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Abstract. In this note, we present few equations of the Discrete Space
Method (DSM) for polarized line transfer. These equations are presented
as extensions to the main paper entitled Numerical Solutions of Polarized
Line Transfer Equations, presented in these Proceedings.

1. Introduction

The DSM is a finite difference, discrete ordinate method. Full set of equations
of the DSM for polarized line transfer are derived in Nagendra (1986, 1988).
The method presented there can be employed for solving transfer problems with
CRD or PRD line scattering in static, axi-symmetric, 1D planar or spherical
media. For simplicity, we present in this note the equations relevant to a static
planar slab case. Extensive discussions on DSM is also given in Peraiah (2001).

The Finite Difference Discretization of the Medium:

We divide the medium into N-layers of arbitrary optical thickness. See Fig. (1)
for spatial discretization of a planar medium. Our purpose is to compute the
reflection (r) and transmission (¢) operators for each layer.

The Forward Elimination Process in DSM to compute Global Operators:
The non-local r and ¢ operators are computed during forward elimination process
by applying the boundary conditions at n = 1 (top of the atmosphere)

D=0 V= B (7 =0, ), 1
and computing recursively, for n = 1,2,3, ..., N, following non-local operators

r(Ln+1) =r(n,n+1)+tn+1,n) r(1,n) [I - r(n+1,n)r(1,n)] ™" t(n,n+(l)),
2

V,::L% = t(n+1,n) V1 + Lt (n+1,n) + Rn+% ¥ (n,n+1), (3)

1
2

VT;% = fn+1,n) V:_% + Thp1 S (n,m+1) . (4)

In these equations, the auxiliary quantities are:
611

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003ASPC..288..611N

FZO003ASPC. ~ 288 “6 1IN

612 Nagendra

I

1
Incident 11+ . i Outgoing
1 T?

N+1 TNes
Incident Outgoing
- +
Ji Iy

N+1 +1

Figure 1.  The division of the medium into layers of arbitrary opti-
cal thickness. 7, ~ 1072 represents the top of the atmosphere. When
thickness of the layer (n,n + 1) exceeds the ‘critical optical depth’, a
doubling method is used to generate the ‘thick layer operators’, actu-
ally starting from operators for the fundamental sub-layer within the
concerned layer, whose thickness is taken to be smaller than or equal
to the critical optical depth.

in+1,n) = t(n+1,n) [I-r(1l,n) r(n+1,n)]"", (5)
Fn+1,n) = r(n+1,n) [I-r(l,n) r(n+1,0)]"", (6)
R, 1 = Hn+1n) r(Ln) [I=r(l,n) r(n+ 1,n)]7t, (7)
Topy = I =r(n+1,n)r(, n)]™t (8)
t(n,n+1) = Ty t(n,n+1). (9)

In the terms of the type t(n+1,n) r(1,n) [ —r(n+1,n) r(1,n)]"" t(n,n+1)
(the second term on the r.h.s of Eq. (2)), the presence of multiple scattering is
noticed by expanding the square bracket in a Taylor series.

Back Substitution Process in DSM to compute the Radiation Field:

Back substitution is necessary to compute the intensities at all the shell bound-
aries. This is done by applying the boundary conditions at n = N (bottom of
the atmosphere)

Invi = Lncigen(T =T, —1), (10)

and computing recursively, for n = N, N —1, N —2,....,2, 1 the outgoing (-)
and incoming (+) radiation from every layer (n,n + 1) of the atmosphere
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Iy =r(Ln+1) I, + Vn++%, (11)
I; = tnn+1) I, + Vs - (12)

A Note on the Critical Optical Depth:

The square matrices t(n+1,n), t(n,n+1), r(n+1,n), r(n,n+1) are reflection
and transmission operators for each layer (n,n+1). However, if the atmospheric
layer thickness exceeds critical optical depth A7t of the basic computational
cell, then we employ van de Hulst’s high speed doubling process to generate thick
shell 7 and t operators. The critical optical depth for the basic cell A7, strongly
depends on the redistribution function, the phase matrix, the angular, frequency,
and geometric variables etc. It is pre-computed and used in calculating r and ¢
operators of the basic computational cell. As long as the necessary condition

AT basic cell (n7n + 1) < Ateyt (nan + 1): (13)
is strictly satisfied, numerical stability of solution by DSM is guaranteed.
Computation of the Fundamental Cell Operators:

The following algorithm can be used to compute cell operators, in axi-symmetric
planar slab cases:

G* = [I- ging]‘l; g:t = %Ai}%; (14)
Zy = &% - gRiiniyi; Yy = gRq:’iW*’i (15)
D:M—%Z_; A:M—gZ+; Aiz[M+gZi]—1 (16)

The transmission, reflection and source operators are
tin+1,n) =GT[ATA+gTg7]; t(n,n+1) =G [AD+g g"] (17)
rin+1,n) =G g [I+ AT A] rin,n+1) =G gt I+ A™D] (18)

YT (n+1,n) = GH[ATST+9TA™S7|r; T (n,n+1) =G [A™S +g ATSH)r
(19)
The auxiliary quantities in the above equations are:

M:[,ujdk,k']; k=j+0@-1)*xJ+(p-1)=*I1J; 1<k<PIJ, (20)

with P, I, and J being running indices. P is the number of polarization states
considered (2, 3, 4, or 6). J and I are the number of angle (1) and frequency
(z) points of the respective quadratures. Further,
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q):i: = [ﬂ + (f?f](sk,kl with d)i = ¢(:1:,-, :i:[J,j); and Si = [5 + 8¢ki]Bn+%5k7kli,
(21)
where, ¢ represents the profile function; and S the thermal source matrix. The
quantity 1 is a unity matrix with first JJ elements equal to 1, and the rest
being zero. B represents local Planck function. The discrete representation of
redistribution matrices and the renormalised quadrature weights matrix is

R+ = [R,::’Ij] = R(a:i, :i:,uj,p; T, :tpjr,p'); WHE = [Ef’icjék,k:], (22)
where @ means re-normalized frequency weights. For further details regarding
these numerical points see Peraiah (2001). The main steps are listed below.

The Main steps of the DSM Method:

e Step 1: Integrate transfer equation in the 1st order differential form, over a
basic ‘computational cell’. For example, the computational cell in the case of
line transfer equation in spherical Co-Moving Frame (CMF) is [rn, rni1] x
[,uj_%, pj+%] X [z/i_%, 1/2-+%] representing [0 /0r] x [0I/0u] x [0I/0v].

e Step 2: Define ‘cell averages’ of the physical and geometric variables — eg., the
diamond scheme: 7,.;/y = $(Tn + Tnt1); Bnii2 = 2(Bn + Bny1) , ete..

e Step 3: Step 1 + Step 2 lead to a fully discretized form of RTE, which can be
organized in matrix difference equation form.

e Step 4: Compute the ‘fundamental cell (layer) operators’, and if the atmo-
spheric layer is optically thick (say in the denser part of the medium), then
compute the ‘thick layer operators’ for each layer, bounded by (n,n + 1).

e Step 5: Arrange these matrix equations in the form of a global ‘interaction
principle’ (namely in a canonical form). This is called ‘forward elimination pro-
cess’ to construct global (or non-local) operators.

e Step 6: Apply the initial and boundary conditions, and perform ‘back substi-
tution’ to compute the internal and emergent diffuse radiation field.

Computational Aspects of the Discrete Space Method:

(1) A finite difference discrete ordinate representation is employed to replace
the derivatives and integrals. The accuracy of normalization conditions, and
the final solution depend on the schemes used, and the degree of resolution
employed. Gaussian quadrature for angles, logarithmic spatial grid, logarith-
mically spaced weighted Simpson, or spline frequency quadrature weights, are
good in most cases. (2) The DSM is of linear accuracy in 7- variable. But,
it is highly accurate in practical NLTE work, because we use very small values
of ATy as the basic cell thickness, and employ highly accurate and efficient
doubling method of van de Hulst to generate the r, t and ¥ operators for the
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whole thick layer (n,n + 1). (3) The main effort goes in computing the cell

matrices r» and ¢ for each layer of the the atmosphere. Depending on the phys-

ical nature of the problem, and the geometry (planar, spherical, and multi-D

media), it requires less or more CPU time. (4) The generation of global op-

erators r(1,n + 1), #(n,n + 1) and Vni+ 1 representing the entire atmosphere,
2

also involves large computing efforts. (5) Considerably large main memory is
required to store the 7(1,n+1), {(n,n+1) and Vn:i 1 operators for all the shells,
2

or a large CPU time is expended in doing the I/O operations if one employs a
secondary storage on hard disk.

Advantages and Disadvantages of the Discrete Space Method:

The advantages are:

(1) Clarity in the generalization of the DSM to more and more complex physical
problems (in practical terms, the ease of numerical extension), (2) High accu-
racy and stability of the numerical solutions, (3) Possibility of self-consistency
checks like ‘flux conservation’, ‘constancy of net flux in conservative scattering
media’, etc., to ensure correct coding and accuracy of the discrete representation.
(4) Easy parallelization and vectorizability of the code. (5) DSM is suitable for
exploratory work involving new physical effects, and generate benchmarks to
serve as checks for other numerical methods like PALIL.

The main disadvantage is:

Generalization to non-axisymmetric problems (like Hanle effect), by direct dis-
cretization over the azimuth angle ¢; or, generalization to multi-D by direct
discretization over spatial variables, or application to realistic atmospheric mod-
eling work, leads to increased dimensionality of the matrices in the algorithm
leading to large memory and CPU time requirement. Clearly, approximate meth-
ods are preferable for non-axisymmetric, or multi-D polarized line transfer ap-
plications, or in the atmospheric modeling work.
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