference between the two versions. CCC-P does
not allow for the formation of naked singularities, but CCC-N does. Dwivedi and Joshi
(DJ) and U agree that there are examples in general relativity which show that CCC-P
is violated and naked singularities do occur. The debate is over CCC-N. DJ have
shown that CCC-N is violated: strong naked singularities can form. U claims that CCC-
N holds, as there are no viable counter-examples. According to U, the only kind of
naked singularities that can form are weak.

The terms strong and weak have a technical definition. In both the strong case and
the weak case, the curvature at the singularity is infinite; the difference is in the rate at
which the curvature blows up, as one approaches the singularity along a geodesic.
If k is the affine parameter along the geodesic, K° the tangent vector along the
geodesic, and R, the Ricci tensor, then the singularity is said to be weak if the scalar_
v=k2R 4, KK goes to zero as k — 0 (k = 0 at the singularity). The singularity is
strong if in the limit kK — 0, wis non-zero.

DJ have demonstrated in a series of papers, the occurrence of strong curvature
naked singularities in gravitational collapse, while analysing different features for the
same. The papers of interest to us here are Dwivedi & Joshi (1992), together with
those of Newman (1986) and Ori & Piran (1990). (Other papers on naked singularity
referenced by U are not relevant to the present discussion on naked singularity). In
their paper mentioned above, DJ demonstrate the occurrence of strong curvature
naked singularities in a class of Tolman-Bondi inhomogeneous dust collapse models.
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Let us dwell on some of these technical terms. Tolman-Bondi inhomogeneous models
represent gravitationally collapsing matter for which the density is spherically
symmetric, but inhomogeneous. Dust means that the matter is taken to be
pressureless.

In his paper (Unnikrishnan 1993), U has contested the above results of DJ and the
numerical work of Ori & Piran (1990). According to U, the naked singularity that results
at the end of the gravitational collapse in these models is not strong, but weak. He
says that these authors arrived at a strong singularity because they assumed an
infinite density right at the start of the collapse!

The purpose of this report is to show that the results of DJ are indeed correct, and
that the claims of U are incorrect. In Section 2, we recall the work of DJ. In Section 3,
we summarize the work of U. In Section 4, we compare DJ and U and show where U
goes wrong. Concluding remarks are in Section 5.

We can state here, in summary, the mistake in the paper of U. There is a very large
class of Tolman-Bondi solutions; these solutions are distinguished by a free function
F(n. U selects a special class of F(r) functions which, he claims, lead to a weak naked
singularity. He does not realize that his choice of F{(r) is special. DJ actually select a
different class of F(r), which leads to a strong naked singularity. U thinks that his
choice of class of F(r) is the most general possible, while it certainly is not. This is
elaborated upon in the following sections. Apart from this, his claim on the weakness
of the singularity is not tenable, because it is not supported by any mathematical
derivation.

2. The work of DJ

DJ use the comoving coordinates (t, r, 6, ¢) to describe the spherically symmetric
coliapse of an inhomogeneous dust cloud. The coordinate r has non-negative values
and labels the spherical shells of dust and t is the proper time along the world lines of
particles given by r= constant. The collapse of spherically symmetric inhomogeneous
dust is described by the Tolman metric in comoving coordinates (i.e. U/ = 6§)

,2

ds2=-d 2 + 7 —dr? + R? (d@2+sin? 6d¢?) (1)

also
Tij — 5i 6j — f _L 2
—Efl" E—E(ri)—HZR' ()

where TV is the stress-energy tensor, ¢is the energy density and R is a function of both
tand r, given by

.2 F
F|’=ﬁ+f. (3)
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. Here, the dot and prime denote partial derivatives with respect to t and r
respectively. The quantities F and f are arbitrary functions of r. (What we denote as
Hr), U denotes as M(r).) In further discussion here, we restrict to the class of
solutions f(r) = 0 as done by U. Also, DJ are concerned with the dynamical
gravitational collapse of dust, in which case R (r, t) <O. ’

The Tolman-Bondi models admit a freedom of scaling in the following sense. One
could arbitrarily relabel the dust shells given by r = const. as r -g(r). Thus, at any
constant time surface, say at t = t,, R(r, t,) can be chosen to be an arbitrary function of
r. This arbitrariness reflects essentially the freedom in the choice of units.

DJ make the following choice of scaling, at t=0:
R(r,0) =r. (4)

Obviously, one could have scaled on any surface t = t,. Of course, once you have done
the scaling on one t = {; surface, you are not allowed to scale on any other surface.

With the scaling as in (4), equation. (3) (set f= 0), can be easily integrated to get
ROI2(r,1) = 132 = 3 NF(D /L (5)

(Recall that we require R <0). Also, it is easily shown from (2) that

4/3

g(r, t) = ; , (6)
(-5 8n) (-5 50)

where G(r) = r¥2, G'(1) = (3/2)r*2, and H(r)= VF(r). DJ now make the following
assumption: they write F(r) =ri(r)and assume that A(0) #0. This means that near the

origin, F(r) goes as r, and it goes to zero at r=0. From equation (6) it is now seen that
the density at the centre, r= 0, behaves with time as

£0.1) = 357 (7)

Thus the central density becomes singular at t= 0. It is shown in the Appendix A that
this is a naked singularity, and that it is a strong curvature naked singularity.

It is also apparent from equation (7) that the central density is finite at any f < 0.

Thus the singularity is interpreted as having arisen from the evolution of dust collapse
which had a finite density distribution in the past on an initial epoch.
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3. The work of U

We summarize in this section the work reported by U in his paper. Our response to U's
results is not given in this section, but in Section 4. U is concerned with dust models
with f= 0 with the same basic equations as given in Section 2. In his abstract he states
that strong curvature naked singularity classes are unphysical. He also claims in his
paper that in dust collapse the resulting naked singularity is always weak, and not
strong. According to U, DJ found a strong naked singularity because they started with
an infinite density and that the collapse in DJ's case is not dynamical.

The paper then proceeds to demonstrate the occurrence of a singuliarity.
According to U, DJ do not start from a finite density distribution which is Taylor
expandable. He says that they find a singularity at ¢t = 0, as in equation (7), and claim
that this singularity arises from a finite density distribution in the past. U says that DJ
will not get a strong naked singularity if they actually start their collapse from a finite,
Taylor expandable density in the past. U would explicitly like to start from a finite,
Taylor expandable, density distribution at t = 0, evolve the collapse forward, and check
what kind of singularity results.

So he starts by writing down the density distribution at = 0, and by assuming that it
can be expanded in a Taylor series. U's principal claim is the following: The end state
of the collapse is a weak naked singularity, and not a strong one. (Recall that
according to DJ a strong naked singularity results. So the results of DJ and U are in
direct contradiction. Only one of them can be right!).

U then proceeds as follows. He has the same set of basic equations as DJ. That is,
U also has the equations (1-6), as in Section 2 above. However, now note the
following crucial difference between DJ's and U's meaning of equation (4). Equation
(4) is the scaling equation

R(r,0) =r.

Both DJ and U do this scaling at t = 0 (although U does not state this explicitly, it is
implicit in the derivation of equation (4) of his paper). However, at t =0, DJ have a
singularity, for whom the initial surface lies in the past. But for U, t= 0 is the starting
epoch of collapse, and the singularity forms at t > 0. Thus, DJ and U do the scaling R=
r at different epochs: for the former, this scaling is done at the singularity epoch, for the
latter, at a non-singular epoch.

After choosing the scaling as above, U substitutes the Taylor expansion of the
density at t = 0 epoch in the density evolution equation (6). He gets

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995BASI...23...41J

DBASI T D230 1 A1

rt

46 P.S. Joshi & T.P. Singh
E(';t) = — 2 4/3 n
2 _[8{,_8p" )| |2, [3(,_7p"
3Np | 2 p SNp | 2 p
(8)

(Trivial numerical errors in U's paper have been corrected). From equation (8) it is
clear that the central density is

4/3
_2 _[38 )2
3\ p,

Thus the singularity forms at the centre after a time t; = % A / I—?— , Which is determined
0

(0,t) = (9)

by the initial central density P, It also follows from Equation (8) that at t = ¢, the radial
dependence of the density is

e(rty) 714— (10)

From here, and by using the equation (5) for the evolution of A(t), it can be shown that

1
e(r ts) o giarT - (11)
U then makes the following points :

(1) The central density, as in equation (9), does not vary as 1/12.

(2) The singularity is naked and weak. He claims that this follows automatically
from results of Newman (1986).

He then asks the question : What is the physical interpretation of the work of DJ and
Ori & Piran (1990)? How come DJ found a strong naked singularity whereas U claims
only a weak naked singularity after starting with a finite central density and a Taylor
expandable density distribution? U concludes that the singularities of DJ do not arise
from dynamical collapse of physical density functions (since, U claims, he started with
the most general density function), but arise because the starting density functions
were intrinsically singular. In other words, DJ found a singularity, because they. started
with an infinite density. U adds that in the model of DJ, the function dR/dr is infinite at
r=0, for all epochs prior to the formation of singularity.

In the next section we show the mistake made by U, which led him to such
objections. We show that these objections are completely wrong.
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4. The refutation of the claims of U

The comparison of DJ and U's work becomes easier if we rewrite the DJ results of
Section 2 in the following manner. We want to demonstrate that DJ also start from a
finite, Taylor expandable density distribution. Recall that DJ have a singularity at t= 0.
Let us now define a new time axis, giving a constant shift: t — t'= t+ o, where a.is a
positive real number. In this new coordinate system, the singularity forms at a time «,
and the collapse can be assumed to start at any time t' < o. Let us assume that
collapse starts at the time t'= 0.

In the t'coordinate, equation (5) becomes

Ro72 (r,t) = 2 = 3 F(R) (' - ). (12)
and equation (6) becomes
4/3
et =5 Gr 26\ - (13)
(t-o-3 ﬁ%ﬂl) (-5 F7h )

Henceforth we drop the prime on t. It is very obvious that all we have done is a time-
shift, so that now in DJ's model also, the collapse begins at t = 0, and singularity forms
at t=o. Thus we can trivially rewrite (12) as

ROI2 (r,t) = P72 = 3 F(7) (t- a), (14)
and (13) as
e(r,1) = ) ME & (15)
(t-o-3 H(r) ) (t-o3 H'(r) )

Now, let us note the following. At the time at which collapse begins, i.e. at t =0,
equation (14) implies

R3/2 (r,0) = rd/2 + 32_a VF(r) (16)

and at the singular epoch, t = «, equation (14) gives R=r. R = ris of course the scaling
that DJ make at the singular epoch. On the other hand, at the starting epoch, DJ
choose the scaling given by equation (16). In other words, at the epoch when R = r, the
central density is finite in U's case, but infinite in DJ's case. We recall that in DJ, the
class considered is F(r) =rA(r), uv(0) 0.

At the starting epoch t = 0, the density profile in DJ's case is given, from (15), by
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e(r,0)= (17)

(a+5 0 ) (e § mn)

Since H(r) goes as r'’2 near r = 0 in DJ's model, it follows that the central density

£(0,0) = py is finite at the starting epoch. Also, po = 4/3c2, i.e. 0.=2/ 3p0. Also, since
H(r) goes as r*2 near r = 0, we can write £(r;,0) near r=0, as
1

&(r,0) =(a+Ar)(a+Br) ) (18)

It follows that the density function is Taylor expandable to all orders, with all the
derivatives finite at the centre.

Thus by writing DJ's model in an explicit manner, we have shown that they start with
a finite density which is Taylor expandable to all orders. And of course, they obtain a
strong naked singularity, as we saw before.

And yet, U claims that if you start with a finite, Taylor expandable density, you can
only get a weak naked singularity! What is going on? Here is the answer. Recall that in
DJ's model, the free function F(r) is assumed to go as r near the origin r= 0. However,
in the model of U, F(r) does not go asr, it goes as  near r=0. It is the behaviour of
F(r) near r=0 which determines the strength of the singularity. If F(r) goes as r, the
singularity is strong. If F(r) goes as r3, the singularity is weak. Note that in both U and
DJ, the density at the centre € ~ (t— )2

To see that in U's model F(r) goes as r® near the origin, we go back to his Taylor
expansion for the density distribution (equation (6) in his paper). Use this expansion in
the energy equation, equation (2), at t=0:

£(r,0) = Eor - (19)

To be able to evaluate this integral, we need to know the scaling. If we use U's scaling,
R = r, we immediately find that to leading order, F(r) goes as r® near the centre. But if
a different scaling had been chosen by U, he would find F(r) going, not as r3, but as
some other power. DJ choose F(r) going as r, and they also choose the scaling in
equation (16), different from A= r. Note that the scaling R = rwill always give F(r) going
as rnear r= 0, if done at a finite density epoch. You have to scale differently from
R = r, at the regular epoch if you want F{r) to go as other than r3.

It is important to realize that different forms of the function F(r) characterize
different Tolman-Bondi spacetimes. After the function F(r) has been selected to have
a particular form, the requirement that the energy density be finite and non-vanishing
on the scaling surface constrains the allowed choices of the scaling. This is clear from
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(19). If we take &(r,0) to be p, as the leading order in a Taylor expansion, it follows that

RN o R® (r,0). So, if Fa r, then the scaling has to be as /3. On the other hand, if F o
r3, the scaling has to be as r. One has to first choose F(r), and then the scaling; not
the other way round.

Thus, the mistake in U's paper is now clear. U, in his paper, has a special class of
Tolman-Bondi models, those with F(r) ~ r® near r® = 0. This class is completely
different from the class selected by DJ, for whom F(r) ~ rnear r= 0, and which class
leads to a strong naked singularity. The objections of U are thus simply not valid, as he
is not addressing the same class of solutions as DJ. By studying his class of Tolman-
Bondi solutions he cannot draw any conclusions about a different class of Tolman-
Bondi solutions.

To make things clearer, let us look at the following example which is a special case
of DJ's work. Take the case

F(n=r. (20)
It then follows from equation (16) that the scaling is

R3/2 = r3/2 | 3_20‘_ Az, 21)

and from equation (17) that

4/3
5 .
a+§r) (a+ 2r)

g(r,0) =p(r) = ( (22)

Thus po = 4/302, p o= —32/908, etc. Note that all the derivatives are finite at the centre.

In this model the density at the epoch t= 0 is Taylor expandable (see also Appendix B),
so U's primary requirement is satisfied. Yet this is an example of a strong naked
singularity. It is interesting to note the following point: equation (2) implies that near r=
R=0, Fa R®, and it again follows that the dependence of F(r) on r will be determined
by the scaling at the initial epoch.

We now return to U's next objection. From equation (16) it follows that in DJ's
model, for all t < o, the derivative dR/dris infinite at r= 0. Thus, from equation (1), it
follows that one of the metric components is singular at r= 0, at all epochs prior to the
formation of the singularity. However, this is not a problem at all, because although the
metric component blows up, the density and curvature invariants are all finite. One is
reminded of the Schwarzschild metric, where at r= 2M, one of the metric components
is infinite, but all the same, this is in no way unphysical, since the curvature is finite.
The coordinate singularity at r=2M in the Schwarzschild metric can be removed by
going to another coordinate system, say the Kruskal coordinates. Similarly the
coordinate singularity at r = 0 in DJ's models can be removed by going to another
coordinate system. This change of coordinates will of course not affect the invariant
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results that the singularity is naked and strong; it will only make the analysis more
difficult.

As a matter of fact, it must be noted that if the gradient R'is calculated, not at a
constant time epoch at the centre, but along a null geodesic (light ray) coming out from
the regular centre at r= 0 in the limit of approaching the origin, it is actually finite at
r=0. This is easily seen from equation (A9) and in any case a more physical thing to
do.

These arguments invalidate all of U's objections. We would like to state at this
stage that U does not have a single valid mathematical/technical/physical objection to
the work of DJ, and Ori and Piran.

5. Critical comments and conclusion

(1) The principal claim made by U, that the singularity in his model is weak, is
completely baseless and leads nowhere. This is because, as explained above, in
order to verify the strength of the naked singularity, one must calculate the growth
of curvatures along the families of non-spacelike trajectories coming out of the
naked singularity. U has not carried out any such analysis for his model and thus
his claim is not supported by any mathematical derivation whatsoever! To illustrate
this point, the correct method for calculating the strength of a naked singularity is
given in Appendix A. Without such an analysis for any given model, no claims on
the strength of the naked singularity can be made.

(2) He also appears to claim that his model is the same as that of Newman (1986),
and that is why the naked singularity is weak just as in Newman's model. Even this
claim is simply not correct. This is because, Newman's model imposes the
condition of evenness on the functions involved, such as p(r). U's model requires
no such constraints and in fact, he allows the first derivatives as well as other
higher order odd derivative terms to be non-zero in his model. Thus, this is simply
not Newman's model. So any conclusions from Newman (1986), including the
weakness of the naked singularity, cannot be blindly applied in U's model. Further,
it should also be clearly understood that Newman has shown the weakness of the
naked singularity only along the radial null geodesics coming out of the singularity.
Whether the singularity is weak also along the non-radial and timelike geodesics,
is still an open question, as stated very clearly in his paper by Newman himself.
Infact, Newman (1986) has made no general claims on the weakness of the naked
singularity as attributed to him by U! Thus, the argument by U, that the singularity
in his model is weak, as shown by the analysis of Newman (1986), is completely
false.

(3) Apart from claiming on the strength of the naked singularity (dealt with above), U
also offers a 'physical interpretation' of the existing examples of strong curvature
naked singularities. According to this interpretation of U, the existing examples are
unphysical because they have intrinsically singular and infinite density at the origin
right at the starting epoch! We point out below the basic mathematical error
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committed by U in arriving at such an absurd interpretation. (Ofcourse, we have

already shown above explicitly, that the starting central density is finite and well

behaved in DJ's model.) In his starting equation (6) of Taylor expandable density

function, it is more than obvious and a basic fact of elementary calculus that the
quantity pq is finite. Subsequent derivations leading up to his equation (8) are

based on this assumption. And yet, towards the end of the paper, in order to arrive

at a 'correct interpretation' he goes ahead and sets py equal to |nf|n|ty in his
equation (8)! What can be more ridiculous than this?

(4) In his equations (6) to (9), U demonstrates the radial dependence of energy
density at the time of formation of the singularity. This calculation has no
connection or any linkage to his main claim on the strength of the naked
singularity. So one would ask what is the purpose of these equations and what do

they show, if any thing?

(5) Throughout his paper, U does not clarify which version of CCC he has in mind.
One has to read between the lines and conclude that U adheres to the version

CCC-N, i.e. he accepts the occurrence of weak naked singularities, but not strong
ones.

(6) Now that it is clear that strong curvature naked singularities do form in Tolman-

Bondi inhomogeneous models with dust, we wish to comment on broader issues.
The philosophy behind the counter examples to cosmic censorship is not that one
should outright accept the occurrence of naked singularities in nature. Rather,
these counter examples will help in formulating and arriving at a suitably provable
version of the cosmic censorship conjecture, if there is one. This point of view has
been emphasized by one of the present authors again and again in several

papers.

Also considering the structure of the equations here, it may well be that for some
region of the the parameter space, the end-state of gravitational collapse is a black
hole, and for another region of the parameter space, a naked singularity. This needs

to be investigated further.
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Appendix A

1. The existence of naked singularity
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In this Appendix, we illustrate the development of a naked singularity in gravitational
collapse of dust from regular initial data. This is done by means of a specific example,
which is a special case of the general class of models treated in DJ.

The inhomogeneous, spherically symmetric collapse of dust is described by the
Tolman—Bondi models, which are characterised by two free functions, F(r) and f(r)
of the radial coordinate r. These functions describe the inhomogeneous distribution of
matter in space, which would then evolve in time (through the Einstein field equations).

For the sake of clarity, we confine ourselves presently to the case f(r) = 0. The
models treated in DJ work with a general form of f(r) and F(r) has the form

F(ry = ra(r) (A1)

where A(r) is a smooth function with A(0) = 0. This amounts to the condition that the

mass function F(r) has a linear behaviour initially for small values of r. It is clear that
the example considered here forms a special case of the general class of models
considered in DJ.

The coordinates tand r are comoving coordinates, where r with nonnegative real
values labels the spherical dust shells; and t is the proper time along the lines
r = const., i.e. the world lines of dust. The quantity R = R(r, {) is defined by setting
A=4nR? where A is the area of the two-sphere t = const., r= const. It is allowed to
make an arbitrary relabeling of the spherical dust shells by r— g(r). Using this scaling
freedom, we fix without loss of generality a labeling by requiring that on the surface
t=0, the coordinate rcoincides with the radius R:

R(r,0) =r. (A2)

(As shown in the text, a different choice of scaling or a different surface does not alter
the qualitative nature of the conclusions.)

The relevant collapse equations from DJ are then simplified as below. Equation (3)
integrates to,

=32 [ (8)™] e

The partial derivatives R'and R'are then written as below :

ST
R'=nP - |“ZLmt| A ' (A4)
Vi ]
- A [1-n t]
R'= 5253 |——+n> (AS5)
2rp2 r
Vi
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where we have put
R(r,1) = rP(r,1), n=n(r) = & (A6)
F(n=rA(n .

As we are concerned with the dynamical gravitational collapse, we take A(r, ) <O.
The space-time singularity occurs when the collapsing shells reach zero radius, and
the corresponding time is given from (A3) as,

oz
-

Our main purpose is to examine whether this singularity could be naked. For that
we examine if the light rays and material particle trajectories (null and timelike
geodesics) could come out of the singularity at t= 0, r= 0, which forms whenever the
initial behaviour of F(r) is smaller than . The equations of outgoing radial null
geodesics in the space-time, with k as affine parameter, are given by,

to(r) (A7)

t .
%—i+ R'K K'=0 (A8)
at K! ,
k=K =R (A9)

where K! =d!/d* and K" =dr/dk are tangents to the outgoing null geodesics. If these
null geodesics terminate in the past with a definite tangent at the singularity (in which
case the singularity would be naked), then using (A9) and L' Hospital rule we get

_  Uim 't _  Jim dt _ Jim .
Xo = t50, r—»0 I t—0, r»0 dr ~t=0, r=0 R (A10)

where X = t/ris a new variable. The function P(r, t) = P(X, r) is then given using (A3)
and (A7) by

3/2
x_ 2__2P

s

Writing Q = Q(X) = P(X,0), which is given by the above equations (A10) can be
simplified to the condition

V(Xp) =0 (A12)

V(X)so+x\/%°-x. (A13)

(A11)

where
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Here A9 = A(0) # 0. The null geodesic equations could now be written in the form

r=r(%, dX R'-X

ar = r_ _ (A14)
This has been analyzed in DJ to show that an infinite family of null geodesics will come
out of the singularity r= 0, t= 0 (making it naked) if and only if (A12) admits at least one
real positive root. Such a condition will be realized for a non-zero measure subspace of
the possible values of physical parameters involved here. When this is not realized,
the evolution will be a black hole. Such a singularity could be either locally or globally
naked depending on the global features of the function A(r). For details we refer to DJ.

2. Curvature strength

We now calculate the curvature strength of this naked singularity. This determines the
physical seriousness of the naked singularity. For example, if no curvature invariants
diverged in the limit of approach to the singularity, it would not be considered to have
any physical implications but would be regarded as a mere mathematical pathology.
In order to be physically meaningful, the naked singularity must be a curvature
singularity. Two main distinctions are as below :

Strong curvature singularity : The energy density v = R,,K°KP diverges as 1/k2 or
faster in the limit of approach to the naked singularity along the trajectories coming out
from the same; where k = 0 at the singularity.

Weak naked singularity : This is given by
RopKeKP o 1/k

and in this case,

i
o k2 RgpKaK? =0.
We now show that the naked singularity in the class of dust collapse considered by
DJ is a strong curvature singularity. The quantity K2 yis given by,
K2F'(K')2 K2F'(K!')2

k2W= kzFrabKaKb= RZRI = rZPZRJ

Note that in the limit k - 0 we have t — 0 and r — 0 and the quantities F'and R'tend to
finite limits A, and X respectively. Thus, we need to examine the limit,
lim L, A lim [kK' 7?2
k-0 k —XO k—0 [ R ] (A15)

Note that the tangent vector component K!could be blowing up in the limit of approach

to the naked singularity. Then, the use of (A4, A5) and (A8, A9) and some algebra
gives using the L' Hospital rule,
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lim lim R’
k—0 F?1/Kr = RR'+RR'+R’
Again a simplification using (A4, A5) and noting that lim P = P(X;, 0) = Qy is finite (whichr

follows from (A11) gives,

lim ., A0 Xo
k0 ¥V = (hor2)2Q2 0
where
Ao Xo
h0+2 = 202 +1.

It follows that this is a strong curvature naked singularity.
Appendix B
On the regularity of density function in DJ

Here we discuss the regularity and smoothness properties of the density g(r, {) in the
models of DJ with their original scaling R = ron the surface t=0, and with F(n) = rA(n, Ay
=A(0) #0. Calculating ARand R’ from (5) and substituting in (2) gives,

Fl

(3\/— ’3/2’:) 2 Fre

e(t, r) = (B1)

\/T:

Since F(0) = A is finite and non-zero, it follows that a singularity forms at r= 0 at a time
t = 0 when A(r) goes slower than r2 near the center r= 0. The central density in this
case is given by,

]

&(t,0) =22 (B2)

which is seen to be finite at all earlier epochs, blowing up at t = 0. The gravitational
collapse in this case starts from any of the earlier epochs f; < 0 with a finite density

distribution and evolves into a naked singularity at t= 0.

To illustrate the behaviour of g(r) as a function of ron any such earlier epoch (say

= —1) from which the collapse starts, we choose a special case F(r) = r (which is
consistent with the general models considered by DJ). Then (B1) gives,

1

811 =7z mal (B3)

The derivatives of g(r) with respect to rare given by,
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, o =2(r+1) L, . 8(r+1)? 2
e(-1.1) = zi2 a4y’ € (=10 =(24274372)8 ~ (rZ+2r+3/4)?2

etc. It is seen that these are all finite and continuous at r=0. Thus g(r) is a regular,
Taylor expandable function on the initial surface from which the collapse starts.

A clarification needs to be made on a reference to non-analytic property of the
density function, given in the paper of DJ. They make the following statement: ‘It is
seen that the density function is non-analytic, though non-singular, at r= 0 at these
earlier epochs'. This is to be understood in the following sense. Even though the
density is finite and Taylor expandable in rat any constant time epoch before the
singularity, the derivatives &', " etc. blow up in the limit of approach to the singularity.
To see this, consider again the special example discussed above, in which case we
have,

1

e(t,r) = — 3.
r2—2rt+zt2

=2(r—1t)
(r2—2 r1‘+%1‘2 )

e'(t,r) =

efc.

It is seen that at r=0, £' blows up as t-2 as t » 0, and so will other higher

derivatives. This is the onset of non-analytic property just before the occurrence of the
naked singularity at t= 0.
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