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SOME ASPECTS OF THE SOLUTION OF VECTOR TRANSFER
EQUATION IN A MAGNETIZED MEDIUM
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(Received 5 June, 1985)

Abstract. A simplification of the numerical method of solving the vector transfer equation, given earlier by
Nagendra and Peraiah (1985a), is described for problems which involve only absorption. This allows us to
attempt to solve under realistic conditions and with reduced computing efforts, the important problems of
polarization of light emerging from magnetized stars. For the purpose of illustration, the equations described
are used for solving the continuum and Zeeman line transfer problems.

1. Introduction

The solutions of the transfer equation for polarized radiation are well known. For true
absorption, the set of coupled transfer equations written for the polarization Stokes
parameters admit an analytical solution. Various numerical methods have also been
developed to obtain the solution to this problem (see Stenflo, 1971; Martin and
Wickramasinghe, 1979b, for details and references). The simplest of all is the Unno
solution which is derived analytically using a Milne-Eddington approximation. This
solution is restricted, and cannot be used in computations involving realistic model
atmospheres. The usual formal solution itself can be used as an alternative. For arbitrary
source function gradients, and line formation problems, the depth integration, however,
requires a large number of grid points. Among the numerical solutions the most accurate
and widely used is the Beckers’ method, which is a Runge-Kutta scheme for the vector
transfer equation. For a detailed discussion on the accuracy and computing times of
some of the numerical solutions, see Martin and Wickramasinghe (1979b) and
Nagendra and Peraiah (1985a). In the computations of spectra and polarizations of
magnetic stars (Ap stars, white dwarfs, etc.), we are required to solve the transfer
equation over a large number of points on the disk and finally to integrate these local
solutions along the line-of-sight. This is a highly time-consuming but unavoidable
process, particularly so in line computations where large numbers of frequency points
are also involved. In view of this difficulty, one is forced to use quicker but less accurate
methods. We have previously described a procedure based on the discrete space theory
(hereafter called DSM) of radiative transfer (Nagendra and Peraiah, 1985a). In this
paper we describe a simplification of the same work, which is quicker, and present the
results of computations using these equations.

2. Matrix Formal Solution and its Relation to the DSM Solution

The matrix transfer equation in a plane-parallel stratification for the polarized radiation
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field is given in usual notation by

M%:A(I—B), (1)
where
u g 0 My
M = Eop by Te o T 0 ’ )
m 0 pr T
ny 0 Pw Mg
and
I=JQUV);, B=(B000)7", B=B/(T), (3)

which is an ‘ordinary matrix differential equation’. The boundary conditions are given
at the bottom and the top of the stellar atmosphere,

10,)=g;  Wtpa W) =h. (4)

The transfer matrix A has the following characteristics:
(1) it is symmetric Hermitian when pg = p,, = 0, but not otherwise;
(i) diagonal elements are always positive, and in the special case of very weak
anisotropy, A is diagonally dominant also;
(iii) by a proper choice of coordinate system A can be diagonalized;
(iv) it is irreducible, because, by any set of transformations, it is not possible to reduce
it to the upper triangular form.
Equation (1) can be written in the half-space of angles p< (0, 1), as

dl-
-M—=A"0 -B), (5)
dr
dI+
M =A*(I* -B"), (6)
dr

withI~ = I(7, —p)and I'" = I(7, 1) representing the rays emerging towards the surface
of a star and entering into the atmosphere, respectively. In the integration of the transfer
equation over an elementary ‘cell’, I, B, and A can be taken as constant, being some sort
of average of these quantities at the boundaries of the cell, bounded by the planes 7,
and 7, ,,n = 1,2,3,... (Peraiah and Varghese, 1985; Nagendra and Peraiah, 1985a).
The formal solutions of Equations (5) and (6) can be written as

I, =1, ,exp[-AM~'A" ] + J exp[-(t— t,) M~ 'A- M~ '{A"B} ds
; (7)
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for the outgoing ray, and

Tn+ 1

I, =L cxp[-AM'A*] + j [=(th.y - M 'A* M~ {A*B} df
o ®)
for the incoming ray. At=1,,, ~- 1,, n=1,2,..., N, where N = number of layers.

{A* B} is the source function. For the present discussion, we shall concentrate on only
the outgoing ray (7). Now, assuming that {A * B} is independent of optical depth — that
is, it remains constant in the range 1, to 1,, ; — we get, by performing the integral in
Equation (7),

I, =B+exp[-AM~'A"]-{I,,, - B}, 9)

which is the usual formal solution and, again, demands no restriction on At as long as
the physical properties remain constant in the range of integration.

Now, we descritize the matrix transfer equation (1) by directly integrating it over an
elementary cell as before. We then obtain

+MLE - 1] = 1, A% 1%, - B, ], (10)

where the subscript (n + 1) refers to the average of the values of physical variables at

7, and 7, ;. For the diamond difference scheme, we have

R

5 =At,=1,,,—1,, etc., (11)

which assumes that the intensity is linear in optical depth within the cell. For further
details on the method of solution, see Peraiah (1984) and Nagendra and Peraiah
(1985a). Restricting ourselves to the outgoing ray, we have, from DSM, the following
expressions for the outward-directed ray:

Ly =t L, +7,,,A A B=t1_ +Z°, (12)
where

“=A"S™, (13)

AT =[M+37, A 0], (14)

S™ =[M-31, 1A, ] (15)

Now expanding the A ~ matrix (Equation (14)) in a matrix power series, then substituting
in Equation (12) and truncating the resulting expansion to the quadratic terms, we get
I ~1-

n+1_Tn+lM—1A 1[I
+ZTn+ {(MilAn+1)2[In+1_Bn+%]}_ (16)

Bn+%] +

n+1
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124 K.N. NAGENDRA AND A. PERAIAH

Now imposing an asymptotic boundary condition, like the Unno solution

I3 )o=By.i + M[Ag,,]-'p;  B="D| | (17)

driv+1

at the lower boundary (N + 1) of the stellar atmosphere, we can get the emergent
intensity recursively (n = N, N — 1, ..., 1) using Equation (16). It is more useful when
the source function is a linear or a nearly linear function of t and the linear perturbation
vector P is weak. In that case, we can substitute an Unno solution at each grid point
n and, assuming a constancy of opacity and source function in each cell, get a relation
of the form

L~ (L)y = Bo, oy +5MT A BT - (18)

When B < 7,11, this equation is stable and gives an accurate and convergent solution
even for step sizes 7,,1 = At,> 1. In practice, we can use the nodal points of the
tabulated stellar atmospheric model themselves as the grid points for constructing the
cells, because in the deeper ‘thicker’ layers of the model the p parameter will be very
small, and in the upper layers, where p could be larger, the nodal point spacing would
be very small (i.e. 7, 1 < 1), making the solution (18) still correct. Notice, however, that
the original DSM equation (12) is simply the implicit Crank—~Nicolson matrix approxi-
mation for exp[ -3 T, iM” YAC 1] in solving the inhomogeneous parabolic matrix
differential equation (1). It is well known that the Crank—Nicolson scheme is second-
order accurate, unconditionally stable, and a consistent approximation for all step sizes,
since Re 4, > 0 (see Varga, 1963; p. 270), where A, = 4 neifp (1=1,2,3,4) are the
eigenvalues of M~ A ; 1. a; are the eigenvalues of the transfer matrix A ™, with two of
them being complex in general.

It can be clearly seen from Equations (12)—(15) that the central difference approxi-
mation to the transmission matrix t~ is a matrix power series approximation for the
matrix exponential exp[ — 7, . .M~ ‘A, 1] through quadratic terms. Similarly, A™ is a
backward difference approxunatlon to the same matrix exponential through linear
terms, again being unconditionally stable. Thus, we can write Equation (12) to the
lowest order approximation as

In_ NeXp[ n+lM An+1][In+1 + n+lM An+lB] (19)

and we see that the right-hand side of this equation is convergent even for 7, ; > 1. This
is a consequence of the approximation of linear variation of the source function with
optical depth (implied in the use of the diamond scheme). This has the important
property of causing the calculated intensities to be correct in the ‘diffusion limit’. Grant
(1963) has shown in this regard that the difference equations of DSM naturally reduce
to the difference analogue of the diffusion equation (see, e.g., Equation (18)), in the limit
of large 1, 1. This property is lost if one assumes a constant source function throughout
the atmosphere (see Wiscombe, 1976) or if the source function is a highly nonlinear
function of optical depth. Obviously, this property of DSM equations provides large
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practical advantages, particularly in the work with stellar atmospheres like those of
white dwarfs. In the following section we show the results obtained using this criterion
for the problems of continuum and line polarization, using realistic model atmospheres.
Since our primary interest in such computations is only the emergent (at 7 = 0) values
of 17, the following simplified form of the conventional DSM equations, namely

t(LN)=t" (1)t (2t 3)t 4 ....t (N-1)t"(N), (20)
and
(LN =2 D+t (D)ZQ+t ()t (2):Z°(3)
+t7 (D)t (2)t"B)EZ"@4)+ -+
+t ()t @2)... -t (N-1DZ-(N), (21)

can be used. N, here, is the total number of atmospheric layers considered from the
model atmosphere. Though diffusion approximation places no restriction on the step
size, we can use 1,1 ~ 2 as a safe choice in computing the t = and X~ matrices of the
respective layers (see Kalkofen and Wehrse, 1982a, b). These authors have made an
extensive analysis of the finite difference techniques in general. Our Equation (12) is, for
example, the polarized analogue of their Equation (25) in their (1982a) paper with a
half-implicit differencing weight. The thick layer operators can be generated by the usual
doubling algorithm (Grant and Hunt, 1969; Peraiah, 1984). We have repeated some of
the test cases — Tables (1)-(4) of Nagendra and Peraiah (1985a) — now using the
diffusion approximation described in the previous section (Equations (12), (17), (20),
and (21)). Since the agreement is good up to the third or fourth digits, we do not repeat
them here. Instead, we describe the line formation under arbitrary physical conditions,
using a model atmosphere taken from Wehrse (1976), and the opacity parameters
representative of a cold, weak field (H ~ 3 x 10° G) magnetic white dwarf. In addition,
the following two tests — namely, (1) = (0, n) with Y(0) = 0, ¥(t,,,) = n for y =0
should give Q(0) = U(0) = 0, and y(7) = (0, 27) with x(0) = 0, y(1,,,,) = 2nfor y = 7/2
should give U(0) = V(0) = 0 - are satisfied exactly, confirming that no spurious sources
or sinks are introduced by the diffusion approximation, even in a realistic atmosphere.

3. Application to the Zeeman Line Formation under General Physical Conditions
and Continuum Polarization Problems

The transfer coefficients of the A matrix in Equation (2) are given by
fy = 31, sin* Y + 30+ 1,) (1 + cos*¥)
Ng = 31, S Y = 5(n, + 1,) sin® s, 22)
ny =0,

y = 5(n, — ;) cos Y.
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i is the angle between the ray and the magnetic field. If the solution for an arbitrary
azimuth y is required, it can be obtained by rotating the solution vector using the
transformation matrix for (QU)”, namely

l:cos2x —sin2x:| 23)
sin 2y cos 2y '

For the purpose of discussion, retaining the picture of a triplet, we have,

’7i=ﬂic+’7iL=77ic+’70H(a:U"Ui)> i=plr, (24)
where
o 2kT
=Y Ay 2N [ (25)
Avp c M

in which a is the damping constant; v, (i = p, [, r) are the central frequencies of the
AM = 0, + 1transitions, respectively; 7, is the line centre absorption coefficient for zero
damping (e = 0); and

W, COS Y

- ck€(w? — w?)

Pr=P% + PR =

— ol Fla,v — v,) — F(a, v - v))] cos ¥, (26)

2 n2
g W, sin” Y

- 2cwk(0?* — w?)

Pw = Pl + Pl =
- nolF(a, v — v,) — 3{F(a, v — v) + F(a, v — v,)}] sin® ;
(27)

w, = /47N e?/m, being the plasma frequency and w, = eH/m c the cyclotron fre-
quency. The Voigt and plasma dispersion functions are given by

+ oo

_ 2
Ha,u) = j eXP[Z(yJ;u)]dy,
T y:+a
1 3 exp[ - (y - u)?
Flau) = j y p[2 (y2 g, (28)
2n y +a

with H(a, u) = H(a, —u); F(a,u) = —F(a, —u). We can use the following useful
relations (cf. Heinzel, 1978)

F(a,u) = il:% uH(a, u) + % i H(a, u):l , (29)
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or
F(a,u) = é [SuH(a, u) + 3 {K(a, wa — H(a, u)u}]. (30)
Therefore,
Fla,u) =~ K(a,u)= T yel == wl g (31)
2 27 v y? + a?

The H and K functions can be computed by fast algorithms given by Matta and Reichel
(1971).

The Stokes parameter profiles arising due to the linear Zeeman effect and anomalous
dispersion in the line preserve a symmetry (for I, Q, and U) or an antisymmetry (for
V') about the line centre. Many authors have computed such profiles — Beckers (1969),
Stenflo (1971), Landi Degl’Innocenti (1979), and Wittmann (1974) to mention only few.
In the strong magnetic fields, higher-order magnetic perturbations (quadratic Zeeman
effect) or electric perturbations (Stark effects which can cause large asymmetries) affect
the Zeeman line profiles (Nagendra and Peraiah, 1985b). Apart from this, the
macroscopic mass motions, stellar rotation, and gravitational redshift can also produce
asymmetric Stokes profiles. All such geometrical effects can easily be included in a
unified way for the computations of pure absorption lines. If the macroscopic velocity
vector u,,(7) makes an angle a(7) w.r.t. the line-of-sight, the Doppler shift of the line
centre frequency in the rest frame of the star is given by

v () = vy + cosa(d) Dy, | (32)
C

from which we can get, for any frequency v in the line

o(9) = v - cosan) 4D Yo (33)
¢ Avy
where
U(f):L__L(ﬂ ; v:ﬂ ; AVD=E Ur. (34)
Avp Avp c

Expressing the velocity u,,(t) in terms of some standard mean thermal units (m.t.u.) u,
we have

v(t) =v—-cosa(t)V,,(7), (35)

where V,,(1) = u,,(7)/u, is the dimensionless parameter. When the continuum is taken
to be polarized and magneto-optic, the Stokes profiles are basically asymmetric since
both the absorption and dispersion coefficients do not preserve symmetry about the line
centre.
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Fig. 1. Intensity (a), percentage linear polarization (b), percentage circular polarization (c), and polar-
ization position angle (d) for a hypothetical Zeeman triplet. v = Av/Av, and v, =0, v, = 16, v, = —16.
a = 0.1 and u = 0.8. The continuous dichroism introduced via %, = 1.00, 1, = 0.94, 5, = 1.1, while #y(a = 0,
v =0) = 10* for a line of wavelength A(v = 0) = 5000 A. p§ = —10 cos ¥ and pG = —0.25 sin? . These
parameters are typical of a weak line formed in a cool, high-gravity white dwarf atmosphere. A hydrogen-rich
convective equilibrium model with T4 = 9000 K, log g = 8, from Wehrse (1976) is adopted. The full drawn
profiles represent Case x: = n/4, y = 7/4, i.e. field orientation independent of depth. Dot—dash profiles,
Vv = n/4, y = x(7), i.e. azimuth variation; and dotted lines, ¥ = w/4, x = 0.
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- (d)

Fig. 2. As Figure 1, but showing the following cases. Full lines, Case x; dashed lines, = 0, y = 0; dotted
lines, Y = Y(7)x = m/4, i.e. Y variation.

In Figures 1 to 4 we show the changes produced by taking some of the parameters
as depth dependent. Figure 1 shows the effect of azimuth variation. The solid curves
show the Stokes profiles for a depth independent field direction (y = ©/4; y = ©/4) w.r.t.
the line-of-sight, which we shall refer to as Case x. The I, p, and g profiles for {y = n/4,
z = 0 are the same as for Case x because of the complementary nature of the azimuth
angles /4 and 0. The dotted line in (d) for this later case shows the position angle ¢
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TABLE 1

Disk-integrated linear (p) and circular (g) polarization from a magnetic white dwarf for two wavelengths.
i is the inclination of the dipole axis to the sight line. pg = p,, = 0 for all the cases

A =13500 A 2 =4500 A
P (x107%) q(x1073) P (x107?) g (x107?)
i=0° MW 0.00 -4.90 0.00 ~-5.30
DA 0.00 —4.85 0.00 -527
i =45° MW 2.50 -3.50 420 -3.70
DA 2.12 —-3.43 3.78 ~3.66
i=90° MW - 5.10 0.00 8.40 0.00
DA 4.76 0.00 7.95 0.00

is quite small throughout the profile and arises only because of the magneto-optical
effects. We have included the depth dependence of the azimuth angle y in the transfer
equation through replacing px by pg — 21 (dy(7)/d7). A small variation represented by
x(7) = (n/16) exp(— 7) is used. The intensity (dot—dash profiles) is not greatly affected
except in the core. The p profile equivalent width increases and its central depth is
reduced. The g profile is affected to a larger extent only near the n component of the
triplet. The sharp changes in the position angle ¢ near v ~ 7 are because the Q and U
parameters simultaneously change sign in this region (see also Staude, 1970). Recently,
Deguchi and Watson (1985) have computed the Zeeman lines formed in such a twisting
magnetic field. The Stokes profiles in Figure 1 are in agreement with their ‘optically
thick’ lines.

Figure 2 shows the changes produced by the depth variation of . For the case y = 0,
7 = 0 (indicated by dashed lines), we can see that the ¢ components are clearly stronger
and the mcomponent is absent; p = 0 and ¢ = 0. The g profile does not show the
‘m component splitting’ indicating that ‘coupling of the Stokes parameters’ is necessary
for such a splitting along with the usual magneto-optical effects (e.g. Case x: solid line).
The variation of the angle  as (1) = (n/16) exp(— 1) has definite effects on the /7, g,
and ¢ profiles (Y = Y(7), ¥y = n/4: dotted lines). The ¢ profile undergoes fluctuations
because of a strong coupling of the V' parameter to Q and U through magneto-optical
effects and a changing inclination (see Beckers, 1969). p also fluctuates, but is
unresolved in the figure since it is smaller in magnitude.

In Figure 3 we show a combination of the simultaneous variation of  and
y along with a variation in field strength according to the formula
v (1) = 16{1 + 0.1(1 — exp(- 1)}, (+v, = —v, = vy(7)). From the profiles (dashed
lines), it is seen that in the core of the line the y variation dominates while in the wings
the y variation is important in the line formation. The effect of an inhomogeneous (depth
dependent) field is marginal compared to the changes produced by angular variations.
Case x 1s also shown for comparison in this figure.
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Fig. 3. As Figure 1, but with the following cases. Full lines, Case x; dashed lines, = (1), x = x(7),
H = H(7), i.e. changing orientation of the field vector. The case Y = n/4, y = n/4, H = H(7) is indistin-
guishable from Case x.

In Figure 4 we show the profiles formed in quite general situations. The dotted lines
are the profiles formed in an arbitrarily moving atmosphere represented by
v(7) = 0.2 + 0.1(1 + exp(— 1)), a(7) = cos~'u + (n/16) exp (- 1), with the magnetic
field also being taken as inhomogeneous. It can be seen that the field gradient enhances
the asymmetry near the line centre and reduces the same in the wings. The full lines are
the profiles when there is a change in the angles {y and y only (see, e.g., Figure 3). The
dashed lines represent the most general case of the profiles formed in arbitrarily varying
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angles, velocity, and magnetic fields which, excepting a small asymmetry, are not very
different from the former case (full lines). Thus, when the line shift asymmetries are
weaker, the angular variation of the field vector is a dominant mechanism which can
change the shape of the polarization profiles.

Apart from treating the sensitive, line formation problems, as a further test on the
usefulness of the diffusion approximation we have computed the continuum linear and

2.0

1.6

1.2

Fig. 4. As Figure 1, but showing the line profiles in an arbitrarily varying velocity and magnetic vectors.

Dash—dot lines: Case x. Dotted lines: = n/4, y = n/4,V,, = V,,(7), & = a(7), H = H(7). Fulllines: = (1),

% = x(7),1i.e. changing orientation of only the magnetic vector. Dashed lines: ¢y = (1), ¥ = x(1), V., = V,,,(%),
o = (1), H = H(7), i.e. the most general case of varying velocity and the field vectors.
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241
21

CYCLOTRON RESONANCE ABSORPTION
IN A DIPOLE FIELD

18 e 15.8
15 [
q_°/°12 e N 15.6 e
e i 4
o
S NN 15.4 =
3 8. o
0 BP=2-5 10°G;i=0 4152,
-3 ] ] { ]
4000 5000 6000 7000 8000

x (R)

Fig. 5. The disk-integrated circular polarization g (full line) and spectra (dashed line) in a strong field white
dwarf. The non-magnetic spectra is shown by the dotted line. The linear polarization p = 0, by symmetry.
A T.x=9000 K, log g = 8, radiative model is adopted from Wehrse (1976).

circular polarization in a magnetic white dwarf atmosphere with a central dipole field
of polar strength H, = 10’ G. A model atmosphere of T = 20000 K, log g = 8, taken
from Wickramasinghe (1972) is used. The continuum polarization is included according
to Nagendra and Peraiah (1984). The specific intensity vectors are computed on
256 points on the visible disk of a white dwarf for a given angle of inclination (i) of the
dipole axis to the line-of-sight. Equations (20)—(22) have been used for this purpose. The
disk integration is performed using a 16-point Gaussian quadrature formula. For a few
cases we have compared our results (referred to as DA = diffusion approximation) with
the solutions obtained by Martin and Wickramasinghe (1982) presented in Table 1 of
their paper (referred to as MW). The linear polarization is extremely small and no great
significance can be placed on it unless it is much larger.

One more highly time-consuming problem, when computed using the conventional
step size criterion 1,1 < min(2MA,,‘+1%), 1s the polarization arising due to cyclotron

resonance absorption. The importance of this mechanism, particularly for magnetic
white dwarfs, was emphasized by Lamb and Sutherland (1974); Gnedin and Sunyaev
(1974), Landstreet and Angel (1975), and Pavlov and Shibanov (1978). Some charac-
teristics of cyclotron absorption in realistic situations has been discussed extensively by
Martin and Wickramasinghe (1979a). We have used the Lamb—Sutherland formula

432 e2 \ (N m,c? 172
= oV (B} e %
T ) (mec) (kc> |:2kT cos? 'ﬁ]

-1 20, 2
X [1 _exp(_h_a)>j| exp[_w]’ (36)
kT 2kT »? cos* s
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in the Doppler core, and the larger of the above and the collisionally damped absorption

coefficient
e’ N kT
= — (e 1 + cos?y) x
T (mec) (kc> (Znhw) ( V)

Veoll @ _
g [(a) - (UC)Z + Vc2011:| [CXP <kT) 1] ’ G

due to Bekefi (1966), in the Lorentz wings of the Voigt profile of resonance. The
collisional frequency can be calculated using

2e2 AT InN, 3
Voun = 2% nA; V:\/L; lnA:9.1—n2’+51nT,(38)

e
m,V? m

e

from Melrose (1980). The nature of the spectrum and polarization depend quite strongly
on the viewing angle, because of strong anisotropy of the radiation field. In Figure 5 we
have shown the flux and polarization emerging from a 7.5 = 9000 K, log g = 8, line
blanketed model in radiative equilibrium, taken from Wehrse (1976). The resonance
absorption depresses the continuous flux spectrum in A14000—8000 A (dashed line),
since it operates effectively in the frequency range approximately w (H,) to w.(H,)/2,
corresponding, respectively, to the polar regions which contribute ‘strongly’ in the blue,
and to the equatorial regions which contribute ‘weakly’ in the red — the reason being a
reduction in field strength by a factor of 2 between the pole and the equator of a dipole
field. The non-magnetic (H = 0) flux spectrum is shown by the dotted line for the sake
of comparison. Since the ‘collisionless plasma approximation’ absorption coefficient
(Equation (36)) has a very narrow profile its contribution is insignificant, whereas the
classical ‘cold plasma approximation’ absorption coefficient (Equation (37)) absorbs
over a large frequency band at each point on the disk. The bandwidths are quite large
because the collisional damping (Equation (38)) is very strong. An extensive and
systematic study of the quantum effects in cyclotron plasma absorption has been made
by Pavlov et al. (1980a). The spectra and polarization produced in a realistic atmosphere
under cyclotron mechanism are difficult to understand qualitatively when the disk
integration is performed. However, certain features of the spectrum and polarization
shown in Figure 5 can be understood by comparing it with Figures 2, 5, and 6 of Pavlov
et al. (1980b). Computations using other models show that the degree and sign of
polarization depend on ((d/dA)A, B) and ((d/d7)B) for a given field distribution on the
stellar disk. The circular polarization q shows a strong wavelength dependence, unlike
the thermal continuum polarization in weak field magnetic white dwarfs.

4. Conclusions

We have described a simplified approach, based on the earlier DSM equations, which
is useful for quantitative work on stellar polarization using vector transfer equations.
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The accuracy as well as the limits of applicability are pointed out. In all the problems
presented above, we have obtained almost a 309, saving in computing time over the
earlier procedure (Nagendra and Peraiah, 1985a) used for the same purpose. The effects
of field inhomogeneities and velocity fields on the strong field Zeeman line formation
are described. These effects are quantitatively more pronounced for the solar magnetic
regions than those shown here for weak field magnetic white dwarfs. Collisionally-
damped cyclotron absorption is stronger than expected earlier, and the saturation
produced by it is responsible for the difficulty in fitting thermal energy distributions to
the observed spectrum, when such a strong non-thermal phenomena is operative in
magnetic stars in general and white dwarfs in particular.
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