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Preface

Today, there is substantial observational evidence for the presence of dark matter (DM) on
all scales, and in particular the galactic scales. The rotation curves of galaxies are flat at
large distances beyond the optical radii indicating the presence of large amounts of “unseen
matter”. While the number of galaxies with such rotation curves are large, substantiating the
above conclusion, yet there has been only a limited understanding of the nature and other
properties of dark matter (DM). Since DM is seen to dominate the gravitational dynamics
of galactic systems understanding its properties will be a crucial input to the study of the
formation of structure in the universe. The interest in the phase space structure of dark
matter in general and the velocity dispersion in particular stems from the need to interpret
data obtained from the laboratory experiments to detect dark matter particles. When the
density distribution of all forms of matter in the Galaxy is modeled as that of an isothermal
sphere the velocity dispersion is simply related to the asymptotic value of the rotational speed
as (V)12 \/g Ve(r = 00). Using the value of rotational speed at the Solar neighborhood
of 220 kms™~lyields (v2)1/ 2 ~ 270 kms™!. It should be noted that in this commonly adopted
procedure, the gravitational potenf;ial of the entire Galaxy without including the individual
contribution of components like the spheroid and the disc etc is described as that of a single
component isothermal sphere. In this thesis, we would like to investigate the dynamical effect
of the visible matter on the distribution of dark matter and how it affects the estimate of the

velocity dispersion.

In Chapter 1 an introduction to dark matter is given with particular stress on its significance
in the Galaxy. The evidence for the presence of dark matter at different length scales is
reviewed. A brief overview of different candidates that stake their claim do be the particles

of dark matter is also presented.

In Chapter 2 we present the self consistent model for the halo of dark matter. In order to
do this we start with an assumed form for the phase-space distribution for the dark matter

particles and calculate how they will be distributed when subjected to their own gravity and
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that of the visible matter of the Galaxy. We have chosen two distribution functions, the
Maxwellian and the King’s, both consistent with stationarity to study the halo of the dark
matter. The Maxwellian is essentially an isothermal distribution, with two free parameters the
central density and the velocity dispersion. In the King’s model the isothermal distribution is
truncated at a finite value of the total energy and this translates to the so called tidal radius
cut-off where the value of the density goes to zero. The emphasis of this chapter is on the fact
that at small distances up to about 10 kpc the visible matter has also a very important role
to play. The value of the velocity dispersion in the Solar neighborhood depends on both the
visible and dark matter, and appears as one of free parameters of the problem. The value of
the dark matter central density is also independently constrained by its density 0.3 GeVem™3
in the local Solar neighborhood. We adopt well studied models to describe the density
distribution of visible matter and proceed to solve the Poisson’s equation for the dark matter,
which because of the DF adopted involves both the potentials of visible matter and dark
matter in a non-linear way. The self consistent dark matter potential calculated thus, yields
in turn a rotation curve which is compared with the observed rotation curve of the Galaxy.
The best fit between the theoretical and observed rotation curves yields a value for the velocity
dispersion to be around 600 kms~!which is larger than the previously obtained value of 270

kms™1!.

In Chapter 3 the rotation curve of the Galaxy is well measured up to a galactocentric distance
of =~ 8kpc with reasonable accuracy beyond which it becomes progressively uncertain and
there is hardly any data beyond 20 kpc. In a recent analysis by Lynden-Bell and Lynden-Bell
it was suggested that the motion of dwarf spheroidals may be used to derive the rotation
curves at large distances. In this chapter we present an analysis following their suggestion.
We show that the velocity distribution of dwarf spheroidals is skewed with (v?) = p(v?),
with p increasing beyond the isotropic value of 4 = 2 to values of 5 or more because tidal
disruption of dwarf spheroidals by the Galaxy has effectively removed orbits with high v,.
The data on radial velocity of the dwarf spheroidals then is used to determine the behavior

of rotation curve at distances of = 100 kpc.

In Chapter 4 we explore the consequence of the large velocity dispersion of 600 kms~!derived
in this thesis. The detection of any non-baryonic matter like the WIMP’s involves measuring
the rate of energy deposited in a laboratory detector. However to model such a rate involves
specific assumptions for the number density of WIMP’s, the cross-section of interaction and
the velocity dispersion of the dark matter particles. In other words the rate can be written

as R = (p/mp)o(v?)!/2, where R is the rate; p, the mass density, o the cross-section of
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interaction, mp the DM mass and (v2)1/2 the velocity dispersion of the dark matter particles.

The mass density around the Solar neighborhood is taken to be 0.3 GeVem™3. Thus for any
assumed mass of the WIMP particle (mp) the bound on the cross-section is obtained by
fitting the theoretical rate to the observed event rate for a given value of velocity dispersion.
We obtain exclusion plots in the mp-o space, for the new velocity dispersion of 600 kms™!. It
is clear from this exercise that bounds on the scattering cross section is improved particularly

for mp < 50 GeV, because of the larger dispersion we have obtained.

In Chapter 5 we apply the model for DM-halo developed in this thesis to 12 external spiral
galaxies. We choose galaxies with well studied luminosity profiles and rotation curves. Lu-
minosity profiles are used to estimate the density distribution of the visible matter and hence
fhe potential due to it. In terms of the model we have developed, there are two parameters
defining the dark halo, that are unknown i.e ppy and (v2)py. The observed rotation curves
of these galaxies are used to place constraints on the velocity dispersions and density of DM

in these galaxies and to search for possible correlations between the visible and dark matter

contents of the galaxies.

In Chapter 6 we summarize our work and discuss the results and suggest scope for further

work.
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Chapter 1

Introduction

As we approach the end of the twentieth century, it has become evident that the dark matter
problem is an important scientific puzzle. In the past two decades substantial observational
evidence has been gathered for the presence of dark matter on various length scales. In
literature pertaining to the history of dark matter it is stated that the problem often dates
back to Zwicky (1933) [1] who observed the Coma cluster and based on investigations of
velocity dispersions of galaxies in the cluster concluded the presence of a large amount of
“missing mass”. However, even before Zwicky, Kapteyn (1922) and Sir James Jean (1922)
had determined the local Solar neighborhood mass density and concluded that there were 3
dark stars for every luminous star in the Galaxy. The nomenclature “dark matter” originally
suggested by Kapteyn finally came to stay as did the problem of explaining the unseen
mass [2]. During the same time that Zwicky made his conclusions, Oort [21] claimed that
there exists substantial amount of dark matter near the Sun. After the 1930’s there was
a period of lull regarding this issue, which was revived by the seminal paper by Kahn and
Woltjer in 1959 [4] on Local group dynamics. The key point of this paper was, the spiral
galaxy, M31 which is approaching the Galaxy implied that there had to be enough mass that
detached it from the Hubble flow. In 1972, Rood et al. (5] studied the Coma cluster and
found that the cluster has a “missing mass” about a factor of seven larger than the optical
mass of the galaxies in the cluster. The early HI rotation curves of spiral galaxies, which are
flat at distances beyond the optical edge were obtained by Shostak & Rogstad (1973,1974) (6],
Rogstad et al. and Seielstad & Wright (1973) [7, 8]. The observations of rotation curves of
galaxies out to large radii were carried out by various people, in particular by Bosma [1],
Rubin et al. [2, 11, 12, 13] and Faber & Gallagher (1979) [14]. A major consensus about the
dynamical dominance of dark matter at galactic scale seemed to have been reached because

of these two papers. In the first paper in 1974, Einasto, Kaasik and Saar [15] said, “The mass
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of ‘galactic corona exceeds the population of known stars by one order of magnitude, as do
the effective dimensions” and “The mass-to-luminosity ratio rises to f =~ 100 for spirals to
f = 120 for elliptical galaxies. With H=50 kms~!Mpc™1, this ratio is 170". Later, Ostriker,
Peebles and Yahil [16] at Princeton stated, “Currently available observations strongly indicate
that the mass of the spiral galaxies increases almost linearly with radius to nearly 1Mpc ...
and that f =~ 200 M/L within the Holmberg radius”.

As the presence of dark matter was gaining ground the nature of the dark matter was being
speculated on. The several possible baryonic candidates included faint stars, and intergalac-
tic gas. It soon became clear that cosmic nucleosynthesis placed strong constraints on the
total amount of baryons. The baryonic mass allowed by nucleosynthesis is lower than the
total dynamically estimated mass, particularly in clusters of galaxies. Thus, baryons alone
will not be sufficient to close the universe; to account for an 2 = 1 universe non-baryonic
matter is required. The role of massive neutrinos and other weakly interacting massive par-
ticles (WIMPs) in cosmology as possible candidates for non-barydnic dark matter was first
suggested as early as 1972 by Cowsik & McClelland [17, 18]. It is indeed remarkable that this
has today come to stay with the recent Super-Kamiokande results confirming a lower limit

for the neutrinos mass to be £ 0.07 eV.

Nothing much has really changed during the last two decades. New observations have
emerged, particularly of clusters which confirm the evidence for the presence of dark matter
in them. At various length scales, there exist inconsistencies between masses determined by
dynamical methods and masses inferred from luminosity. These seem to threaten the vari-
ous theories and existing paradigms which try to account for the observations at the smaller
galactic scales and also those pertaining to cosmology in a larger context. The aim of this
chapter is to emphasize the concepts, observations and ideas that concern the dark matter
problem as a whole and to point out where our current understanding of this problem stands.
The organization of the chapter is as follows: We begin with a review of dark matter in differ-
ent scales in the Section [1.1]. We discuss the currently favoured baryonic and non baryonic

candidates and the experiments to detect them in Section [1.2].

1.1 Length Scales and Dark Matter
1.1.1 Dark Matter in the Solar Neighborhood

The smallest and the nearest scale around us is the Solar Neighborhood and pioneering work

to measure the total mass near the Sun was carried out by Oort [21]. The primary quantities
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used to parameterize the mass in the Solar neighborhood are the Surface density (£) and the
local density (pg). Following the early analysis by Oort, Bahcall et al. further improved it to
give the dynamical value of density O.lM@pc'3 which implies n dark matter of 0.01 Mgpc™?
in the disk [19, 20, 21] of the Galaxy. Kuijken and Gilmore [22] measured a column density
of 46 Mopc~? and concluded that there was no dark matter. The local dark matter density
thus remains a controversial subject today, and it is clear as we shall see further that the
problem is a difficult one with possibilities for a number of systematic and statistical errors.
The local halo density in units of M@pc‘3 is a crucial input of the thesis at hand, hence some

details here will be appropriate.

There are two approaches to the determination of the local halo density. The first approach
is to make an inventory of all the objects, i.e., the stars, intorstellar gas and calculate the
mass density due to these objects. This, by itself is quite a tedious task because of the several
observational uncertainties. For example, uncertainties in detecting very low-luminosity stars
even very near the Sun, uncertainties in the stellar mass-luminosity relation, uncertainties in
the binary fraction of low-mass stars and uncertainties in the observed interstellar density
contribute substantially to the uncertainty in the measuremant of the local density. Oort
compared this luminosity density with a dynamical estimate of the local density and found a
discrepancy of a factor of two. In the next section we outline Lthe method and the formalism

adopted to calculate the dynamical density in the Solar neighborhood.

(i) Calculation of the local halo density

We shall now follow some of the ideas and techniques that wore developed to obtain a dy-
namical estimate of the local density. In principle, if one just. follows the dynamics of a
test particle one can easily get a measure of the Galactic potential; however this an almost
impossible task. The next best thing to do would be to look for a homogeneous sample of
tracer stars and study their dynamics. All calculations of the mass distribution involve the
collisionless Boltzmann equation (CBE), and since this is in general cumbersome one restricts
oneself only to the vertical velocity moment of the CBE which is given by:

K= 22 (002) + 2 O

where K is the force in the perpendicular direction, v(R, 2) Iy the number density of stars

Rvay) (1.1)

and o2, the velocity dispersion tensor. The first term in Eq [1.1] is the dominant term of the
two and therefore entails careful measurement of stellar density profiles. The o, to a good

approximation, is described by an isothermal stellar population and taken to be independent
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of height. The second term is a tricky one because it describes the tilt of the velocity ellipsoid
and this term is generally ignored and this could lead to errors in the analysis of the surface

density. The other crucial equation in any gravitational dynamics is Poisson’s equation:

V-K=—-4nGp (1.2)

where K (R, z) is the gravitational force in an axisymmetric Galaxy , and p is the density of
gravitating matter. Writing Eq [1.2) explicitly and replacing the R-gradient V - K in terms
of V., the rotational velocity of the Galaxy we obtain:

1 0K, , 18(VD)
P= "G [ 3z ' R OR (18)
Further, the surface density can be written as:
|z] | K|
I(z) = [_IZIp(z)dz N oG (1.4)

It is clear from Eqs [1.1-1.3] that a direct estimate for the density pp depends on the square
of distance-scale errors since it is derived from the second derivative of the stellar space
distribution. From Eq [1.4], we see that the surface density is only linearly dependent on the
stellar distribution. Plugging in direct observables will lead to erratic and incorrect answers,

consequently special methods of analysis are needed.

Oort combined Eq {1.1] (neglecting the second term) and Eq [1.2] to obtain:

9 [ 14(vo?)

8z |v oz

] = —4nGp (1.5)

If the number density v(R,z) and the mean square vertical velocity o2, of any population
of stars is known then Eq [1.5] can be used to calculate the local mass density p. Oort
used this equation for different sets of stellar populations and obtained an average value of
po = 0.15Mgpc=2 for density in the Solar neighborhood and this is called the Oort limit in
his honour. This analysis involves triple differentiation; the first to obtain the star counts
v(z) and the next two to satisfy the Eq [1.5).

Bahcall tried to reduce this uncertainty of triple differentiation by assuming an isothermal
decomposition of all the known contributors to mass and therefore 02, to be independent

of z. Neglecting the second term in Eq [1.1], the density of the i** isothermal component

satisfies:
Niao

plz) =Y pie~ 27 (1.6)

i=1
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The Poisson Eq [1.2] can be written as

d?®

22—2' =47G (pdisk + phuln) (17)

Bahcall solved this equation by further assuming that the velocity dispersion for the observed

and unobserved components are the same and subsequently the equation can be written as:

d2 d Nobs unobs

N,
2z = 47Gpou(0) (Z Aie™®%%: 4 Y Biem?/k 4 e) (1.8)
i=1 j=1

The quantities on the right hand side of the equation are made dimensionless and normalised
with respect to p.5s(0). From Eq [1.8] we see that the density is decomposed to N observable
and unobservable components with 4; = p;(0)/p.u,(0), with Bj, the unobserved mass fraction
also defined similarly as the ratio of the mass density in the component j to the total observed
mass density. € is defined as the ratio of the effective halo mass density to the total observed

mass density. Thus € = pf;{,{ /p8> where:

e a9 ‘ ‘
ph{l{ = phalo(R) - 5}‘2"/::2(12) (1.9)

On specifying a set of observable mass components with their velocity dispersions (0,,;), and
their relative densities (p;), and using the appropriate boundary conditions, ® is determined.
Further assumptions regarding the unobserved matter are made. The models are such that
it is assumed that the unobserved matter is distributed in proportion to the stars or the ISM
(InterStellar Medium), i.e., Bj = PA; where P could be Prsa or Pytors. Various input values
of P and ¢ and o,, were choseﬁ and corresponding inodels were obtained. Bahcall then fit
the distribution of F-stars and K-stars [21] reported by Hill, Hilditch and Barnes [23] to infer
a total mass density of 0.1Mgpc™® and column density of 30 Mgpc=2. He also reanalyzed
the available F-dwarf and K-giant high galactic latitude data in these models which are self-
consistent, in the sense that the matter which generates the gravitational field itself responds
to it through the CBE. The conclusions he reached were,“the amount of unobserved material
is the disk is at least as large as 50% of the observed material for all the models that are
discussed”. Bahcall’s analysis is a more robust measure for density than the surface density,
because as mentioned earlier the former involves the second derivative of the observed star
count data. Thus the available values for the mass density near the Sun remain limited by

the systematic and random difficulties with the available data.
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(i) Calculation of the local surface density

Kuijken and Gilmore used an entirely different approach in estimating the surface density of
mass near the Sun. Their approach involves a maximum likelihood comparison of the ob-
served and predicted distribution function (f(z,v,)). The density gradient is a well measured
quantity and this information is used to derive the velocity distribution in the various model

potentials. The density can be written as

p(z) = [_Zfz(zavz)dvz (1.10)

o [ (B
s V2B, -9)

and using the Abel transformation we can write

dE, (1.11)

_ 1o —dp/d®
f:(E;) = r Jg, 7——2 ) __E"z)'

so, there is a unique relation between p(®) and f,(E,). As seen from the above equations,

% (1.12)

f:(E.) depends on the density only at points where the potential exceeds FE,, i.e., beyond
the point z = ®(E,)~!. This is crucial since the potential at large distances from the plane
of the galaxy can be derived from the high z-data alone. It is this property which constrains
K., the force in the perpendicular direction to the Galactic plane Eq [1.2], quite well at
large z despite poorly known mass distribution at low z. While Bahcall’s analysis involved
making an isothermal assumption for the tracer sample of stars, Kuijken and Gilmore instead
choose different model potentials to derive f,(v,, 2), given the density distribution p(z) which
is a well observed quantity. This derived distribution function is directly compared to the

observed distribution function in the (z,v,) plane.

The force K, is directly related to the surface density. The essential features of the K, are

quantified as
z

VA D

and the corresponding potential is given by

-K, =2rGK + 4nrGFz (1.13)

®(z) = 2nGK /(22 + D?) — D + 2nGFz? (1.14)

In Eq [1.14], the first term corresponds to a disk and K corresponds to the disk density
and D the scale height. F measures the large z quadratic term in the potential, which is
predominantly caused by the halo density. Therefore F behaves like a constant halo density

term. Using the model potential (Eq [1.14]) and the p(z) data with rotation curve constraints
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yields predicted values for the f(z,v,). A maximum likelihood analysis was carried out with
the predicted and observed distribution of velocities which in turn was used to obtain the
values for the parameters of the potential. This analysis leads to a value for K, which
corresponds to 46 + 9Mgpc=? (using Eq [1.4]) for the surface density. The same authors
integrated the local “observed” density to obtain a surface mass density of 48 + 8 Mgpc™2.
Comparing these two values led them to conclude that there is no disk dark matter. In their
reanalysis in a later paper Kuijken and Gilmore [24] reported the above value for the surface

density plus an additional 25Mgpc—2 in a dark halo below z < 1.1kpc.

There are several others who have been working on the dynamical determination of the local
halo density. Bienaymé, Robin, & Creze [25] inferred a local halo density of 64 & 12Mgpc™2.
They regarded this is as consistent with no dark matter, but if dark matter were allowed the
best fit would be of the order if the scale height is h = 600pc. Bahcall, Flynn and Gould (26}
analyzed a cone of K giants and found £y = 85 + 25Mgpc~2. These discrepancies perhaps
indicate the systematic uncertainties in the different analysis procedure. The analysis due to
Bahcall assumes that the ppy o Pueensr and this is of special relevance, perhaps to baryonic
dark matter (DM) in the form of low mass stars like brown dwarfs, which may have the same

0.z as the other stars, and hence expected to have similar z-distribution.

1.1.2 Dark Matter in Galaxies

(i) Rotation curves: kinematics and observation

The rotation curve is a good tracer of the mass distribution of spiral galaxies [27]. In most
galaxies light falls of exponentially; assuming mass traces light, one would expect that the
rotation curve for most galaxies should fall have a Keplerian fall off at the optical edge of the
galaxy. However, observational evidence indicates that the rotation curve for spiral galaxies
is flat or gently rising beyond the optical edge [1, 2, 9, 28].. In this section we shall review

some of the literature on the rotation curve of our Galaxy.

The rotational velocity, of any test object assumed to be in circular orbit around the Galaxy
is usually measured as a function of the 'dist;ance from the center. Any object in the Galaxy as
seen from the barycenter of the Solar system, will have both radial and transverse components
of motion v; and vy because of the differential rotation of the Galaxy . The Fig [1.1] indicates
the various distances and angles that are used to derive the basic expression for the radial

and transverse velocity, where
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Figure 1.1: Galactic rotation velocities and their projections along the line of sight. S=Sun,
C=Galactic Center, Vo= Sun’s velocity, V = Velocity of the star/test object. Ro=distance
between Sun and Galactic Center, 1= galactic longitude. PT= Rsina; ST=R, cosa

The equations for vg and v; can be derived with the help of the Fig [1.1]. The subscript zero
refers to the solar neighborhood. The Fig [1.1] shows an object at P, a distance r from the
Sun and at a longitude I. Then

vp = Vsina— Vycosl (1.15)
vy = %(Rocosl—r)—Vocosl (1.16)

V(R) is the rotational velocity of the object in a circular orbit. The above equation can also
be rewritten in terms of the angular velocities w = V/R. The equation for the radial velocity
is the most crucial as the observations yield radial velocity measurements which are used for
deriving the rotation curve. For the near neighborhood of the Sun these two equations can
be approximated so that they depend only on the local characteristics of Galactic rotation.
The star is in the local solar neighborhood, therefore the approximation |R — Ry| < Ry is
valid. Substituting in the earlier equation we obtain,

Vo dV) ] .
_ _ 1.17
VR [Ro (dR . rsinlcosl (1.17)
(1.18)

= Arsin2l|



1.1. Length Scales and Dark Matter 9

where
1\ /V dV
4=(3) (- =),
= [ _(dv 2%
vy = [Ro (dR)O]rcosl R (1.19)
(1.20)
= r(Acos2l+ B)
where

1/V dV
B“"(E*a‘ﬁ)o

A and B are the well known Oort’s Constants. Together, they determine the local angular
velocity and the local slope of the rotation curve. In terms of the angular velocities, Eq [1.19]

can be rewritten as

vp = Ro(w — wp) sin! (1.21)

According to this equation the observed radial velocity must be greatest at the point where w
differs most from wy. For any well behaved density distribution w must fall off monotonically
with increasing R; hence the velocity extremum will correspond to the value of w where the
line of sight comes closest to the Galactic center. From Fig [1.1], it is clear that at this point
R = Rysinl. w is obtained by substituting this maximum velocity in Eq [1.19]. This method
is often referred to as the tangent point method, because at the point of extremum velocity

the line of sight is tangent to a circle with R = constant.

Measurement of the Galactic rotation curve in the outer parts of the Galaxy generally requires
the determination of independent distances and velocities to a set of objects or clouds of gas.
The luminous main sequence stars and HI profiles are frequently used for this purpose. For
luminous main sequence stars the exciting stars of either the HII regions or reflection nebulae
are identified and their distances are determined from spectroscopic parallaxes (3, 4, 32,
33]. Velocities are determined accurately from associated CO clouds. Planetary nebulae,
carbon stars and Cepheid variables are standard candles which are used to obtain rotation
curves (34, 35, 36, 37, 38]. In determination of rotation curves from HI lines the velocity is
observed directly from the Doppler shift and has a small uncertainty. In such observations it
is necessary that the parcels of gas are coherent and share similar distances from the center.
Merrifield [39] successfully accomplished this by assuming that the Galaxy is asymmetric;
he used the radial velocity of the HI to find the gas in a ring of constant Galactic radius.

The angular scale height of the gas is determined at different longitudes and distance to the
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HI ring was found by the variation of its angular height across the sky. Since the HI layer
extends beyond the optical disk, the rotation curve can be determined beyond the optical
edge. All these measurements indicate that the rotation curve is flat, and not declining as

one would expect if all the mass contribution came only from the stars.

(ii) Dark Matter in external galaxies

The main efforts are to quantify the the amount of dark matter and its distribution in the
external galaxies. HI observations provide the evidence for dark matter in external galaxies.
The need for dark matter stems for two reasons: i) there is a mismatch between the observed
rotation curve and one calculated from the “visible” matter alone, assuming constant mass-to-
light ratio, and ii) the mismatch is larger when the rotation curve extends to larger distances.
The most debatable step in this analysis is the relative contribution of the disk and the halo
to the rotation curve, or the mass-to-light ratio. Work has been proceeding rapidly since the

rotation curves of 967 spiral galaxies were presented by Persic and Salucci [40].

Recently there have been couple of approaches to study the problem in elliptical galaxies.
The first approach uses stellar kinematics to trace the potential. The second method is to use
the HI component and ionized component of the disks as a tracer of the potential [41, 42].
Comparison of M/L for the spirals and ellipticals seem to show the same trend when the

radial distance is normalized [43].

1.1.3 Dark Matter in Clusters of Galaxies

Rich clusters of galaxies containing large amount of hot gas can be used as powerful tools
to constrain the nature and amount of dark matter. Traditionally, the velocity dispersion of
galaxies is used to calculate the binding potential of the clusters using the virial theorem [1].
After Zwicky’s seminal paper, Rood et al. measured the radial velocities for 40 galaxies in the
Coma cluster and concluded that the cluster M/L ratio was of the order of 250. Multiwave-
length studies have been carried out to measure the mass distribution in the clusters: The
optical data gives a measure of the galaxy velocity dispersion (¢) and the X-ray data provides
an estimate of the intracluster gas temperature (T). On assuming that the gas and galaxies
are in hydrostatic and isothermal equilibrium, one obtains a relation between the o (velocity
dispersion) and T(Temperature) to be o ox T%®. A strong correlation between o and T was
observed, i.e., 0 = 332 & 52 (kKT'/um,)%6+%1kms~! [44], where pm, is the molecular weight

of the gas. This implies that the gas and galaxies in the cluster trace the same potential
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and also justifies the assumptions of isothermal and hydrostatic equilibrium. Distortion of
background galaxies due to lensing by the intervening cluster, can also give a measure of

the mass of the cluster. These two independent ways of mass determination are found to be

consistent with each other.

The cluster mass calculated is of the order of 104 — 10!h~! M, [45]. The mass-to-light ratio
of 300 for a large number of rich clusters, implies a dynamical value of 2 = 0.2, within a
cluster radius of 1IMpc. The X-ray emitting gas contributes 30% of the cluster mass within
1.5h~! Mpc of a rich cluster [46]. Standard nucleosynthesis limits £, < 0.06 which means
that the baryon fraction in clusters is larger than that predicted by nucleosynthesis. These
results have been interpreted to mean that either Q is less than the critical value or that

baryon fraction is larger than that predicted by standard model nucleosynthesis [47].
1.2 Candidates

It is clear from the earlier section that there is very strong evidence for the presence of dark
matter on various scales. The most secure evidence for dark matter, which is in the halos
of spiral galaxies contributes to  roughly between 0.03 and 0.1 [1, 2]. On larger scales like
clusters the contribution to 2 is probably between 0.03 and 0.2 [45]. All detection experiments

are geared towards detecting Galactic DM (dark matter). The obvious question to address

now is the nature of dark matter.

The candidates for dark matter are faint stars, interstellar gas in the baryonic DM and
WIMPs, axions and neutrinos which fall into the non-baryonic category. We shall discuss
each of these candidates and outline some of the on-going experiments that are being done
to detect them.

1.2.1 Baryonic Dark Matter

It is clear, that while there are baryons that are luminous there is also a possibility that a
substantial number of them are “dark”. Dark baryons are generally thought to be in the form
of low mass stars called MACHOS (MAssive Compact Halo ObjectS) like brown dwarfs or
Jupiter like planets, Recently, Pfenninger and Combes suggested the cold molecular clouds
could be plausible dark matter candidates. Low luminosity stars as possible candidates for
dark matter have been ruled out by a recent HST observation by Bahcall et al. [48]. They

concluded that these stars contribute less that 6% of unseen matter.

Paczynski [49] proposed the idea of using gravitational micro-lensing to detect massive dark
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objects in our galaxy by monitoring the brightness of stars in the Magellanic clouds. The
basic physics of microlensing is quite simple. If light passes very close to the line of sight to
a foreground star, the light will be deflected to produce two images of the background star.

In the case of perfect alignment the star will appear as an “Einstein ring” with a radius of

| \/4GML:1;(1 — 1)
T =

¢t

(1.22)

where M is the lens mass, L is the observer-source distance and x is the ratio of the observer
lens and observer source distances. For a source distance of 50kpc and a lens distance of
10kpc, it yields a resolution of ~ 0.001 arcsecond which is superior to the Space Telescope
resolution and hence the term “microlensing”. However, in the point source approximation,
the lensing produces a net amplification of the luminosity, which can be quite large. Since
objects in the Galaxy are in relative motion, this amplification will be time dependent; for a
typical lens with a typical transverse velocity of 200 kms™!, thev duration is of the order of
days. The number of stars that will be lensed is only one in two million per day and hence

this method requires careful monitoring of stars.

Microlensing searches can give definitive results on dark matter objects in the mass range
of 1079 to 10°Mg. There are various experiments involved in determining the MACHO
fraction in the Galaxy and their corresponding mass. The MACHO [50] collaboration has
the exclusive use of a 1.3 m telescope at Mt. Stromlo for 4 years. Using a dichroic filter
they take exposures in the red and blue with a field of view of about 0.5 deg®. They target
both the LMC and the Galactic bulge. The French collaboration EROS [51, 52] uses a 0.4
meter telescope with a field of view is also 0.5 deg?. The OGLE [53] group does not have a
telescope of its own, instead it uses the 1 meter telescope at Las Campanas with a field of
view of 0.06 deg?. Under assumptions of a spherical halo, it has been found that the eight
microlensing events found so far imply a halo MACHO fraction as high as 50% and an average
mass of 0.27TMg. However this conclusion should be taken with some caution because the

statistics of these events are low and also the mass depends very strongly on the “standard
model” for the halo.

1.2.2 Non-Baryonic Dark Matter

At the time of writing the thesis, the Super-Kamiokande has confirmed the existence of
neutrinos with non-zero mass. As mentioned earlier WIMPs (Weakly Interacting Massive
Particles) and axion can be considered as non-baryonic dark matter, alongside the neutrinos.

We shall discuss each of these candidates briefly here.
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(i) Neutrinos

In the standard Big Bang model copious amount of neutrinos are produced and the universe
today is filled with thermal neutrinos at 1.7K. If neutrinos have a non-zero mass then they
will contribute substantially as dark matter particles, to the mass density of the universe.

The first suggestion of neutrinos, and indeed any nonbaryonic candidate contributing to the
2 came from Cowsik & McClelland [17]. There are experiments which put an upper limit on

the neutrino mass as [54]:

m,, < 15eV

my, < 0.17MeV
m,, < 24MeV

The Super-kamiokande experiment has recently announced that the mass deficit of the neu-
trinos is £0.07 eV, confirming the fact that neutrinos have mass. This result is exciting since
it offers for the first time one of the most concrete candidate for the dark matter problem.
The Super-kamioka detector consists of a huge 50,000 ton double layered tank containing
ultra pure water, monitored by thousands of photo multipliers. Located in a mine beneath
the Japanese ‘Alps’, near the town of Kamioka, the project has been collecting data for
the past two years. Charged particles traveling at speed large than that of light in water
emit Cerenkov light which is collected by the photo multipliers. The pattern, timing and
intensity of these light pulses allows one to determine the particle’s direction, energy and
identity. Super-Kamioka has observed is the muon neutrino oscillating though it has not yet

determined the to which state it oscillates.
(ii) WIMPs

Among the candidates for the dark matter particles are the WIMPs whose energies range from
afew GeV to TeV. They are a generic class of particles predicted from various supersymmetric
models are the cold dark matter particles [2]. They are so called, because they were non-
relativistic at the time of decoupling in the early phases of the universe. The interaction
cross-section (o) of these particles is not known, however an order of magnitude estimate can

be made.

This information on o is crucial to the plan and design of experiments searching for these

particles. The argument due to Lee and Weinberg is as follows [56]: In the early universe the
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temperatures are large and there is thermal equilibrium (mymp > kT) maintained between
the WIMPs and other particles like the leptons. However when the universe expands and
temperature falls below mwup/20; the particles are no longer in equilibrium. Two things
can then happen: if the annihilation rate is much faster than the expansion of the universe,
the WIMPs will disappear. However if the annihilation rate is smaller than the expansion
rate then there will be an abundance of the WIMPs that will remain. For a typical WIMP
mass in the GeV region the annihilation cross section is given by

oo — 10~26cm 5!

Qwimph?
where h is the the Hubble's constant normalised to lie between 1/2 and 1. It is interesting

to note, that for Q =1 the interaction cross section is roughly of the weak interaction scale.

There are basically two methods for detecting WIMPs: direct detection which is due to
elastic scattering of the WIMP on the detector [5], and indirect detection which involves
further annihilation of the WIMPs within the sun or earth which may be detectable as a
high neutrino flux. There are various problems in direct detection, mainly because of the
low signal and high background noise. The energy deposited is small for the mass range of
the WIMP involved. The expected event rate is small because of the small cross section of
interaction. The best confirmation for a WIMP would come from the annual and diurnal
motion of the earth with respect to the sun which results in a change in the recoil energy

spectrum. We shall discuss some of the experiments n a later Chapter.
(iii) Axions

Axions are alternatives to the WIMPs as candidates for dark matter. They are much lighter
than the SUSY (SuperSymmetric) relics, and are produced by a different mechanism. They
were first proposed to explain the lack of CP violation in strong interactions. Although the
interactions of axions with ordinary matter is very weak, Sikvie [58] proposed a method of
detection of Galactic axions. The axion has a weak coupling to the photons. Therefore if one
immerses a resonant cavity in a strong magnetic field, Galactic axions, which pass through
the cavity, may be converted to fundamental excitations of the cavity and may therefore
become observable. The typical allowed window range for the axions is 10~2 — 10~* eV and

it should be kept in mind that there are no accelerator tests for axion in this mass range.

There has been no shortage of proposed candidates since the advent of the dark matter

problem nearly seventy years ago. The neutrinos, WIMPs and the axion are the only ones



1.2. Candidates 15

that have survived theoretical scrutiny so far. However it is important to bear in mind that
although very attractive, the ideas regarding the WIMPs and axions are still speculative. It

is a tough experimental challenge, and the discovery of particle dark matter will revolutionize

both particle physics and cosmology.

While the nature of dark matter is not definitely known the idea is to put dynamical con-
straints on the dark matter properties by observations of visible matter. On galactic scales
the rotation curve constrains the density distribution of dark matter at large distances. On
smaller scales the visible and the dark matter together conspire to produce a rotation curve.
The work presented in this thesis relies on the observational data in the form of rotation
curve and imposes constraints on the velocity dispersion of these particles. We also discuss

the effect of this dispersion on the detection of DM.
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Chapter 2

Velocity Dispersion of Galactic
Dark Matter Particles

In the earlier chapter we concluded that there is definite evidence for the presence of dark
matter on various scales. As yet, the distribution and nature of dark matter remain inconclu-
sive. The problem at hand is a serious one and a maiden attempt to approach the problem
at the galactic scale [1], more so in the Milky way has already been made. The observations

of the rotation curve (2, 3, 4] in the Milky way provide ample evidence for the presence of

dark matter.

Most of the theoretical attempts so far in describing the dark matter in galaxies have been
on obtaining “mass models” for the dark matter component of the Galaxy and fitting it to
the rotation curve [5]. The customary approach to obtain the overall potential field has been,
to assume that the Galaxy is comprised of several components and the density distribution
of each is adjusted to get the best fit to the rotation curve. Our approach has been to start
from an assumed form for the phase space distribution for the dark matter component of
the Galaxy and obtain a theoretical rotation curve. Comparison of the theoretical rotation
curve with the observed one yields the halo parameters as best-fit values. This approach
is interesting in that it addresses the for the first time the determination of the velocity
dispersion as a problem and also succeeds in laying down a formalism for determining this

value.

We discuss the customary approach of modelling the mass distribution in Section [2.1]. We
introduce the current theoretical work, reviewing some properties of phase space distribution
functions in the Section [2.2]. We describe the main work of the thesis, the new results that

emerge from our study and their implications in Sections [2.3-2.8]

19
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2.1 Theoretical Mass Models of Galaxies

The general approach to modelling the mass of spiral galaxies, has been to assume various
components in the galaxy and manipulate the density distribution such that the potential
field induced by them, fits the observed rotation curve. At small distances, the rotation
curve is modelled by the visible matter distribution which consists of the bulge and disk. If
these were the only two components comprising the galaxy, then the rotation curve at large
distances would fall off as function of the galactocentric radius. Observations of galaxies,
however, show a gently rising or flat rotation curve at distances beyond the visible edge of
the galaxy. To account for the flat rotation curve, another massive component, a halo with

an isothermal density distribution is added.

The earliest mass models was given by Schmidt (1956) and since then there have been various
models for the Galaxy [5, 6, 7). Bahcall et al. [6] use a spherical mass distribution for the

bulge, an exponential disk and a spherical distribution for the halo.

While, in general, three components are required to explain the observed rotation curve, the
relative contribution of each of these components to the rotation curve is unknown. There
have been efforts to point out that probably a “maximum disk” model is at work which
does not require a dark halo to fit the rotation curve, for may be a few of the galaxies [8].
According to this model the disk is assumed to contribute dominantly to the inner part of the
galaxy rotation curve. The fitting procedure is as follows: the circular velocity due to the disk
and bulge can be obtained from the observed luminosity profile. making assumptions about
the value of (M/L)g.. The largest possible value, which is consistent with the rotation curve
is assumed. Then the halo with an appropriate density distribution is added. The value of
(M/L) g is changed until the final best fit to the rotation curve is obtained. The process
starts with the largest possible value for (M/ L), which is then decreased to accommodate
the halo. The final solution, therefore, still has the largest possible (M/L)yq value which is
the maximum disk fit [9].

2.2 Phase Space Distribution Functions

The advantages of using the phase space distribution function (DF) formalism to the study
the Galaxy is two-fold. The idea is to study the motion of the stars comprising the Galaxy
and use the fact that every star that travels through the phase space has some information of

the place it visited. It is then possible to get information about far off places in the Galaxy
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from a local analysis of variables like density or velocity dispersion. The other advantage from
the point of view of this thesis is that the velocity dispersion appears as a free parameter in

the phase space distributions we have chosen to study.

The equation governing wue phase space DF f goes by the name “Collisionless Boltzmann
Equation” (CBL) or the “Liouville cquation”. This equation is often referred to as the conti-

nuity equation followed by the stars. In Cartesian coordinates this can be written as

df of of of of 0%0f 0d9f 0% af
_— = — —+ —_— —_— e — — ——— —— .

dt ot +u3:1: v8y+w8z Jz0u Oydv 0zdw 0 (21)
where (x,y,z) are the position and (u,v,w) the velocities of the star and & represents a smooth
potential for the Galaxy. This equation states that alohg the path of any star in phase space
the total derivative of f is zero. In other words as the point representing the star moves along

the phase space, the density around it remains a constant.

Since Eq [2.1] is a first order linear partial differential equation in n-variables and the general
solution is not known. The equation can be reduced to n — 1 ordinary differential equations.
The solution is to find the n — 1 integrals ol these ordinary differential equations. Let the

integrals I, be expressed in the form:
Ii(z1,z2,....zn) = const., i=1,2,.n-1 (2.2)
The general solution to the CBE is then given as:
f(z1,x9...2) = G(I1, I, I3...I5 1) (2.3)

Thus the general solution of the CBE requires that f, the distribution function be expressed
as a function of G of the integrals of motion of the star. In the time independent situation

these equations can be reduced to what are known as “subsidiary equations”:

d_a: _dy dz du dv dw

u v w -0%/0z -0%/dv —0%/0z (24)

These equations are the equations of motion of a star and it is.clear from these equations

that one integral of motion is the energy integral given by
1 2, 2 2
L =E= —2-(u + v* + w®) + ®(z,y,2) = const (2.5)
If the potential is independent of time, this integral always exists. Thus,

f(x,y,z,u,v,w) = F(Il) (26)
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Another example of isolating ‘integral is when the potential is axisymmetric then one of the
integrals of motion is the angular momentum. Suppose we consider this as the other integral
I then this motion is also confined to a particular I, surface. Since the motion is already
restricted to be on the I; surface because of the energy integral; the motion of a star in a
potential governed by the two integrals of motion must in fact take place in the intersection
of the I; and I, surface. Again by Liouville’s theorem since the f must have the same value

everywhere on the surface, then the mathematical expression reduces to the following
(2,9, 2,u,v,0) = F(Iy, I) (2.7)

In the case of the Milky way because of the symmetry of the potential the two isolating

integrals of motion are the energy and the angular momentum and this reads as
f(R,z,u,v,w) = F(E,h) (2.8)

where E is the energy and h, the angular momentum. The general idea is to construct
self-consistent models for galaxy disc-bulge-halo systems using these DFs. Our aim is to
understand the dark matter problem based on all the above concepts. Using the rotational
cur.ve as an observational constraint we have developed a model to help us understand better
the properties of the dark matter particles. In particular, we wish to determine the value of
the velocity dispersion which is an essential input to the experiments that aim at real time
detection of dark matter particles. The most popular models that have proved effective are
the King’s DFs which is a function of only the energy and the Evans’ model [10] which is a
function of both the energy and the angular momentum. We shall discuss the models based

on these DFs, later in this chapter.
2.3 Motivation

Observational evidence for the existence of dark matter (DM) exists now on a wide variety
of astronomical length scales starting from the solar system to large clusters of galaxies [11].
The nature and distribution of DM in the Universe are, however, unknown. It is now well
recognized that a substantial fraction of the DM on galactic and larger scales must be non-
baryonic [12], the most popular candidale being the MACHOS [13].

Currently, a great deal of experimental effort is underway in trying to directly detect the
weakly interacting massive DM particles in the laboratory. The experiments are aimed at

observing the cffects of the impact of mainly the more massive candidatec DM particles of
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e ——

typical mass 2 few GeV with targets maintained at cryogenic temperatures which facilitate
the observation of tiny amount of energy deposited in the process against the background
generated by internal and external radioactivity and by cosmic rays. These developments are

reviewed in detail by a number of authors [14, 15].

The interpretation of these experiments to derive constraints on the properties of the unknown
particles constituting a halo of DM in and around the Galaxy requires assumptions about
the density and spectrum of velocities of the DM particles in the solar neighbourhood. These
parameters have been obtained thus far by describing the DM halo as a single-component
isothermal sphere appropriately truncated at a particular radius [16]. The mass density
contributed by DM particles in the solar neighbourhood is not known and is model dependent ;
however, an analysis of the observed spatial and velocity distribution of the stars near the
solar system,as discussed in Chapter 1, indicates a DM density of ~ 0.3 GeVem™ in the
solar neighbourhood. In contrast, determination of the 3-D dispersion velocity of the DM
particles, (v:’)%,/):f7 , has received very little attention. It is customary, to invoke a relation [17]
pertaining to a single-component isothermal sphere, and setting (v2),1)/,3 = \/ch,oo, where
Ve, is the asymptotic value of the rotation speed Vi, of the Galaxy. Since the value of V¢ o
for the Galaxy is not known and cannot be determined, the usual practice is to assume that
the rotation curve of the Galaxy [18, 19], V.(R), as a function of the Galactocentric distance
R in the plane of the Galaxy, is flat for all R ~ 5kpc out to R > Rg = 8.5kpc (here R
denotes the position of the solar system), and set Ve o =~ Vo(IRg) =~ 220 kms™!, the rotation
speed near the solar system. This yields (v2),1)/§ ~ 270 kms™!, which is the value usually
assumed for (vz):,/,;" in most studies of issues related to Galactic DM.

. . 1/2
There are, however, reasons to question the above ‘determination’ of the value of (v2)D/M .

Firstly, the single-component isothermal sphere, without adding the eﬁ'f;cts of the visible
matter, of the Galaxy with Rg provides a poor description of the dynamics of the Galaxy
in and near the Solar system: The density of the visible matter in the central region of the
Galaxy exceeds that of the DM by factors of ~ 1000. Even the integrated mass of the DM
within a sphere of radius Rg ~ 8.5kpc is smaller than that of the visible matter. In other
words, the DM is not the dominant component of matter within the solar circle. Thus the
above mentioned asymptotic relation between V; and (v?‘)ln/& can be expected to be valid only
at R > Ry where the DM component described by an isothermal sphere may be expected to
be dominant, and not at R ~ Rg. Moreover, since the basic equation which determines the
potential and the density distribution of dark matter depends nonlinearly on the potential

exerted by visible matter, inclusion of this additional visible component in the equation
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substantially changes the distribution of dark matter. Secondly, there is no observational
support for the common assumption that the Galactic rotation curve is already saturated at
its asymptotic value at R = Rg. In fact, as noted by Fich and Tremaine [4], much of the data
indicates that the rotation curve “continues to rise” beyond Rg. Thus even if one assumes the
validity of the single-component isothermal sphere description of the Galaxy, the estimate
(vz),l)/»f ~ 270 kms~'obtained by assuming V;(Rg) = Ve oo is uncertain. Thirdly, it is not
serious for the problem at hand, it may be noted that the assumption of a pure isothermal
sphere for the description of the DM halo neglects the deviation from spherical symmetry
induced by the disk-like distribution of the visible matter. Keeping these points in mind,
we have developed a formalism in which we directly address the question of the phase-space
structure of the distribution of DM in the Galaxy, and determine (uz)i,/,j , which enters as a
free parameter in this phase-space description, by comparing the theoretical rotation curve
with the observed data. Our model of the Galaxy comprises of visible matter and particles
of DM coupled through their mutual gravitational potentials in a self-consistent manner.
This necessarily makes the relevant coupled Poisson and collisionless Boltzmann system of
equations for the DM depend non-linearly on the potential generated by the visible matter
of the Galaxy non-linear. We solve this non-linear system of equations by means of a simple
iterative scheme. In our analysis the departure from spherical symmetry of the halo emerges
naturally due to the disk like distribution of the visible matter which we take to be axially
symmetric. In this chapter, we discuss our formalism in detail, including a detailed discussion
of our numerical algorithm and present several new results. We find that a relatively high
value of (v2)ln/j ~ 600 kms~!(as compared to the earlier expectations of ~ 270 kms™!) is

required in order to fit the rotation curve data of the Galaxy.

Further confirmation of the robustness of our result is obtained by performing the calculation
for a somewhat more realistic phase-space distribution function for the DM halo, namely the
one describing a truncated isothermal sphere, or the so-called “King model”. for the on-going
laboratory experiments in search of the DM particles. From theoretical point of view, the
relatively high dispersion velocity of the DM particles seems to fit in more easily with the
‘embedding’ scenario [20] according to which galaxies are embedded in cluster-size ‘clouds’ of
DM, rather than with the conventional scenario in which individual galaxies are surrounded

by individual ‘halos’ of sizes much smaller than those of typical clusters.
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2.4 Formalism

The phase-space distribution function (DF) of the DM particles, fom(x, V), satisfies the col-
lisionless Boltzmann equation (see, e.g., Binney and Tremaine 1987). In steady state, the
well-known Jeans theorem [17] allows the DF to be expressed as a function of the various
integrals of motion of the system. The simplest ansatz for fpm(x, V) is obtained by taking it
to be a dimensionless function of the energy E = m (%v2 + ®.i(x) + @w(x)), where m and
v are the mass and velocity of a DM particle, respectively, and ®,,(x) and ®py(x) are the
gravitational potential due to visible and dark métter, respectively, at the coordinate location
x. To illustrate our method, we consider as an example the simplest and most well-known of

such a DF, namely the “Maxwellian” describing an isothermal gravitating sphere (see, e.g.,
Binney and Tremaine 1987):

Jfom(x,v) < exp [— kljDM] (2.9)

where the ‘temperature’ Tpy is related to (vz)ll,/hf , the three-dimensional isotropic velocity
dispersion of the DM particles, through the relation 3kTpy = 1m(v2)py, and ks is the
Boltzmann constant. This DF, as well as the “King model” DF described in the next section,
are specially suited for our purpose because they incorporate the crucial quantity of our
interest, namely, (vz),g/,f , directly in the DF, allowing us to directly probe the sensitivity of a

measurable quantity such as the Galactic rotation speed to variations in (vz):,/hf , and thereby

to determine its value.

Now, integrating Eq [2.9] over velocity we can write the DM density, ppm(x), as

Por(R, 2) = pow(0, 0) exp [—zv—;;;{ (@DM(R,z) — ou(0, 0)) + (@v;,(R,z) — 8,0, 0)) }]
(2.10)
where ®;,(R, z) is the visible matter potential at any given point (R,z); Eq [2.10] is normalised
with respect to the dark matter and visible potential at the centre. where we have explicitly
indicated the density and the potentials as functions of cylindrical polar coordinates, R =
(=% + y2)% and z, in anticipation of the axial symmetry in the probiem introduced by the

axially symmetric distribution of the visible matter considered in the next section.

The DM potential satisfies the Poisson equation,
Vz‘I’DM(Ra z) = 47G ppu(R, z) (2.11)

Now, for a given visible matter potential, ®.;,(R, z), as constructed from a suitable representa-

tion of the observed mass density distribution of the visible matter in the Galaxy, the exercise
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is:to obtain the DM potential ®pu(R,2) by self-consistently solving the coupled non-linear
equations (2.11) and (2.10). In this exercise, the central density of the DM halo, ppy(0,0),
and the DM velocity dispersion, (vz)})ﬁ , appear as free parameters which are determined by

directly fitting the rotation speed of the Galaxy calculated from the expression

VZ2(R) = R;% Pom(R, z) + D.i(R, z)] o (2.12)

to the observed rotation speed data.

The solution of the coupled equafions (2.10) and (2.11) for ®py is effected through the fol-
lowing iterative scheme: In the zeroth order, we set the DM potential to zero in Eq [2.10].
Since ®,;, is known, this gives us the zeroth order approximation for ppy, which when substi-
tuted on the right hand side of Eq [2.11], allows us to solve Eq [2.11] to obtain the 1st-order
approximation for ®py. The latter is then used in Eq [2.10] and the resulting ppy substituted
in Eq [2.11] to obtain the 2-nd order approximation for ®py, and so on. In compact notation,

this iteration scheme can be expressed as
V?®(R,2) = 47Gpn_1(R, 2) (2.13)

where n = 1,2,3,..., and Pn-1(R, 2) is equal to the right hand side of Eq [2.10] with ®py
replaced by ®,_;. The iteration is set off by taking, for n = 0, ®9(R,2) = $¢(0,0) =0. It
turns out that this is a simple and a very efficient iteration scheme, and we find that the
potentials ®,’s converge towards the desired potential @y typically within a few iterations
(n < 10). Details of the actual numerical algorithm including implementation of the relevant
boundary conditions and the tests for checking the correctness of the numerical code are

described later.

2.5 Models for Dark and Visible Matter

(i) The phase-space distribution function for Dark Matter

As explained in the previous section, since we are interested in the velocity dispersion of the
DM particles, a model for the DM must be prescribed at the level of the phase space DF,
and not just at the level of mass distribution. Note that while a given phase space DF leads
to a unique mass distribution, the converse is not true in general. The DF describing the
Galactic DM is not known a priori. The Maxwellian DF describing an isothermal gravitating

sphere discussed in the previous section is widely used in the literature in this context. In this
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chapter, we consider, in addition to the Maxwellian model, the so-called “lowered isothermal”
or “King model” [17] DF given by

3 2
p1(2ma?) 2 (ef/7° — 1) E>0
f(€) = | . (2.14)
0 £EL0
where £ is the so-called “relative energy” [17] defined as £ = —F + ®¢, where @ is a

constant, and p; and o are the density and velocity parameters of the model. In practice,
the constant ®¢ is chosen such that f > 0 for all £ > 0 and f = 0 for all £ < 0. Unlike
the case of the Maxwellian DF of Eq [2.9], the velocity dispersion in the King model is not
spatially constant. Indeed, the King model DF, by construction, has the property that the
mass density as well as the velocity dispersion vanish at a finite distance from the center,
called the “tidal radius”, r;, which is a free parameter of the model. In contrast, recall that
the Maxwellian isothermal sphere is ‘infinite’ in extent; its mass density has the asymptotic
(r = o0) behavior p(r) o< r=2, where r is the radial distance. For a DM halo described by
the King model, the DM velocity dispersion (u2),1,/3 decreases [17] slowly from V302 at r = 0
to zero at r = r;. Because of these properties, the King model is expected to provide perhaps
a more ‘realistic’ description of a finite DM halo than the ‘infinite’ Maxwellian isothermal
model. However, in practice, we find that the Galactic rotation curves calculated by using
the above two DFs differ significantly from cach other only at distances R > 30kpc for
typical values of r; = 300 kpc. Since reliable rotation speed data for the Galaxy exist only for
distances R < 20kpc, and since we are interested in the value of (vz),g/,\f at R~ Ry = 8.5kpc,
the difference in the rotation curves of the two models at R > 30kpc does not influence our
results significantly so that both DFs yield roughly the same value of (vz),l)/,f in the solar
neighbourhood as determined by comparing the predicted rotation curves to the observed
data.

Clearly, the exact DF describing the DM halo of the Galaxy is unknown. The two ‘thermal’
DF's mentioned above are used in our analysis primarily from the point of view of simplicity.
Other DFs for the DM have been advocated in the literature [10]. There is some theoretical
justification, however, for using the ‘thermal’ DFs: the origin of the DM particles in the early
Universe would be expected to start their DF off with a thermal distribution which may
have been marginally affected by violent relaxation and coarse graining during the growth of
the structures in the Universe. In any case, we expect that the estimate of (vz)f)/,f obtained
by using the rotation curve as a probe would be weakly sensitive to the exact form of the
DF used in the analysis. This can be understood as follows: in the absence of streaming

flow (i.e., (v) = 0), the leading moment (v?) determines the “pressure” term in the Jeans
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equations (see Eq (4-27) of [17] and the discussions following it). Thus for all pressure-
supported DM halo models the values of (vz),l,/,f determined by a given set of rotation speed
data would be expected to be roughly the same. The central density of the DM halo is also
determined in our analysis and is also being independently constrained by the Oort-Bahcall
type estimates [21, 22, 14, 24] of the DM density in the solar neighbourhood.

(ii) Model for the visible matter

We now have to specify the density distribution of the visible matter and the resulting
gravitational potential used in the analysis. We use a two-component model of the visible
matter consisting of a spheroidal bulge [17, 25, 26] with density ps(r), and an axisymmetric
disk [26] with density p4(R, 2):

Po

ps(r) = (1+r2/a2)3/2 (215)
pa(R,2) = g_’?e—(n—xo)/m elal/n (2.16)

where r = (R? + z2)l/2

, and disk surface density at the solar position, z being the vertical
distance from the plane of the disk. The values of the parameters are given by a = 0.103 kpc,
R4 = 3.5kpe, h = 0.3kpc, and p,(Rg) = 7 x 1074*Mgpc=3 [25, 26]. It may be mentioned
here that the rotation curve in the outer regions of the Galaxy is relatively insensitive to
the spheroid parameters. There are large discrepancies in the values of Zg reported in the
literature: Whereas Kuijken and Gilmore (KG) [26] suggest Zg ~ 40~M@pc”2 on the basis of
analysis of a sample of data on ~ 512 K-dwarf stars, Bahcall et al. [14, 24] in their reanalysis
of essentially the same data suggest a number for £ which is about twice as large. The
estimate of the local surface density of the Galactic disk due to the identified matter such
as visible stars is ~ 48 = 8 Mgpc~2. Thus Bahcall et al. ’s kinematical estimate of ¢ seems
to indicate the presence of a substantial amount of unseen matter associated with the disk,
whereas KG’s estimate is consistent with no disk dark matter. In this context, it is perhaps
worthwhile to mention that the analyses of Refs. [14, 24, 26] are all based on one-dimensional
solutions to the Boltzmann equation which are strictly valid for an infinite disk only. In any
case, the dark matter associated with the disk is expected to be dissipational in contrast to
the collisionless and non-dissipative dark matter constituting the extended halo of the Galaxy
We shall, therefore, use the conventional nomenclature “visible” to describe effectively the

total (i.e., visible plus dark) matter associated with the disk. The value of Yo is a source of
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uncertainty in our estimated value of (vz)%,/,f. In our calculations, we shall consider values
of Lo in the range 40 — 80Mgpc=2. Note, however, that the contribution of the disk to
V2Z(R) defined in Eq [2.12] is proportional to its surface density, while that of a perfect
isothermal sphere is proportional to the square of the velocity dispersion of its constituent
particles (see Eqs(4-159) and (4-127b) of Ref. [17]). Thus, for a given observed rotation curve,
the use of higher values of L in the calculation is expected to yield correspondingly lower
values of (vz),l){f as obtained by comparing the predicted and observed rotation curves. This
expectation is indeed borne out by our numerical calculations giving a lower limit to the

estimated value of (vz)lo/,f corresponding to $g ~ 80Mgpc2.

2.6 Numerical Procedure

In this section we describe the algorithm we have used for solving the coupled non-linear
partial differential equation (PDE) Eq [2.11] for the dark matter potential. The coupled

non-linear equation along with the boundary conditions is described below.

10 (,00 1 9 0%
- hatlnl - [sinf—) =14 2.17
r2 Or (r 6r> T sin @ 90 (sm060> mGp (2.17)
8% 8% GM(r)
— -_ —_— — 2-
67’ r=0 0, 37‘ r=rmazx 1‘2 ( 18)
od od
Bl ~ O Bl O

At large distances corresponding to r = rmaz the dark matter distribution is spherically
symmetric. The force at the center of the Galaxy will be zero purely by symmetry arguments
and the normalization is chosen such that the potential at the center is always zero. Only the
radial component of force is present at large distances and is a function of the mass enclosed

at that radius.

The polar coordinate system would be the most natural one to solve this problem. However
to simplify the problem numerically we have used the following transformation which maps
a polar coordinate system almost to the Cartesian coordinate system with exception of the

point at the origin. The transformation is given by z = In(r) and y = 6.

We use a two-fold iterative procedure to solve this equation. In principle the non-linear
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elliptic equation we have to solve is of the form:
Vzu = f(u) (2.19)

where f(u) is some function, in the problem at hand it is the density. We specify an initial
value to u% such that f (u) is completely defined. Then the equation reduces to a linear elliptic
function which is solved using the successive- over- relaxation method. The new converged
value of u! is again used to compute the new f(u) and the linearlised equation solved to

obtain another u2. This process is continued till a converged value of u™ is obtained.

As a first step we discretise the equations using the finite difference scheme. Eq [2.17] can be

rewritten in the discretised version, after making the transformation to the (x,y) coordinate

system described above, as

f@i,3) = a(i, j)uli+1, 7) + b(3, j)u(i — 1, 5) + c(4, F)u(3, 7 + 1) + d(3, j)u(i, 5 — 1) +e(4, j)u(i, 5)
(2.20)

a(i,j) = dy*(2+dz)

b(i,j) = dy*(2—dz)

. . dy
di,j) = de? (m * 2)
c(i,j) = da? (2 - m)
e(i,j) = —4(dy®+ da?)

fG3) = 8mpli,j)e** da?dy’?

where u(i,7) is the discretised potential at the coordinate z; and y;; dx and dy are the
grid sizes for a rectangular grid of 701 x 61. The discretised density, p(,7) with the two

parameters: the central density ppu(0) and the velocity dispersion (vz)y;f is given by
p(i,7) = pom(0) exp [“‘Tﬁ (U(w) + Uuie(1, J))] (2.21)
‘ (v2) pm '

The discretised version of the equation to be solved is for u(z, j) (Eq [2.20]).

W) = ;—(%(f(i,j)—a(i,j)u"(m,j)—b(i,j>u"(i—1,j) (2.22)

teli, YUt + 1) +d(G, ) (6§ - 1))

There are two sets of iterations involved in solving this non-linear PDE, as described earlier.

At every step of n, the linearised equation has to be solved iteratively. We specify the initial
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2.6.

values for the u(4, 7) so that the density p(i,7) in Eq [2.21] is fully specified and f(i, j) has
no explicit dependence on u(i,j). This linear equation is then solved using the relaxation
scheme [27] to determine the new ul(4, 7) (Eq [2.23]). The converged new solution is used to
determine the new f(i,5), which again reduces the Eq [2.23] to a linearised equation which
is solved by the usual relaxation method mentioned earlier. Thus the outer iteration consists
of finding new values for f(i,7) and the inner iteration is used to determine the converged
u (i, 7). The outer iterations are continued till a converged value for u™(7,7) is obtained.
Typically 10 outer iterations and 30000 inner iterations are required to solve this equation
We have checked for convergence both in the inner iteration and the outer iteration and the

convergence is of the order of 10~%. Using this numerical procedure we obtain

(v2>11>/3 = 600 kms™!

(i) Checks and Comparisons

We have checked the validity of the numerical algorithm we have developed. Here we demon-
strate the various tests we have performed on the code to ensure its robustness and hence
the value of the velocity dispersion. Following the earlier paper our numerical results were

further confirmed by Bienayme et al. [28].

First, since at each step of the outer iteration one is actually solving the Poisson equation
with the source term known, we checked the Poisson solver itself for the Miyamoto-Nagai
potential. To test the code we also solved it without the theta dependence retaining only
the radial component whose analytical solutions are well known [17]. The analytical and
numerical results compare to better than 1% accuracy. At large distances, the dark matter
is the dominant component; from Eq [2.21] we note that the equation reduces to that of an
isothermal sphere for u,;, =~ 0. Therefore, in this limit the algorithm should reproduce all the
behavior pertaining to that of an isothermal sphere. For an isothermal sphere we know that
the rotaty>n curve asymptotically approaches a flat rotation curve with the value given by the
equation 't (R) = %(vz)DM. Hence, for (vz),l,/,f = 600kms™! this reduces to the expected value
of 490 k=s~'for the rotation speed V. This is clearly demonstrated in the Fig [2.1] below.
We have xlso calculated the slope of the density (p ~ r~2) and as seen from the Fig [2.1], it

approachss the expected value of 2.
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Figure 2.1: The figure on the top demonstrates that p = r~2. The figure below shows
that the rotation curve approaches a flat curve at large distances. Note that for a velocity

dispersion of 600 kms~!(solid line) the V; approaches 490 kms™*as expected from the relation
ch(R) = %(UZ)DM-
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2.7 Results

Having obtained the potential of the dark matter for the Galaxy we proceed to derive the

rotation curve. The rotation speed is given by

Ve(R) = Rgaﬁ(@m + ®pum) (2.23)

The Fig [2.2] shows the rotation curve calculated for various values of the (vQ)})/,j . The data
are taken from various sources, at small distances 0 — 2kpc from Burton & Gordon [29] and
at large distances from Fich et al. [4], the current data on the Galaxy are available up to
20kpc. In order to determine the best-fit value we have calculated
f=ii(m&%Wﬂ2
N & o;
i=1
as a function of (v?)py where N is the number of observational data points , Vi(R;) and V; o

are the theoretical and observational values for the rotation speed respectively for the it®

data point for which R = R; and o; is the 1o uncertainty in the measured value for V; ,(R;).

The chi-square (Fig [2.2]) is plotted as a function of (v%)py and it clearly follows that the
(vz),l,/bf of the order of 600 kms™!. Qur results are based on the best available rotation curve
data upto 20kpc and do not rely on extrapolation of the data beyond the last observed point.

The expected asymptote is approached at large distances for the various values of velocity

dispersion.

We have carried out the above analysis for different values of ppy (0) ranging from 0.3 GeVem™3
to 1 GeVem ™3 for different values of the velocity dispersion. We believe this is an independent

way of estimating the density of the dark matter from the rotation curve.

Also as mentioned previously we have carried out the analysis with the King’s model which
has a cut off at a finite radius. We have derived the rotation curve based on this model and
made estimates on the the (vz):,/,\f of the dark matter particles. Interestingly we find that we
obtain approximately the same value for (v2),1)/3, i.e., 570 kms~! (Fig [2.3]) as the best fit

value. The velocity dispersion, in general is calculated as:
oo
Pou = [ F(Ep?d (2.24)
0

In the case where f(E) is the isothermal model, the (u2)y~% = 302 and is a constant; however
using the King’s model one obtains the velocity dispersion as a function of the distance

which is shown in Fig [2.4]. Thus the determination of the velocity disperison of dark matter
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Figure 2.2: The theoretically estimated rotation curve compared with the observations of Fich
et al. is shown in the first figure. The second figure plots the chi-square value for different

values of the (v2),1,/§ obtained by comparing the theoretical and observed rotation curves.
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Figure 2.3: In the first figure we show the rotation curve fit, using the King’s model, with
the observed data. The best fit value is obtained for (UQ)E/,E = 570 kms~!. The second figure
compares the rotation curve due to the isothermal and King’s models. It is clear that at
small distances both models show similar behaviour of rotation curve.
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particles from the rotation curve appears to depend rather weakly on the assumed form of
DF. In the Fig [2.3] we have shown the rotation curve derived using both the King’s model
and the isothermal model superposed on each other. It is very clear that at s_mall distances
the two models are very similar in behavior and its not surprising that the (vz),l,/j has the

same value at the Solar neighbourhood.

2.8 Discussion

We have used a two component model to describe the galaxy; the visible and dark matter
components. This implies that at distances where the visible matter is dominant it modifies
the parameters of the dark matter distribution as we have seen in the case of (v"’),l)/,f . Secondly
as, we have pointed out earlier the value for the (v2),1,/,3 ~ 270 kms~!was derived on the basis
of assuming V;(Rg) = Ve,c0 and then using the virial relation (v?)py = 2V.(Rg)/3. The use
of this relation in the Solar neighbourhood region definitely has neither basis nor justification.

For, this relation is valid for a single component of the isothermal sphere and the rotation

curve is flat from R = 8.5kpc.

o
{04
8
«{ 03
R
0.9 <v?>'2) ~ 570 Km/s
0'1 b 1 A A 1 1
10 20 100 200
R(in Kpc)

Figure 2.4: The variation of the velocity dispersion as a function of galactocentric radius.



2.8. Discussion 37

In fact, the Fich et al. [4] data indicates that there is a rising rotation curve. It is true the
rotation curve rises rather sharply for the isothermal model and then saturates at the expected
value according to the virial theorem (for a (v?)pym & 600 kms~lit saturates at V, ~ 490
kms~!). Since there is an uncertainty of a factor of two in the value of the ppu(Rp), we have
taken a range of parameter values of ppim(0) (central density) varying from 0.3 —10GeVem™3
for the various (v?)pm. Thus we have tried to scan, as much as possible the parameter space
of p and (v?)pm- Thus in some sense this work also tries to place an independent constraint
on the ppu(0). One of the consequences of assuming a Maxwellian distribution is that the
velocity dispersion is a constant . If one assumes a different phase space distribution like that
of a truncated isothermal sphere, it is true that the (v2)py is a function of R; however as
explained earlier, since this is only the second moment of the distribution function it really
does not matter what distribution one chooses at small distances since it is only the large

distance behavior that is very different.

There are 6 observational variables (7 ,7) for each of the objects on which the observations
focus and a large statistical sample is necessary to get a model for the mass distribution.
Unfortunately, it has thus far been possible to observe only 4 variables ¥ and v,44iq1, leaving
the models highly under constrained thus requiring specific assumptions about the model.
The work by Norris and Hawkins, Frenk and White et al. [12] addresses the question of mass
models and not the phase space structure of the Galaxy. Moreover the circular speeds derived
with their mass models [12] are not inconsistent with the ones we have derived here. As noted
in our letter [18, 32, 33, 34] we have done the calculation with the truncated isothermal model

and found that the value for the velocity dispersion is not inconsistent with what we have for
the isothermal model.

As Bienayme et al. [28] further pointed out, this calculation has to be extended further by
applying the model to 6D data from globular clusters and obtaining a realistic upper limit on
the (vz),lj/bf . It is also necessary now to check for consistency of this model within the frame

work of the local group of galaxies.

(i) Rotating halo models

Thus far our focus has been on non-rotating halos and in this section we discuss some aspects
of rotating systems. Rotation gives rise to centrifugal force =~ rw? which depends quadrat-
ically on the angular velocity and increases linearly with distance. The effect of this is to

make equipotential spheroids that extend in the equatorial plane. Early work on such halos
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were carried out with distribution functions of the form

F(E,L,) = exp[BE + B2 L2] (2.25)

Such halos had unusual behavior near r = 0 for certain values of the parameters 8; and f,.

Recently Evans suggested the form

F(E,L?%) = (AL? + B) exp(4E/v?) + Cexp(2E/v}) (2.26)
with
4= (B (.27
o\ Gg?vd ’ '
B = (Z)l/ ? R
md Gq?y
_ 2¢° -1
¢ = 4G q?vy

where R, is the core radius, ¢ is the flattening parameter and v is some velocity scale in the
problem. This DF has more regular features suitable for the description of astrophysical halos.
Irrespective of the precise form of the DF in halos with rotation, the centrifugal force adds to
the forces generated by the gradient in pressure in supporting the halo against gravitation. In
the present context of the study of Galactic dark matter Kamionkowski & Kinkhabhwala, [35]
have used the Evans model Eq [2.26] to compute the features of the rotation halos. Their
work is similar to the early work on isothermal halos and shows that introducing reasonable
amount of rotation does not cause major changes with respect to the behavior exhibited by
the isothermal non-rotating systems. In particular, once the asymptotic value of the circular
velocity V, is induced by such a halo is fixed, the value of the underlying velocity dispersion

is similar to that of an isothermal halo with the same V.

The rotation curve computed by Kamionkowski and Kinkhabhwala, while in agreement with
the observations in the range of 15 — 20kpc, is in gross disagreement with the observed
rotation curve upto 10kpc. One may think that (by adding the contribution of the observed
distribution of visible matter) the theoretical rotation curve may be brought into agreement
with the observations. However, to do this the effect of the gravitational potential of visible
matter on the halo is to be taken into account. As discussed earlier in this chapter the
coupling is non-linear and the density of the halo particles will be enhanced substantially at
short galactocentric distances r < 7kpc, for the same set of parameters describing the phase

space distribution of the halo. Thus single component description for the halo dark matter
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distribution in untenable whether the DF be a simple isothermal or a rotating form given
by Evans. Kamionkowski & Kinkhabhwala have shown the insensitivity of the parameters
to reasonable levels of rotation. We have already shown the insensitivity of our results to
specific forms of the DF. Combining these two results it may be safe to conclude that the

large value of (v?) ,1,/,3 derived by us is valid for halos rotating slowly.

In conclusion we would like to state that in the wake of new observations and experiments
it has become important today to carefully compute the various dark matter parameters
involved. We have devised a new model for the halo and computed the value for the velocity
dispersion of the dark matter particles to be 600 kms™'in a self consistent fashion. Our model
is consistent with the observed rotation curve upto 20kpc. We haire shown that the computed

rotation curve is not very sensitive to the phase space distribution at small distances.
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Chapter 3

Dwarf Spheroidals & Rotation
Curves

In an earlier chapter we noted that our conclusions about the velocity dispersion of the DM
particles depended on the behaviour of the rotation curve of the Galaxy at large distances.
The observations of the rotation curve in the Galaxy are poor beyond the Solar circle and
there is ho direct information beyond 18 kpc. In this chapter we follow up a suggestion by
Lynden-Bell and Lynden-Bell {1] that the motion of dwarf spheroidal galaxies may be used
to indirectly derive the rotation curve of the Galaxy up to 200 kpc. In the Section [3.1] we
review some of the studies on dwarf spheroidals. Section [3.2] discusses our own work on

these galaxies and highlights how it is consistent with the work done in the earlier chapter.

3.1 Review of Dwarf Spheroidal (Galaxies

The dwarf spheroidals (DS) are interesting objects of study; they are the smallest known
systems only a few hundred parsecs across, in which dark matter has been detected. The DS
are small galaxies with a typical mass of 10°My and low surface brightness. A dynamical
estimate of dark matter is obtained by measuring velocity dispersion of individual stars and
applying the virial theorem. Assuming that the light traces the mass distribution and the
velocity dispersion is isotropic, the King’s model has been used to fit the star counts of the

dwarf spheroidals. The King’s model yields

— 1
Po 4nGr? (3.1)
and M g
M __% 2
L 2nGXyre (32)
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where agp is the central projected velocity dispersion, £y the central surface brightness and
r. the core radius. These parameters have associated with them an observational uncertainty.
For example, Aaronson [2] reported a velocity dispersion of ~ 10 kms~!for Draco based on
measurements of velocities of 3 carbon stars. Pryor et al. (3] recently reported observations
of velocity dispersions for some DS. These studies indicate that dark matter is present in
the dwarf galaxies [4]. In particular, Draco and Ursa Minor seem to have a large central
density and a large value for M/L. The DS also have an important role in the dynamical
evolution of the Galaxy [5]. These objects are thought among the putative remnants tidally
stripped apart from the Galaxy during the earlier stages of galaxy formation (5, 6]. The first
suggestion came from Toomre and Toomre (7] who showed that gravitational tides of the
Galaxy could result in spectacular features and later the observation of the Large Magellanic
Cloud (LMC) suggested the possibility of its tidal origin for remnants in general. The dwarf
spheroidals are thought to be debris associated with mergers. There has been a lot of work on
DS primarily to obtain the mass of the Galaxy. Lynden-Bell, Canon and Godwin [8] pooled
data on these satellite galaxies and obtained a small mass for the Galaxy, of 2 x 10} Mg. This
mass was obtained based on the assumption of isotropic orbits for the DS. They argued that
tidal disruption would remove preferentially orbits which bring them closer to the Galaxy
and they obtained mass atleast 4 times larger by cutting out highly eccentric orbits. Little
and Tremaine (9] also assumed isotropic orbits and obtained a small mass for the Galaxy,
however they argued against tidal disruption. Their reasoning was based on the fact that
since the DS had a large amount of dark matter they had a large mass and are hence stable
against tidal disruption. Further studies were carried out by Kulessa and Lynden-Bell [10]
with more data including globular clusters the Leo I galaxy which has a large radial velocity.
They determined the mass based on a maximum likelihood estimate and also treated the
Galactic potential in a self consistent manner to obtain the total mass of the Galaxy as
1.3 x 10'?Mg. Cowsik and Ghosh [11] proposed the “embedding model” where the visible
galaxies are embedded in a huge dark matter condensate so that light does not trace the mass
distribution. They solved the 1-d Poisson equation self consistently for both the stellar and
the dark matter distributions and obtained the densities and (vz)yﬁ by fits to the luminosity
profiles. The conclusion they reached was that the luminosity profiles were best fit for a

dark matter particle with (v2)5h ~ 1000 kms~'and a background dark matter density of
p=10"25 ~10-26 gm cm3.

Observations of dwarf spheroidals can also be used to constrain the rotation curve at large
galactocentric distances. Based on an analysis by Frenk and Lynden-Bell [12], Lynden-Bell
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and Lynden-Bell [1] studied dwarf galaxies and determined rotational velocity of the Galaxy
upto large distances.

For any test system moving under the influence of the gravitational field of the Galaxy, using

the equation of motion and the virial theorem:

1&|r)> 5 _ 12

- - =V 3.

2 dt2 c ( 3)
where v is the velocity of that subsystem with respect to the Galaxy center and V is the
circular velocity. Averaging the above equation over the subsystem and assuming virialisation

one gets the Frenk-Lynden-Bell result.
(v?) = (V2) (34)

Since DS galaxies are beyond 50 kpc, information on the velocities of these galaxies can be
used to constrain the rotational velocity of the Galaxy at large distances. If the distribution

is isotropic then it is very easy to see that
(v") = (n+ 1)}

for which u = 2; where v, is the radial velocity and v, the transverse velocity and p = v2/v2.
Even though the result in Eq [3.4] is for ensemble averages, Lynden-Bell and Lynden-Bell,
considering the small number of DS available, assume that radial velocities of individual DS
give a measure of the ensemble average and plot V2 = (u + 1)v? for various galacto-centric
distances, assuming ;2 = 2 (Fig [3.4]). However, it is more likely that the distribution of dwarf
spheroidals is anisotropic and indeed we do observe that there are no satellite galaxies below
50 kpc and above a certain galactocentric distance of 250 kpc. In this chapter we attempt
to obtain the value of p which can give a measure of the deviation from cisotropy, given the

position and velocities of 8 satellite galaxies of the Local Group.

3.2 Rotation Curve at Large Distances

In the previous section we saw how the rms space velocity, (v2)!/? related to the the rotational
velocity. It can be argued that originally there were many DS probably with a wide spectrum
of velocities and what survives today is only a skewed distribution of velocities. Using a
simple potential model and energy considerations we attempt to find the allowed and possible
existing velocities. This means that of all possible velocities there are only a few allowed

velocities in the phase space.
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Assumptions

(i) There is a minimum Galactocentric distance (r.,) for the DS which is about 78 kpc,
below which there are no DS. There is also a maximum distance (r,,,.) which we have taken
to be that of the galaxy Leol at 245 kpc which is also the effective size of the halo (see

Table[ 3.1]). We have varied these distances r,,,, and r,;, to compute the values of p.

(ii) We have assumed a Plummer distribution to model the visible matter of the Galaxy since
at distances r > 20 kpc such an approximation of spherical potential is adequate. For larger
distances, where the dark matter is a dominant component, we have chosen a logarithmic
potential which is a general assumption to reproduce a flat rotation curve.

(iii) We assume that the line-of-sight velocity corrected to the galactic center of rest is the

same as the radial velocity since at the large halo distances this difference between the

direction of the Sun and the direction of Galactic center can be neglected.

(iv) We estimate the value of p assuming simplified form for the potentials describing both

the visible and dark matter.

GM
Vrz + b2’
Ug 2 2
Pou =5 I(RI+77);  R.=Tkpc, v =220kms”!
q) = @vh + QDM

&, = b = 0.7kpc (3-5)

Even at the outset we note that the estimates of u are not very sensitive to these assumptions.

The energy of a DS’s motion can be written as

‘U2

E = -—2-'-+¢¢”(T) (3.6)
L2

(Peff = —21_2-1-(1)(1‘) (3.7)

where L is the angular momentum of the system defined as L = r;,v¢, where ry, is the initial
distance and v, is the initial transverse velocity. Rewriting Eq [3.7] we see that

2
5 =B = %ess(r); (3.8)
In Fig [3.1] we plot the ®.s; as a function of the of the distance. This graph is plotted for
a typical value of L, i.e., for a typical value of r;, and v,. Two energy scales E;,, En, can

be identified with three length scales 7i,, Tmin and T, The energy scale E;, is fixed by the
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Figure 3.1: The figure is a typical plot of ®.s; vs r and indicates the E;, and E, whose
difference sets the constraints on the allowed values of v, i.e., %vf =F,—E,.

init'ial position and the E_,, is determined by either r_;, or r.,.. For a particular choice
of 7, the corresponding energy can be read off in the plot as E,;, and for r,,., there is a
corresponding energy F,. For each choice of the angular momentum, the E_,, is determined
depending on which of the two energies is lower E,;, or E,. In the Fig [3.1] we have the E,,,
is determined by 7., =190 kpc, (since this is lower than E.;, corresponding to r.;, = 50 kpc)
and the initial value of around 70 kpc. Essentially, the allowed orbits outside r.;, and ..

are excluded.

3.3 Results and Discussion

We compute the allowed values of the radial velocities for all possible transverse velocities for
initial values of the position (r;,). Thus, the possible values of v, are restricted, and in the
Fig [3.2], we point out the region of these (v, v,) values. We calculate the (v2) and (v2) values
of the radial and transverse velocity component, averaging over the distribution function at
each r. However, now the averaging is not over all the velocities but the restricted region,

(ve, v,) that we have obtained. We have here, assumed an isothermal distribution function
(Eq [3.11]) to model the DS.
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Figure 3.2: The allowed area in the (v, v;) space for a given initial ry, is the shaded region
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name 1 b | v inkm/s | r(in kpc)
Carina | 260.14 | -22.20 14 119.7
.Draco 86.37 | 34.71 -94 85.9
Sculptor | 287.61 | -83.16 74 86.0
sextans | 243.50 | 42.27 78 101.5
UrsaMinor | 104.98 | 44.81 -87 78.9
Fornax | 237.16 | -65.67 -34 150.7
Leo I 225.99 | 49.11 177 234.1
Leo II 220.14 | 67.23 16 245.9

Table 3.1: The line-of-sight velocities and distances of the DS

In general, the v? is calculated as given in the equation below. However now, the limits range

from v, t0 Uymax fOr v, and vymin tO Vymax fOr V.

(v?) = //f(r,v)vwfdvrdvt (3.9)
(v?) = / / £(r, v)v3 durdu (3.10)
f(r,v) = exp—(v? + &(r))/o? (3.11)

where o = 220 kms™1.

For every initial value of r;, the (v2) and (v?) are calculated by averaging over the range of
allowed velocities that we have computed earlier. If the distribution of DS were isotropic

then the ratio of g, which is obtained after doing a spatial averaging, is (v2)/ (v2)=2.

We compute the ratio p(r) as a function of r from Eq [3.10-3.10]. In Fig [3.3] we show p
as a function of the galactocentric distance for an T, = 78, Tmax = 245 and 7 = 78 and
Tmax = 200. At the point (T, Tmax) the value of p rises sharply as expected since at these
points the velocity motion in the radial component is minimal. The value of p is sensitive to

the choice of T pin, Tmax 38 is evidenced from the Fig [3.3].
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Figure 3.3: The graph shows the variation of 4 vs r for 7o, = 78 and .. =245 & 200 in the
first and second figure respectively
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We saw earlier from Eq [3.4] that the

where
(v?) = 3(s7)

or this can be rewritten as

v? = + 2 =02 (14 p)

where p was 2. In this analysis the value of p averages !(see the top figure in Fig [3.3])
to 11.67, for a specific choice of r;, and r.,, The value of the rotational velocity can be

calculated using the equation below for a value of (u) = 11.67

(V2 = (1) (1 + p) (3.12)

The Table (3.1] (from Ref [1]) below shows the values of the line of sight velocities and the
radial distances. Since we have earlier assumed that the radial velocities can be approximated
to the line of sight velocity, we compute the average value of (v2)!/2 which is 87 kms~!. Using
Eq [3.12] we obtain the average value of V = 309 kms™>. The value of ;1 we have obtained is
not very sensitive to the various parameters like o and vg. It is nevertheless, sensitive to the
choice of Tpiny Tmax 30d Timay — Tmin. In Table [3.2] we show the value of p for various values
of Trin ‘a.nd Tmex- Lhe value of V. have seen depends crucially on the spatial distribution of
the dwarf spheroidals and any change in these values could result in very different rotational
speeds as can be seen from Table [3.2] However when we compute this ratio using the above
analysis then it is clear that this value is much larger and of the order of 5 or more. This is
expected because at the boundaries, the motion of the particles is entirely transverse rather
than radial we have also taken into account the skewed spatial distribution of these galaxies.
We can also argue that one would expect more transverse than radial motion else the system
would have been tidally disrupted. The above analysis gives a measure of the deviation from

isotropy which can be used to calculate the rotation velocity directly.

Since there is a maximum distance beyond which the DS are not found it is probably more
appropriate to model the DS distribution by a King’s DF. In the King’s model velocity goés
to zero at the tidal radius (beyond which there are no DS) ry = r.. = 245 kpc. However,
in this case there has to be another cutoff because there are no DS at short distances also.

Therefore the velocity will again vanish at r,;, = 78 kpc. By measuring the radial velocities

!Note that this value is obtained by a spatial averaging of u(r)
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[ Tmin | Tmax | Ve in kms™!
11.67 78 | 245 297
16.16 78 | 200 360
33.23 78 | 150 509
12.31 50 | 150 3174

6.6 50 | 245 239
8.318 50 | 200 265
58.297 | 150 | 245 673.7
176.505 | 150 | 200 1157

Table 3.2: We show that the value of rotation curve V; changes drastically by changing the
distance between the DS.

%
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Figure 3.4: The value of log(3v?) vs log(R) is compared with the a theoretical_ly 9btained
rotation curve V, using the King’s model with a tidal cutoff radius of 300 kpc which is shown

by the line. The rotation curve due to a spheroidal distribution is also plotted with dashed
line.
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of a set of objects like dwarf spheroidals we want to derive the V, at large distances. However,
Eq [3.4] is valid only when the averaging is done over the entire ensemble rather than on a
subset of particles contained in a radial interval. Therefore the V,(r) we obtain in this fashion

is only a lower bound. Lynden-Bell and Lynden-Bell [1] assumed a spheroidal distribution
and modelled the DS.

In Fig [3.4] we show the theoretically calculated V, for a tidal radius of 300 kpc and the 3(v?)
for the dwarf spheroidals and this should be taken as a lower bound. This calculation has

been done assuming a value of p = 2

We have obtained a value of V; which is larger than what one would obtain by extrapolating
the rotation curve under the assumption of flatness at large distances. We have demonstrated
that at large distances, the rotational velocity is probably not the same value that of 220
kms~lat 20 kpc. As we saw in the earlier chapter that the velocity dispersion of 600 kms™1is
consistent with the rotation speed at the Solar neighborhood and this value can be used to
constrain the rotation curve at large distances. The value of 309 kms~!and the other values
of rotation speed depending on the exact distances of the DS we have derived here seems
to be consistent with this earlier calculation. It is clear that better observations will enable

better determination of rotation speeds at large distances.
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Chapter 4

Event Rates and Velocity
Dispersions

This chapter focuses on an entirely different aspect of the dark matter problem, that of
detecting a dark matter candidate. In this chapter we have two main sections: Section [4.1]
presents some of the experiments to detect non-baryonic dark matter. Section [4.2] puts
our work in perspective and presents the theoretical framework required to understand the
data that is presently the available to us. We obtain new bounds and constraints on the
scattering cross section of dm-particles as a consequence of the large (Uz)xl)/hf = 600 kms ! we
have obtained in the earlier chapter. We have already briefly discussed the several possible
candidates in the Chapter 1, namely, neutrinos, WIMPs and the axions. We learn that since

their interaction cross section is small, the detection of these particles poses a major problem.

4.1 Detection of Dark Matter

It is clear that the number of possible particles is very large given the several possible ex-
tensions of the standard model of particle physics. In literature, there are several articles
which describe the particles and their detection at great length [1, 2]. The general difficulty
of detecting any hypothetical dark matter particle stems from the fact that they are neutral,
weakly interacting and have very low energy. Particle detection is based on transfer of energy
by the dark matter particles to electrons in a detecting apparatus. Charged particles and
photons can be detected easily whereas neutral particles are usually detected by utilizing an
interaction or a sequence of interactions to produce charged particles. For example, neutrinos
can be detected by conversion to electrons in a scattering process or by a transfer of kinetic

energy to a nucleus which can then result in further ionisation and this kind of detection is
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termed as “direct detection”. The indirect detection involves detecting primary interaction

that take place outside the earth for e.g in the sun, to produce a secondary flux of particles.

In this chapter we focus on direct detection techniques. The direct detection techniques fall
into two classes: (i) those for heavy particles, with interactions comparable to the standard
weak interactions and (ii) those for light bosons, with much lower coupling. Heavy weakly
interacting particles become detectable because the interaction cross-section is proportional
to the square of the mass, M, g. The maximum energy transferred 6n collision with the nucleus
also increases with Mp and this energy is in the range of eV, for masses greater than 1GeV.
These nuclear recoils are in principle observable either through the production of phonons
(detected through a small change in temperature or directly as pulses of ballistic phonons)

or through a small fraction of energy that is converted to ionisation energy.

In the case of the light boson (axion), the interaction coupling to matter is much weaker than
that WIMPs and hence produces a smaller number of individual scattering events. It was
later pointed out by Sikivie [3] that larger event rates would result from coherent conversion
of axions to photons in vacuum. Axions couple to two photons via vacuum loops of charged
leptons and quarks. A source of photons will convert an axion into a photon with energy
equal to the axion mass so that all the photons produced will lie in a narrow frequency band,
essentially in the microwave/infrared range for cosmologically significant axions. Significant

event rates would result with practical volumes and magnetic fields.

The primary problem with the detectors of dark matter is the high background noise and
therefore effort is directed towards designing ultralow background detectors. It is also impor-
tant that the detectors have a low threshold energy so as to enable better detection of the
low energy dark matter signal [4, 5]. The three main signatures of a dark matter signal are
the recoil spectrum, annual and diurnal modulation of the recoil spectrum. The modulation
signals has been thought to be very definitive signature of a detection; however so far the very
many attempts at detection of DM particles have not yielded conclusive results. Comparison
of predicted dark matter event rates with the experimentally measured rate has been so far
useful to exclude or constrain regions in the mass cross-section parameter space. Besides the
experimental difficulties of high back ground noise, there are theoretical uncertainties ranging

from Galactic models to the inputs from particle physics
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(i) Hot and Cold Dark Matter

One of the first non-baryonic particles that has been a “hot” favorite for many years has
been the neutrino. With the results of the Superkamiokande experiment [6] the existence
of a neutrino with non-zero mass has been confirmed. Neutrinos are referred to as “hot”
because they have relativistic velocities at the time of decoupling from thermal equilibrium
in the early universe. The reason they went “out of fashion” was because within the existing
structure formation theories and the results of COBE the HDM model, they had too little

power on smaller scales.

The WIMPs are particles of cold dark matter (i.e., non-relativistic at the time of decoupling).
There are many particles that belong to this category and the mass range is Myp = 3 GeV.
Since these exotic particles are in the regime of physics beyond the standard model there
has been a surge of experiments designed to detect these WIMPs. Currently one the most
sensitive experiments are the Heidelberg-Moscow experiments about which we shall discuss

in detail because the data for the studies in this chapter is obtained from these experiments.

4.1.1 Experiments and Detectors

(i) The AMANDA Collaboration

The AMANDA experiment is designed for the indirect detection of dark matter particles.
The basic idea is that the WIMPs in the halo occasionally scatter in the interior of the
Earth and Sun and lose enough energy to be gravitationally trapped. They then gradually
fall in the center where they accumulate. Since neutralinos (a WIMP candidate) are their
own antiparticles, they will annihilate when they encounter each other. Then annihilation
products will generate neutrinos of energy comparable with the mass of the neutralino, in
the range of 10-100 GeV and they can be detected by AMANDA. The AMANDA setup has
been designed to track the upward going neutrino candidates to avoid those due to cosmic
ray muons which penetrate the over-burden of ice. The successful deployment of a 4-string
AMANDA-A array with photomultipliers (PMTs) was the first step towards demonstrating
that the South Pole ice is a suitable site for high-energy neutrino observatory. With a
hot-water drill, four holes 60cm in diameter were created during the 1993-94 season and
instrumented with 80 PMTs spaced at 10-m intervals. One of the most favorable signals to

search for, using this apparatus, would be the high energy neutrinos from the center of the
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Earth. If no signal is found, useful limits can be derived on the parameters of SUSY model [7]

(ii) Superheated droplet detectors(SDD) as CDM detectors

The SDD’s are useful and advantageous for WIMP detection. These devices consist of a
dispersion of droplets of a superheated liquid fixed in a viscous polymer or aqueous gel. The
greatest advantage of SDD’s are that they are sensitive only to high linear energy trans-
fer (LET) radiation and therefore energetic muons, gamma rays, x-rays and beta particles
fall well below the activation threshold (typically > 200keV/um). The SDD is optimal for
the exploration of the spin dependent neutralino coupling. This idea is in the form of the

experiment SIMPLE (Superheated Instrument For Massive Particle Experiments) (8]

(iii) WIMP-nucleon cross section from the cryogenic dark matter search

As mentioned earlier the WIMPs have been a challenge to detect and many detectors are being
designed to detect them. Among them, the cryogenic those which are Ge or Si semiconductor
detectors in a shielded background cryostat. The CDMS experiment in particular is useful
in distinguishing the electron-recoils which are primarily due to background photons and the
nuclear recoils which are because of the WIMPs. This is possible because the nuclear recoils

are less ionizing [9].

(iv) Double beta decay experiments

Nuclear double beta decay has a good potential to probe the physics beyond the standard
model. The current best sensitivity especially in the sub-eV region is obtained to a large

extent by the Heidelberg-Moscow double beta decay experiments.

In this thesis we use the data obtained from these experiments. Double beta decay can occur

in several decay modes

X = 4..X+2e +27,
X = 40X +2"

X2 40X +2 +¢
X = 50X 42 +2¢

N N N N

The experiment was initially set up to search for neutrinoless beta-decay. Later additional
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enriched detectors were used to search for the WIMPs." While the earth is moving through
the dark halo, some WIMPs will scatter with the nuclei in the detector giving a small but
detectable ionisation. A major part of the energy goes into thermal excitations and only a
small fraction gets converted into ionisation. For the Ge in the detector, the relative ionisation
is about 25-30% and therefore a sufﬁciently low detector threshold of < 10 keV is required.
This experiment has been used to set limits for the first time on coherent-cross section of

spin-independently interacting WIMPs.

The experiment searches for the last three modes of decay which are neutrinoless decay
modes. The largest sensitivity for the Ov(30 is obtained at present by such active detector
experiments. Depending on the nature of the particles and the detector material used, the
scattering is either spin dependent or spin independent. The typical recoil energy of the
nucleus in the detector reaches up to 10-100 keV, depending on the mass of the WIMP.
Currently the sensitivity obtained by the Heidelberg-Moscow experiment is of the order of
0.1-0.2 eV [10, 11, 12, 13]. With five enriched detectors (86% of "Ge) of a total mass of
11.5 kg taking data in the Gran Sasso underground laboratory and with a background that
is 007 counts/kg year keV, the experiment has stabilised and is now exploring the energy

deposition in the sub eV by the dark matter particles.

4.2 Motivation

While a general motivation has already been mentioned earlier we are reemphasising it be-
cause the context is appropriate to do so. The important parameters that go into the calcu-
lation of any event rate are the density, the velocity, and cross section of interaction of the
dér}_( métte£ particles with the detector. The determination of the dark matter density in the
Solar neighborhood, p(Rp) has been a controversial problem. There have been self consistent
dynamical calculations that determine the density to be 0.3 GeVem™2 [14]. Conflicting values
for the p(Rg) have been reported by Kuijken & Gilmore [15). However the (v2)1D/,3 for the
dark matter particles has been assumed to be of the order of 270 kms™!. On the other hand
our analysis in Chapter 2, on the basis of a two component model for the Galaxy indicates
that the (vz)})/,f = 600 kms~1.

In the next section we review the theoretical framework in which event rates in detectors are
calculated. This is followed with a discussion of the experimental data, the analysis used to

compare predicted and experimental rates, and the conclusions reached.
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4.2.1 Theoretical Framework

Weakly interacting particles (WIMPs), on interacting with the detector nucleus are expected
to produce a certain event rate. We compute this event rate and compare it with the exper-
imental rate, and thus obtain limits on the mass and cross-section of the WIMP pafticles.
The interaction cross-section remains a free parameter whose value is determined by com-
paring the experimental and calculated event rates for any given mass of the WIMP particle.
Particle detection is based on the transfer of energy from the WIMPs to the detector nuclei.
This transfer of energy is in the form of either nuclear recoil energy or ionisation energy. The

experiments measure the events per day per kilogram of the detector material as a function
of the energy deposited [17].

The total event rate can be approximated as R =~ no(v)/my where n = pg/m,, where po
is the central density and m,, is the mass of the dark matter particle, o is the elastic cross
section, (v) is the average speed of the WIMP relative to the detector and my is the nuclear
mass of the detector nuclei. To calculate a more realistic total event rate one should take
into account (1) the WIMPs motion in a halo with a distribution of velocities f(v) which
also incorporates the earth’s motion, (2) form factor, that arises mainly due to the finite size
of the nucleus and depends principally on nuclear radius and recoil energy and (3) threshold

energy Er of the detectors.

The differential rate can be written as

an= (L2 )vfx(v)(da/dIQIz)dMP, (41)

My My

This differential form has all the ingredients of the earlier specified total rate except for the
inclusion of the distribution of speeds relative to the detector, f;(v) found by integrating f(v)
(the three dimensional velocity distribution) over all angles. The total rate is obtained be

integrating the differential rate from E; to infinity. The momentum transferred is given by
lq|? = 2m2v?(1 — cos6)

where 6 is the scattering angle in the center of momentum frame, and m,, the reduced mass

by m, = mymy/(my + mpy); the energy deposited in the detector can then be written as
En = |ql*/(2mx) = (m?v® /my)(1 = cos 6) (4.2)
The differential rate can now be rewritten as

dR  oopo o © fi(v) 43
i, = T2’ (B v & (4.8)

Umin
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where
Egmy

Umin = 2m¥
where F(Ey) is the form factor which should be chosen appropriately for scalar WIMPs and
for WIMPs with the spin-dependent coupling; As a first approximation, the form factor can
be understood as the Fourier transform of the density distribution of the scattering centers.
In the calculation here we have chosen F2(Ey) = exp(—Ex/E;) where E; is the coherence
energy, Eg = 3h/2M R? with M and R being the mass and root mean-square radius of the
nucleus. This implies Ey = 49.1keV, for Ge. This form factor is that of a solid sphere
approximating spin-independent interaction with the whole nucleus; o and py are the cross
section and the Solar neighborhood density of the dark matter particles respectively. The

above equation (Eq [4.3) has been written such that all the dependence on the WIMP velocity
has been put into one integral.

dR _ oopo

aEx = Vrnmgmi ! EWT () (4.4
where _
T(ER) = —\g—z‘vo - %(‘U)d’v (45)

In a isothermal model v = %(vz)éﬁ . This is the way the velocity dispersion of the dark

matter particles enters the calculation of the event rate. In the context of our model this is
600 kms™1.

In the earlier chapter we discussed in detail the choice of the distribution function (DF); now
we use the same DF in the calculation of rates here. Taking in to account the motion of the

earth in the halo the distribution of speeds f;(v) of the dark matter particles is given by

vdv - v+ ve)?
fi(v)dv = vev:\/'l_r {exp (_Lv__;g_‘i)i) — exp (-——(——%——2—)} (4.6)

where v, is the velocity of the earth chosen to be 245 kms™!. Thus

dR _ (LI} 2 2 [ Vmin + ve) (vmin - vc)]
dEr 4vemxm$F (Er) erf(T erf Vo (47)
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(i) Dark matter density and the velocity dispersion of the WIMPs

T he local density, p(Rg) and (vz),l,/,‘f are the two free parameters of a Maxwellian distribution
function and it is important to determine them correctly and consistently. We have already
discussed this determination of p(Re) and (v2)11>/j in earlier chapters. We use a value of
p(Rpy) =03 GeVem™3 which translates to the same value of surface density as used by
B ahcall et al. . We illustrate our calculation with two choices of (v2)1D/,3 : 270 kms~'and 600

ks L.

4.3 Results and Discussion

‘We have used the Heidelberg-Moscow (0 experiment data for our analysis here. In their
amnalysis, an (vz)ln/hf assumed to be 220 kms™!, has been used to obtain the excluded region
in the cross section mass parameter space. On changing this to 600 kms™!we get different
b ounds in this parameter space. We use differential rate data obtained from the above
e>cperiment to compare with the theoretically obtained event rate [4.7] for any given mass of
the WIMP particle. We show the recoil spectrum below Fig [4.1] for both the values of the
velocity dispersion (v2>}){f = 270 kms~'and (v2)11>ﬁ = 600 kms~'and for mp = 26 GeV and 1
"TeV. In Fig [4.1] we show the upper bound on the interaction cross-section o for 2 values of
(o).

“We have used the gradient method to do the least square fit for each mass of the WIMP
P adrticle, keeping the cross section as a free parameter in the problem. This method gives the
exclusion plot for the masses and cross-section of WIMP particles. The exclusion plot for the
two different velocity dispersions is shown in the figure below. It is interesting to note that
for a larger value of the dispersion, a lower mass of the WIMP does not fit the lower energy

spectrum very well.

(1) Distinct signals of dark matter component

"I he main problem with the recoil spectrum is that it is very difficult to obtain a clear signal
Of the dark matter component because of the high back ground noise. Thus what one has
detected so far is, in some sense, the background noise which in turn allows certain regions
Of parameter space to be excluded. This is basically the exclusion plot that we have derived
in Fig [4.2).
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Figure 4.1: The predicted recoil spectrum compared with the Heidelberg-Moscow data for
the two masses indicated in the figures for two different (vQ),l,e = 270 kms~and (v2)}2=
600 kms™}

[am—y
-



4.3. Results and Discussion 63

261 I
— <’ =270 km/s |

__-28- --= <’ = 600 km/s |
N s
& -30- ~

O |

0 ﬁ

-34 !

-36 +rer———er— ;
10° 10" 10® 10°
mp (GeV)

Figure 4.2: The exclusion plot in the mass cross-section parameter space is shown for two

velocity dispersions. The line indicates the exclusion plot for an (vz),l,/j = 270 kms~!while

the dotted line indicates the same for (vz)lp/,f = 600 kms™!
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(i) Annual and Diurnal modulation

It is important that DM signatures somehow contrives to avoid the presence of the back-
ground. The annual and diurnal modulation of signals are two such possible indicators. The
diurnal modulation relies on the effects of scattering of the dark matter particle with the
Earth. The WIMPs scatter off elastically, giving rise to to variations in flux and speed dis-
tribution of the WIMPs arriving at the detector. Two times ¢; and t, are then chosen where
the predicted scattering effects differ the most and the experimental data at these two times

are then compared.

The Earth moves around the sun, with an orbital speed of 30 kms~lin an orbit whose axis
makes an angle of § = 30° with respect to the velocity vector of the Sun. The sun also
moves around the Galaxy at a velocity of 232 + 20 kms~!. The resulting net speed of the

Earth its velocity with respect to the halo reference frame oscillates with a period of one year,



64 Chapter 4. Event Rates and Velocity Dispersions

with maximum and minimum values in June and December respectively. Since the Earth’s
velocity enters in the calculation of the event rate (Eq [4.7]) it modifies the recoil spectrum.
Thus, there should be seasonal changes of the recoil spectrum which should be measurable;
i.e., the recoil spectrum is modulated. The signal can be expressed as a constant term plus

a modulation component:

S(t) = So + S cos[w(t — to)] (4.8)

where S is the detection rate at any given time.
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Figure 4.3: The recoil spectrum at two different time points for two different velocity disper-
sions is shown in the figure. To emphasis the fact for (v2)11>/3 = 600 kms~lrecoil spectrum
are two distinct lines we have them in the inset as two distinct spectrum for June and Dec
in the log scale.These spectra are obtained for a mp = 26GeV.

In Fig [4.3] the recoil spectra for June and December are plotted for the two different velocity
dispersions of 270 kms™!and 600 kms™!. It is very clear from the plots that for the larger

(u2)§,/,f the annual modulation signal is reduced quite drastically.

Here we re-derive the mass cross-section bounds for both these values of velocity dispersion.
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By comparing the calculated rate with the observed values we find that the interaction cross-
section is less than 4x1073% cm? and 4x 10733 cm? for particle masses 26 GeV and 100 GeV
respectively. We also find that the annual modulation signal is significantly reduced for a
larger ('v2)11,/3 which immediately implies that one needs to go for better detectors to make

any definite statement about the dark matter component.
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Chapter 5

Mass modelling and Halo
Parameters of External Galaxies

So far we have used the model to study the distribution of dark matter in the Galaxy and
its implications in the context of detector experiments. In this chapter we apply the model
developed in Chapter 2 to other galaxies and study some properties of the dark matter halos
in these galaxies. We have analysed 12 Sc, Sb galaxies with well defined rotation curves and
luminosity profiles and study the halo parameters of each galaxy. From the luminosity profile
we have determined the potential due to the visible matter in these galaxies. M/L values
for the disk have been obtained by adopting a maximal disk solution as given by Kent [1].
Assuming the maximum amount of visible matter we derive the parameters of the DM-halo

such as the central density and the velocity dispersion; consistent with the luminosity profile

and the observed rotation curve.

In Section [5.1] we discuss the galaxies we have chosen and the observations of luminosity

profiles and rotation curves. In Section [5.2] we discuss the modelling of galaxies and some

of the results we have obtained.

5.1 Observations of galaxies
5.1.1 Luminosity Profiles and Rotation Curves

We have chose 12 Sc, Sb galaxies for applying the model we have developed in Chapter 2. We
have chosen these galaxies because they have well defined HI rotati;)n curves and luminosity
profiles [1]. In the table below we list the galaxies we have chosen for our study. Assuming
a specific M/L ratio it is straight forward to derive the visible matter distribution from the

luminosity profiles.

68
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Object | Type | D(Mpc) | components

N2403 Sc 0.67 disk
N2903 Sc 6.1 disk
N3198 Sc 9.2 disk
N4236 | SBd 3.25 disk
N4258 Sb 6.6 disk
U2259 Sc 9.8 disk

N3031 | Sb 3.25 disk+bulge
N2841 | Sb 9.0 disk+bulge
N4736 | RaSb 6.0 disk+bulge
N5033 | Sbc 14.0 disk+bulge
N5055 | Sbc 8.0 disk+bulge
N7331 | Sb 14.0 disk+bulge

Table 5.1:

As is clear from the above table that we have 6 galaxies with both components: the bulge
and disk component and the other 6 galaxies with only the disk component. The luminosity
profiles for these galaxies are available in Ref [1]. All the photometric observations were
done using the F and occasionally the J filters reduced to to r band of Thuan and Gunn [2].
The exposures were for typically 20 min on each and then the two dimensional frames were
reduced and analyzed by Kent to yield major and minor axis luminosity profiles. The profiles
are determined by fitting the isophotes with ellipses which are allowed to vary in position
angle and ellipticity with radius. The main source of error was the sky background which is

estimated to be 1%. For some of the galaxies the photometry is more uncertain.

The rotation curves for all the galaxies were obtained from various sources. All objects have
HI observations and a few have optical rotation curves. The optical rotation curves are
necessary to trace the potential of the inner part of the galaxy. Uncertainties in the inner
regions of the galaxies could result in poor determination of the various parameters of the

disk and bulge parameters.
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5.2 Mass Modeling of the galaxies

The mass distribution of galaxies (,;an be primarily decomposed into the visible and the dark
matter component. The visible matter component comprises of the bulge and the disk. The
luminosity profile gives a measure of these two components and therefore it can be used to
deduce visible matter distribution. The rotation curve on the other hand gives a measure of

the total potential of the galaxy which includes the dark matter component also.

Most disk components follow an exponential law and most bulges of galaxies are assumed to
follow a DeVacouler’s 7'/4 law. There have been various schemes outlined in the literature
to decompose this luminosity profile into the disk and the bulge component (3, 4, 5]. The
exponential disk can be written as I(R) = I(0) exp(—R/Rg); where I(R) is in Lg/pc? and R
is in kpc and the two constants I(0), the central bulge luminosity and Ry is the scale height.

We adopt a Hubble profile to describe the bulge profile given by

Iy

In(R) = T (B2

(5.1)

where Iy is the central density and a the core radius As mentioned earlier Kent’s observations
are done in the R band and since most observations of galaxies are done in the B band we
have converted to the all the relevant observations to the B band to be consistent [6]. So

essentially there are 4 parameters to be fit 1(0), R, for the disk and I(0), a for the bulge.

In obtaining a mass distribution we assume a constant M/L ratio independent of the radial
distance. The M/L ratio is also decided by various methods and has been a matter of debate
over the years. We start by assuming a maximum disk solution given by Kent et al. and fit
the “visible ” rotation curve in the inner part of the Galaxy where the forces are dominated
by the visible matter. The potential obtained from the luminosity profile is used to fit only

the “visible” rotation curve.

The results of fitting various galaxies with this procedure is given in terms of the values of
the fitting parameters. Table I lists the values of the parameters in the order: (i) the central
disk surface density (ii) total luminosity in the B-band,(iii) the exponential scale height(h) of
the disk,(iv) the scale height in the bulge, (v) (M/L)gisk(vi) (M/L)puige to the rotation curve.
The surface density that we have obtained is consistent with that obtained by kent [1]. Some
of the galaxies like N2259 and N4236 have rotation curves that do not extend very far and
they have low rotational velocties. Not all the galaxies have an exponential fit but for our
study here these details are not very important. The total luminosity in the disk is obtained

by integrating the the the surface brightness to obtain L = 2wh?Iy where h is the scale height
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and Ij is the value of the luminosity density at the center.

Name | o | L(10%Lg) h a | M/L)aisk | (M/L)putge
Mgpc™? (in kpc)

2403 185 0.516 1.903 1.87

2903 200 1.29 1.81 3.35

3198 1'50 8.57 2.48 2.05

4236 80 0.265 2.675 2.34

4258 200 2.62 5.28 3.08

2259 80 0.64 1.34 5.0

3031 240 1.46 1.98 0.287 1.76 2.76

2841 300 2.22 2.33 0.85 1.07 2.96

4736 180 1.07 1.85 0.14 0.84 0.599

5033 225 1.85 5.96 0.27 6.76 4

5055 220 2.51 3.73 0.068 4.03 43

7331 240 3.09 5.09 0.708 2.20 1.11

Table 5.2: parameters of the bulge and disk are listed in this table

The M/L values for the bulge and disk are obtained by fitting the inner part of the rotation

curve. Having obtained the various parameters from the rotation curves and luminosity

profile we go on compute the potential of the visible matter which will be an important input

to our problem as seen in the Chapter 2. These parameters are important for obtaining the

potential of the visible matter distribution

5.2.1 Potentials for the Disk and Bulge

As we noted earlier that the disk has an exponential light distribution and this kind of

a distribution was first mass modelled by Toomre [7]. In Toomre’s method the Laplace

equation V2@ = 0 is solved subject to appropriate boundary conditions both at the disk and

at infinity. In cylindrical coordinates the equation can be explicitly written as

10
ROR

0d
(r35) +

s
022

=0

(5.2)
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Figure 5.1: Rotation curves due to the disk and the bulge component
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Using the method of separation of variables the solution for the above Laplace equation can
be obtained as

@+ (R, z) = exp(+kz)Jy(kR) (5.3)

A generalised function of the form

®k(R, z) = ezxp(—k|z|) Jo(kR) (5.4)

where k is real and positive and ®x(R, z) also solves the Laplace equation. Using Gauss
theorem the surface density that generates the discontinuity can be calculated

lim (-&ﬂ) = —kJo(kR)

z=0+ \ 0z

Nz
lim (-a—z") = +kJo(kR)

z—0~

from which it follows that surface density can be written as x(R) = —(k/27G)Jo(kR)

This equation can be used to obtain the potential generated by an arbitrary surface density
Z(R).

S(R) = /0 * S(k)Tk(R)dk = 57%5 /0 * S(k) Jo(kR)kdk (5.5)

then we will have
B(R,7) = /0 % S(k)Bx(R, 2)dk = /0 % S(k)Jo(kR) exp=Fe! (5.6)
S(k) = 27G /o ” Jo(kR)S(R)RdR (5.7)

Eliminating S(k) we obtain
e 0o / ! /
&(R,z) = —27G / dk exp~ ¥ Jo (kR) / S(R))Jo (kR')R'dR (5.8)
0 0

The surface density is obtained from the luminosity density, using value for the M/L as listed
in Table [5.2] we obtain the potential as described by the above procedure. We use the
modified Hubble profile which is a good description of most spherical density distribution

like the bulges of galaxies and elliptical galaxies [8]. The potential is written as

GM, _ 4nGyjea®

R 1+ (r/a)?

oy = — (5.9)
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where
3 r r2 r[r? 172
Mh = 4rma ')’I() In E‘ + 0_2 +1] - E (? +1 ’ (510)

a is the scale height in kpc and jg is the central luminosity density obtained by Ip/a where
Ip is obtained by fitting the luminosity profile to the Hubble luminosity profile law.

In Eq [5.10], even though the mass is a divergent the potential is a finite quantity and for
distances much greater than a it is a point source. Fig [5.1] below shows the rotation curve

derived by the procedure described above

Uncertainties and assumptions in the model

The major source of uncertainty arises from the small sample size we have chosen. The reason
for doing this has been to keep the sample as homogeneous as possible. The luminosity profile
were taken as an average of the major and minor axis profiles. The photometry, especially in
the central regions of galaxies is not very clearly resolved. Hence the bulge is rather poorly
determined in our model. However, since our aim has been to look at halo properties slightly

away from the central region the poor determination of the bulge has not been an important
factor.

5.2.2 Dark Matter Potential and Trends in the Halo Parameters

We compute the dark matter potential for each of these galaxies by the prescription outlined
in Chapter 2 in a self consistent fashion with the visible matter potential calculated above.
Within the context of our model we have two parameters in external galaxies, the central
density of the dark matter (pg) and the velocity dispersion (v2),1,/,3 . When we applied our
model to the Galaxy, we had a value for the value of ppy = 0.3 GeVem™3. Our aim here is
to see if we can constrain the ppy — (vz)},ﬁ space for the values of V.. Since V, is a measure

of the mass distribution in the galaxy it will depend on both p and the (vz),l)/,f .

As a first step we know that the Galaxy with a typical V; ~ 250 kms~'and the Solar neighbor-
hood value of 0.3 GeVem™3 and which translates to a value of 1 GeVem™2 at the center. We
have chosen the values for gy to vary from 1 GeVem™2 to 0.1 GeVem™3. The distribution of
maximum rotational values range from V, = 50 kms™to V, = 250 kms™!at typical distances

of between 5~15 kpc. In galaxies the centrifugal force is supported by the gravitational force
which can be written as G )
drGpR V¢

) (5.11)
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Name | (v")ihi | Ve
2259 150 50
2403 450 120
2841 600 | 300
2903 450 | 220
3031 450 | 250
3198 250 150
4236 100 80
4258 300 | 200
4736 750 | 200
5033 300 {250
5055 750 | 225
7331 300 | 225

Table 5.3: We see a correlation between the rotational velocity, V, and the velocity dispersicz
1/2
(U2)DM

The maximum rotational velocity value can be plugged in for a typical distance to obtasrr
the value of p at that point. For our Galaxy, assuming V, = 250 kms~for a distance =f
10 kpc we obtain a value of s =~ 0.113Mgpc~3. This value stands to good comparison wrt
the dynamical estimate of Gurt to be 0.114Mgpc™2 at the Solar neighborhood. Since tis
density seems to be consisterz with 0.3 GeVem™3, we have used the similar criteria to haoe
an order of magnitude estimize. The maximum rotational velocity for each of these galaxze=s
will give an order of magnituie estimate for the density at that distance. Using this crite===

the allowed the central densiies can vary from 1 GeVem™2 to 0.1 GeVem™3.

We have computed the dark matter potential and the rotation curve for all the 12 galaxie=
The free parameters are the wiocity dispersion ((&),‘Jj ) and the central density (po) and ===
notice the following trends It she Fig [5.2] below we show the total rotation curve with e
,dark matter component adge? to the disk and bulge components for a particular choice <

the po = 1GeVem™3. For eury of the galaxies there is a particular fit of velocity dispersse—t
that we obtain and this is lis=4 in Table [5.3]
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Figure 5.2: The fits to the rotation curves with the the theoretical “visible+-dark”rotation
curve obtained.
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We shown some of the best-fits we have obtained for the 12 galaxies. While most galaxies
show a fairly flat or rising curve galaxies like 3031 show a declining rotation curve. There are
2 galaxies with low rotational velocities of 50 kms~!(N4236, U2259) and 4 galaxies(N2403,
N3198, N4258, N4736) with rotational speeds of the order of 100 kms—'and the rest of the
galaxies have a larger rotational velocity of 200-250 kms~!. Larger the rotational velocity,
larger is the velocity dispersion and the density of the dark matter. Fig [5.3] shows the plot of
rotational velocity vs velocity dispersion, (v2)%,/hf for a particular choice of the central density,
pom(0) of 1GeVem™3. It should be borne in mind that the sample statistics is too low to
make conclusive statements. There are indications that larger rotational speeds correspond
to larger dispersions [5.3]. The rotation curve in the central regions of the galaxies are poorly
determined and some of them do not have observations out to large distances. It is clear that
for larger V. the velocity dispersion increases for a given central density. We have done the
above exercise for a range of densities as previously mentioned. In the usual one-component
isothermal description of the dark halo one would expect that for a given rotational speed
the dispersion is related by (v2)1n/3 = \/g Ve, however it clearly deviates from this description
as seen from this analysis. This analysis is in confirmation with the earlier work that the
visible matter and dark matter together self consistently determine the properties of the dark

matter particles.

For most spiral galaxies there is also an observed relation between the luminosity and the
amplitude of the rotation curve and we have attempted to reproduce the same. This is the
Tully-Fisher relation L o V! is also satisfied and this is shown in Fig [5.4]. The Tully-Fisher
relation relates the luminosity of the visible matter to the maximum rotational velocity which
is a measure of the total potential at a given point. The Tully-Fisher relation is interesting in
that it correlates the luminosity which is entirely provided by the visible matter to the V¢ max
which is a tracer of the total potential. If the dark matter is present at all radii, then there
should be a correlation between their distributions. If on the other hand the inner part of the
rotation curve is provided by the disk alone then there is some strange disk-halo conspiracy

that is at work.

In conclusion we state that the mass modelling of the galaxies confirms the earlier fact that
a single component isothermal sphere is perhaps not a good description of galaxies and to

determine the properties of the dark matter a self consistent calculation is important.
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Figure 5.3: This show the correlations between the rotational velocity and velocity dispersion;
larger the rotational velocity larger the dark matter velocity dispersion
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Figure 5.4: The Tully-Fisher relation
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Chapter 6

Conclusions

The Galaxy has two visible components: the bulge and the disk and an unidentified dark
halo component whose presence is established solely by its gravitational interaction. 'I‘I;is
thesis attempts to study properties of the dark matter component using observations which
trace the total potential viz the rotation curve. We have estimated self-consistently, the
contribution of the halo to the rotation curve. Modelling the visible matter in terms of a
suitable density distribution and by obtaining the self consistent distribution of the halo, we
have determined the velocity dispersion (UQ)%,/J of the dark matter particles. The value of
600 kms~!that is obtained is twice as large as what is obtained by modelling the Galaxy as a
single component isothermal sphere. It is clear that the potential of the visible matter affects
the dynamics of the dark matter particles in a non-linear fashion. We have also shown that
the specific choice of the distribution function for describing the dark matter component is

not crucial to this result.

Dwarf spheroidal galaxies are used to constrain the rotation curve of the Galaxy at large dis-
tances. Kinematical constraints based on the spatial distribution of these DSs were imposed
on their orbits. We find that there is an anisotropy in their velocity distribution and this
anisotropy factor is large and depends on the spatial distribution of the galaxies. Our analysis
indicates that there could be a large anisotropy in their velocity distribution so that their
observed radial velocities may be interpreted as yielding rotational speeds 300-350 kms~!at

galactocentric distances of 100-200 kpc. Note that this is much larger than V, =~ 200 kms~!at
the Solar location.

Detection of dark matter involves knowledge about the (v2),1)/,3 and we have studied the
consequences of a larger velocity dispersion derived in this thesis. We find that the exclusion

region in the mass cross section is increased and the annual and diurnal modulation signals
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are much weaker for the larger velocity dispersion. Using the same kind of analysis carried out
for the Milky Way we have modelled the mass distribution of 12 galaxies in a similar fashion
and find a positive correlation between the rotational velocity and the velocity dispersion.

It is clear that even in these galaxies the single component isothermal description will not
suffice and the visible matter has an important role to play.

This study has been mainly on non-rotating halos and we have discussed work done by other
people on single component rotating halos. However a full calculation would involve including
the visible component also. In conclusion we would to state that improved observations of
the rotation curve beyond the Solar circle and of the velocities of dwarf spheroidal galaxies

and globular clusters would help use probe the phase space structure of the dark matter halo
more closely.
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