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Abstract. A generalized iteration method is presented to solve the polarized line transfer equation for a two-level-atom in an
arbitrarily oriented, weak magnetic field. The polarized redistribution matrix employed accounts self-consistently for collisions
as well as the presence of a weak magnetic field responsible for the Hanle effect. The proposed numerical method of solution is
based on a Polarized Approximate Lambda Iteration (PALI) method. A Fourier decomposition of the radiation field and of the
phase matrix with respect to the azimuthal angle reduces the complexity of the problem. A generalized core-wing technique is
proposed, which permits an efficient implementation of the frequency domain structure inherent in the polarized redistribution
matrix. The numerical method is tested for its accuracy and efficiency by comparing with the existing methods.
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1. Introduction

Line polarization produced by scattering processes has devel-
oped into a topic of great interest in solar physics (see Stenflo &
Nagendra 1996; Nagendra & Stenflo 1999). Systematic obser-
vations by Stenflo et al. (1983a,b) and theoretical attempts to
model them proved that the scattering polarization and quan-
tum interference effects are the basic causes of line polariza-
tion in the spectra from quiet regions. The structural richness
of the so called second solar spectrum is revealed in obser-
vations by Stenflo & Keller (1996, 1997) and in the atlas re-
cently published by Gandorfer (2000), which for the first time
presents an overview of the scattering polarization in the whole
visible wavelength range with a sensitivity well below 10−4.
Resonance scattering between bound atomic states is respon-
sible for the linear polarization in spectral lines. The modi-
fication of this polarization by the presence of a weak mag-
netic field is called the Hanle effect. The Hanle effect in scat-
tering polarization is an important tool to diagnose the small-
scale structure of spatially unresolved magnetic fields (Stenflo
2001; Stenflo et al. 2001). For a review of the Hanle effect see
Faurobert-Scholl (1996), Frisch (1999), and Trujillo Bueno
(2001). In recent years the Hanle effect has also become a di-
agnostic tool in stellar astrophysics (see Ignace et al. 1997,
1999; Ignace 2001). An interpretation of the high spectral reso-
lution data on the Hanle effect requires the solution of the Hanle
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effect line transfer problem with a correct treatment of partial
frequency redistribution (PRD). A conventional direct solution
of this problem requires large computational resources. Hence
there is a need to develop efficient iterative methods to solve
this problem.

The challenges in modelling scattering polarization consti-
tutes not only the development of faster numerical methods, but
also obtaining theoretical expressions for the redistribution ma-
trix that describes the correlation between frequency, direction
of propagation, and state of polarization of incident and scat-
tered photons. Recently Bommier (1997a,b) has derived self-
consistent polarized redistribution matrices for the Hanle ef-
fect. The purpose of this paper is to adopt these matrices into a
generalized PALI method for Hanle PRD problems.

Scalar (unpolarized) frequency redistribution functions for
two-level atoms, neglecting collisions, were first studied by
Hummer (1962). More general expressions for collisional fre-
quency redistribution on resonance and subordinate lines were
derived by Oxenius (1965), Heinzel (1981), Hubeny (1982,
1985, and references therein), Hubeny et al. (1983a,b), Hubeny
& Cooper (1986), and Hubeny & Lites (1995).

The problem of polarized scattering in non-magnetic me-
dia with PRD was first addressed by Omont et al. (1972). Rees
& Saliba (1982) proposed a decoupling of frequency redistri-
bution from the phase matrix for resonance scattering – an ap-
proximation which has turned out to be practical and useful.
Many authors have subsequently employed this approximation
(see, Faurobert 1987; Nagendra 1988; Frisch 1999, and



304 D. M. Fluri et al.: An operator perturbation method for polarized line transfer. VI.

references therein). The phase matrix describes the correla-
tions between direction of propagation and state of polariza-
tion of absorbed and re-emitted photons. A general expression
for the redistribution matrix accounting for collisions in the ab-
sence of a magnetic field was derived by Domke & Hubeny
(1988) and Streater et al. (1988) and used in non-magnetic line
transfer computations by Nagendra (1994, 1995). The effects
of weak magnetic fields on the polarized redistribution matrix
were first considered by Omont et al. (1973). The polarized
line transfer problem for the Hanle effect with conventional
treatment of PRD was first solved by Faurobert-Scholl (1991).
In an extension of this method she used a heuristic approach
based on the redistribution matrix of Domke & Hubeny (1988)
to account for collisions in weak magnetic fields. Studies of
the solar Ca  4227 Å and Sr  4607 Å lines were undertaken
by Faurobert-Scholl (1992, 1993), and Faurobert-Scholl et al.
(1995) using this approach, in order to explain the linear polar-
ization in these lines.

The formulation of polarized line transfer developed in the
last two decades has followed two different approaches to the
Hanle effect problem. The first one (also pursued in the present
paper) is a scattering formalism that makes use of vector dif-
ferential and integral equations for polarized line transfer. The
second approach employs the theoretical framework developed
by Landi Degl’Innocenti (1983, 1984, 1985), which is based
on the irreducible tensor components of the atomic density ma-
trix (see also Bommier & Sahal-Bréchot 1978). This formalism
lends itself easily to multi-level atoms including lower-level
atomic polarization. Frisch (1998, 1999) has shown that the two
approaches are equivalent in the case of a two-level atom with
complete frequency redistribution (CRD).

The scattering formalism has been implemented into
a PALI method (Faurobert-Scholl et al. 1997; Paletou &
Faurobert-Scholl 1997; Nagendra et al. 1998, 1999, 2000,
henceforth referred to as Paper I, II, III, IV, and V, respectively).
The iteration scheme is similar to the scalar Approximate
Lambda Iteration (ALI) methods using a local approximate
operator (Olson et al. 1986). PALI makes use of the reduced
transfer equation derived through an azimuthal Fourier de-
composition of the radiation field as well as of the Hanle
phase matrix. This greatly decreases the CPU time and mem-
ory requirements compared to direct methods like the Feautrier
method (Faurobert-Scholl 1991) or the Discrete Space Method
(Nagendra 1988). Paper I deals with CRD and Paper II with
PRD in resonance line scattering in non-magnetic media,
whereas Paper III (for CRD) and Papers IV and V (for PRD)
include the presence of weak magnetic fields. Note that in the
absence of a complete theoretical framework, a phenomeno-
logical expression for the Hanle redistribution matrix based on
heuristic arguments was implemented in all these papers. The
scattering formalism has also been used by Dittman (1999) for
3D polarized radiative transfer (not based on PALI).

The density matrix formalism has been applied to de-
velop very efficient operator splitting methods for Non-LTE
polarized transfer problems in multidimensional media and
for multi-level atoms (Trujillo Bueno & Manso Sainz 1999;
Manso Sainz & Trujillo Bueno 1999; Fabiani Bendicho
& Trujillo Bueno 1999). The formalism can naturally

consider lower-level atomic polarization (Trujillo Bueno
& Landi Degl’Innocenti 1997) as has been successfully
demonstrated through the computations of the Ca  infrared
triplet and the multiplet no. 2 of Mg  (Manso Sainz &
Trujillo Bueno 2001; Trujillo Bueno 2001) to model observa-
tions by Stenflo et al. (2000). The standard theory of the den-
sity matrix formalism works for the approximation of CRD.
Landi Degl’Innocenti et al. (1997) have developed a theory
of Rayleigh scattering in the presence of magnetic fields of
arbitrary strength but for a no-collision case based on meta-
levels for describing coherent scattering. With this theory
Landi Degl’Innocenti (1998) could partly explain the linear po-
larization features of the Na  D2 and D1 lines.

Bommier (1997a,b) has derived a general theory for
Rayleigh scattering in the presence of magnetic fields of arbi-
trary strength. Her treatment, based on quantum-field theory in
the weak radiation field limit, takes into account the effects of
elastic and inelastic collisions self-consistently in a two-level
picture. The corresponding classical oscillator theory proposed
by Bommier & Stenflo (1999) gives identical results as the
quantum theory for normal Zeeman triplets and has the advan-
tage of being conceptually more transparent.

In the present paper we introduce a fast numerical method
that implements the self-consistent redistribution theory of
Bommier (1997a,b). We assume that the magnetic fields are
weak (the Hanle effect regime) and further work with angle av-
eraged frequency redistribution functions, which corresponds
to the approximation level III of Bommier (1997b). This ap-
proximation has been implemented by Faurobert-Scholl et al.
(1999) for pure RII frequency redistribution using a perturba-
tion method. The method presented in this paper is based on
the PALI code of Nagendra et al. (1999) and has the advan-
tage of being very fast and highly economic regarding memory
requirement.

In Sect. 2 we formulate the radiative transfer problem fol-
lowed in Sect. 3 by an extensive description of the numerical
method of solution. In Sect. 4, which is devoted to the testing of
the method, we discuss the convergence properties of the code,
check how well flux conservation is satisfied in conservative
scattering, and compare the results with independent methods.

2. Formulation of the radiative transfer problem
2.1. Assumptions

We have solved the polarized line transfer equation with
partial frequency redistribution in weak magnetic fields. The
following assumptions are made:

• 2-level-atom model;
• unpolarized lower level;
• approximation level III of Bommier (1997b) involving an-

gle averaged RII and RIII frequency redistribution functions,
and the frequency domain structures;
• weak radiation field limit (i.e. stimulated emission is ne-

glected with respect to spontaneous emission);
• unpolarized background continuum;
• no continuum scattering;
• no circular polarization.
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2.2. Polarized line transfer equation for the Hanle
effect

The one-dimensional line transfer equation for the Stokes vec-
tor I = (I,Q,U)T may be written as

µ
∂I (τ, x, n)
∂τ

=(
φ (τ, x) + β (τ)

)[
I (τ, x, n) −S (τ, x, n)

]
, (1)

where τ is the monochromatic optical depth, x is the fre-
quency in units of a standard Doppler width (x = 0 at line
center), φ is the profile function, β is the ratio of continuum
to integrated line absorption coefficient, and n the propaga-
tion direction. Stokes V , representing circular polarization, is
not regarded since for the Hanle effect the transfer equation
for V is fully decoupled from the transfer equation given above
for the other three Stokes parameters. The total source vector
S =

(
S I , S Q, S U

)T is given by

S (τ, x, n) =
φ (τ, x) S� (τ, x, n) + β (τ) Bth(τ)

φ (τ, x) + β (τ)
, (2)

where Bth(τ) =
(
Bν0 , 0, 0

)T with Bν0 the Planck function. The
line source vector S� has the form

S� (τ, x, n) = εBth(τ)

+
1

φ (τ, x)

+∞∫
−∞

dx′
∮

dΩ′

4π
R̂
(
x, x′, n, n′, B

)
I
(
τ, x′, n′

)
, (3)

where ε is the thermalization parameter. The quantity R̂ gives
the redistribution matrix, and B represents the magnetic field
vector. To distinguish matrices from column vectors, matrices
are marked with a hat over the concerned quantity in the whole
paper.

2.3. Redistribution matrix and the domain structure

In this section we define explicitly the redistribution matrix and
explain the meaning of frequency domains. We use the redis-
tribution matrix derived by Bommier (1997b), particularly the
one listed under approximation level III (see Eqs. (103) to (113)
in Bommier 1997b). It is necessary that we rewrite the full ex-
pressions of the redistribution matrix of Bommier (1997b) to
introduce the notation and because we have to rearrange the
various terms to suit the numerical method presented in Sect. 3.

Approximation level III of Bommier (1997b) refers to
the use of angle averaged scalar redistribution functions. The
2D frequency space (x, x′), where x and x′ denote outgoing
and incoming frequencies respectively, is divided into differ-
ent regions called frequency domains. Within each domain in
(x, x′)-space the redistribution matrix can be written as a lin-
ear combination of terms which are products of scalar redistri-
bution functions and phase matrices. The scalar redistribution
functions are RIII(x, x′) and RII(x, x′) in the standard notation
(Hummer 1962) and the phase matrices represent Hanle and
Rayleigh scattering.

The total redistribution matrix can be written as a sum of
two parts

R̂(x, x′, n, n′, B) = R̂III(x, x′, n, n′, B)

+ R̂II(x, x′, n, n′, B) . (4)

The first part of the sum consists of linear combinations of the
terms written as products of RIII with the phase matrices, while
the second part consists of similar products involving RII. We
look at the two parts separately as they have different frequency
domain structures associated with them.

Physical frequency domains

For easier reference we introduce a numbering of the frequency
domains, which is shown graphically in Fig. 1. We have a to-
tal of five frequency domains, where domain no. 1 to 3 are
associated with R̂III, and domain no. 4 and 5 are associated
with R̂II. We will refer to these frequency domains as “physi-
cal domains”, where the word “physical” stresses the fact that
the domain structure has been obtained directly from the for-
mulation of Bommier (1997b). In contrast, we will introduce
“approximated domains” in Sect. 3.2.1, which are used in one
single step of the numerical method and represent a numerical
simplification of the physical domains.

The structure of the physical frequency domains for R̂III

(see panel (a) of Fig. 1), is obtained according to the following
logical sequence (Bommier 1997b):

If {zvc(a)|x′| −
(
x2 + x′2

)
< (z − 1) v2c(a)

and zvc(a)|x| −
(
x2 + x′2

)
< (z − 1) v2c(a)

and |x′| < √2vc(a)

and |x| < √2vc(a)} (5)

then : domain 1

else, if {|x| < vc(a) or |x′| < vc(a)} (6)

then : domain 2

else : domain 3

endif.

In the above equations we have used the quantity z = 2
√

2 + 2.
The variable a is the damping parameter. The cut-off param-
eter vc(a) is defined as in Bommier (1997a) and represents
the frequency at the transition of the Voigt profile from the
Gaussian core to the Lorentzian wing (cf. Eq. (85) and Table 2
in Bommier 1997b).

For R̂II the two-dimensional (x, x′)-space divides into two
physical domains, shown in panel (b) of Fig. 1, according to
the following logic (Bommier 1997b):

If {x (x + x′
)
< 2v2c(a) and x′

(
x + x′

)
< 2v2c(a)} (7)

then : domain 4

else : domain 5

endif.
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(a)  Physical RIII domains
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(b)  Physical RII domains
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Fig. 1. The RIII and RII physical domains obtained according to the logical sequence presented in Eqs. (5)–(7) for a Voigt damping parameter
a=10−3. The corresponding value of the cut-off parameter is vc(a)≈3.1.

The physical domains, shown in Fig. 1 for a damping parameter
a = 10−3, can be understood as a sort of recipe. For a given pair
of incoming frequency x′ and outgoing frequency x the plots in
Fig. 1, or the logical sequence of Eqs. (5)–(7), determine which
expression of the redistribution matrix has to be employed. The
redistribution matrices are listed at the end of this section.

Notice that the physical frequency domains always exhibit
the same structure or pattern as in Fig. 1 for any value of the
damping parameter a. The only difference is that the size of
the physical domains 1 and 4 and the width of the physical
domain 2 scale with the cut-off parameter vc(a).

Definitions

Before we can write down the redistribution matrix we have
to introduce some notation and definitions. As in Bommier
(1997b), we use the collisional parameters (branching ratios)

α =
ΓR

ΓR + ΓI + ΓE
, (8)

β(K) =
ΓR

ΓR + ΓI + D(K)
, (9)

and the magnetic field strength parameters

ΓB = gJ′
ωL

ΓR
, (10)

Γ′K = β
(K)ΓB , (11)

Γ′′ = αΓB . (12)

The quantity gJ′ is the statistical weight and ωL the Larmor
frequency of the upper level. Further, (ΓR, ΓI,ΓE) represent
the radiative de-excitation rate, the inelastic collision rate, and
the elastic collision rate respectively. The quantity D(K) is the

2K-multipole destruction rate due to elastic collisions, and is
related to ΓE in the form

D(0) = 0 (13)

D(2) = c ΓE, 0 ≤ c ≤ 1. (14)

The D(1) parameter enters the phase matrix components for
Stokes V , and is not relevant for the present problem.

For the phase matrices we introduce the notation

P̂H(n, n′, γ,Weff) = P̂(0)(n, n′) +Weff P̂(2)
H (n, n′, γ), (15)

P̂R(n, n′,Weff) = P̂(0)(n, n′) +Weff P̂(2)
R (n, n′), (16)

where the subscript “H” stands for the Hanle phase matrix and
the subscript “R” for Rayleigh phase matrix. By setting the ef-
fective depolarization parameter Weff = W2 we obtain from
Eqs. (15) and (16) the well-known Hanle and Rayleigh phase
matrices (Landi Degl’Innocenti & Landi Degl’Innocenti 1988).
The depolarization factor W2 depends only on the total angular
momentum quantum numbers J and J′ of the lower and up-
per level and a listing of W2 can be found for various electric-
dipole transitions in Landi Degl’Innocenti (1984). Note that the
terms corresponding to K = 1 appear only in the equations for
Stokes V which is not regarded here.

Redistribution matrices

With the above definitions at hand we can now write the ex-
pressions for the redistribution matrices in the five physical fre-
quency domains. Notice that these expressions have been given
by Bommier (1997b). Here we rearrange the different terms to
accommodate the definitions (15) and (16), which is necessary
for the numerical method presented in this paper.
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The R̂III redistribution matrix takes the following form in
the physical frequency domains 1 to 3:

• in domain 1 (ref: Eq. (107) of Bommier 1997b)

R̂III(x, x′, n, n′, B) = RIII(x, x′)

·
[
β(0) P̂H

(
n, n′, Γ′2,Weff =

β(2)

β(0)
W2

)

− αP̂H
(
n, n′, Γ′′,Weff = W2

) ]
, (17)

• in domain 2 (ref: Eq. (109) of Bommier 1997b)

R̂III(x, x′, n, n′, B) = RIII(x, x′) ·
(
β(0) − α

)

· P̂H

(
n, n′, Γ′2,Weff =

β(2) − α
β(0) − αW2

)
, (18)

• in domain 3 (ref: Eq. (110) of Bommier 1997b)

R̂III(x, x′, n, n′, B) = RIII(x, x′)

·

(
β(0) − α

)2

β(0)
P̂H

n, n′, Γ′2,Weff =
β(0)

(
β(2) − α

)2

β(2)
(
β(0) − α)2 W2



+
α
(
β(0) − α

)
β(0)

P̂R

n, n′,Weff =
β(0)

(
β(2) − α

)
β(2)

(
β(0) − α)W2


. (19)

The R̂II redistribution matrix has the following form in the
physical frequency domains 4 and 5:

• in domain 4 (ref: Eq. (112) of Bommier 1997b)

R̂II(x, x′, n, n′, B) =

RII(x, x′) · αP̂H(n, n′, Γ′′,Weff = W2) , (20)

• in domain 5 (ref: Eq. (113) of Bommier 1997b)

R̂II(x, x′, n, n′, B) =

RII(x, x′) · αP̂R(n, n′,Weff = W2) . (21)

2.4. Irreducible transfer equation in Fourier space

It is possible to simplify Eq. (1) by expanding I and S� in
Fourier series with respect to the azimuth angle ϕ. As described
in Faurobert-Scholl (1991) and in Nagendra et al. (1998) both
intensity and source vector can then be written as 6-component
irreducible vectors I and S which satisfy the transfer equation

µ
∂I (τ, x, µ)
∂τ

= (φ (τ, x)+β (τ))
[
I (τ, x, µ) − S (τ, x)

]
. (22)

For the brevity of notation, we specify the functional depen-
dences from now on only when necessary and as subscripts. In
this 6-component version I no longer depends on the azimuth
angle ϕ while S depends neither on ϕ nor on µ. Basically, this
irreducible transfer equation is solved in the Fourier space, and
at the end the intensity I is transformed to the real space to
obtain (I,Q,U)T. The total source vector in the 6-component
representation is written analogous to Eq. (2) as

Sx =
φxS�,x + βBth

φx + β
, (23)

where Bth =
(
Bν0 , 0, 0, 0, 0, 0

)T. The 6-component line source
vector takes the form

S�,x =
1
φx

+∞∫
−∞

(
M̂II RII + M̂III RIII

)
J x′ dx′ + εBth. (24)

The (6 × 6)-matrices M̂III and M̂II in the Fourier space are ab-
breviations for

M̂III = bIII,1 Ŵ2
III,1 ĤB,III,1 + bIII,2 Ŵ2

III,2 ĤB,III,2 (25)

M̂II = bII Ŵ2
II ĤB,II , (26)

where the b’s are scalar factors defined in Sect. 2.4.2, and Ŵ
and ĤB are (6 × 6)-matrices defined in Sect. 2.4.3 and in
Sect. 2.4.4 respectively. The mean intensity vector J x′ is
given by

J x′ =
1
2

+1∫
−1

B̂T
0
(
µ′
)

B̂0
(
µ′
)

I
(
τ, x′, µ′

)
dµ′ , (27)

where “T” stands for the transpose of matrix B̂0. The
(14 × 6)-matrix B̂0 is defined in the following Sect. 2.4.1.

2.4.1. The matrix B̂0

B̂0 is a (14 × 6)-matrix which may be written in symbolic no-
tation as

B̂0(µ) =



Z0 Z1 0 0 0 0
0 0 Z2 Z4 0 0
0 0 −Z4 Z2 0 0
0 0 0 0 Z3 Z5

0 0 0 0 Z5 −Z3


. (28)

Here the Zi are three-component column vectors, except for Z0

and Z1 which are two-component vectors (see Eqs. (10)–(13)
in Paper III). Note however, that the definition of the Zi vectors
differ slightly from their definition given in Paper III. Here the
W’s are not included in the expressions for the Zi vectors be-
cause they enter the definition of the M̂ matrices independently.
To distinguish the B̂ matrix in this paper from its definition in
Paper III we have added the index “0” in Eq. (28).

2.4.2. Branching factors b

The b’s in Eqs. (25) and (26) act as branching ratios. They
are functions of the collisional parameters defined in Eqs. (8)
and (9) but depend on the physical frequency domains in the
form of step functions and are given by

bIII,1 =


β(0) , domain 1
β(0) , domain 2
(β(0)−α)2

β(0) , domain 3
, (29)

bIII,2 =



−α , domain 1
−α , domain 2
α
(
β(0) − α

)
β(0)

, domain 3

, (30)

bII =

{
α , domain 4
α , domain 5

. (31)
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2.4.3. The depolarization matrices Ŵ

The (6×6) Ŵ-matrices contain the W2 as well as the collisional
parameters α, β(0), and β(2) and act as depolarization matrices.
They have a general, diagonal form

Ŵ= diag
{
1,
√

Weff,
√

Weff ,
√

Weff ,
√

Weff ,
√

Weff

}
, (32)

in terms of the effective depolarization factors Weff . The fac-
tors Weff to be used in the depolarization matrices Ŵ appearing
in Eqs. (25)–(26) are defined as

ŴIII,1 :



Weff =
β(2)

β(0)
W2 , domain 1

Weff =
β(2) − α
β(0) − αW2 , domain 2

Weff =
β(0)

(
β(2) − α

)2

β(2)
(
β(0) − α)2 W2 , domain 3

, (33)

ŴIII,2 :



Weff = W2 , domain 1

Weff =
β(2) − α
β(0) − αW2 , domain 2

Weff =
β(0)

(
β(2) − α

)
β(2) (β(0) − α)W2 , domain 3

, (34)

ŴII :
{

Weff = W2 , domain 4
Weff = W2 , domain 5

. (35)

2.4.4. The magnetic matrices ĤB

The ĤB-matrices in Eqs. (25)–(26) have exactly the same
form as defined in Paper III and are thus not explicitly given
here. The only difference is that now different Hanle param-
eters γ should be used for different physical domains in the
(x, x′)-plane. These ĤB-matrices are given by

ĤB,III,1 = ĤB(θB, ϕB, γ) with


γ = Γ′2 , domain 1
γ = Γ′2 , domain 2
γ = Γ′2 , domain 3

, (36)

ĤB,III,2 = ĤB(θB, ϕB, γ) with


γ = Γ′′ , domain 1
γ = Γ′2 , domain 2
γ = 0 , domain 3

, (37)

ĤB,II = ĤB(θB, ϕB, γ) with
{
γ = Γ′′ , domain 4
γ = 0 , domain 5

, (38)

where ĤB(θB, ϕB, γ) is the magnetic matrix defined by Eq. (48)
in Paper III.

2.5. Discussion on the irreducible transfer equation

The 6-component irreducible transfer equation has to be de-
rived via a 14-component representation, which is omitted here,
but the details can be found in Paper III. However, some ad-
ditional comments are important for the clarification of the
method presented in this paper.

A necessary condition for the derivation of the irreducible
6-component representation of the transfer equation is, that the

14-component total source vector SF (using the index “F” to
indicate 14-component quantities as in Paper III) can be factor-
ized in the form

SF = B̂0S . (39)

In the formalism introduced here, we are dealing with effec-
tive depolarization factors Weff that are different in different
physical frequency domains. Thus we are forced to introduce
the matrix B̂0. If, on the other hand, we preserve the original
definition of B̂ from Paper III, which includes the factor W
or Weff respectively, then it would not be possible to factorize
out a common B̂-matrix, and condition (39) would not be ful-
filled. As a result of the introduction of B̂0 the transformation
of 6-component quantities to real space 3-component quantities
has to be slightly adapted. It is now done using Eqs. (81)–(83)
of Paper III, where W is set to one, irrespective of the actual
value of W2.

Note that the Ŵ-matrices commute with the ĤB-matrices
due to the special block diagonal structure of ĤB. However,
they do not commute with B̂T

0 B̂0. Note further that the product

B̂ = B̂0Ŵ , (40)

gives the relation between the B̂-matrix as defined in Paper III
and the corresponding B̂0-matrix introduced in this paper.

It is crucial to observe that the branching factors b, and
the matrices Ŵ and ĤB remain constant within a given phys-
ical frequency domain and hence depend only on depth via the
depth dependence of the collisional transition rates and of the
magnetic field. However, in general their values are different in
different physical frequency domains, which makes these quan-
tities apparently “frequency dependent” in a stepwise manner.
Thus it is not possible to take them outside the frequency inte-
gral in Eq. (24). This point has to be considered carefully in the
numerical method of solution.

3. The numerical method of solution

3.1. The generalized PALI method

In this section we give a few basic equations which indicate
a generalization of the PALI-PRD method (Paper IV) to the
more general problem discussed here. It is based on the CRD-
CS method of Paletou & Auer (1995). The formal solution of
the Hanle transfer equation may be stated in terms of the full
Lambda operator as

J x = Λ̂x [Sx] , (41)

where Λ̂x operates on the quantity within [ ]. By defining a
local, monochromatic approximate Lambda operator Λ̂∗x as

Λ̂x = Λ̂
∗
x + δΛ̂x = Λ̂

∗
x +

(
Λ̂x − Λ̂∗x

)
, (42)

we can set up an iterative scheme to compute the source vec-
tors, namely

S(n+1)
x = S(n)

x + δS
(n)
x , (43)

S(n+1)
�,x = S(n)

�,x + δS
(n)
�,x , (44)



D. M. Fluri et al.: An operator perturbation method for polarized line transfer. VI. 309

where the superscript (n) refers to the nth iteration step. From
Eqs. (42) and (43) it follows by keeping only terms up to first
order, that

J (n+1)
x ≈ J (n)

x + Λ̂
∗
x

[
δS(n)

x

]
. (45)

From Eq. (23) we find

δS(n)
x = px δS

(n)
�,x , (46)

with

px =
φx

φx + β
· (47)

Further, note that

Λ̂∗x
[
px δS�,x

]
= px Λ̂

∗
x
[
δS�,x

]
, (48)

since px is a scalar quantity, and Λ̂∗x is a linear operator.
Inserting Eqs. (24), (45), (46) and (48) into Eq. (44) we find
the equation for the corrections to the line source vector δS(n)

�,x

δS(n)
�,x −

1
φx

+∞∫
−∞

(
M̂II RII + M̂III RIII

)

×px′ Λ̂
∗
x′
[
δS(n)
�,x′
]

dx′ = r(n)
x (49)

with the frequency dependent residual vector given by

r(n)
x = S(n)

FS,�,x − S(n)
�,x. (50)

The formal line source vector S(n)
FS,�,x is obtained from

S(n)
FS,�,x =

1
φx

+∞∫
−∞

(
M̂II RII + M̂III RIII

)
J (n)

x′ dx′ + εBth, (51)

where the mean intensity J (n)
x = Λ̂x

[
S(n)

x

]
is computed with the

short characteristic formal solver (FS).

Iteration algorithm

The algorithm to solve the polarized line transfer Eq. (22) by
the PALI method can now be summarized as:

Step 1: Calculation of the approximate local operator Λ̂∗x.
Step 2: Defining an initial source vector to initiate the iterative

procedure.
Step 3: Calculation of the mean intensity vector J (n)

x and of the
line source vector S(n)

FS,�,x through an accurate Formal
Solver (FS).

Step 4: Solving Eq. (49) to estimate the source vector correc-
tions δS(n)

�,x (see also Sect. 3.2).
Step 5: Updating the line source vector S�,x and the total

source vector Sx.
Step 6: Testing for convergence. If no convergence, repeat

steps 3 to 6. If convergence, then end the iterative se-
quence.

It is observed that the iterative procedure exhibits a uniform
convergence even in difficult cases. The well-known accelera-
tion procedures like Ng acceleration perform very well. These
aspects are discussed already in previous papers on PALI.

The details of step 4 will be addressed in Sect. 3.2.

3.2. Estimation of source vector corrections

The numerical method to perform step no. 4 of the iteration
algorithm given above, namely the method to solve Eq. (49)
for the source vector corrections, will be explained in more de-
tail in this section. We employ the so called CRD-CS scheme
developed by Paletou & Auer (1995) which has subsequently
been generalized to polarized line transfer and implemented
into the PALI method in Paper II. It proved to be very efficient
since the system of Eqs. (49) gets decoupled such that δS(n)

�,x is
obtained through simple manipulations.

Since we are dealing here only with the corrections of the
source vector it is possible to apply further approximations in
this step as long as we remain close enough to the true physics.
In step 4 of the iteration algorithm we have to solve Eq. (49).
The idea is to simplify and approximate Eq. (49) such that its
solution becomes much easier and faster. Thus we only obtain
an approximation of the source vector correction. This does not
matter a lot because the source vector will be corrected further
in the following iteration steps. It turns out that this procedure
speeds up the iteration steps considerably and proves to be very
robust and stable as long as the main physics is still contained
in the simplified version of Eq. (49).

First we introduce approximated frequency domains in
Sect. 3.2.1. Then we approximate the integrals in Eq. (49) in-
volving RIII and RII in Sects. 3.2.2 and 3.2.3 respectively and in-
troduce the necessary notation. Later, in Sects. 3.2.4 and 3.2.5,
we combine these simplifications and write the approximated
versions of Eq. (49) for the source vector corrections δS(n)

�,x.

3.2.1. Approximated domains

Only if the frequency domains are redefined as shown in Fig. 2
does it become possible to apply the core-wing separation
scheme. As will become clear below, it is necessary to keep
the boundaries as straight vertical and horizontal lines (Fig. 2).
The new approximated domains are marked with an asterisk
to distinguish them clearly from the actual physical domains
shown in Fig. 1.

Lest there be a confusion, we would like to emphasize that
the physical frequency domains, which are shown in Fig. 1
are actually employed in the evaluation of scattering integrals
and mean intensity computations in step 3 of the iteration al-
gorithm. The “approximated domains” which are discussed in
this section are required only for the purpose of computing
the source vector corrections in the PALI iterations. Therefore,
the final result of the iteration procedure is consistent with the
physical domains.

In the following, we outline the CRD-CS method that al-
lows us to treat core and wing corrections separately. The re-
distribution function RIII is approximated as CRD and the wing
part of integrals involving RIII is neglected. The function RII is
treated as CRD in the line core and as coherent scattering in
the wings. Thus core and wings decouple from each other. The
crucial point is that the CRD integral over the line core, which
will be defined as ∆T(n)

core in Eq. (55), is independent of the fre-
quency x. This decouples the equations for different values of x
in expression (49).
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Fig. 2. The domains of RIII (panel a)) and RII integrals (panel b)) are approximated as shown for solving Eq. (49) with the generalized core-wing
scheme. The numbers of the approximated domains are marked with an asterisk to distinguish them from the physical domains.

3.2.2. Integrals involving RIII

In the computation of the source vector corrections, RIII is ap-
proximated by CRD, namely, we assume RIII ≈ φxφx′ . Notice
again, that this approximation is made only to solve Eq. (49). In
the same spirit, the wing part of the frequency integral involv-
ing RIII is neglected which is possible because φx is sufficiently
small in the wings. Thus the RIII part of the integral in Eq. (49)
simplifies to

1
φx

+∞∫
−∞

M̂III RIII px′Λ̂
∗
x′
[
δS(n)
�,x′
]

dx′≈
{

M̂D1 ∆T(n)
core , |x| ≤ vc(a)

M̂D2 ∆T(n)
core , |x| > vc(a)

, (52)

with the following definitions

M̂D1 = M̂III |(x,x′) ∈ domain 1∗ , (53)

M̂D2 = M̂III |(x,x′) ∈ domain 2∗ , (54)

∆T(n)
core =

+vc(a)∫
−vc(a)

φx′ px′ Λ̂
∗
x′
[
δS(n)
�,x′
]

dx′ . (55)

The matrix M̂D3, corresponding to the approximated do-
main 3∗, does not appear in Eq. (52) because the wing
part of the x′-integral is neglected, with the wings defined
by |x| > vc(a).

3.2.3. Integrals involving RII

The RII part of the integral in Eq. (49) is approximated accord-
ing to the core-wing approach (see Eqs. (16)–(17) in Paper IV):

+∞∫
−∞

RII

φx
Ydx′ ≈ (1 − αx)

+vc(a)∫
−vc(a)

φx′Ydx′ + αx

+∞∫
−∞
δ
(
x − x′

)
Ydx′, (56)

for any vector Y. The separation coefficient αx is defined as

αx =

{
0 , |x| ≤ vc(a)
RII(x,x′)
φx
, |x| > vc(a) . (57)

In the core-wing approach, clearly RII is approximated by CRD
in the line core and as coherent scattering (CS) in the line wings
(for this reason it is called CRD-CS scheme in previous pa-
pers). Applying such core-wing separation in Eq. (49) we can
write
+∞∫
−∞

M̂II
RII

φx
px′ Λ̂

∗
x′
[
δS(n)
�,x′
]

dx′

≈



M̂D4 ∆T(n)
core , |x| ≤ vc(a)

(1−αx) M̂D5 ∆T(n)
core

+ αx M̂D5 px Λ̂
∗
x

[
δS(n)
�,x

]
, |x| > vc(a)

, (58)

with the following definitions:

M̂D4 = M̂II |(x,x′) ∈ domain 4∗ , (59)

M̂D5 = M̂II |(x,x′) ∈ domain 5∗ . (60)

3.2.4. Equations for δS�,x in the line core frequencies

With the expressions (52) and (58) for the frequency integrals
we obtain an approximate equation for the correction of the
line source vector δS(n)

�,x. For x in the core, that is |x| ≤ vc(a), we
obtain, by inserting Eqs. (52) and (58) into Eq. (49)

δS(n)
�,x =

(
M̂D1 + M̂D4

)
∆T(n)

core + r(n)
x . (61)

Applying from the left the integral operator

+vc(a)∫
−vc(a)

φx px Λ̂
∗
x[ ] dx (62)
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on Eq. (61), we get an equation for ∆T(n)
core

∆T(n)
core =

Î −
+vc(a)∫
−vc(a)

φx px Λ̂
∗
x dx ·

(
M̂D1 + M̂D4

)
−1

r(n)
core, (63)

with Î the (6 × 6) identity matrix, and with

r(n)
core =

+vc(a)∫
−vc(a)

φx px Λ̂
∗
x

[
r(n)

x

]
dx . (64)

It is important to notice that the operator ∆T(n)
core is frequency

independent. This is made possible through the use of “core-
wing separation” and later the application of “approximated
domains”.

3.2.5. Equations for δS�,x in the wing frequencies

We obtain the equation for δS(n)
�,x with x in the wing, namely

|x|>vc(a), by inserting Eqs. (52) and (58) into Eq. (49)

δS(n)
�,x =

[
Î − αx px M̂D5 Λ̂

∗
x

]−1

·
[(

M̂D2 + (1 − αx) M̂D5

)
∆T(n)

core + r(n)
x

]
. (65)

For obtaining the correction to the line source vector δS(n)
�,x

(step 4 of the iteration algorithm given at the end of Sect. 3.1)
we proceed as follows:

Step 4.1: Solve Eq. (63) for the vector ∆T(n)
core.

Step 4.2: Substitute ∆T(n)
core into Eqs. (61) and (65) to ob-

tain δS(n)
�,x.

Now the great advantages of the core-wing separation scheme
become apparent. In expression (49), the equations for differ-
ent frequency points are coupled to each other through the fre-
quency integral. However, it can be noticed that such a coupling
does not exist in Eq. (61) and Eq. (65). Thus we need to invert
for each frequency point x only a (6 × 6) system of equations.

A further advantage of the core-wing separation scheme
is that the evaluation of the matrices M̂D1, M̂D2, M̂D4, M̂D5,
and the matrix inversions in Eqs. (63) and (65) need to be per-
formed only once before starting the whole iteration sequence,
even for a realistic atmosphere. This reduces the CPU time re-
quired for each PALI iteration step considerably.

3.3. Convergence criterion

The convergence criterion is based on the relative change of the
intensity source function as well as on the surface polarization.
The iteration is continued as long as

max
{
c(n)

1 , c
(n)
2

}
< cmax , (66)

where

c(n)
1 = max

τ,x,µ


| δS (n)

I (τ, x, µ) |
|S (n)

I (τ, x, µ) |

 , (67)

c(n)
2 = max

x,µ

{ | p(n) (x, µ) − p(n−1) (x, µ) |
| p(n) (τ, x, µ) |

}
, (68)

with p =
√

Q2 + U2/I the degree of linear polarization at the
surface. If not otherwise stated, we have chosen cmax = 10−3.

4. Testing the generalized PALI method

In this section we will discuss the convergence characteristics
of the proposed numerical method and test it by comparing
with independent methods.

4.1. Convergence characteristics

The convergence behavior of the PALI methods is well stud-
ied previously (Papers II and III). Here we would like to test
the new method on a typical case as well as on a particularly
difficult case with slow convergence.

Model parameters

For the computation of panel (a) in Fig. 3 we have
employed the model parameters (T, a, ε, β, ΓE/ΓR)= (2 ×
106, 10−3, 10−4, 0, 10−1) with the magnetic field parameters
(ΓB, θB, ϕB) = (1, 30◦, 0◦). Both at the bottom and the top of
the isothermal slab we have employed zero incident radiation
as the boundary conditions.

Only one parameter and the boundary conditions have been
changed for computing the results shown in panel (b) of Fig. 3.
The thermalization parameter ε is set to zero, i.e. we consider
a pure scattering medium. The relevance of a ε = 0 case is dis-
cussed in Sect. 4.3. The model parameters in panel (b) are thus
(T, a, ε, β, ΓE/ΓR) = (2 × 106, 10−3, 0, 0, 10−1) with the mag-
netic field parameters (ΓB, θB, ϕB) = (1, 30◦, 0◦). The boundary
conditions employed correspond to a pure scattering medium
irradiated at τ = T with an unpolarized radiation field given by

I(τ = T, x, µ) = Bth(τ = T ) , (69)

and no radiation incident at the upper boundary τ = 0.
For both the panels we have employed W2 = 1 and D(2) =

0.5ΓE. We have used a logarithmic optical depth (τ) scale with a
resolution of 5 depth points per decade, 5 Gaussian latitude an-
gles (θ) in [0<µ≤1], and a 71 point non-uniform frequency (x)
grid with the last frequency point xmax=100. In all computa-
tions shown in this paper the Planck function Bν0 has been set
to one.

Discussion

Figure 3 shows the convergence behavior of the new PALI
method for two cases – a typical optically thick model on the
left panel (a) and a pure conservative scattering atmospheric
model which is known to lead to a slow convergence, on the
right panel (b) of the figure. The total source vector at fre-
quency x = 3 for each iteration step is plotted. The converged
solution is marked by dots.

Panel (a) depicts the rapid convergence which is typical of
the PALI method. Clearly the rate of convergence is slower in
the conservative scattering case shown in panel (b). The group-
ing of four successive solutions is due to the 4-step marching
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Fig. 3. Convergence behavior of the polarized total source functions for a frequency x= 3 in the direction µ= 0.11 and ϕ= 0◦. Panel a): the
self-emitting slab model characterized by the parameters (T, a, ε, β,ΓE/ΓR)= (2 × 106, 10−3, 10−4, 0, 10−1) and the magnetic field represented
by (ΓB, θB, ϕB)= (1, 30◦, 0◦). The convergence characteristics are typical of the PALI method. Panel b): the results for an irradiated pure scat-
tering slab model characterized by the parameters (T, a, ε, β,ΓE/ΓR)= (2 × 106, 10−3, 0, 0, 10−1) and the magnetic field parameters given by
(ΓB, θB, ϕB)= (1, 30◦, 0◦). Notice the slow, but uniform convergence in the case of a pure scattering medium. The dots identify the converged
solution.

of the Ng-acceleration procedure. Further tests have shown that
the convergence of the PALI method becomes slightly slower
for the extreme combination of very small ε, dominating con-
tribution of RII redistribution function, and very thick or semi-
infinite slab atmospheres. For all other normal and typical com-
binations of model parameters, PALI exhibits the typical rapid
convergence behavior as shown on panel (a) of Fig. 3.

The reason for the slow convergence characteristics for the
right hand side panel of Fig. 3 lies in the highly non-local
and scattering dominated character of the case. The parame-
ter choice ε = 0 and β = 0 implies pure scattering without any
true absorption and emission. Together with the dominating RII

contribution over that of RIII (because of ΓE/ΓR = 0.1), which
is responsible for slow diffusion in frequency and space, we

have set up a very difficult test case, which is more accentuated
by the large thickness of the slab leading to multiple scattering
effects. Since we have chosen a “local approximate Lambda op-
erator”, the non-locality of the problem causes more numbers
of iterations, before these physical effects fully enter the source
vector. Further, the core-wing separation scheme is not able to
handle the diffusion in frequency space accurately in the wings
(which is introduced by RII redistribution), because scattering
is assumed to be coherent in the wings. Thus the photon diffu-
sion in the wings does not enter the solution through the source
vector corrections, but instead only via the formal solver.

Thus, for most practical applications of line transfer, the
core-wing separation scheme is very efficient, and works with-
out any problem. The convergence of PALI on such a difficult
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Fig. 4. Comparison of the emergent Stokes parameters for the di-
rection µ = 0.11 and ϕ = 0◦ computed using the PALI method
developed in this paper and the perturbation method presented in
Nagendra et al. (2002). An isothermal self-emitting slab is em-
ployed for these computations. The model parameters employed are
(T, a, ε, β,ΓE/ΓR) = (2 × 102, 10−3, 10−4, 0, 10−1) with the magnetic
field parameters (ΓB, θB, ϕB) = (1, 30◦, 0◦). The line profiles obtained
with PALI and the perturbation method on a coarse grid are compared
to an “exact” PALI solution in which angle and frequency grids with
a very fine resolution have been employed. Taking the moderate grid
resolution into account the two methods agree well with each other.

problem as Hanle PRD with collisions, highlights the usefull-
ness of this approach.

4.2. Comparison with other numerical methods

To validate the correctness of the method and study its accu-
racy we compare the new PALI method with an independent
perturbation method (Nagendra et al. 2002).

The “perturbation method” handles the physical problem
described in this paper by computing the scattering integral
through an explicit use of angle-frequency quadratures. In the
perturbation method, an unpolarized PRD solution is employed
as starting solution, and the final result is obtained by treating
Stokes Q and U parameters as perturbations to the intensity
component I. However, because of the highly anisotropic na-
ture of the redistribution matrices for the Hanle effect, a good
resolution in angle and frequency space is necessary. This leads
to large requirements of computer memory and CPU time to
“accurately” compute the Stokes source vector by numerical
quadrature.

Model parameters

The model parameters that we have employed are
(T, a, ε, β, ΓE/ΓR) = (2 × 102, 10−3, 10−4, 0, 10−1) with
the magnetic field parameters (ΓB, θB, ϕB) = (1, 30◦, 0◦), using
the physical domain structures shown in Fig. 1. We have used
an isothermal self-emitting slab model with zero boundary
conditions. Further we have chosen W2 = 1 and D(2) = 0.5ΓE.

For computing the case presented in Fig. 4 we choose a
coarse angle and frequency grid, such that the computer re-
quirements of the perturbation code remain reasonable. We
have employed an optical depth resolution of 5 depth points
per decade, 5 Gaussian latitude angles, 8 azimuth angles and a
31 point frequency grid with the last frequency point xmax = 40.
Such a moderate resolution already required almost 1 GB of
main memory and over 15 minutes of CPU time on a Alpha
Server workstation for the perturbation code.

For comparison we run the PALI code also on a very fine
grid with 11 Gaussian latitude angles, 115 frequency points,
and also xmax = 40. We call the result obtained with this fine
grid “exact”, while the line profile computed by PALI with the
moderate grid resolution is denoted by “coarse”.

Discussion

A comparison between the emergent Stokes vector computed
with the PALI method and the perturbation method (dotted) is
shown in Fig. 4. Both the PALI results for the fine (solid) and
for the coarse (dashed) grids are given. Below each panel of the
Stokes parameters the absolute difference

∆I = I (exact) − I (coarse) (70)

of the lines computed with the “exact” and the coarse grids is
plotted (and analogous for Stokes Q and U).

PALI yields very similar results for both grid resolutions.
The emergent line profiles computed with the perturbation code
differ up to 20 or 30% from the “exact” solution in the peak
around x = 2.5. This disagreement can be accounted for to the
usage of the sparse grids. Because PALI makes use of an az-
imuthal Fourier expansion of the radiation field and the phase
matrix it handles the azimuth dependence of the problem ex-
actly. Note that the radiation field is in general not azimuthally
symmetric when slanted, directed magnetic fields are present.
On the other hand, the perturbation method involves explicit
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Table 1. CPU time and memory requirements for PALI and the per-
turbation methods. The model parameters are the same as specified in
Sect. 4.2 and the caption for Fig. 4. The iteration sequence is stopped
when the relative change of the Stokes I source function and of the
surface polarization fall below 10−3 in successive iteration steps. The
computations have been performed on a Alpha Server DS20 500 MHz
with a DECchip 21140 processor.

Method CPU time [s] memory [Mbyte]

PALI 4 8

perturbation 1050 880

numerical evaluations of the scattering integral with a summa-
tion over the azimuth. For this reason it may differ slightly from
the PALI solution.

However, the overall features are reproduced by both inde-
pendent methods, indicating that the Hanle problem is prop-
erly implemented. The great advantage of PALI is that it is
much faster and by far more economic with memory resources.
Table 1 compares the CPU time and the memory requirements
of the two methods for the specific model parameters of Fig. 4,
when employing the same (coarse) grids.

The new PALI code is also tested on a variety of PRD
problems which are simpler than the most general problem
discussed here. It can easily reproduce the results for limiting
cases such as Hanle CRD, non-magnetic resonance scattering
polarization etc.

4.3. Flux conservation test

In this section we present a self-consistency check based on
the energy conservation principle. We consider a conservative
scattering atmosphere characterized by ε = 0 and β = 0. In
such a purely scattering atmosphere there is no true absorption
and thermal emission. Thus the net flux remains constant at
every depth point. In particular the sum of the incoming flux
at the top surface Ftop,in and at the bottom surface Fbot,in of
a slab atmosphere must be equal to the sum of the outgoing
fluxs Ftop,out and Fbot,out respectively at the top and the bottom
surfaces of the atmosphere. Flux conservation test states that
the fractional error fFC−test should be satisfied to a very high
degree of accuracy, namely

fFC−test =

(
Ftop,in+Fbot,in

)
−
(
Ftop,out+Fbot,out

)
(
Ftop,in+Fbot,in

)

 0 . (71)

In the above equation, we have defined the integrated flux on
the half space as

F =

+∞∫
−∞

dx

2π∫
0

dϕ

+1∫
0

dµ µ I (x, µ, ϕ) . (72)

Deviations of fFC−test from values like 10−10 for a typical test
case, say, the one considered here, can be accounted for by two
causes, namely by round-off errors resulting from arithmetic

operations by the machine, and by poor normalization of the
frequency redistribution functions, angular phase matrices, the
profile function, and the quadrature weights etc.

Apart from performing the flux conservation test we would
like to compare the PALI code with yet another independent
method. We choose the Discrete Space Method (DSM). The
details of this method can be found in Nagendra (1986, 1988,
1994, and references cited therein). The DSM is a finite dif-
ference discrete ordinate method, based on the first order form
of the transfer equation, and produces highly accurate results.
However, since the DSM is not yet extended to include weak
magnetic fields, we restrict ourselves to the non-magnetic case.

In order to compare the results of PALI with DSM we had
to simplify our treatment of frequency redistriubtion. The re-
distribution matrix employed for this test case has the form

R̂
(
x, x′, n, n′, B

)
= (1 − ε) R

(
x, x′

)
P̂R

(
n, n′,W2

)
, (73)

where R can be chosen as either RII, RIII, or as φ(x)φ(x′), rep-
resenting CRD.

Model parameters

We use an isothermal, non-magnetic conservative scattering
slab medium characterized by the parameters (T, a, ε, β) =
(2 × 104, 10−3, 0, 0). At the upper boundary of the slab no ra-
diation is incident while at the lower boundary an unpolarized
radiation field is incident that illuminates the slab isotropically
as defined in Eq. (69). We have set W2 = 1. Depolarizing col-
lisions have been neglected. We have used an optical depth
grid with 4 depth points per decade, 5 Gaussian latitude an-
gles, and a 31 point frequency grid with the last frequency point
xmax = 10.5.

Again the results obtained on this rather coarse grid are
compared to the PALI solution using very fine grids, namely
11 Gaussian latitude angles, 103 frequency points, but also with
xmax = 10.5 for comparison reasons. The results based on the
fine resolution are called “exact”.

Discussion

The emergent Stokes profiles shown on the left hand side
panel (a) of Fig. 5 refer to the angle averaged frequency re-
distribution function RIII, while the right hand side panel (b)
refers to the case of pure RII. The Stokes U parameter is iden-
tically zero due to the absence of magnetic fields. We com-
pare the results of the PALI method (dashed line) with those
computed from the DSM (dots) using the coarse angle and fre-
quency grids. These curves are compared to the “exact” solu-
tion from PALI in which the fine grids have been employed.

The Stokes vector obtained by the two methods on the
coarse grids coincide very well except for slight differences
in the sharp peak of Stokes Q in the RIII case. Since the dif-
ferences are of the same order as when comparing the results
from coarse and exact grids, they can be accounted for by
the usage of the moderate grid resolution. We emphasize that
the coarse grid was chosen because the DSM method requires
large amount of computer memory, as the redistribution matrix,
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Fig. 5. Comparison of the DSM (dots) and PALI (dashed) methods of solution for a conservative scattering, non-magnetic atmosphere, illu-
minated from below. The relative difference of these line profiles from the PALI result obtained on a very fine grid (solid) is plotted below
the panels of the Stokes parameters. Emergent Stokes parameters are shown for the direction µ = 0.047 and ϕ = 0◦. The model parameters
are (T, a, ε, β) = (2 × 104, 10−3, 0, 0). Due to axial symmetry, Stokes U ≡ 0. Panel a) on the left side refers to the profiles computed using the
frequency redistribution function RIII, while the right side panel b) refers to RII. For comparison we give the CRD result of PALI (dash-triple-
dotted).

phase matrix, and several auxiliary matrices in the numeri-
cal algorithm have to be stored in the main memory. Further,
the CPU time for the DSM scales in the same manner as the
Feautrier method.

Obviously, the coarse frequency grid is not good enough
in this semi-infinite case, if we wish to calculate observed line
profiles. But the main purpose of Fig. 5 was to demonstrate that
two entirely independent methods of solution give reasonably
matching results in the difficult case of a pure scattering atmo-
sphere. At least it proves the correctness of our handling of the
PRD function in these methods.

The cause of the sharp feature of Stokes Q in the RIII case
is to be found in the nature of the RIII function itself.
Frequently RIII is approximated by CRD. For frequencies x>5
the RIII function indeed greatly resembles CRD. But in the line
core, and especially in the near wings 2< x < 4, it differs sub-
stantially from CRD (see e.g. Mihalas 1978, p. 432). In this
range of frequencies, the frequency coherence contributes to
the appearance of a weak polarization feature in the Q profile.
Note that Stokes Q is much smaller compared to the RII case. In
the Q/I profile the peak only leads to a widening of the core as
compared to CRD, not to a separate maximum. The CRD result
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from PALI (dash-triple-dotted), employing the fine grids, is
given in all panels of Fig. 5. The intensity profiles for CRD
and RIII coincide.

Due to the well-known wing coherences of the RII function,
which manifest themselve for all frequencies x> 3, the degree
of polarization is larger in the RII than in the RIII case. However,
the near wing maxima in the RII case are not sharp because of
the coherence at all wing frequencies, in contrast to RIII where
the coherence behavior is confined to the intermediate frequen-
cies 2 < x < 4. The smooth superposition of wing coherence
peaks of RII ensure the broad, smooth maximum in the Q pro-
file that is even present in Q/I. The Stokes Q parameter slowly
approaches zero only in the far wings x>10.

The flux conservation test was passed by both the PALI
and the DSM method. The quantity fFC−test was of the order
of 10−11 for PALI and 10−8 for DSM. The accuracy of the DSM
appears somewhat lesser because of accumulated round-off er-
rors, which eat into the solution. However, it is easy to remedy
this by working in the DSM with finer grid resolution and a
stronger step size criteria, which in turn increase the CPU time
requirement (!). These are well known practical problems of
working with finite difference methods. The flux conservation
test clearly demonstrates that no spurious sources and sinks are
added in the process of iterations, and that the PALI method
gives results to the machine accuracy.

5. Conclusions

In this paper we have proposed a new Polarized Approximate
Lambda Iteration (PALI) method, which is derived through a
generalization of the PALI method presented in Nagendra et al.
(1999). This basically involved a generalization of the core-
wing separation approach to incorporate the logical frequency
domains in (x, x′)-space, recently derived by Bommier (1997b)
in her formulation of the Hanle redistribution matrix including
PRD and collisions. It is shown that this exact formulation can
now be incorporated into the existing polarized PRD line trans-
fer codes which can solve the problem of Hanle scattering. The
proposed method is well tested for its numerical performance,
and the tests may serve as benchmarks for future work in this
area.
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