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Abstract

This paper deals with a special class of functions called generalized Voigt functions H ðnÞðx; aÞ and GðnÞðx; aÞ and their

partial derivatives, which are useful in the theory of polarized spectral line formation in stochastic media. For n ¼ 0 they

reduce to the usual Voigt and Faraday–Voigt functions Hðx; aÞ and Gðx; aÞ. A detailed study is made of these new

functions. Simple recurrence relations are established and employed for the calculation of the functions themselves and of

their partial derivatives. Asymptotic expansions are given for large values of x and a. They are used to examine the range of

applicability of the recurrence relations and to construct a numerical algorithm for the calculation of the generalized Voigt

functions and of their derivatives valid in a large ðx; aÞ domain. It is also shown that the partial derivatives of the usual

Hðx; aÞ and Gðx; aÞ can be expressed in terms of H ðnÞðx; aÞ and GðnÞðx; aÞ.
r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The Voigt function Hðx; aÞ ¼ H ð0Þðx; aÞ is widely used to represent spectral line shapes in many fields of
physics such as astrophysics, atmospheric spectroscopy, plasma physics, etc. wherever measurements and
theory of spectral line profiles are involved. The quantity x is the non-dimensional frequency and a is the
damping parameter, both expressed in Doppler width units. In the presence of a magnetic field, the medium
becomes anisotropic, causing differential absorption/refraction for different states of polarization. The
absorption of radiation is described by the imaginary part of the complex refractive index of the medium.
The real part describes the dispersive effects, also called magneto-optical effects, when the anisotropy is caused
by the presence of a magnetic field. The dispersive or magneto-optical effects involve a line shape function
called ‘‘anomalous dispersion function’’ Gðx; aÞ ¼ Gð0Þðx; aÞ (also denoted by Kðx; aÞ, or F ðx; aÞ, or Lðx; aÞ
in literature). These functions H ð0Þðx; aÞ and Gð0Þðx; aÞ together have been traditionally employed in the theory
of Zeeman line formation, which involves absorption and emission of photons between the Zeeman sub-states
of an atom.
s article as: M. Sampoorna et al., Generalized Voigt functions and their derivatives, Journal of Quantitative Spectroscopy

ransfer (2006), doi:10.1016/j.jqsrt.2006.08.011

e front matter r 2006 Elsevier Ltd. All rights reserved.

srt.2006.08.011

ing author. Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India.

ess: sampoorna@iiap.res.in (M. Sampoorna).

omy Program, Department of Physics, IISc, Bangalore 560 012, India.

www.elsevier.com/locate/jqsrt
dx.doi.org/10.1016/j.jqsrt.2006.08.011
dx.doi.org/10.1016/j.jqsrt.2006.08.011
mailto:sampoorna@iiap.res.in


ARTICLE IN PRESS
M. Sampoorna et al. / Journal of Quantitative Spectroscopy & Radiative Transfer ] (]]]]) ]]]–]]]2
Magnetic fields met in astrophysics, say stellar atmospheres, will have in general random fluctuations and
the line formation theory has to be extended to account for the randomness of the field. When the
characteristic scale of the fluctuations is much smaller than the photon mean free path, randomness of the field
can be taken into account by locally averaging (convolving) the Zeeman ‘‘propagation matrix’’ with a given
vector magnetic field probability distribution function (see [1–4], and references cited therein). In some cases
the averaging process can be performed analytically, for example, when the distribution function of the
magnetic field is an isotropic Gaussian. Then one encounters integrals of the typeZ þ1

�1

e�ðy�y0Þ
2

F ðx� x0y; aÞPðyÞdy, (1)

where F is either H ð0Þ or Gð0Þ and PðyÞ is a polynomial (see [2,5,6]). Here y and y0 are the magnitude of the
random magnetic field and of its mean value, in units of the RMS value about the mean field, and x0y the
Zeeman shift by the random field in Doppler width units. These integrals can be expressed in terms of a new
class of functions H ðnÞðx; aÞ and GðnÞðx; aÞ introduced in Dolginov and Pavlov [5] (see Eqs. (2) and (3) below).
They appeared first in the theory of the turbulent Zeeman effect, but may be of interest in other related fields.
This has motivated us to study them in detail. Hereafter, for convenience, we drop the arguments ðx; aÞ on
these functions.

Non-linear least square fitting algorithms require higher-order partial derivatives of H ð0Þ and Gð0Þ in
extracting physical parameters from the polarized spectral line data (see [1,7,8]). Rapid approximations to
compute the derivatives of H ð0Þ and Gð0Þ have been developed by Heinzel [9] and Wells ([10], see also references
cited therein). In this paper we discuss H ðnÞ and GðnÞ for nX1, and also their mth order partial derivatives. They
will be essential for the development of inversion techniques employing Zeeman line formation theory in
turbulent media [2,3,5,6].

In Section 2 we define H ðnÞ and GðnÞ and introduce a new function W ðnÞðzÞ, where z is complex. Starting from
this function W ðnÞðzÞ we derive recurrence relations for H ðnÞ and GðnÞ. We show that GðnÞ can be expressed in
terms of the real Dawson’s function for the special case of a ¼ 0. In this section 2, we also graphically present
the H ðnÞ and GðnÞ up to seventh order, for different values of a, and discuss the properties of these functions as
well as computational aspects. A method for obtaining simple recurrence relations for the partial derivatives
of H ðnÞ and GðnÞ with respect to x and a is presented in Section 3, along with the computational details. In
Section 4, we show that partial derivatives of the conventional Voigt and Faraday–Voigt functions H ð0Þ and
Gð0Þ can be expressed in terms of H ðnÞ and GðnÞ.
2. Generalized Voigt functions H ðnÞ and G ðnÞ

2.1. Definitions and recurrence relations

The functional form of H ðnÞ and GðnÞ is

H ðnÞðx; aÞ ¼
a

p3=2

Z þ1
�1

une�u2 du

ðx� uÞ2 þ a2
(2)

and

GðnÞðx; aÞ ¼
1

p3=2

Z þ1
�1

unðx� uÞe�u2 du

ðx� uÞ2 þ a2
. (3)

We know that for n ¼ 0, the usual H ð0Þ and Gð0Þ functions are the real and imaginary parts of the function
W ð0ÞðzÞ, known as the complex probability function or Faddyeva function (see for e.g. [11–13]). In a similar
way H ðnÞ and GðnÞ are the real and imaginary parts of a complex-valued function defined in Frisch et al. [2] as

W ðnÞðzÞ ¼
i

p3=2

Z þ1
�1

une�u2 du

z� u
; IðzÞ40, (4)
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where z ¼ xþ ia, with x and a being real and a40. The function W ðnÞ is analytic in the upper-half of the
complex plane. It has a branch cut along the real axis. The limit a! 0 can be taken in the definitions of
H ðnÞðx; aÞ and GðnÞðx; aÞ. When a! 0, the Lorentzian in Eq. (2) becomes a delta function and the integral can
be calculated exactly. The H ðnÞðx; 0Þ are modified Gaussian functions (see Eq. (9)). As for the GðnÞðx; 0Þ
functions, they can be expressed in terms of the real Dawson function (see Eq. (12)).

The W ðnÞ satisfy a recurrence formula which in turn leads to simple recurrence relations for H ðnÞ and GðnÞ

and enable us to propose a method of calculation. In the numerator of Eq. (4), we can write un ¼

un�1ðu� zþ zÞ and immediately obtain

W ðnÞðzÞ ¼ zW ðn�1ÞðzÞ �
i

p3=2

Z þ1
�1

un�1e�u2 du; nX1. (5)

Separating the real and imaginary parts, we find the two recurrence relations

H ðnÞðx; aÞ ¼ xH ðn�1Þðx; aÞ � aGðn�1Þðx; aÞ, (6)

GðnÞðx; aÞ ¼ xGðn�1Þðx; aÞ þ aH ðn�1Þðx; aÞ �
1

p
cðn�1Þ; ð7Þ

where cðn�1Þ is a constant which is zero when n is even. When n is odd, say n ¼ 2k þ 1, with k a positive integer,
we have

cð2kÞ ¼
1ffiffiffi
p
p

Z þ1
�1

u2ke�u2 du ¼
1:3 . . . ð2k � 1Þ

2k
. (8)

The recurrence relations take very simple forms when the Voigt parameter a ¼ 0. For H ðnÞ, we obtain from the
recurrence relation, or directly from Eq. (2),

H ðnÞðx; 0Þ ¼
1ffiffiffi
p
p xne�x2

. (9)

For GðnÞ we have two different expressions depending on the parity of n. For odd values of n (n ¼ 2k þ 1),

Gð2kþ1Þðx; 0Þ ¼ xGð2kÞðx; 0Þ �
1

p
cð2kÞ, (10)

and for even values of n (n ¼ 2k),

Gð2kÞðx; 0Þ ¼ xGð2k�1Þðx; 0Þ. (11)

Gð0Þðx; 0Þ can be simply expressed in terms of the real Dawson’s function, DðxÞ, as shown in Heinzel [9]. The
recurrence relations (10) and (11) yield higher-order GðnÞðx; 0Þ (nX1). We list below the first four GðnÞðx; 0Þ for
convenience:

Gð0Þðx; 0Þ ¼
2

p
DðxÞ,

Gð1Þðx; 0Þ ¼
1

p
½�1þ 2xDðxÞ�,

Gð2Þðx; 0Þ ¼
x

p
½�1þ 2xDðxÞ�,

Gð3Þðx; 0Þ ¼
1

p
�
1

2
� x2 þ 2x3DðxÞ

� �
, ð12Þ

where the real Dawson’s function is defined (see, for example, [11]) as

DðxÞ ¼ e�x2

Z x

0

et2 dt ¼
1

2

Z 1
0

e�t2=4 sinðxtÞdt. (13)
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2.2. Some properties of the generalized Voigt functions

We have calculated the H ðnÞ and GðnÞ with recurrence relations given above. They have to be initialized with
the values of H ð0Þ, Gð0Þ, and DðxÞ. For the calculations of the latter we have used the algorithm given in
Matta and Reichel [14] (see also [15]). Recently an efficient algorithm has been proposed by Wells [10].
We have compared graphically the results presented in [10] (see his Figs. 1, 2, 11 and 12) for H ð0Þ, Gð0Þ and first
partial derivative of H ð0Þ, with the results of the Matta and Reichel algorithm. We have found that the
latter has a comparable accuracy and have retained it for its simplicity. Actually many algorithms are available
for computation of H ð0Þ and Gð0Þ. They have been introduced for studies in atmospheric physics or
astrophysics. Schreier [16] has made a comparative study of some of them based on the accuracy and
computational speed (see also [10]). Unfortunately these studies do not include the algorithm of Matta
and Reichel [14] but they show, for example, that algorithms by Humlı́ček [13] and Wells [10] provide a
greater accuracy in the computation of H ð0Þ and Gð0Þ over a larger domain in x and a than that of Hui et al.
[17].2 In Section 2.3 we give some details on the Matta and Reichel algorithm and discuss accuracy pro-
blems, but first we show the overall behavior of H ðnÞ and GðnÞ around the line center. They are displayed in
Figs. 1 and 2, respectively, for n ¼ 0–7 and several damping parameter values (a ¼ 0; 0:1; 0:5; 1:0; 2:0). For
computing H ðnÞðx; 0Þ, we use recurrence relation (6), although Eq. (9) can also be employed. Similarly, for
computing Gð0Þðx; 0Þ, the first one among the set of Eqs. (12) is used, and for nX1, recurrence relation (Eq. (7))
is used.

We now discuss Fig. 1. The first obvious remark is that for even n the H ðnÞ are even functions of x, and, for
odd n, odd functions of x. For a ¼ 0, we can easily find the position and amplitudes of the maxima. Taking the
derivative of Eq. (9) with respect to x, we get

xðnÞmax ¼ �
ffiffiffiffiffiffiffiffi
n=2

p
, (14)

and hence the value of H ðnÞ at xmax is

jH ðnÞðxðnÞmax; 0Þj ¼
1ffiffiffi
p
p

n

2

� �n=2
e�n=2. (15)

We note that the absolute value of H ðnÞ at maxima decreases from n ¼ 0 to 2, but then increases for n42 as
exp½n=2ðlnðn=2Þ � 1Þ�. When aa0, we observe a broadening of the peaks and a decrease in their amplitudes.
For even n, the broadening of the individual peaks causes a superposition, resulting in profiles with a single
peak at line center.

We now turn to Fig. 2. The definition of GðnÞ shows immediately that the GðnÞ are odd functions of x for even
n and even functions of x for odd n. For a ¼ 0, the recurrence relations (10) and (11), and the explicit
expressions given in Eq. (12) allow one to understand the qualitative behavior of the GðnÞ. The function Gð0Þ is
an odd function of x, which is zero at x ¼ 0 and has two symmetric peaks around jxj ¼ 1 (the maximum of the
Dawson’s integral is at x ¼ 0:924 and has a value 0.541, Abramowitz and Stegun [11], pp. 298, 319). To go
from Gð0Þ to Gð1Þ there is multiplication by x which transforms the odd function into an even function. Further,
a subtraction of the term 1=p then yields the result shown in Fig. 2. To go from Gð1Þ to Gð2Þ, there is only a
multiplication by x. The central dip in Gð1Þ gives rise to a sine-shaped curve around x ¼ 0 in Gð2Þ and the two
maxima around jxj ¼ 1 get transformed into a maximum about x ¼ þ1 and a minimum about x ¼ �1. The
sine-shaped curve around x ¼ 0 in Gð2Þ will lead to a w-shaped minimum around x ¼ 0 in Gð3Þ. For nX4, we
have similar patterns. All the GðnÞ with odd values of n are similar to Gð3Þ and all the GðnÞ with even values of n

are similar to Gð2Þ. We observe a small shift of the extrema away from x ¼ 0, when n increases together with an
increase in the absolute values of extrema. The reason for this behavior, common to H ðnÞ and GðnÞ, is given
above (see discussion following Eq. (15)).

When the damping parameter is not zero, the curves keep the same shapes but we can observe a flattening of
the peaks with increasing values of a due to the factor a2 in the denominator of Eq. (3).
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Fig. 1. HðnÞ functions for n ¼ 0–7. Various line types refer to different values of the damping parameter a. All the functions are expressed

in same scale for the sake of comparison. H ðnÞ ðn ¼ 1; 3; 5; 7 . . .Þ have positive and negative maxima, while H ðnÞ ðn ¼ 2; 4; 6 . . .Þ are entirely
positive-valued functions.

M. Sampoorna et al. / Journal of Quantitative Spectroscopy & Radiative Transfer ] (]]]]) ]]]–]]] 5
The H ðnÞ and GðnÞ functions have simple asymptotic behaviors for jxj and a going to infinity which can be
deduced from Eq. (4). In the limit z!1, we can write

W ðnÞðzÞ ’
i

p3=2
1

z

Z þ1
�1

une�u2 1þ
u

z
þ h:o:t:

h i
du, (16)

where h.o.t. stands for higher-order terms. Thus, when n is even, say n ¼ 2k, we have to the leading order

W ð2kÞðzÞ ’
i

p
cð2kÞ

z
, (17)

where cð2kÞ is the constant already introduced in Eq. (8). Thus, to the leading order

H ð2kÞðx; aÞ ’
1

p
a

x2 þ a2
cð2kÞ; aa0, (18)

Gð2kÞðx; aÞ ’
1

p
x

x2 þ a2
cð2kÞ. (19)
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Fig. 2. Same as Fig. 1, but for GðnÞ functions. Notice that all the functions have positive and negative values.
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When n is odd, say 2k þ 1, the leading term comes from the second term in the square bracket of Eq. (16). We
thus obtain

W ð2kþ1ÞðzÞ ’
i

p
cð2kþ2Þ

z2
, (20)

from which we deduce

H ð2kþ1Þðx; aÞ ’
1

p
2ax

ðx2 þ a2Þ
2

cð2kþ2Þ; aa0, (21)

Gð2kþ1Þðx; aÞ ’
1

p
x2 � a2

ðx2 þ a2Þ
2

cð2kþ2Þ. (22)

When a ¼ 0, the H ðnÞðx; 0Þ decrease exponentially at large jxj as already pointed out above (see Eq. (9)).
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For jxj going to infinity and a small or order of unity, Eqs. (18)–(22) simplify to

H ð2kÞðx; aÞ ’
1

p
a

x2
cð2kÞ; Gð2kÞðx; aÞ ’

1

p
1

x
cð2kÞ, (23)

H ð2kþ1Þðx; aÞ ’
1

p
2a

x3
cð2kþ2Þ; Gð2kþ1Þðx; aÞ ’

1

p
1

x2
cð2kþ2Þ. (24)

For a smaller than unity, this asymptotic behavior holds for jxjb
ffiffiffiffiffiffiffiffiffiffiffiffi
� ln a
p

. One can observe in Figs. 1 and 2
that the H ðnÞ and GðnÞ of odd order have less extended wings than the corresponding functions of even order.
We stress that the asymptotic behavior of GðnÞ is independent of a. Thus, even for a ¼ 0, the GðnÞ has slowly
decreasing wings. In Fig. 3, we can clearly observe that the wings of the GðnÞ functions are independent of a, for
say x45. The asymptotic behavior of the GðnÞ can also be deduced from the asymptotic behavior of the
Dawson’s integral (see [11]):

DðxÞ ’
1

2x
1þ

X1
k¼1

1:3 . . . ð2k � 1Þ

2kx2k

 !
; x!1. (25)
Please cite this article as: M. Sampoorna et al., Generalized Voigt functions and their derivatives, Journal of Quantitative Spectroscopy
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Fig. 3. Higher-order generalized Voigt functions in the (jxj; a) plane. Notice a departure from the correct asymptotic regime (large jxj and

large a) visible through the change of slope in the panel for H ð2Þ.
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When jxj is small and a large, Eqs. (18)–(22) yield

H ð2kÞðx; aÞ ’
1

p
1

a
cð2kÞ; Gð2kÞðx; aÞ ’

1

p
x

a2
cð2kÞ, (26)

H ð2kþ1Þðx; aÞ ’
1

p
2x

a3
cð2kþ2Þ; Gð2kþ1Þðx; aÞ ’ �

1

p
1

a2
cð2kþ2Þ. (27)

These asymptotic behaviors can be observed in contour plots shown in Fig. 3.

2.3. Computational aspects regarding the calculation of Hn and GðnÞ

In this section we discuss details of computation of the generalized Voigt functions. All the calculations have
been performed in double precision. For computing H ð0Þ and Gð0Þ, we employ algorithm of Matta and Reichel
[14], where H ð0Þ and Gð0Þ are represented as a series in terms of an expansion parameter h. The exact values are
recovered when h goes to zero. The errors due to the finite value of h can be expressed in terms of a function
EðhÞ that goes to zero with h. They vary like aEðhÞ for H ð0Þ and like xEðhÞ for Gð0Þ. Here we use h ¼ 0:5 and 12
terms in the series expansion. For this choice, Matta and Reichel give EðhÞ around 10�15 and errors around
10�15 in the summation due to truncation of the series. The H ðnÞ and GðnÞ functions are computed with the
recurrence relations given in Eqs. (6) and (7). In Figs. 1 and 2 we have shown these functions up to n ¼ 7 for
values of a and x typical of local thermodynamic equilibrium (LTE), and non-LTE astrophysical problems.
These figures clearly show that an asymptotic regime is reached for jxj44.

In Fig. 3 we present H ð0;1;2Þ and Gð0;1;2Þ, computed on a logarithmic grid of damping parameters
(10�3pap102) and frequencies (10�3pjxjp104), both with a resolution of 51 points per decade. We have
chosen this very wide parameter range as considered in previous works on the numerical calculations of the
function H ð0Þ and its derivative (see [10]) to examine the applicability of our recurrence relations in the
asymptotic regime.

Since we are using recurrence relations to calculate the functions H ðnÞ and GðnÞ, errors contained within the
initial n ¼ 0 solution will propagate in the generalized Voigt functions of higher order, due to additions and
subtractions of terms involved in these relations. The nature of these numerical errors are similar to those
discussed by Wells [10], with reference to the use of recurrence formula. Also, since the functions of order
ðn� 1Þ in the RHS of Eqs. (6) and (7) are multiplied by factors x and a, one can expect the errors to increase
with the value of these variables. This phenomenon can indeed be detected in the contour plots shown in Fig.
3. In the regime of large jxj the functions H ðnÞ and GðnÞ become straight lines in the (log jxj; log a) plane since
they vary algebraically with a and jxj (see the asymptotic behavior given in Eqs. (23) and (24)). When errors
become significant, this asymptotic behavior is destroyed. In Fig. 3, panel with H ð2Þ, we see that the straight
lines start bending for large jxj values (see the contours for function values o10�7). For Gð2Þ, the asymptotic
behavior is preserved, presumably because there are less rounding errors, Gð2Þ decreasing more slowly than
H ð2Þ. The region of (jxj; a) plane in which H ðnÞ and GðnÞ functions are computed to acceptable accuracy
gradually shrinks as n increases. Figs. 1 and 2 are computed for values of x, a and n (xo20, ao3, np7) for
which the recurrence relations yield numerically reliable results. That the recurrence relations may have some
problems in the asymptotic regime of large jxj can be guessed by inserting the leading terms of the asymptotic
behaviors of H ðn�1Þ and Gðn�1Þ in the RHS of Eqs. (6) and (7). For n even, one correctly recovers the leading
terms in the asymptotic behaviors of H ðnÞ and GðnÞ, but for odd values of n, the leading terms cancel each other,
and it becomes necessary to go to higher-order terms in the asymptotic expansion. In the asymptotic regimes
of large jxj and/or a, the best strategy is to use asymptotic formulae rather than recurrence relations. This
strategy is recommended by Wells [10] for the calculation of the functions H ð0Þ and Gð0Þ and is carried out in
Section 3.4 to calculate the partial derivatives of H ðnÞ and GðnÞ.

3. Partial derivatives of generalized Voigt functions

Closed form expressions to evaluate partial derivatives of H ð0Þ and Gð0Þ are presented in Heinzel [9].
We have adapted Heinzel’s approach to obtain the partial derivatives of H ðnÞ and GðnÞ to all orders m. We first
Please cite this article as: M. Sampoorna et al., Generalized Voigt functions and their derivatives, Journal of Quantitative Spectroscopy
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re-express W ðnÞðzÞ in a form more suitable for the construction of recurrence relations for these partial
derivatives. Following the same method as for H ð0Þ (see [18]), we set z ¼ xþ ia in Eq. (4) and recognize that we
can write

i

x� uþ ia
¼

Z 1
0

e�ayeiðx�uÞy dy. (28)

The function W ðnÞðx; aÞ can thus be rewritten as

W ðnÞðx; aÞ ¼
1

p3=2

Z þ1
�1

une�u2
Z 1
0

e�ayeiðx�uÞy dydu. (29)

Introducing the nth derivative of e�iuy with respect to y, and then calculating the integral over u we obtain

W ðnÞðtÞ ¼
in

p

Z 1
0

e�ty dn

dyn
ðe�y2=4Þdy, (30)

where t ¼ a� ix. The function W ðnÞðtÞ is analytic in the right-hand part of the complex plane defined by RðtÞ40.
We remark that for aa0, it is possible to construct series expansions in powers of a in the form H ðnÞðx; aÞ ¼P
kakH

ðnÞ
k ðxÞ with a technique inspired from the method described in Mihalas [18]. This is achieved by

expanding e�ay in Eq. (29) in power series of a. This method is interesting when a51 and may provide H ðnÞ

with a greater accuracy than the method based on recurrence relations. As recalled in Wells [10], the
calculation of H ð0Þ for a very small is a numerical challenge. Similar series expansions can be constructed for
the GðnÞ and for the partial derivatives of H ðnÞ and GðnÞ.

Differentiating Eq. (30) m times with respect to t, we obtain

dm

dtm
W ðnÞ ¼

ð�1Þmin

p

Z 1
0

yme�ty dn

dyn
ðe�y2=4Þdy. (31)

For n ¼ 0, the above equation is the same as Eq. (3.1) in Heinzel [9]. For simplicity we introduce the notations

dm
t W ðnÞ ¼

dm

dtm
W ðnÞ; qm

x F ðnÞ ¼
qmF ðnÞ

qxm
; qm

a F ðnÞ ¼
qmF ðnÞ

qam
,

where F stands for any of the functions W, H and G. The analyticity of W ðnÞ (see e.g. Eq. (31)) yields for any m,
the two important relations:

dm
t W ðnÞ ¼ qm

a W ðnÞ ¼ qm
a H ðnÞ þ iqm

a GðnÞ, ð32Þ

dm
t W ðnÞ ¼ im qm

x W ðnÞ ¼ imðqm
x H ðnÞ þ iqm

x GðnÞÞ, ð33Þ

which are the consequence of the regularity (differentiability) of W ðnÞ. Equating the RHS and taking the real
and imaginary parts, we obtain Cauchy–Riemann conditions for the partial derivatives of H ðnÞ and GðnÞ with
respect to x and a (see for e.g. [19]). For even values of m, they may be written as

qm
a H ðnÞ ¼ ð�1Þm=2qm

x H ðnÞ, (34)

with a similar expression for qm
a GðnÞ. For odd values of m,

qm
a H ðnÞ ¼ ð�1Þðmþ1Þ=2 qm

x GðnÞ; qm
a GðnÞ ¼ ð�1Þðm�1Þ=2 qm

x H ðnÞ: (35)

In the next section we show how to calculate the partial derivatives with respect to x of H ðnÞ and GðnÞ of any
order m. Using the Cauchy–Riemann conditions one can then get their partial derivatives with respect to a.

3.1. Recurrence relations

To compute dm
t W ðnÞ for all possible n and m, a direct recurrence formula is most convenient. Such a formula

can be derived from Eq. (31). Following Heinzel [9] we integrate Eq. (31) by parts and thus obtain

dm
t W ðnÞ ¼

ð�1Þmþ1in

p

Z 1
0

yðmþ1Þ

mþ 1
e�ty �t

dn

dyn
þ

dðnþ1Þ

dyðnþ1Þ

" #
ðe�y2=4Þdy. (36)
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Changing m! m� 1 and n! n� 1 in the above equation, we obtain the recurrence relation

dm
t W ðnÞ ¼ imdm�1

t W ðn�1Þ þ itdm
t W ðn�1Þ; ðn;mÞX1. (37)

However, the above relation holds only for nX1. To get recurrence relation for n ¼ 0, we start from Eq. (31)
with n ¼ 0. An integration by parts yields

dm
t W ð0Þ ¼ 2tdm�1

t W ð0Þ þ 2ðm� 1Þdm�2
t W ð0Þ; mX2. (38)

We note that our symbols W ð0Þ, t, and x correspond to, respectively, DðwÞ, w, and u of Heinzel [9] and that our
Eq. (38) is Heinzel’s Eq. (4.1).

Using Eqs. (32) and (33), we can write the recurrence relations for the partial derivatives of W ðnÞ as

qm
x W ðnÞ ¼ ðxþ iaÞqm

x W ðn�1Þ þmqm�1
x W ðn�1Þ, ð39Þ

qm
a W ðnÞ ¼ ðxþ iaÞqm

a W ðn�1Þ þ imqm�1
a W ðn�1Þ; ðm; nÞX1. ð40Þ

With Eq. (39), as we now show, it is possible to construct separate recurrence relations for the partial
derivatives of H ðnÞ and GðnÞ with respect to x. Taking the real and imaginary parts of Eq. (39), we obtain

Rfqm
x W ðnÞ �mqm�1

x W ðn�1Þ � xqm
x W ðn�1Þg ¼ �a Ifqm

x W ðn�1Þg, ð41Þ

Ifqm
x W ðnÞ �mqm�1

x W ðn�1Þ � xqm
x W ðn�1Þg ¼ a Rfqm

x W ðn�1Þg. ð42Þ

To obtain a recurrence relation for, say, Rfqm
x W ðnÞg ¼ qm

x H ðnÞ, we extract from the RHS of Eq. (41) the three
terms which appear in the LHS of Eq. (42). For this purpose we write Eq. (41) for the three sets ðm; nÞ, ðm; n� 1Þ
(Eq. (41) itself), and ðm� 1; nÞ. Exchanging the roles of Eqs. (41) and (42), we obtain a recurrence relation for
Ifqm

x W ðnÞg ¼ qm
x GðnÞ. It is actually the same as the recurrence relation for qm

x H ðnÞ. They can be written as

qm
x F ðnÞ � 2xqm

x F ðn�1Þ þ ðx2 þ a2Þqm
x F ðn�2Þ � 2mqm�1

x F ðn�1Þ

þ 2mxqm�1
x F ðn�2Þ þmðm� 1Þqm�2

x F ðn�2Þ ¼ 0; ðn;mÞX2, ð43Þ

where F ðnÞ stands for H ðnÞ or GðnÞ.
The partial derivatives with respect to a can be deduced from the partial derivatives with respect to x by

making use of the Cauchy–Riemann conditions written in Eqs. (34) and (35). We remark here that the
procedure applied to Eq. (39) to obtain recurrence relations for the partial derivatives with respect to x does
not work with Eq. (40). The real and imaginary parts of Eq. (40) yield a set of equations similar to (41) and
(42) but they cannot be combined to obtain recurrence relations separately for the partial derivatives of H ðnÞ

and GðnÞ with respect to a.

3.2. Initialization of the recurrence relations

In order to apply the recurrence formula given in Eq. (43) to the computation of the partial derivatives with
respect to x, it is necessary to know all the mth derivatives of H ð0Þ, Gð0Þ, H ð1Þ and Gð1Þ, and the first derivatives
with respect to x of all the H ðnÞ and GðnÞ. The mth derivatives of H ð0Þ and Gð0Þ are given in Heinzel [9] (see also
Eq. (60)). The mth derivatives of H ð1Þ and Gð1Þ can be related to the mth derivatives of H ð0Þ and Gð0Þ. Starting
from the definition of H ð0Þ and Gð0Þ, making the change of variable x� u ¼ v, and using

dm

dvm
½e�ðx�vÞ2 � ¼ �2

dm�1

dvm�1
½ðx� vÞe�ðx�vÞ2 �, (44)

we immediately obtain

qm
x F ð1Þ ¼ �1

2
qmþ1

x F ð0Þ; mX1, (45)

where F stands for H or G. The first derivative with respect to x of all the H ðnÞ and GðnÞ can be obtained with
the same procedure. Starting from the definition of H ðnÞ (or GðnÞ), we find

q1xF ðnÞ ¼ nF ðn�1Þ � 2F ðnþ1Þ, (46)

where again F stands for H or G.
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3.3. Asymptotic behavior of the partial derivatives

The partial derivatives of H ðnÞ and GðnÞ have simple asymptotic behaviors for jxj and a going to infinity
which can be deduced from Eq. (4). In the limit z!1, we can write

dmW ðnÞ

dzm
ðzÞ ’ ð�1Þm

i

p3=2
m!

zmþ1

Z þ1
�1

une�u2 1þ ðmþ 1Þ
u

z
þ h:o:t:

h i
du. (47)

We thus obtain up to the first-order sub-leading term

dmW ð2kÞ

dzm
ðzÞ ’ ð�1Þm

i

p
m!

zmþ1
cð2kÞ 1þ

ð2k þ 1Þ

4

ðmþ 2Þðmþ 1Þ

z2

� �
, (48)

dmW ð2kþ1Þ

dzm
ðzÞ ’ ð�1Þm

i

p
ðmþ 1Þ!

zmþ2
cð2kþ2Þ 1þ

ð2k þ 3Þ

12

ðmþ 3Þðmþ 2Þ

z2

� �
, (49)

where k is a positive integer and the constant cðnÞ, n even, has been introduced in Eq. (8). For example cð0Þ ¼ 1,
cð2Þ ¼ 1

2
, cð4Þ ¼ 3

4
. Separating real and imaginary parts, one readily obtains the partial derivatives with respect to

x or a of H ðnÞ and GðnÞ of any order m. The asymptotic formulae for the first two partial derivatives of H ð0;1Þ are

qH ð0Þ

qx
’ �

1

p
2ax

ðx2 þ a2Þ
2

1þ
3ðx2 � a2Þ

ðx2 þ a2Þ
2

� �
, ð50Þ

q2H ð0Þ

qx2
’

2

p
að3x2 � a2Þ

ðx2 þ a2Þ
3

1þ
3ð5x4 þ a4 � 10x2a2Þ

ð3x2 � a2Þðx2 þ a2Þ
2

� �
, ð51Þ

qH ð1Þ

qx
’ �

1

p
að3x2 � a2Þ

ðx2 þ a2Þ
3

1þ
3ð5x4 þ a4 � 10x2a2Þ

ð3x2 � a2Þðx2 þ a2Þ
2

� �
, ð52Þ

q2H ð1Þ

qx2
’

12

p
axðx2 � a2Þ

ðx2 þ a2Þ
4

1þ
5

2

ð3x4 þ 3a4 � 10x2a2Þ

ðx2 � a2Þðx2 þ a2Þ
2

� �
. ð53Þ

The corresponding formulae for Gð0;1Þ are

qGð0Þ

qx
’ �

1

p
ðx2 � a2Þ

ðx2 þ a2Þ
2

1þ
3

2

ðx4 þ a4 � 6x2a2Þ

ðx2 � a2Þðx2 þ a2Þ
2

� �
, ð54Þ

q2Gð0Þ

qx2
’

2

p
xðx2 � 3a2Þ

ðx2 þ a2Þ
3

1þ
3ðx4 þ 5a4 � 10x2a2Þ

ðx2 � 3a2Þðx2 þ a2Þ
2

� �
, ð55Þ

qGð1Þ

qx
’ �

1

p
xðx2 � 3a2Þ

ðx2 þ a2Þ
3

1þ
3ðx4 þ 5a4 � 10x2a2Þ

ðx2 � 3a2Þðx2 þ a2Þ
2

� �
, ð56Þ

q2Gð1Þ

qx2
’

3

p
ðx4 þ a4 � 6x2a2Þ

ðx2 þ a2Þ
4

1þ
5½x6 � a6 � 15x2a2ðx2 � a2Þ�

ðx4 þ a4 � 6x2a2Þðx2 þ a2Þ
2

� �
. ð57Þ

The first and second partial derivatives of H ð2Þ and Gð2Þ can be easily deduced from the corresponding
derivatives of H ð0Þ and Gð0Þ. It suffices to multiply the leading terms by cð2Þ=cð0Þ ¼ 1=2 and the sub-leading term
by cð4Þ=cð2Þ ¼ 3=2. We stress that the asymptotic expansions for the first derivatives of H ð1Þ and Gð1Þ satisfy the
exact relation in Eq. (45) which yields qm

x H ð1Þ in terms of qmþ1
x H ð0Þ and similarly for Gð1Þ.

For jxj going to infinity and small a, the expressions given above simplify. We note that the leading terms
can be recovered in a straightforward way by taking partial derivatives with respect to x of the leading terms
of H ðnÞ and GðnÞ given in Eqs. (23) and (24).

3.4. Computation of the derivatives of H ðnÞ and GðnÞ

We have used the recurrence relations given in Eqs. (43), (45) and (46) to calculate the m ¼ 1 and 2 partial
derivatives of H ð1;2Þ and Gð1;2Þ with respect to x. All the partial derivatives entering in Eqs. (43) and (45) have
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been expressed in terms of H ðnÞ and GðnÞ using the results in Table 1. In Fig. 4 left-side panels show q1xH ð1Þ,
q1xH ð2Þ, q2xH ð1Þ, q2xH ð2Þ as functions of x for different values of a and right-side panels show the corresponding
quantities for GðnÞ. In addition to the obvious symmetries, this figure shows that an asymptotic regime is
reached for jxj44 and in some cases even for jxj43. For small values of a (say, ao0:5), the derivatives show a
strong frequency dependence in the line center region (jxjo4). For larger values of a, these derivatives weakly
depend on frequency and approach an asymptotic regime with respect to a also. When jxj and a take large
values, in the hundreds or thousands, the recurrence relations fail to reproduce the correct asymptotic
Please cite this article as: M. Sampoorna et al., Generalized Voigt functions and their derivatives, Journal of Quantitative Spectroscopy
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Table 1

First three partial derivatives of Hð0Þ and Gð0Þ in terms of HðnÞ and GðnÞ

q1xHð0Þ ¼ �2Hð1Þ q1aHð0Þ ¼ 2Gð1Þ q1aGð0Þ ¼ �2H ð1Þ

q2xHð0Þ ¼ �2Hð0Þ þ 4Hð2Þ q2aHð0Þ ¼ 2H ð0Þ � 4H ð2Þ q2aGð0Þ ¼ 2Gð0Þ � 4Gð2Þ

q3xHð0Þ ¼ 12H ð1Þ � 8H ð3Þ q3aHð0Þ ¼ 12Gð1Þ � 8Gð3Þ q3aGð0Þ ¼ �12H ð1Þ þ 8H ð3Þ

The partial derivatives of Gð0Þ with respect to x have the same form as that for Hð0Þ, but with HðnÞ replaced by GðnÞ.

Fig. 4. Partial derivatives first- and second-order (mp2) generalized Voigt functions. Notice the onset of the asymptotic regime for jxj�5

and aX2.
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behavior. We have encountered similar numerical problems when computing the H ðnÞ and GðnÞ functions for
nX2 (see Fig. 3). They are due to cancellation effects and rounding errors. The accuracy problem is
accentuated for larger n and m, and also larger values of jxj and a. For the partial derivatives considered here
(mp2, np2) the applicability domain of the recurrence relations is jxjp11, ap11. It will be larger for lower-
order derivatives and smaller for higher ones. For the asymptotic expansions, it is clear that they are valid if jxj
and/or a are sufficiently large. We have found by trial and error, comparing values given by the asymptotic
expansions and the recurrence relations, that they give identical results in the region 6ojxjp11 and 6oap11.
To obtain matching solution in this domain, the asymptotic expansion had to be pushed to the first-order sub-
leading term. Keeping only the leading term was not sufficient. In contrast to the upper bound of the matching
domain, the lower bound for the validity of the asymptotic expansion will be essentially independent of the
values of n and m (see Figs. 1 and 2 for H ðnÞ and GðnÞÞ.

We show in Fig. 5 contour plots corresponding to Fig. 4. They are computed using the recurrence relations
inside the domain ðjxj; ap6Þ and the asymptotic formulae outside this domain. In Fig. 5, the region of ðjxj; aÞ
plane computed using asymptotic formulae is shaded gray. One can note a perfect matching between the two
sets of values. We stress that the same cut-off between the asymptotic domain and the recurrence relations
should be applied to all the functions occuring in the recurrence relation (43). In computing Fig. 5 we employ a
grid resolution of 51 points per decade in both jxj and a variables. For the practical range of parameters that
we encounter in Solar line formation theory, namely a smaller than unity and x a few Doppler widths, the
recurrence relations are applicable.

The computer program to evaluate the H ðnÞ and GðnÞ functions and their derivatives can be obtained from
the authors on request.

4. Derivatives of H ð0Þ and G ð0Þ in terms of H ðnÞ and G ðnÞ

The partial derivatives of H ð0Þ and Gð0Þ have been expressed in terms of H ð0Þ and Gð0Þ themselves in Heinzel
[9]. In this section, we show that it is possible to write the partial derivatives of H ð0Þ and Gð0Þ in terms of the
H ðnÞ and GðnÞ. Setting n ¼ 0 and x� u ¼ v in Eqs. (2) and (3), we see that the calculation of the mth partial
derivative of H ð0Þ with respect to x requires the mth derivative of e�ðx�vÞ2 . As recognized in Luque et al. [20],
they can be expressed in terms of Hermite polynomial Hm (see [11, p. 785]). Indeed we have

dm

dxm
½e�x2

� ¼ ð�1Þm e�x2

HmðxÞ. (58)

The Hermite polynomial can be written as a power series in x (see [11, p. 775])

HmðxÞ ¼ m!
X½m=2�
k¼0

ð�1Þk

k!ðm� 2kÞ!
ð2xÞðm�2kÞ, (59)

where ½m=2� means m=2 for even m and ðm� 1Þ=2 for odd m. Using the definition of H ðnÞ, we obtain the
general formula

qm
x H ð0Þ ¼ ð�1Þm m!

X½m=2�
k¼0

ð�1Þk

k!ðm� 2kÞ!
2ðm�2kÞH ðm�2kÞ. (60)

For the qm
x Gð0Þ we have an expression similar to the above with H ðm�2kÞ replaced by Gðm�2kÞ. With this general

formula one can determine the partial derivatives of H ð0Þ for any given m, in terms of H ðnÞ functions, which in
turn can be easily computed using the recurrence relations (6) and (7). We note that mth partial derivatives of
H ð1Þ and Gð1Þ with respect to x can also be expressed in terms of H ðnÞ and GðnÞ, by combining Eqs. (45) and (60).

The derivatives of H ð0Þ and Gð0Þ with respect to the damping parameter a can also be expressed in terms of
H ðnÞ and GðnÞ. Using for n ¼ 0 the Cauchy–Riemann conditions given in Eqs. (34) and (35), we obtain

qm
a H ð0Þ ¼ ð�1Þ3m=2m!

Xm=2
k¼0

ð�1Þk

k!ðm� 2kÞ!
2ðm�2kÞH ðm�2kÞ, (61)
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Fig. 5. Contour plots of partial derivatives of H ðnÞ and GðnÞ functions, in the (jxj; a) plane. For jxjp6 and ap6 recurrence relations are

used. Outside this domain asymptotic formulae are used, as the recurrence relations become less accurate.
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for even values of m, and a similar expression for qm
a Gð0Þ. For odd values of m

qm
a H ð0Þ ¼ ð�1Þð3mþ1Þ=2m!

Xðm�1Þ=2
k¼0

ð�1Þk

k!ðm� 2kÞ!
2ðm�2kÞGðm�2kÞ, (62)

qm
a Gð0Þ ¼ ð�1Þð3m�1Þ=2m!

Xðm�1Þ=2
k¼0

ð�1Þk

k!ðm� 2kÞ!
2ðm�2kÞH ðm�2kÞ. (63)

In Table 1 we list the first three partial derivatives of H ð0Þ with respect to x, calculated using Eq. (60). The
partial derivatives of Gð0Þ satisfy the same relation. We also list qm

a H ð0Þ and qm
a Gð0Þ, for m ¼ 1; 2; 3, calculated

using Eqs. (61)–(63). If we use the recurrence relations given in Eqs. (6) and (7) for H ðnÞ and GðnÞ, we recover
the expressions given in Table 1 of Heinzel [9], where the derivatives are expressed in terms of H ð0Þ and Gð0Þ

and polynomials in a and x.
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