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Abstract. The Hanle effect provides a diagnostic tool for weak mag-
netic fields which do not give rise to a measurable Zeeman effect, such
as turbulent fields or magnetic canopies. The lines which are sensitive to
the Hanle effect are formed under non-LTE conditions, by scattering of
photons.

Inversion methods for such diagnostics require to solve the non-LTE
polarized transfer equation for a large number of magnetic configura-
tions. Fast numerical methods are thus highly required. We present an
Approximate Lambda Iteration method to treat the Hanle effect for lines
formed with complete frequency redistribution. Referred to as PALI-H,
this method is an extension of ALI methods first developed for non po-
larized line transfer. The starting point is to recast the polarized transfer
equation into a vectorial integral equation for a 6-component source func-
tion. We show that the convergence of the method is independent of the
strength and direction of the magnetic field. The method is very fast and
allows to handle any type of depth-dependent magnetic field.

1. Introduction

Diagnostic tools for weak magnetic fields are needed for the study of non-active
regions in the solar photosphere or chromosphere. In the photosphere, there
is now some evidence that weak fields do exist outside magnetic flux-tubes, on
the form of mixed polarity fields (Faurobert-Scholl et al. 1995, Stenflo & Keller
1997). In the quiet chromosphere the expansion of flux-tubes gives rise to weak
almost horizontal magnetic fields forming a magnetic canopy. Those magnetic
configurations are very difficult to detect via the Zeeman effect because of the
magnetic flux cancellation at small scale. But they may be detected via their
Hanle effect.
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Let us recall briefly how the Hanle effect works. Scattering of photons in a
spectral line leads to linear polarization of the reemitted radiation field if the in-
cident radiation is anisotropic. The physical origin is the quantuum counterpart
of Rayleigh scattering by small particules. Resonance polarization is observed
in the solar spectrum in a large number of lines, close to the solar limb (Stenflo
and Keller 1997). Because of the axial symmetry of the photospheric incident
radiation, the polarization is zero at disk center and it increases steeply towards
the limb. The limb-darkening of the photospheric light leads to polarization in
the direction parallel to the solar limb.

In the presence of a weak magnetic field, when the Zeeman splitting of the
atomic levels is on the order of their inverse life-time, the linear polarization of
the scattered radiation is rotated with respect to its non-magnetic direction and
the polarization rate is reduced. This is the Hanle effect. It has been observed
in several lines formed in the low chromosphere, such as the Cal 4227 A and
the SrIl 4078 A resonance lines (Bianda et al. 1998). It may be used for the
diagnostics of magnetic canopies in the chromosphere. In the presence of a weak
magnetic field with mixed polarity as small scale, there is no net rotation of the
polarization plane but the depolarization is not cancelled out. It may be used
as a diagnostic tool for turbulent magnetic fields.

Such diagnostics require to develop inversion codes based on the solution
of the radiative transfer equation for a polarized line formed in the presence of
Hanle effect. Fast numerical methods are thus needed to solve this equation. In
the following part we show how this problem may be cast into an integral equa-
tion for a reduced source function. In the third part, we present an accelerated
lambda iteration technic for solving this integral equation.

2. Polarized transfer equation and reduced problem

We give here the main steps of the derivation of the integral equation, for a de-
tailed description see Nagendra et al., 1998. We consider a linearly polarized line
formed with complete frequency redistribution in a plane parallel atmosphere
with a given weak magnetic field.

In the Stokes parameter formalism the radiation field is described by a
3-component vector I= (I,Q,U)!. Because of the presence of the magnetic
field the radiation field is not axially-symetrical, it depends on the 4 variables
(1,v, 1, ), as usual p = cos @ where 6 is the colatitude of the line of sight, ¢ is
its azimuth, 7 and v are respectively the line optical depth and the frequency.

One can show that in the presence of a weak magnetic field the absorption
matrix is scalar, and that the absorption coefficient is the same as in the non-

magnetic case. The transfer equation for Tis

i _
“d'r -

(¢(v) + B)I = S5), (1)
where ¢ is the absorption profile in the line and (3 is the ratio of the line to the
continuous absorption coefficients, S is a 3-component source vector which is
the sum of a scattering term and of a thermal creation term
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S(rm9) = 1 —e) [ $lw)dv

day . - -
—Pp(u, 0,1, @)1, v, ,¢) + €B, (2)

4
where Pg is the Hanle phase matrix and B is the Planck function.

In order to reduce the problem we first perform an azimuthal Fourier ex-
pansion of the source vector. The same technic was used by Chandrasekhar for
the problem of Rayleigh scattering in a planetary atmosphere. One can show
that, because of the form of the Hanle phase matrix, the Fourier expansion has
no term of order larger than 2, i.e.,

S(7y ) = So(7, 1)

k=2
+ Y [Sk(r, 1) coskp + S_g(r, ) sinky]. (3)
k=1

Furthermore, it is possible to factorize the 7 and p dependence of the Fourier
components. Let us introduce the Fourier vector

S:F = (§Oa§1,§—1,§2,§—2)f- (4)

One can show that . .
Sk (7, 1) = B(u) S (7), (5)

where S,(7) is a 6-component vector depending on 7 only and B is a matrix.
The first component Sy is the same as for non-polarized lines.
The reduced source vector obeys an integral equation given by

- A +oo o -
S.(7) = (1 — &) Hg(r) /0 K(r—7)5.(*")dr' +¢€B, (6)

with
B = (B,0,0,0,0,0)1. (7)

K is a 6X6 matrix kernel independent of the magnetic field on the form

Ky, K2 O 0 0 0
K Ko O 0 0 0
5 1 0 0 Kz 0 0 0
KM=19 0o 0 Kg 0 o0 |’ (8)
0 0 0 0 Ky O
0 0 0 0 0 Ky
K, is the kernel which appears in the 1ntegra.l equation for non-pola.rlzed lines.
Hp is a 6x6 matrix depending on B ( Hp is the identity matrix when B= 0)
Let us remark here that the Hanle effect of the magnetic field appears in the
integral equation as a local multiplication by the matrix Hp.
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3. Accelerated Lambda iteration method

The integral equation (6) for source vector S, may be solved by an iterative
method of the approximate Lambda iteration type. This method is here briefly
described, more details may be found in Nagendra et al. (1998) and in Faurobert-
Scholl et al. (1997). We can write the integral equation in the symbolic form

S.(r) = (1 — )Hp(r)A(S,) + £B. 9)

This defines the Lambda operator which relates the source vector at one depth
point to its values at any depth point in the medium. Its properties are de-
rived from those of the (6x6) kernel matrix given in Eq. (8). We can define a
generalized mean intensity as

J = A(S,). (10)

In order to solve Eq. (9) numerically, we first discretize the optical depth
variable on Nt grid points. The discretized Lambda operator is then a (6 N7 X 6Nr)
matrix operating on the 6 Ny component source vector. Equation (9) is trans-
formed into the linear system

[Is— (1 —€)HpA)(S,) = €B, (11)

where I, is the (6 Nyz6/N7) identity matrix. For simplicity reasons we use the
same notations for the “physical” quantities, such as the source vector, and for
the discrete 6N vectors. We denote by L the (6 N7z6NT) operator on the left
hand side of Eq. (11).

We have checked that this linear system of equations may be solved by an
iterative method of the so-called “block-Jacobi” type. Assume that we know an

estimate of Sy, denoted by §$"), the correction term 85, obeys the linear system

—

L(65;) = eB — L(S™), (12)

the rigth hand term is now the error term. Let us denote by J™ the current
estimate of the mean intensity, the error term is written as eB — (1- e)fi BJ .

The basic idea of the method is to replace, for the calculation of the cor-
rection 65’;, the full operator L by an approximate operator L* which is easier
to invert, and to iterate until the correction term gets small enough to reach
the required accuracy for 5’;. At each iteration step the error term is com-
puted accurately. The mean intensity is derived through a formal solution of
the transfer equation with the current estimate of the source vector. Here L*
is constructed by keeking only the (6x6) matrices A;; at each depth point i,
this is the generalization of the “local approximation” introduced by Olson et
al. (1986) for non-polarized transfer problems. For non-polarized problems the
approximate operator is purely diagonal whereas in our polarized problem it is
a block-diagonal operator, with (6x6) blocks on the diagonal. The correction to
the source function is then obtained at each depth point by inverting a (6x6)

matrix. The method for the computation of L* is described in Nagendra et al.
(1998).
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Figure 1.  Decrease of the relative corrections on the 6 components of
the source vector, without and with Ng acceleration. The medium is an
isothermal slab of optical thickness T' = 2107, destruction probability
e = 1075, The Voigt parameter of the line absorption profile is a =
10~3. The direction of the magnetic field is given by 8p = 30°, pp = 0;
the Larmor frequency in the field, in units of the inverse life time of
the atomic levels, is given by yp = 1.

We show on Fig. (1) the decreasing of the correction terms on the six
components of the source vector, for an optically thick isothermal slab. The
parameters for the magnetic field and the slab are given in the caption of the
Figure. The correction term on the first component S; behaves essentially as
for non-polarized problems, the corrections on the polarized components show
the same decreasing rate for large iteration numbers but they stay one order of
magnitude larger. We recall that the convergence rate is controlled by the first
component and depends essentially on the number of depth points per decade in
the optical depth grid (see Faurobert-Scholl et al. 1997, and Olson et al. 1986).
One important point here is that we have checked that it does not depend on the
parameters of the magnetic field. As in non-polarized problems the convergence
may be accelarated by an Ng acceleration technique.
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