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Abstract. Developments in the NLTE polarized line transfer theory
are reviewed. Attention is focused on theoretical aspects of the prob-
lem. Basic ideas of an exact (or direct) method called ‘Discrete Space
Method’ (DSM) are presented, with two applications — namely the non-
magnetic resonance scattering polarization in spherically symmetric me-
dia, followed by polarized line formation in moving media. Secondly,
the essential steps of ‘Polarized Approximate Lambda Iteration’ (PALI)
method for Hanle effect with CRD and PRD line scattering, are briefly
described. The performance of these methods is illustrated through a
study of iterative convergence. Advantages of PALI methods over direct
methods are highlighted.

1. Introduction

The resonance scattering in a spectral line produces linearly polarized radiation
(Hamilton 1947). This non-magnetic dipole scattering involving the bound levels
of an atom is equivalent to the Rayleigh scattering on molecules. The relevant
scattering phase matrix in the Stokes vector (I Q U V)T representation was de-
rived by Chandrasekhar (1950), who also solved the concerned ‘monochromatic’
polarized radiative transfer problem exactly. We give below a brief histori-
cal perspective on the methods to solve polarized line transfer problems. An
assumption of axial symmetry allows to work with transfer equation for the re-
stricted Stokes vector (I Q)T. Such an equation represents a generalization of
the scalar NLTE equations, to include linear polarization in spectral lines.

The work of Stenflo & Stenholm (1976), assuming Stokes-Q as a perturba-
tion, under Rybicki’s core saturation method (for CRD), represents the earliest
solution of polarized line transfer equation. The polarized integral equation

methods assuming CRD (Rees 1978), and the PRD (Mc Kenna 1984); the dif-

ferential equation methods such as the Feautrier method for PRD with Stokes-
Q treated as a perturbation (Rees & Saliba 1982), non-perturbative Feautrier
method with PRD (Dumont et al. 1977; Faurobert 1987); the non-iterative, non-
perturbative DSM with PRD (Nagendra 1986, 1988) represent some of the ‘ex-
act numerical methods’ for solving this problem. They require greater computer
memory and are slow compared to the ‘Approximate Lambda Iteration’ (ALI)
approach (based on the operator splitting). A review of analytic/asymptotic
methods in polarized line transfer is presented by Ivanov et al. (1991).

The PALI methods were developed in the 1990’s. The progress here has
taken place in two parallel streams - the stream-1 is based on the ‘atomic den-
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sity matrix formalism’ of polarized line transfer, developed by Bommier & Sahal-
Brechot (1978), and Landi Degl’ Innocenti (1982, 1983, 1984, 1985). The stream-
2 is based on the ‘scattering phase matrix formalism’ (presented in: Mihalas
1978; Rees 1978; Stenflo 1994; Ivanov 1997). Each stream has its own advantages
and limitations. However both the streams have followed ‘scalar ALI method’
developed by Olson, Auer, & Buchler (1986). A fine review about unpolarized
ALI methods is written by Hubeny (1992). The applications of PALI method
to the stream-1 are presented in Trujillo-Bueno & Landi Degl’Innocenti (1996,
1997), and Trujillo-Bueno & Manso Sainz (1999). Similar applications to the
stream-2 are presented in Rees & Murphy (1987), Faurobert, Frisch, & Nagen-
dra (1997), and Paletou & Faurobert (1997). These PALI methods developed
initially for prototype non-magnetic resonance scattering problem, were later
generalized to the case of Hanle effect, independently under both the streams.
Hanle effect is essentially a modification of resonance scattering polarization, by
a weak magnetic field. The PALI method using stream-1 is presented in Manso
Sainz & Trujillo-Bueno (1999), later extended in Manso Sainz & Trujillo-Bueno
(2001). Generalization of PALI in stream-2, is presented in Nagendra, Frisch,
& Faurobert (1998, CRD with Hanle effect), Nagendra et al. (1999, PRD with
Hanle effect), and Fluri, Nagendra, & Frisch (2002, exact collisional PRD with
Hanle effect). See Frisch (1998, 1999) for a discussion on the equivalence of
stream-1 and stream-2.

2. The Basic Equations of Polarized Line Transfer in Axi-symmetry

The polarized 2-level atom line radiative transfer equation (RTE) is given by

2D (g7, 2) 4 B () (7,2,m) ~ 8 (r,,m)], @

in the usual notation (see Mihalas 1978). Z = (I Q)T is the Stokes intensity
vector, and & is the Stokes source vector. ¢ is profile function, and g = k¢ /K"
the continuum absorption parameter. The total source vector is given by

(1,2) 8¢ (r,2z,n) + B (1) Sc (1)
¢ (r,z) + B (7) '

The continuum source vector (assumed here as unpolarized) is given by S, =
B,,(T) U; where U = (1 0)T. The polarized line source vector is written as

S (r,z,n) = ¢ (2)

S¢(r,z,n) =¢eB,, U +
(1 —_ 8) +00

¢(1:2) J-oo

In the above equation, we have employed the “factorization of frequencies &
angles” - which means: redistribution matrix ~ redistribution function * phase
matrix. The most basic frequency redistribution function R(z,z’) that can be
used in Eq. (3) is CRD - which is a reasonable assumption for scattering in
weak lines; [Ry1, Ryj1] combination — which is good approximation for resonance

/!
dx'f (iﬂR(T,x,.’E,) P (n,n') Z(r,2',n'). (3)
T
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lines, and [Ryv, Ryy1] combination — which is applicable for subordinate lines.
The functions R;, ¢ = I,ILIII, and V are derived by Hummer (1962), and
Heinzel (1981) respectively. The phase matrices required for polarized transfer
are presented in Chandrasekhar (1950), and Stenflo (1994). The (2 x 2) axially-
symmetric part of the Rayleigh phase matrix is given by

~ o 3 -
Pu,p') = By + 355 (m i), (4)

which is a weighted sum of ‘isotropic scattering phase matrix’, and the ‘dipole
scattering phase matrix’ written explicitly as

) 10 g3 [3(1-3uH)(1-3u?) (1-3p%)(1—p?)
P(u,p') = + 3 . (5)
00 (1-p?)(1-3u2) 31 —p?)(1-p?)

The above five equations define the prototype polarized line transfer problem.
The “factorization” is an ad-hoc assumption, but substantially simplifies the
line transfer computations. The use of angle dependent redistribution function
R(z,z',0) is a better choice instead of the angle averaged function R(z,z’).

3. A Brief Discussion of the Discrete Space method (DSM)

There are two classes of direct methods namely (1) coupled integral equation
methods for (I Q)T and (2) coupled differential equation methods for (I Q)T.
The DSM is a finite difference, discrete ordinate method based on first order
form of the transfer equation. We describe below the essential ideas underlying
this method. Basically we divide the medium into N-layers of arbitrary optical
thickness. Our purpose is to compute the reflection (r) and transmission ()
operators for each layer, the construction of which is based on the concept of
“linear interaction principle”. For the sake of brevity, and extension of scalar
equations to the polarized case we use the notation

N I* i tt 0 1 0
IT = ; Z‘,i = ; = ;T = etc. (6)
Q* 0 0 tq 0 rq

Linear Interaction Principle:

It is a statement of the relation between ‘incident’ and ‘outgoing’ radiation field,
for a layer of given thickness. Consider a layer bounded by the planes n and
n + 1 (see Fig. (1a)). Let column vectors If = [I,(£p1), Ln(£p2), oo Tn(Fps)]
for incoming rays (+u) and outgoing rays (—u) be discrete representation of
intensity [ on a p - grid (0 < p; < 1), 7 =1,2,...,J. Let the column vectors
Ing +1,, @and X, .4 represent the contribution from internal sources of radiation.
If we assume that response of the layer is linear to the incident radiation, then
we can write the “interaction principle” as

I:H t(n+1,n) r(n,n+1) If E:Hm
() o) () o
I; r(n+1,n) tn,n+1) I —

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003ASPC..288..583N

rZ003ASPC. 2887 “583N1

586 Nagendra

oy IR T T L T A ne2

— + -

! 1n+1 n+2

n+{ I

n+2
Figure 1.  (a: Left) The linear interaction principle for a single layer.
(b: Right) Combined response of two arbitrary layers placed adjacently.

or when expressed in terms of the interaction matrix S(n,n+1) and the internal
source matrix ¥(n,n + 1), we can write

A If
( )::ﬂmn+n< )+me+1y (8)
Iy I

n
Interaction Principle for a Composite Layer:
Consider another layer bounded by the planes n + 1 and n + 2. The linear
response of this layer, considered independently is

I:+2 I:+1
=S(n+1,n+2) + Z(n+1,n+2). (9)
I n+2

We intend to calculate the combined response of both the layers when placed

together, as shown in Fig. (1b). The ‘interaction principle’ for the layer (n, n+2)
can be written directly as

I, Iy
( ) = S(n,n+2) ( ) + X(n,n+2). (10)
I; Iy

n
What is important is that we can also obtain the matrix S(n,n + 2) in terms of
S(n,n+1) and S(n+ 1,7 +2). The product S(n,n+2) =S(n,n+1) x S(n+

1,n 4 2) is called the “star product”, and simply involves elimination of I,':' 11

and I, at the common interface (n + 1). The ‘elimination process’ leads to
the relevant expressions for the » and ¢ operators of the ‘composite layer’. The r
and t operator were originally derived by Redheffer (1962). The internal source
operators were later incorporated by Grant & Hunt (1969a,b). The definition
and construction of unpolarized r, t and ¥ operators in terms of the physical
variables is described in Peraiah (2001). The integration of the transfer equation
over a computational cell, and finite difference discretization, are explained in
the same reference. The corresponding equations for polarized line transfer are
described in Nagendra (1986, 1988, 1994). For lack of space here, the full details
are presented as extended notes, and placed at the author’s web site, which may
be accessed at http://www.iiap.ernet.in/nagendra/nagendra-dsm.ps.
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4. Two Sample Results by the DSM Method
In this Section we present two results computed by the DSM.

4.1. Polarized Line Transfer in a Static Spherical Media

In a well known review article, Hubeny (1985) mentioned several “non-standard
problems” in stellar spectral line formation theory. The ‘polarized resonance
scattering line transfer in static/moving spherical Media’ was one such example.
The problem was subsequently solved in Nagendra (1988) for static spherical
media (with PRD), and in Jeffery (1989, 1990) for ‘moving spherical media’
by Sobolev-P method applied to spherical winds (with CRD). Polarized line
transfer equation in spherical geometry is written as:

#81(7‘,1:,11) + 1—pu? 8Z(r,z,n)
or r ou

Ko(r) [6(r,2) + B(r)] [-Z (r,z,n) + S (r,2,n)], (11)

where, T = (I Q)T; and S = (51 Sq)7 are the Stokes intensity and total source
vectors. To compute Fig. (2a) we employ the following model parameters:

Total optical depth 7% = 10%; Damping parameter a = ay + a; = 10~2; Ther-
malization parameter ¢ = 10~%; Continuous absorption coefficient k(r) =
BEL(r), with 8 = B¢ = 10~%; Line absorption coefficient k*(r) = Kr~2, with
K = RT*/(R - 1); Line optical depth scale 7%(r) = K[(R ~ r)/rR]; Inner
radius of the spherical shell R. = 1; Internal thermal source B(r) = 1 ie., an
isothermal spherical shell, with a photon creation rate per unit optical depth pro-
portional to 72; Inner boundary condition Z (R, z, u) = (B,, 0)T; Outer bound-
ary condition Z (R, z,—p) = 0; PRD function R(z,z') = (2/3)Rv_aa(z,z') +
(1/3)Ryr—aa(z, z'), to represent collisional effects in a subordinate line (Heinzel
1981; Nagendra 1988). Results are shown for R = 1 (case 1, planar slab), and
R =3,9,27,81,122,162,203, and 243 (cases 2-9, spherically symmetric media).

Fig. (2a) shows intensity I(z, u) and polarization profiles p = Q(z, u)/I(z, u)
at 4 = 0.11. The frequency (z) scale on top of Fig. (2a) refers to these line
profiles. The lower two sets of curves show source functions St and Sq, plotted
as a function of optical depth 7. Sharp peak in Sq for the planar case (R =1)
can be explained through frequency thermalization effects. The influence of
spherical dilution is seen in the 7-dependence of S;. Recall that sphericity of
the medium affects line polarization through (1) bias in scattering preferentially
toward larger radii; (2) spherical dilution of radiation field; and (3) outward
peaking of radiation field toward radial directions (see Mihalas 1978).

The main conclusions from Fig. (2a) are: (1) the formation of near wing
negative polarization peaks can be explained in terms of spherical dilution; (2)
emergent intensity decreases by rather small factor of 20 when R changes from
1 to 243 because of strong continuous absorption. (3) peaking of radiation at
large radii is partly responsible for mid-wing polarization peaks. (4) PRD ef-
fects are stronger in spherical media, compared to planar media, due to larger
angular anisotropy in the former case. (5) Sphericity effects are stronger in
PRD case, compared to the CRD case, because of ‘partially coherent nature’
of Ry_aa(z,z') in the line wings, leading to an increased role of multiple scat-
tering within the atmosphere. (6) nature of anisotropy is different in planar
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Figure 2. (a: Left) Polarization of radiation emitted by extended
spherical atmospheres (extension R is free parameter). (b: Right)
Polarization of emission lines formed in a moving planar atmosphere.

and extended (R > 10) spherical atmospheres. See Nagendra (1995) for more
details.

4.2. Polarized Line Transfer in Moving Media by CMF Method

There are two approaches of solving this problem, namely the rest frame method
(RFM), and the co-moving frame (CMF) method. See Mihalas (1978) for a
comparison of these methods. RFM is routinely used in the solar line formation
work, as the velocities involved are small. However CMF holds the advantage
even in this case, because one can work with angle averaged PRD functions.
In the high velocity flows encountered in stellar atmospheres, CMF techniques
are always preferred over the RFM. Jeffery (1989, 1990 - ‘Sobolev-P’ method)
and Hillier (1996 - ALI-based CMF method) solved the problem of polarized
line formation in spherical/ non-spherical winds. Nagendra (1996) presented a
CMF approach for polarized resonance scattering with PRD in planar media,
and using the DSM. The relevant CMF transfer equation is

0L(z,z,p) [ o din v(z)] 0L (z,z,p)
# 0z din z Oz
K (2) [((2,2) + B(2)] [ Z(z,2,1) + S(z,2,1)], (12)

where v(r) is the velocity of the medium along the symmetry axis, expressed in
mean thermal units (1 mtu = vy, = \/2kT/M,). The approximations involved in
formulating the above initio-boundary value problem are described in Mihalas
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(1978). Two main steps involved are: (i) computing S(z,z,u) at all the z—
points, by solving the above equation in CMF; (ii) performing a Formal Solution
(FS) in the observer’s frame to obtain (I Q)T along several lines of sight (LOS).

Model parameters used in computing Fig. (2b) are: [T, a,¢,3, B(7)] =
[100,1073,107%,0,1]. The PRD function employed is Rr_aa(z,z'). A self-
emitting slab expanding with a constant velocity of v(7) = 1 mtu is used.
Solid line represents LOS at extreme limb (1 = 10~3) and dashed line the disk
center. Progressive limb brightening of emission line profile is seen in the I and Q
profiles. The degree of polarization (Q/I) reaches maxima at all frequencies, as
one approaches the limb. Blue shift and large distortion cause strong changes in
the polarized flux profiles observed from expanding stellar atmospheres. Details
of the computation and other parameters are given in Nagendra (1996).

The following conclusions can be drawn from Fig. (2b): (1) CMF method is
a preferred technique because a smaller number of N, and N,,, is sufficient when
compared to those necessary for RFM computations; (2) the main advantage of
CMF method is that we can work with angle averaged redistribution functions,
unlike the RFM which require angle dependent redistribution functions. (3)
PRD effects on polarization are enhanced by macroscopic velocity fields, due to
direct effect of velocity fields on the source function gradient.

5. Polarized Approximate Lambda Iteration (PALI) Methods

We confine our attention to the Hanle scattering line polarization. The reso-
nance scattering polarization is a special case (B = 0) of these equations. We
also ignore Zeeman line polarization by true absorption process. There are two
parallel streams of development in this field:

Stream-1: Atomic Density Matrizc Approach:

Under stream-1, the polarized transfer equation is derived using the ‘atomic
density matrix theory’. See the formulations in House (1970); Omont, Smith, &
Cooper (1973); Landi Degl’ Innocenti (1983); Landi Degl’ Innocenti, Bommier,
& Sahal-Brechot (1990); Bommier (1997); and Bommier, & Stenflo (1999). Solu-
tion of RTE for radiation density matrix elements by PALI approach, and solar
applications are presented in Trujillo Bueno & Landi Degl’ Innocenti (1996,
1997), Trujillo Bueno & Manso Sainz (1999), Manso Sainz & Trujillo Bueno
(1999, 2001). CRD mechanism is used in these computations. For a review on
older methods of solving the LTE and NLTE polarized transfer equation, see
Rees (1987), Rees & Murphy (1987), and Stenflo (1994).

Stream-2: Scattering Phase Matriz Approach:

Under stream-2, the transfer equation is derived using conventional 2-level atom
NLTE (Mihalas 1978), or the so called ‘scattering approach’ (Frisch, 1999). The
polarized integral equations are derived in Stenflo & Stenholm (1976), Rees
(1978), and Ivanov et al. (1997). These authors consider only CRD to represent
polarized line scattering. The solution of transfer equation by PALI approach
is presented in Faurobert et al. (1997: PALI-1), Paletou & Faurobert (1997:
PALI-2), Nagendra et al. (1998: PALI-3), Nagendra et al. (1999: PALI-4),
Nagendra et al. (2000: PALIL-5), and Fluri et al. (2002: PALI-6), and other

© Astronomical Society of the Pacific * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/2003ASPC..288..583N

rZ003ASPC. 2887 “583N1

590 Nagendra

Log,, ( Max. Rel. Correction )
|
N

—

0 50 100 150 200 250
Iteration Number n

Log,, ( Max. Rel. Correction )

-10 : o n L
0 50 100 150 200 250
Iteration Number =

)

2 . . -2 o 1
wyr wyr

Figure 3. (a: Left) Iterative corrections on reduced source vector
components in Hanle-CRD problem. (b: Right) Convergence charac-
teristics of reduced source vector components in Hanle-PRD problem.

papers connected with this series. Both CRD as well as PRD are considered.
Other papers discussing the PALI method under Stream-2 are by Dittman (1999)
where CRD in line scattering is considered.

5.1. PALI Method for the Non-axisymmetric Hanle Effect with CRD

Hanle effect is a weak magnetic field effect on atoms. For UV, optical and near
infra-red lines, the condition Avg >> I'p is satisfied when the field strength
B > 1000 G, where Avg is the Larmour frequency, and I'p the radiative
width of excited state. In this case, the V-Stokes parameter is coupled to I,
Q and U-Stokes parameters, and hence one has to solve the transfer equation
for (I Q U V)T. Same condition prevails for B = 300 G — 1000 G (Hanle-Zeeman
regime where Avg > I'g is satisfied). For weak fields (B = 10 G — 100 G) the
condition Avg < 'y is satisfied, and represents the case of pure Hanle scatter-
ing. The Hanle effect ‘modifies’ linear polarization produced in a non-magnetic
resonance scattering event. In this case Stokes-V is decoupled from (I Q U)T.
Finally B = 0 G corresponds to resonance scattering polarization, and the ra-
diation field can be represented by (I Q)T (axi-symmetry). Unequal population
of ‘degenerate’ magnetic sub-states (caused by angularly anisotropic incidence
of radiation on the radiating atom), is responsible for this phenomena.

The geometry of the problem is shown in Nagendra et al. (1998). The 1-D
Hanle transfer equation for the Stokes vector Z = (I Q U)" has the same form
as Eq. (1). Similarly, Eq. (2) and Eq. (3) also hold good, with the new definition
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that S = (S1 Sq Su)T; and U = (1 0 0)T. Further, the Rayleigh phase matrix
in Eq. (3) has to be replaced by the (3 x 3) Hanle phase matrix Pg(n,n’, B) that
depends on magnetic field B(6g, ¢p,B). Z and 8; now depend on azimuthal
angle . However, one can change this non-axisymmetric transfer problem to a
¢ independent form by working in ‘Fourier space’. It involves an expansion of Z
and &, in a Fourier series w.r.t ¢. We mention only few equations. Full details
of the problem are presented in Nagendra et al. (1998).

Fourier Ezpansion of the Azimuthal Dependence:
The Hanle source vector can be Fourier expanded as:

— k=2 — = .
S(r,z,p,p) = SO(T,x,u)—l-Zk:l[Sk(T,m,u) coskp+S_g(1,z, u) sinkyp], (13)

where Sy are 3- component vectors. Sy has 2- components (by symmetry). An
exactly similar expansion holds for intensity vector also. A double Fourier ex-
pansion w.r.t ¢ and ¢’ is needed for the Hanle phase matrix.

An Additional Factorization: T
Defining a 14- component ‘Fourier source vector’ Sy = [go,gl,g_l,gg,g_g] ,

one can achieve an ‘angle and frequency factorization’ Sp(7,z,u) = B(u) *
S(r,z), where S(, z) is a 6- component ‘reduced source vector’. First component
of S(7,z) is simply the scalar source function S(7,z) of unpolarized RTE. The
reduced source vector satisfies a vectorial integral equation

S(7,z) = (1 — €)Hg (08B, ¢B, B) /OT K(z,7 —1")S(7',z)dr’' + B, (7)U. (14)

The kernel matrix K is independent of magnetic field, and is written as

K Kio O 0 0 0
Ko Koo O 0 0 0
. 0" 0 Ki o0 o0 o0
K@m) =19 0o 0 Ks 0 0 (15)
0 0 0 0 Kyq 0
0 0 0 0 0 Kyy

Hp is (6 x 6) magnetic matrix (Nagendra 1998). Note that Hg = I, when B = 0.

Hy(08,¢8,B) = R(pp) Mp(6s,B) R(—¢s), (16)
where R(pp) is the rotation matrix (R(0) = I), with I being a unit matrix.

The Reduced Hanle Transfer Equation in Fourier Space:
The ‘axi-symmetric’ RTE for 6-component reduced intensity vector I{7,z, u) is

oI(r,z, p)
p—m =

5 (¢(r,z) + B(7)) [I(r, =, p) — S(7, 2)]. (17)
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Notice that I does not depend on ¢. And S neither depends on ¢ nor on u. The
total reduced source vector is

@7, x) Si(1,x) + B(7)By, (1)U _ T
S(r,z) = R . U=(100000)T, (18)

where the reduced line source vector may be written as
Si(r,z) = (1 —¢) Hp(fB,¢8,B) J(1,2) + eB,, (1)U . (19)

The scattering integral J is given by,
oo pl R (r,z,2') - ~
ey =5 [~ [ BRI BB T i (20)

Expressions for the (14 x 6) matrix B(x) are given in Nagendra et al. (1998).
We now present PALI method for Hanle effect with CRD, namely R(z,z') =
¢(z) ¢(z'). The CRD source functions are independent of z, but this depen-
dence is kept in the equations, in view of applicability in PRD case (Sect. 5.2).

PALI Numerical Method of Solution for Hanle Effect with CRD:
We give below a few important equations only. At any depth point 7; the reduced
source vector satisfies the integral equation

S(T;) = (1—5) f}B An [S(T-,)] -+ 8BVO(Ti)U. (21)

The reduced mean intensity for the CRD case is

—4-0c0

3 = ha 186 = [ (e’ 2 [ BTGB W, )i (22)

The source vector corrections at the nth iteration are computed using
. -1 .
880(n) = [L*(m)] T [eBu(m)U - {S™(r) — (1 - ) I (1)}], (23)

where S(™)(r;) is the current estimate, and the mean intensity J(® (73) must
explicitly be computed using a formal solver FS. The frequency independent
(CRD) approximate lambda operator L* is a (6 Ny x 6Ny) global ‘block diagonal
operator’ with one (6 x 6) block at every depth 7. Such a block is written as

I*(r) = [BE - (1-¢)Hg A% . (24)

(n)

The maximum relative corrections are ¢4 ’, where o =1, Q, £1, 42 refer to
components of the source vector. The quantity E is a (6 x 6) identity operato..
Stokes source vector can be obtained from the reduced source vector by simple
transformation [see Eqgs. (24)-(26) in Frisch (1999)]. Same transformation holds
for intensity vectors also with source terms replaced by intensity terms.
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The Discussion on Fig. (3a) and Conclusions:

To compute the results presented in Fig. (3a), a two -level atom model, and an
isothermal, self-emitting, symmetrlc slab with the parameters [T, a,¢, 3, B,] =
[2 x 10°, 10"3 1078, 0, 1] is employed. The magnetic field parameters are
[I's, 08, vB] = [1, 30°, 0°]. The iterative convergence is controlled by the I
component. The other 5 modes of the reduced intensity remain as subsidiaries.
The convergence rate of PALI method is independent of B. The spike in c;9
during a stable phase is caused by zero crossing of polarized source components.
When zero-crossing point in optical depth space coincides with a spatial grid
point, the conventional definition of MRC undergoes artificial spikes, showing
that it is not a reliable measure of iterative convergence. The lower panel shows
the smooth convergence behaviour when a ‘modified definition’ of MRC (Nagen-
dra 1998) is used. The usefulness of Ng acceleration is also shown in this panel.
Note that all curves have asymptotically same slope for large values of n. In
practical work, a simple test based on the convergence of surface polarization is
good enough.

5.2. PALI Method for the Non-axisymmetric Hanle Effect with PRD

We generalize core-wing method of Paletou & Auer (1995) to include polariza-
tion of line radiation. Only few equations are given below to highlight the nature
of this method. See Nagendra et al. (1999) for more details of PALI method for
Hanle effect with PRD. Egs. (13)-(20) of Sect. 5.1 hold good in the PRD case
also.

PALI Numerical Method of Solution for Hanle Effect with PRD:
The iterative corrections to the reduced source vector are given by the expression

+00

657 — (1-c) Hp / Gow Pw L2 [68{D] da’ = r{1Y, (25)

—00

where g; o = Ry . /¢, are PRD redistribution weights and p, = ¢/(¢z +
s = pmrSS(n) The monochromatic (PRD)
approximate operator L* represents diagonal part of full operator L, (i.e we

employ a block-Jacobi method) The operator splitting L, = L* + (L, — L*)
allows to make this choice. It is pre-computed and stored as a block diagonal
matrix of dimension (6 Ng/N; X 6NyN,) (hence requires considerable computing

B). The total corrections are ¢

time). The residual function ra(,;n) is given by
r = (1-¢) B J® — S\ + ¢B,,U; where U=(100000)7. (26)

Meaning of the core-wing Approzimation for Line Scattering:
The weighted separation of frequency integral over a given function f, as

400
/ 9z fe dz’ = (1 — ay) G fr dz’ + oy / 5z — =) da’,  (27)

—00 core wing

is called the core-wing procedure. The separation coefficient a, = 0 for z < z,
(line core), and o, = diag{g; ;}, ¢,j = 1, N, for z > z. (line wing). We assume
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that the core-wing cut-off frequency z. = 3.5. The core and wing corrections
can be calculated separately as follows.

Corrections in the Core Domain (z < z.):
S = Hp AT™ + (), (28)

where the ‘frequency independent’ operator ATM ig computed by

[f —(1-e)Hg L ] AT = 50, (29)

- %
with the frequency averaged operator I [ ] and ¥ given by

L[]= $u P L[ ] do, (30)
core
™ = (1—¢) [ b pw LuED) do'. (31)

core

Corrections in the Wing Domain (z > z.):

[f ~ az(1—¢) Hg ps 13;] 58 = 1 4+ (1-a,) Hsg AT™.  (32)

»&

The formal solution (FS) is calculated by a short characteristics method. Egs.
(28), (29), and (32) are main equations of the core-wing method.

Convergence Characteristics of core-wing PALL Method:

Convergence tests are similar to that of Hanle/CRD problem. The ‘convergence
rate’ is independent of the magnetic field. On the Hanle/PRD problem, PALI is
about 80 times faster than perturbative Feautrier method (scalar Feautrier + po-
larization by perturbation). PALI requires 30 times less memory than Feautrier
perturbative method. Scaling is: Feautrier method [CPU time ~ N2, memory
~ N?], and PALI method [CPU time ~ Ny, memory ~ Ny], where N; = N, xN,,.

The Discussion on Fig. (3b) and Conclusions:

The history of convergence of six source vector components P(7,z) = J(7,z) +
eB,,U at z = 0 is shown in Fig. (3b). P(r,z) is plotted as a function of 7
upto mid-slab. Last 5 polarized components are divided by 10~ for conve-
nience. An isothermal, self-emitting, symmetric slab model with parameters
[T,a,¢,/3,By,,] = [2 x 108,1073,107%,0, 1] is employed. Magnetic field param-
eters are [I'g, 0B, ] = [1,30°,0°]. The dotted line represents the solution on
the first iteration. The last 4 harmonic modes (+1 and =+ 2) are smaller in
magnitude, and guided by the Q - component, which in turn, is a slave mode of
the dominant I - component. Notice a perfectly uniform convergence of PALI
iterations.

6. Conclusions and an Overview

(1) Direct methods have a role to play in the polarized line transfer theory
by providing accurate bench-marks (a) to check correctness and accuracy of
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modern PALI codes; (b) to explore new physical effects, as direct methods like
Feautrier method or DSM, are relatively easy to generalize to the polarized case
(see e.g., Nagendra, & Peraiah 1985; Poutanen, Nagendra, & Svensson 1996),
unlike iterative methods. (2) PALI and its variants are the methods of choice for
analyzing polarimetric data, and stellar atmospheric modeling, due to smaller
requirements of memory and CPU time. (3) The word approximate in the so
called “approximate methods”, refers only to the choice of the local lambda
operator, and not to the solution, which indeed remains as accurate as that
from a direct method, and contains much less round-off errors.

Some interesting problems of polarized line transfer which require attention
in the near future are: (1) combined Zeeman-Hanle PRD problem in intermedi-
ate fields (300 G < B < 1000 G); (2) Hanle-PRD in multi-D geometry for solar
and stellar applications; (3) Hanle-PRD with multi-level atomic coupling in or-
der to model the observed data. High resolution solar polarimetric observations
can distinguish relative contribution of such effects.
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