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Summary. A numerical method of solution based on the discrete space theory
of radiative transfer as applied to the transfer problems in an anisotropic
medium is discussed. Two simple applications, namely the scattering in
the atmosphere of a hot magnetic white dwarf and in a plasma slab immersed
in a superstrong magnetic field are discussed. The normal wave transfer
equations for the scattering and absorption of radiation are used for this
purpose. The solutions are compared with those obtained for the non-
magnetic Thomson scattering in the same media. A comparative study is
made of the normal wave and Stokes vector equations for a Zeeman active
gas.

1 Introduction

The solution of the transfer equation in magneto-active media is of some interest in the com-
putation of the spectrum and polarization of light emitted by many astrophysical sources.
There are two approaches to solve this problem. The first consists of solving a system of
coupled transfer equations for the Stokes parameters (/QU ¥)T. This method, which is more
general, is described in Chandrasekhar (1950) and Unno (1956) for the basic scattering and
true absorption problems respectively. For the pure absorption Zeeman lines a number of
methods of solution have been proposed (Unno 1956; Stepanov 1958; Beckers 1969;
Shipman 1971; Hardorp, Shore & Wittmann 1971; Schmid-Burgk & Wehrse 1976; and
Martin & Wickramasinghe 1979, 1981, etc). For a detailed discussion and references on the
multiple scattering Stokes vector transfer equations, and various methods of solution, see
van de Hulst (1980) and, for applications, Gehrels (1974). The second approach, which is
useful for most of the astrophysical plasmas, but less general, is the ‘polarization normal
wave representation’ which is a special case of the general density matrix formulation of the
transfer equation (Ginzburg 1964; Dolginov, Gnedin & Silant’ev 1970; Zheleznyakov 1970;
Lamb & ter Haar 1971, etc.). A slightly different approach is taken in Pacholczyk (1977)
and Melrose (1980). For recent references on the applications of this method see Meszaros
(1984).
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2 Polarization normal wave transfer equations

The radiation polarization density matrix (transfer) equations have been discussed in detail
in Dolginov et al. (1970) for arbitrary anisotropic media. For the general arguments leading
from these equations to the normal wave equations see Gnedin & Pavlov (1974). The
transfer equation for the intensities of elliptically polarized normal waves (j = 1, extra-
ordinary wave and j = 2, ordinary wave) is given by

d[ ]k(s E)

p—r=— ,1,+Zf

! ’ B
iz I (&) at' + k]-E. (1)

Azimuthal symmetry and coherent scattering are implied. u=cos 8 € (—1,+1), 8 is the
angle between the ray and the Z-axis, the symmetry axis of the medium. & = cos { where
¥ = angle between the ray and the magnetic field, and ¥ is the field azimuth in an orthogonal
system with the ray going along the z-axis. p is the mass density and o; = (0; + &;) is the mass
extinction coefficient. doj (&, £')/d¢ is the azimuthally symmetric differential ‘mode conver-
sion scattering’ coefficient (j < k) and k; B/2 is the thermal emission coefficient with B the
Planck function.

The cold plasma scattering cross-sections have been calculated by a number of authors
(see e.g. Canuto, Lodenquai & Ruderman 1971; Gnedin & Sunyaev 1974a; Ventura 1979,
etc.). We employ the expressions in the form given by Kaminker, Paviov & Shibanov (1982)

doj(§, &) _ E(NeUT) o
dk 4 Z aaa(é)aa(g) )

a=-—1

where £, = (1 + a\/u); Vit = wo/w = eB/mew and the scattering amplitudes are

1-¢ . .
a()=——(+Pp) al()=u[1+8> 2P PLO-£7)], 3)
satisfying the completeness and transversality conditions (Ventura 1979)
Joy - L TE / ¥V
Y ai®)= ;Y a®=1-8; Y ad®=1, Q)
j=1.2 2 3,2 a=-1
lq| sgn (q) 1-£ w,

) . i = . ¢
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The ‘integrated’ scattering coefficients are given by

o\ &
&)= L ou® =08 +o0p(t) = ( : ) Y 2de), (6)
k=1,2 P Ja=-1
The absorption coefficients for the normal waves are k; = kbf + kff +.... We give below

only those which are important for our purposes.

2.1 FREE-FREE ABSORPTION COEFFICIENTS

The mass absorption coefficient for an ion of charge (Ze) is given by

1 +
K =— % 2@, (7

Pa=-1
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where @ is the true linear absorption coefficient for the ath component, of the cyclic pro-
jection (of the medium polarizability tensor) e’ () (Kaminker et al. 1982).

ﬂ*”=§**>sfl=vJV}
§O=gy=my

where the longitudinal (wrtB) and transverse effective collision frequencies are given by (see
Pavlov & Panov 1976; Ventura 1973; Nagel & Ventura 1983)

®)

2m\Y? N;Z%e* kT
VII,L=(';1') W P (1 —exp [—(hw/ET)]) 81,1 )]
The radiative width
v, = 2€* W 3mc’. (10

The magnetic Gaunt factors g, | exhibit resonances at sw¢ (s =1, 2, 3, ...). In the present
computations we have employed g ; = g, the non-magnetic Gaunt factor, which is a good
approximation for w, < w.

2.2 BOUND-FREE ABSORPTION COEFFICIENTS

They also undergo resonances at sw (s=1, 2, 3,...). For weaker fields (w. < w), an
expression given by Pavlov (1973) in the hydrogenic approximation can be used

kobf 3( w 3/2
bfreny [ - c )
h@(p)buﬁﬂ.mwmd, (11)

where k°T is the zero field linear absorption coefficient.
dw _Aw—ch_[hw—En 1

—]~N=D—N, (12)
how, 2

X = )
We We

where N = Integral (D). Therefore 0 <x<1.

I, w /kT (13)
a= W.=— —_—,
Di e w Mc

C

M = mass of the emitting atom. The profile function f(x, ) which is a periodic function
with period unity is given by

+1

| e
fx,a)=—= Y. y Y2 exp [— (x —y — k)*/a*] dy. (14)
ANT g=—0d0

In the dipole approximation the absorption amplitudes A;(§) are given by
A(H) =84 A (®)= 1. (15)
E,=Iy(1 —1/n?), Iy =~ 21.36 x 107" % ergs, (16)

where n is the principal quantum number. In our case (the Paschen continuum), n = 3. In
hot white dwarf atmospheres, this source of opacity does not contribute significantly to the
continuum polarization. The H ~ion opacities for normal waves have been calculated in the
same level of approximation by Pavlov (1973); these are useful for cool white dwarfs.
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The Stokes parameters can be computed from the normal wave intensities by using
(j=1,2)

I=Y I  Q=YPply U=YPyL=0;, V=PI (17)
J i J J
for azimuthally symmetric problems, P{] =0,U=0.

3 A brief description of the method of solution

We indicate below how a simple computing algorithm can be derived for solving the normal
wave or Stokes vector transfer equations in a magnetized plasma. In this treatment, which is
an extension of the discrete space theory of radiative transfer (Grant & Hunt 1968a,
1969a,b; Peraiah 1984), the difference equations are derived by a discrete ordinate method
and solved. First we write the transfer equation (1) in matrix form, as

di(— +1 ,
SR A(WI(p) — {C) f P(u, u)T(W)dp' + (1 — &) Ay(u)B(w) }
-1
— @ P, (1, wo)L,, (o) exp (— 7/uo), (18)
dI(— +1
—u Cw =A(—wI (—u) - {Fo f P(— i, W) (W)l + (1 — @) Aa(—u)B(—u)}
dr -1

—w P*(—.U, I-lo)L,= (10) exp (—T/uo), (19)

where ue (0, 1), and B(u) is taken as generally anisotropic.

The last terms on the rhs in equations (18) and (19) represent the contribution to the
source function due to the directly transmitted beam I (o) in the direction g incident on
the free surface (7=0) of the medium. Equations (18) and (19) represent the rays in the
upper and lower half space of angles respectively, wrt the optical depth scale, increasing into
the atmosphere. In the continuous case, each one of the equations above is a matrix
equation with A and P being (2 x 2) matrices and I and B (2 x 1) vectors. The optical depth

scale dr=—(k“+ op)pdZ is defined wrt the zero field extinction coefficient. The A
matrices are defined as

+ - — + Ot +
A =GAIt(1-@)AL =T A*=A(zp), (20)
0'T+k("
1[of 0 . [k 0] A=A,
A: =»—-—[ ' +]; A; =|: 1 +]’ + a( u) } (21)
orl0 o3 0 kol Ag= Az

‘s’ and ‘a’ denote the scattering and true absorptions & is the albedo for single scattering
(0 < @ <1). The scattering phase matrix defined as

1 doj(§, E’) 1 d [o,(¢, E’) 012(§, 2’)
P . ! = - _—] = — [ , , ], 22
W= i o dtlon® ) onest) 22
satisfies the normalization
1 +1
Ef P(u, u)du =1; —l<su u'<+1. (23)
-1
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This scattering integral source term gives rise to a diffuse radiation field. The second term in
the flower brackets is the ‘internal thermal emission’ source term. The intensity and the
anisotropic thermal source vector are written as

Il(iu)] B(iu)/2], Ii=l(iu)}
I, (£ 1) B(xw)2 B* = B(%u)

; (24)
Now, the ‘discrete ordinate’ forms of equations (18) and (19) are written, in matrix form, as

o o T T |

ar
Md—= AT — B[P GI'+ P GI'] + (1 — @) A;B*}
T

+

— @PL" I exp (— 7/po) (25)

.
M= AT - (B[P GI* +PGI ]+ (1 — &) A, B}
T
— &P exp (— 7/o), (26)

where the signs in the superscript indicate the signs attached to | u| in the respective physical
quantities.

M 0 G' 0 M = (M) = u:6
M=[ 7]; G=[ I]; ’ (Mjx) = ]k}]’,k=l,2...J, Q7
0 M 0 G G' =(Gjx) = cjdjk

(28)

b

P**—[PH H]. P = Pag(kj: 1) = Pog }a,6=1,2
;.-{ P;; ;B=Paﬁ(/-“]"#k)=P&?3 “j9.u-k>0,

with similar expressions for P, P* ~and P ~*. J is the order of the quadrature formula which
is used for angular discretization. Hence all the matrices are now of dimension (2Jx 2J) and the
vectors are of dimension (2J x 1). The matrices P}~ and P~ and I’ are given by

P;’"’ = [ 11* i’i*]’ ;;—3* = POLB* (I‘ip ”Oékl) = ;!—B* }C‘/" B= l, 2’ (29)
Pai 22 wbx = Pogs (— Mjs HoBx1) = Pops) uy>0
L= L) r1,  Lu(po)bil™,  k=1,2,...J.

Integrating the matrix equations (29) and (30) over a ‘cell’ bounded by the planes 7, and
T+ 1, WE get

M., — 1;1] = ATA;1+1/2 I:,+1/2 — At

— ++ ~1+ +- - — ++ +
X {@n+12 [Prr12Gln+ 12 T Prvy2 Glns 1] + @ns 2 Pinera Lk

exp (”‘ 7'n//JO)
X — 7

5 lexp (— A7/uo) + 11+ (1 — Bpa1/2) Ag nrv2Brera}s

(31)
—MI[L — )= ATA 12 e yn — AT

— -+ + - - - -+ +
X {A@n+12 [Prs128 12 ¥ Pru12Glurrol + @nv12Pinsrals

exp (— 7n/Mo)
g T

> [exp (— AT/uo) +1] +(1—G’n+1/2)A;1,n+1/2B;t+1/2}’

(32)
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with I = F(7,); In 41 =1(7,+1), 7 = 1,2, ... N, where N = number of shells into which the
atmosphere is divided. The suitable cell averages based on the diamond scheme (see Grant &
Hunt 1968a) are explicitely used in writing equations (31) and (32). The subscript 7 + %
denotes such averages, for example @,; +1, = (&0, +1 + @Wy)/2 and so on. The last term is written
by cell averaging the dilution coefficient exp (— 7/uo) of the direct beam I over the given
cell. We take AT=(kC+0pn+v Pnsu@n—Zns1) =Tne1—Tn. Making use of the
expressions

:+1/2 = 1/2(I$+ 1t Irl;), (33)

we can re-arrange equations (31) and (32) in a canonical form as

+

[IZ+1] [t(n +1,n)  r(nn +1)] [I; ] + E:n+1/2-

I, rn +1,n)  tn,n+l)

=

(34)

n+l
n+1/2

This straightforward, but tedious elimination can be cast in the form of a computing
algorithm which we have given in the Appendix. The operators r and t appearing in the
canonical form (34) have a physical interpretation as matrix operators for diffuse reflection
and transmission respectively, of the radiation incident on the shell between the planes 7,
and 7, . Similarly the vector operators &,, , 1, represent the radiation which emerges from
the surfaces of the shell due to internal emission sources plus the diluted directly transmitted
beam.

A computational note: The procedure is based on the computation of r, t and X opera-
tors of all the N shells, into which we have divided the medium. We have explicitly assumed
in deriving equations (31) and (32) that the stability and non-negativity of the cell operators,
and hence of the specific intensity vectors, is assured, for a value of the shell thickness
AT < Teig- Tent 1S the ‘local critical optical depth’ which is actually calculated by requiring
that $*7>0, s >0 and A®*> 0. For a large class of scattering problems one can use the
expression

. 2y
(resin = Min| ———H ], G9)
Y [1 _wn+1/2Pn+1/2(“ja /Jj) C]-]

to compute this value. If A7> 7.4, the shell is further sub-divided, and ther, t and &
operators of the composite thick shell can be generated by a fast doubling algorithm (Grant
& Hunt 1969b). A convenient test of the accuracy of the solution is offered by the
requirement of ‘global flux conservation’ — the outgoing flux should equal the incident
flux for a ‘conservative’ scattering atmosphere (@ = 1). It is shown in Grant & Hunt (1969b)
and Peraiah & Grant (1973) that this criterion is always satisfied provided care is taken to
ensure that the scattering phase matrix is normalized to a high degree of accuracy. Con-
sequently, it is preferable that a finer angular discretization is employed, particularly for the
strong field scattering phase matrices which are highly anisotropic. A complete discussion
of these aspects, namely the spatial and angular discretization and flux conservation in the
finite difference schemes, can be found in Wiscombe (1976a,b). Since the recursive
algorithm used for computing the internal and emergent radiation fields is the same as that
given in Grant & Hunt (1968b) and Peraiah (1984); we do not repeat them here. However,
ther, t and X operators should now be computed from the algorithm given in the Appendix,
along with the relevant boundary conditions which are specified based on the problem.
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4 Useful limiting cases and applications

4.1 ZERO FIELD LIMIT OF THE COLD PLASMAa NORMAL WAVE TRANSFER
EQUATIONS

This can be obtained by substituting the magnetic field strength B=0 (1 =0: g = 0: Pé =0;
P{,= Fl;t,=1,a=0, 1, j=1, 2). Since there is no preferred direction in the medium
which is isotropic, we can take £ = u. The normal waves I; , =(/ ¥ V')/2 are now circularly
polarized, with the Z-axis, normal to the atmosphere, being the physically distinguished
direction. From the normal wave equation (1) we finally get

o o () I PR | A

xdu — (1 — @) [ﬁ]- (36)

Notice that these equations can also be obtained from the Stokes vector equations of
Chandrasekhar by taking /; .= /2 in the azimuth-independent part of the phase matrix. The
first equation is simply the transfer equation for Rayleigh phase function (see Chandrasekhar
1950, p. 17). So this case can be used as a check on the correct programming of the
algorithm, since the tabulated solutions for this standard problem are available, e.g. van de
Hulst (1980).

4.2 LIMITING CASE OF SUPERSTRONG MAGNETIC FIELDS

If we have a situation where w < w,, for example the optical range and the magnetic field
B> 10® G, the normal waves are characterized by a large linear polarization over a wide
range of angles £. For this case (u > 1; g » I;PJQ =F1; P, =0;ts;=0,80=1;7=1,2), we
get the following transfer equations

1,
dh(w) ~0, or I, = constant, (7
dar
dl 3 +1
u 25.“) ~2(1- &) L(w) - "_JZ f (1-E)(1 =) L(E)ay
—1

B
~(1-®0- 22)5, (38)

£=E(), £ =& (). It is interesting to note that the ordinary wave equation (38) is indepen-
dent of the field strength. In particular, for quasi-transverse propagation, the electric vector
vibrates in directions almost parallel to the field lines, which is responsible for the little
influence of the field on the electron oscillations. The absorption and scattering coefficients
are nearly equal to their field-free values. As far as the extraordinary wave is concerned,
these coefficients become extremely small compared to the ordinary wave. Therefore the
radiative transfer hardly changes the value of [;, which remains constant according to
equation (37).

4.3 POLARIZATION OF RADIATION IN THE ATMOSPHERES OF HOT MAGNETIC
WHITE DWARFS AND MAGNETIZED NEUTRON STARS

Recently two hot magnetic white dwarfs have been discovered by Liebert et al. (1983). In
the atmospheres of such stars, scattering plays a significant role at lower optical depths. In
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weaker magnetic fields (w, < w; B~107 G and optical wavelengths), the transfer coeffi-
cients do not differ much from the non-magnetic values. So the polarization is in general
very small, and p ~ ¢2.

In Fig. 1 the angular distribution of the emergent /, p and g are shown when isotropic
radiation is incident at 7, given by / (Tmax) = B(Tmax)/2 and no radiation is incident on
the top of the atmosphere; these are the boundary conditions. The angular distributions of
I are almost similar for all the cases, namely ©p =0, 7/4, /2, with the emergent intensity
in general increasing by a very small amount (~ 1 per cent). But p and ¢ are more sensitive
wrt the angle ©g. The angular distributions for & =0 and & = @(7) do not differ very much
because the ‘partial” angular dependence has already entered through k; in the former case
also. The effect of external illumination [Z7(7=0)# 0] on the free surface along with the

1.20

1.04

-0.8 <
-0.6

0.4
N\

-0.2

0
[

\,\ %
00 ll‘T"'rlllll

.0 0.8 0.6 0.4 0.2 0.0
H

Figure 1. Angular distribution of the emergent intensity I (in the units of B (Ty), Ty = surface tempera-
ture), percentage linear polarization p(=Q/I) and circular q(=V/I) polarizations computed using a
realistic model atmosphere of a hot pure hydrogen white dwarf (Terg = 50000K, log g = 8) taken from
Wesemael ez al. (1980). The field strength is set at B=5X10° G. An eight-point Gauss quadrature is used
in the angular discretization. The transfer equations are integrated up to 7 =22, Full lines: (@ = 0),
where ©p is the angle between the field B and the normal Z to the plane parallel atmospheric layers. Dot-
dash lines: (©g = n/4), dash lines: (®g = n/2). The dotted lines represent the special case of the magneto-

absorption (& = (). The intensity distributions for ®p = 0 and ©g = n/4 are not resolved in the adopted
scale,
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Figure 2. As Fig. 1, but showing the effect on I, p and ¢, of an external illumination on the top surface
7 =0, along with an input at 7 = r,4. For all cases, @g = 0. Full lines: an isotropic low-temperature
irradiance given by Ij(u) =B(T,)/2,j=1, 2. Dashed lines: an external illumination distributed as cos @,
ie. Ij(w)= [B(T)/2]u, u=cos6. Dot-dash lines: a high-temperature external irradiance Ii(w) =
[B(T=175000K)/2]u, an arbitrary change in the temperature gradient obtained by enhancing the local
temperature continuously, from 1 per cent at 7=10"* to 11 per cent at 7 = 0, thus changing the source
function gradient.

inner boundary condition is shown in the Fig. 2. For isotropic illumination, p is enhanced
by a large amount, particularly for transverse directions (@ =0; 6 = 7/2), while ¢ is only
slightly reduced. For an anisotropic unpolarized diffuse external irradiance (not the direct
beam), the value of p increases, but its relative importance near the limb is suppressed
because of the angular dependence of the incident radiation, which dominates that of
the emergent radiation field. g increases near the limb for the same reason. The effect of
altering the normal ‘source function gradient’, by irradiating a high-temperature ambient
radiation at 7=0, is again larger on the p values in the transverse directions than on q. In
general, the circular polarization ¢ is proportional to the ‘temperature gradient’ in a high-
temperature atmosphere, unlike the case of a cooler medium where it is proportional to the
radiative flux gradient (see Gnedin & Sunyaev 1974b; Kaminker et al. 1982).

In Fig. 3(a) we have shown the relative intensities of the extraordinary (ext) and ordinary
(ord) modes, for a ‘self emitting’ plasma slab whose parameters are representative of a polar
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Figure 3. (a,b). The directionality of the normal wave intensities I]-/B' (normalized to their values at
u = 0.87 in order to show on a linear scale), p (= Q/I) and q (= V/I) of the radiation emerging from a
‘uniform’ self-emitting plasma slab (no inputs), having the following physical conditions: T=10% K,
(hw/kT) =1; (hw/hwe) = 0.2; Ne =102 cm™3. The total optical depth of the slab is 10°.

cap emitting region of a magnetized neutron star. The ext-mode dominates because of its
larger mean free path (smaller ) over the ord-mode. But more important is the effect of
mode conversion scattering, by which the ordinary photons enter the ext-channel and
escape easily. This process is effective because the medium is optically very thick resulting in
large mean number of scatterings. For this reason, p and ¢ [Fig. 3(b)] depend strongly on
the thermal structure of the medium and the details of transfer, than on the cross-sections of
the normal waves (see Meszaros & Bonazzola 1981). Fig. 4(a) corresponds to a physically
identical but relatively thin slab, and hence I;(u) = [o;(1)/u] contrary to the optically thick
case. The ord-wave intensity dominates because large absorption ensures large emission, and
particularly because the number of scatterings is smaller in this case. Clearly, the radiation
field ‘reflects’ the strong angular anisotropy of the cross-sections, rather than the transfer
effects. p and g nearly follow the same pattern [Fig. 4(b)] but the strongly linearly-
polarized ord-wave dominates. A steep reduction in the cross-sections for photons travelling
parallel to the field (Canuto et al. 1971) is responsible for the sharp intensity maximum, the
‘pencil beam’ (of half width ~ 20°) in Fig. 3(a), as well as the ‘hollow pencil beam’, an
intensity minimum in Fig. 4(a), for very small angles of propagation. Unlike the case of
magnetic white dwarfs, p is very strong in these objects (see also Kaminker et al. 1982). For
an irradiated magnetized slab, the results are quantitatively different. This polarized beaming
(directionality) of radiation is useful in constructing the pulse shapes of X-ray pulsars,
exploiting the strong dependence of the directional diagram on w/w, and £ (see Nagel 1981;
Meszaros 1982 and Silant’ev 1982).

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1985MNRAS.214..203N

r T98EMNRAS, 2147 203N

Radiative transfer equation in a magnetized medium 213
T T | T T T T T T T
(a) P&9
3.6} — 36 .
3.2 - 32 -
I(p)
B
2.8 056 28 —{56
24 -1048 24 —148
I(n) 20 040 20 40
I(u~87)
1.6 —032 16 32
pT
1.2 -F0-24 12 24
0.8 o1 8 186
0.4 —0-8 4 -8
0.0 1 i 1 L 0.0 0 0
1.0 08 06 04 0.2 0.0 1.0 08 06 04 02 0.0
M M

Figure 4. (a,b). Same as Fig. 3 except the total optical depth which is now taken as 10. The scale on the
left refers to normal waves. The angular distribution of the intensity components I; /B’ (dot and dot-dash
lines) computed for the non-magnetic case, with optical depth 10, is also shown. The scale on the right
refers to these results. To obtain a maximum polarization, we have taken =1 (i.e. conservative scatter-
ing, no internal sources), and have given an input ; , = B'=B(T)/2 at the lower boundary. The linear
polarization pt (= (I; — Ip/U; + Ip] for this Thomson scattering case reaches a maximum of approxi-
mately 10 per cent for u = 0. The ‘steeply rising’ curve corresponds to the case when this slab is irradiated
‘normally” on the free surface by a radiation field of intensity Ij ; (u~1) = B', again a choice producing
maximum polarization. The intensity curves of this case cannot be shown in the adopted scale.

The (conservative) scattering in a non-magnetic slab of the same thickness gives rise to a
smooth angular dependence for the emergent intensities /; , and the linear polarization p
(see Fig. 4). When this slab is illuminated on the top surface (7 = 0) by a normally incident
(u=~1) diffuse radiation field, a large amount of linear polarization can be obtained with a
steep increase near the limb. A grazing incidence for example produces a negative p.
However, the detailed structure of the azimuthally dependent radiation field is qualitatively
different from the azimuth-independent case, since in the former case, the coupling of p and
q is stronger. For computing these later results, we have used Chandrasekhar’s equations
(1950, p. 43) for Rayleigh scattering polarization.

5 Solution of the Zeeman line transfer equations and test cases

Now we shall attempt to understand the advantages or otherwise of the normal wave and
Stokes vector methods for this class of problems. The cold plasma normal wave equations
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for Zeeman lines can be obtained from equation (1) by taking w =0,
B
11 —_
dl; ' ( B) d [11] [kl 0 ] 2 (39)
—_— . s — — . Or — =
Har 75 Yol o ok B
12 —_—
2
where, now
1 +1 . +1 .
O=" L G KO (H)= Y Ta(w)ah(®), (40)
a=—1 a=-—1

t,, being the eigenvalues of the ‘atomic’ polarizability tensor. Explicit expressions can be
found for T,(w) and the line transfer coefficients in Dolginov & Pavlov (1974) and Pavlov
(1975). The boundary conditions are

B(r 1 0B (1) oT (7
Iy ) = ) [lwﬁ], B= [ " ()]. (41)
2 k; B(Tmax) LOT (1) o7
The Stokes vector equation for the Zeeman lines, in the usual notation, is
I Ny n O ny {|{-B
d Q| |n nf —pr O
p— =|"e (42)

dr |U 0 PR M1 —Pw
|4 ny 0 Pw NI

= @ ©

For further details regarding this equation, see Wittmann (1974); Martin & Wickramasinghe

Table 1. Unno atmosphere with a linear source function B =1+ 0.27 for the
given values of constant opacities ny and np=n;=1.

PR = 0; oy
n. =1 I
ne = 1.1 I
Q
A
n. = 2 I
Q
\%
Ny = 1000011
Q
A
Pp = 1.5; oy
n. = I
Q
U
v
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Runge-
Kutta

= 0; U=0

1.16000
1.15427

.00190
-.00521
1.12566

.01169
-.03209

= 0.75
1.12256
.00855
-.00836
-.02482

Martin &
Wickramasinghe

1.16000
1.15445

.00190
-.00521
1.12585

.01169
-.03209
1.08000

.02738
~-.07517

1.12276

.00855
-.00836
-.02482

Stokes

vector
represen-

tation

1.16000
1.15445

.00190
-.00521
1.12585

.01169
-.03209
1.08000

.02738
-.07517

1.12276

.00855
-.00836
-.02482

Normal
wave
represen-
tation

1.16000
1.15434

.00190
-.005621
1.12585

.01169
-.03209
1.08251

.02825
-.07757
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(1981, 1982); Nagendra & Peraiah (1984). The boundary conditions are given in Stenflo
(1971), and Martin & Wickramasinghe 1979, p. 886.

Test cases: For a discussion of the accuracy of the solution method, we have selected
some test cases from Martin & Wickramasinghe (1979), which has to be seen for details of

Table 2. A grey atmosphere, temperature structure 7 = T, (0.757 + 0.5)"* for
different constant opacities ny and np =n; = 1.

Runge- Martin & Stokes Normal
Kutta Wickramasinghe vector wave
represen- represen-
tation tation
PR~ 0; Py 0; U=0
ny = 1 I 1.66270 1.66320 1.66378 1.66328
UM = 1,1 I 1.64428 1.64481 1.64535 1.64487
Q .00630 .00629 .00631 .00630
A -.01730 -.01728 -.01732 -.01730
Ny = 2 I 1.54135 1,54196 1.54228 1.54189
Q .04153 .04150 .04158 .04150
\' -.11401 -,11391 -.11415 -.11406
Ny = 10000l I - 1.33161 1.33160 1.33888
Q - .11350 .11359 .11499
\ - -.31157 -.31160 -.31714
PR 1.5,pw= 0.75
n, = 2 I 1.53306 1.53375 1.53405 -
Q .03466 .03464 .03468 -
U -.02477 -.02476 -.02480 -
\ -.09218 -.09212 -.09226 -

Table 3. A realistic model atmosphere from Wickramasinghe (1972), T, =12 000 K
for 7-dependent opacities np =my =n withn=0.2+7.

Runge- Martin & Stokes Normal
Kutta Wickramasinghe vector wave
represen- represen—
tation tation
PR 0O; oy = O; U=0
ny = in I 2.98068 2.,97477 2,98229 2.97047
ny = 1.1n I 2,95500 2.94920 2.95658 2.94474
Q .00879 .00875 .00880 .00870
vV -.02412 -.02403 -.02415 -.02417
n, = 2n I 2.79155 2.78625 2.79293 2.78140
Q .06473 .06453 .06481 .06471
vV -.17770 -.17713. -.17792 -.17764
ny =100001n1I - 1.98794 1.99154 1.99295
Q - .33778 .33911 . 34051
A - -.92722 -.93090 -.93460
PR = 1.5; Py = 0.75

n, = 2n I 2,78459 2.77945 2,78606 -

Q .05787 .05809 .05828 -

U -.06609 -.06537 -.06598 -

V -.13551 -.13541 -.13586 -
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Table 4. Accuracy and specific times ¢ (in seconds) on IBM 370/155, required for obtaining
a solution (IQUV)T. For all the cases u = 0.8, £ =0.7, cos 2x = 0.6.

Positions Unno/ Beckers/ Variable DSM-
exact RK step RK Stokes
Inside the line: Unno I 1.12276 1.12276 1.12268 1.12276
T el @ .00855 .00855 .00852 .00855
p:= }75 t R U -.00836 -.00836 -.00837 -.00836
vV -.02482 -.02482 -.02476 -.02482
t  0.05 40 10 0.9
Inside the line: Real I - 2.78459 2.78657 2.78606
atmosphere.n =n,=mn, - .05787 .05768 .05828
ne=2n,m=0. 24T, 015, -.06609 -.06585 -.06598
Py~ 73 v - -.13551 -.13535 -.13586
¢t - 40 10 0.9
Continuum: Unno atmo- 1 1.16076 1.16076 1.16041 1.16076
sphere B=1+0.27, n =1, _ 00004 -. 00004 -.00004 -.00004
np=+93,n, 51045002275, 4 _ 00016 -.00016 -.00016 -.00016
py= —-01 Vv -.00508 -.00508 -.00505 -.00507
t 0.05 40 7 0.7
Continuum: Real atmo- I - 2.60191 2,60171 2.60125
sphere n =1+.1T,n)=.95+ . _ -.00036 ~.00036 -.00036
+1067,n =1.04+.09527,  ,  _ -.00092 -.00091 -.00091
PR= =273, o= =01 v oo -.02641 -.02634 -.02630
t - 40 7 0.7

Martin—Wickramasinghe (MW) and Runge—Kutta (RK) solutions. Equations (39) and (42)
are solved by employing the discrete space method (DSM) of Section 3, replacing & =0, and
using 7 < T = Min (2 MA™).

The solutions obtained in both the Stokes vector and normal wave representations are
fairly accurate, but the accuracy of the latter depends on the field strength and the positions
in the Zeeman components, unlike the former. Beckers’ (1969) method which is basically an
RK scheme offers the most accurate solutions for the weak lines. The variable step RK (see
Landi Degl’ Innocenti 1976) is faster. We have used a step size criterion based on physical
arguments, given by the above author, with an accuracy index of six (an accuracy up to
107%). The average computing times (in seconds, see Tables 1—3) to obtain a solution
(IQUW)T are: Beckers/RK (36), variable step RK (9), MW (0.35), DSM-Stokes (0.8), DSM-
normal wave (0.5). For scattering solutions (with J=7), the time required is 3 min for
7=10 and 7 min for 7= 10>,

6 Conclusions

We have described an explicit numerical scheme which is useful in polarization transfer
problems.

For weaker magnetic fields, the spectra and polarization of hot white dwarf atmospheres
do not differ much from the results of magneto-absorption theory, because of the large
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densities involved. This is not so in very strong magnetic fields and/or very hot plasmas, such
as are found near accreting magnetized neutron stars, because of a strong anisotropy. Never-
theless even for weak fields a larger amount of linear polarization can be generated, in
irradiated atmospheres, or by changed source function gradients. The circular polarization is
rather insensitive to these changes and depends mainly on the field strength and its geometry.
These preliminary results are useful in understanding the basic features of the polarized
radiation fields emitted by these objects.
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Appendix: Computation of transmission and reflection matrices and source vectors

Define
Q% 1/2= @ne12Pri12G; 0,7 12= @ns12Pre12Gs

12~ Ons+12Pn+1/2 Gl ne12= One2Prv126 (A1)
and then
§T=M— 1/2 Tner2(Ans vz — Qul1); §= 1/2 Tnev2 Qnivz
S =M- 1/2 Tnevz2 (Ans 12 — Qua12)s S = Tne12 Qe vz (A2)
and

A'=[M+ 1/2’rn+1/2(A;1+1/2 - Q:z:uz)]_l; A=[M+ 1/2 T2 (Ans1a — Qns 1/2)]_1- (A3)
Write

rrT=A"S"T, r =4S’ (A4)
and

th=[1- "], t=[1-r"r]7 (A3)
then, the transmission and reflection matrices are

tn+1,n)=t" [A'S™ + " r']; r(n+1,n)=2tr "A'M;

tn,n+ )=t [AS T +r '] r(n,n+1)=2t"r " AM (A6)

and, the source vectors are
E(m+1,n)=(1 - Opsy2) Tnerat [Bns 12t e A_zr;‘-rl/z]
S(nntl)=(1— Ops1) et [& Zpiip ™t "_+A+z:z+1/2] (A7)

where

_ exp (‘ 7'n//“lo)
x;l+l/2 = Wp+12Tn+1/2 P*;z+1/2 I; _’"—'_2— [CXP (# Tn+1/2//JvO) + 1] + A:;, n+1/2 B:z+1/2

_ _ , €xp (= Tn/lo)
2;,+1/2 = Whpe12Tn+ 12 wn+12 1% —%_ [exp (— Tpa1/2/t0) +1]

+ A_a, n+1/2 B;1+ 1/2- (A8)
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