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Abstract

The polarization of radiation by scattering on an atom embedded in combined exter-

nal quadrupole electric and uniform magnetic fields is studied theoretically. Limiting

cases of scattering under Zeeman effect and Hanle effect in weak magnetic fields are

discussed. The theory is general enough to handle scattering in intermediate mag-

netic fields (Hanle-Zeeman effect) and for arbitrary orientation of magnetic field.

The quadrupolar electric field produces asymmetric line shifts and causes interesting

level-crossing phenomena either in the absence of an ambient magnetic field or in

its presence. It is shown that the quadrupolar electric field produces an additional

depolarization in the Q/I profiles and rotation of the plane of polarization in the

U/I profile over and above that arising from magnetic field itself. This characteris-

tic may have a diagnostic potential to detect steady state and time varying electric

fields that surround radiating atoms in Solar atmospheric layers.
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1 Introduction

Scattering of polarized radiation by an atom is a topic of considerable interest

to astrophysics ever since Hale [1] first observed polarization related to Zeeman

effect in spectral lines originating in Sun spots. The polarized radiation is usu-

ally expressed in terms of the Stokes parameters. The concept of scattering ma-

trix connecting the Stokes vector S′ of incident radiation to the Stokes vector

S of scattered radiation was introduced quite early in the context of Rayleigh

scattering [2]. Polarized radiation in spectral lines formed in the presence of an

external magnetic field has been studied widely and a comprehensive theoreti-

cal framework has been developed [3,4,5,6,7,8,9,10,11,12,13,14,15]. The Hanle

effect is a depolarizing phenomenon which arises due to ‘partially overlapping’

magnetic substates in the presence of weak magnetic fields, when the splitting

produced is of the same order or less than the natural widths. Favati et al. [16]

proposed the name ‘second Hanle effect’ for a similar effect in ‘electrostatic

fields’. Casini and Landi Degl’Innocenti [17] have discussed the problem in

the presence of electric and magnetic fields for the particular case of hydrogen

Lyman α line. It was followed by a more recent paper by Casini [18]. The

relative contributions of static external electric fields, motional electric fields

and magnetic fields in the case of hydrogen Balmer lines, have been studied by

Brillant et al. [19]. A historical perspective and extensive references to earlier

literature on polarized line scattering can be found in Stenflo [12], Trujillo

Bueno et al. [20] and Landi Degl’Innocenti and Landolfi [21].

A quantum electrodynamic theory of Hanle-Zeeman redistribution matrices
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has been developed by Bommier [10,11] and Landi Degl’Innocenti & Co-

workers (see the book by [21]). The formulation presented in [10] and [11]

includes the effects of partial frequency redistribution (PRD) in line scatter-

ing for a two-level atom. It is a perturbation theory, in which PRD effects

appear in the fourth order. The theory presented in [21] and references cited

therein, considers only complete frequency redistribution (CRD) in line scat-

tering.

A classical theory of line scattering PRD for the Hanle-Zeeman effect has been

formulated by Bommier & Stenflo [15]. This theory is non-perturbative and

describes the scattering process in a transparent way. The classical theory for

Hanle-Zeeman scattering developed by Stenflo [14] considered only coherent

scattering in the laboratory frame. In [15] the redistribution matrices were

derived in the atomic rest frame. The corresponding laboratory frame redis-

tribution matrices have been derived in [22]. The equivalence between the

classical (non-perturbative theory) and quantum electrodynamic (perturba-

tive theory) redistribution matrices for the triplet case is established in [23].

In all these papers only the dipole type line scattering transitions in the pres-

ence of pure magnetic fields is considered. Taking into account all higher order

multipoles as well, polarization of line radiation in the presence of external

electric quadrupole and uniform magnetic fields was studied [24,25], where

scattering of radiation by atoms, however, was not considered.

The purpose of the present paper is to develop a quantum electrodynamical

approach to scattering processes in the presence of external electric and mag-

netic fields of ‘arbitrary strengths’, taking also into consideration all other

multipole type transitions apart from the usually dominant electric dipole

transition. The atomic electron is represented using non-relativistic quantum
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theory including spin. The radiation field is described in terms of its electric

and magnetic multipole states, in a second quantized formalism. The external

electric field is assumed to be ‘quadrupolar’ in nature, while the magnetic field

is uniform and arbitrarily oriented with reference to the principal axes frame

of the electric quadrupole field. This general formalism can be employed also

to solve the scattering problems involving linear steady state electric fields at

the radiating atom.

In Sect. 2 we describe the theoretical formulation. In Sect. 3 the scattering

matrix for the general physical situation is derived. The particular case of the

dipole transitions for a triplet is also considered, for the purpose of comparison

with Stenflo [14] in the pure magnetic field limit. Sect. 4 contains numerical

results and discussions. Conclusions are presented in Sect. 5.

2 Theoretical formalism for scattering

We consider polarized radiation incident on an atom along an arbitrary di-

rection (θ′, φ′) and getting scattered into a direction (θ, φ) with respect to a

conveniently chosen right handed Cartesian coordinate system, referred to as

the Astrophysical Reference Frame (ARF) and shown as (X, Y, Z) in Fig. 1. If

ν ′ and ν denote respectively the frequencies of the incident and scattered radi-

ation, we may define wave vectors k′ and k with polar co-ordinates (k′, θ′, φ′)

and (k, θ, φ) where k′ = 2πν ′ = ω′ and k = 2πν = ω in natural units with

~ = 1, c = 1 and mass of the electron me = 1. The atom is exposed to an exter-

nal magnetic field B with strength B, directed along (θB, φB) and an electric

quadrupole field characterized by strength A and asymmetry parameter η in

its Principal Axes Frame (PAF), which is denoted by (XQ, YQ, ZQ) in Fig. 1.
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The transformation to PAF from ARF is achieved by a rotation R(αQ, βQ, γQ)

through Euler angles (αQ, βQ, γQ) as defined by Rose [26]. The magnetic field

B is directed along (θ̃B, φ̃B) with respect to PAF. Following Rose [26], we

define left and right circular states of polarization ε̂εεµ (µ = ±1) respectively,

which are mutually orthogonal to each other and to k. We use here the symbol

ε̂εεµ=±1 instead of ûp=±1 employed in Rose [26]. Like wise ε̂εε′µ′=±1, which are or-

thogonal to k′. Any arbitrary state of polarization ε̂εε
′

of the incident radiation

may then be expressed as ε̂εε
′

= c′+1 ε̂εε
′

+1 + c′−1 ε̂εε
′

−1 using appropriate coefficients

c′±1, which are in general complex and satisfy |c′+1|2+|c′−1|2 = 1. We, therefore,

denote the orthonormal states of polarized incident radiation by |k′, µ′〉, with

µ′ = ±1. We seek the probability for scattering into two polarized states of

scattered radiation |k, µ〉, µ = ±1 on an atom which is initially in a state ψi

with energy Ei before scattering and makes a transition to a final state ψf

with energy Ef , in the process of scattering of polarized radiation.

2.1 Energy levels of an atom in electric quadrupole and uniform magnetic

fields

The energy levels of an electron in an atom are primarily determined by the

Hamiltonian

H0 = −1

2
▽2 +V (r) , (1)

where V (r) denotes its Coulomb interaction with the nucleus. If we start with

the Dirac equation [17] and use its non-relativistic reduction, terms like spin-

orbit interaction may also be included in H0. In the absence of external fields,

the energy levels of the atom are determined by

HA
0 =

Z∑

i=1

H0(i) +
Z∑

i>j=1

e2

rij
, (2)
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where e denotes the charge of the electron, rij = |ri − rj| and Z denotes the

atomic number. If E denotes an energy level and ψ the corresponding wave

function of the atom with total angular momentum J , it is well known in

the context of Zeeman effect that E gets split into (2J + 1) equally spaced

levels EM = E + gBM with corresponding energy eigenstates |JM〉B, M =

J, J − 1, · · · ,−J + 1,−J , when the atom is exposed to an external uniform

magnetic field B with strength B. The states |JM〉B are defined with the

axis of quantization chosen along B and g denotes the magnetic-gyro ratio or

Landé g-factor. For B < 100 gauss, when gB is of the same order as the width

of a line, Hanle effect [27] takes place. For a line in the optical range, the region

100 < B < 1000 gauss is generally referred to as the Hanle-Zeeman regime.

For B < 1 gauss, one has to pay attention to the interaction of electron with

the magnetic and electric moments of the nucleus, which give rise to hyperfine

splitting [28,29]. If the atom is exposed to an external electric quadrupole field

either by itself or in combination with B, the splitting of the energy levels is

not, in general, equally spaced [30,31,24,25] and in such scenarios, the atomic

Hamiltonian in PAF is given by

HA = HA
0 + g J · B + A

[
2J2

z − J2
x − J2

y + η(J2
x − J2

y )
]
. (3)

The split energy levels may be denoted by Es, where s takes values s =

1, 2, · · · , (2J +1) starting from the lowest level (s = 1) for a given J . The cor-

responding energy eigenstates may be denoted by |J, s〉, which are expressible

as

|J, s〉 =
J∑

M=−J

as
M(A, η, B, θ̃B, φ̃B) |JM〉Q, s = 1, 2, · · · , (2J + 1) (4)

where |JM〉Q are defined with the quantization axis chosen along the Z-axis,

ZQ of the PAF . The notation cimu
was used in [25] for J = 1, 3/2 to denote
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the expansion coefficients, without any specified convention for ordering of the

levels. We may rewrite Eq. (4) as

|J, s〉 =
J∑

m=−J

csm |Jm〉 , (5)

in terms of the |Jm〉 states, which are defined with respect to the Z-axis of

ARF chosen as the quantization axis. Clearly,

csm =
J∑

M=−J

DJ
mM(αQ, βQ, γQ) as

M(A, η, B, θ̃B, φ̃B) , (6)

and hence csm depend on αQ, βQ, γQ, A, η,B. If the magnetic field is absent, the

csm depend only on αQ, βQ, γQ, A, η since as
M in that case [24] depend only on

A and η. It may be noted that the frame of reference employed in [24,25] was

PAF itself, i.e., αQ, βQ, γQ = 0; hence θB, φB was used there instead of the

θ̃B, φ̃B here and the Euler angles (αQ, βQ, γQ) find no mention there. On the

other hand, if the electric quadrupole field is absent and the atom is exposed

only to a magnetic field B directed along (θB, φB), it is clear that

csm =
J∑

M=−J

D1
mM(φB, θB, 0) δM,s−J−1 , (7)

which reduces to

csm = δs,J+m+1 , (8)

if the field B is along the Z-axis of ARF itself.

In general, therefore, when the energy levels of an atom are defined through

HAψn = Enψn, the atomic wave functions ψn are of the form given by Eq. (5),

which specialize appropriately to |JM〉B or |Jm〉 if Eq. (7) or Eq. (8) are

used instead of Eq. (6). Thus, in general, the complete set of orthonormal

energy eigenstates of an atom in a combined external electric quadrupole and

uniform magnetic field environment may be denoted by {ψn}, where n is used
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as a collective index, which includes the serial number sn along with the total

angular momentum Jn and all other quantum numbers which may be needed

to specify each ψn uniquely. In the presence of a pure magnetic field B, the

magnetic quantum number Mn replaces sn through the δ-function in Eq. (7).

Moreover, if B is along the Z-axis of ARF itself, sn gets replaced by mn

through the δ-function in Eq. (8).

In general, a summation over n as in
∑

n |ψn〉〈ψn| = 1, implies a summation

with respect to sn as well. This summation over sn may be replaced by a

summation with respect to Mn or mn in some particular cases as mentioned

above. The initial and final states of the atom before and after scattering

are denoted by ψi and ψf . They also belong to {ψn}. We use the short hand

notation

|i〉 = |ψi;k
′, µ′〉; |f〉 = |ψf ;k, µ〉 . (9)

2.2 Interaction of atom with the radiation field

It is well known that the local minimal coupling i.e, ψ̄γνψAν (with implied

summation over ν) of the Dirac field ψ and the electromagnetic field rep-

resented by the four potential Aν , ν = 1, · · · , 4 is the fundamental interac-

tion responsible for all electrodynamical process involving photons and elec-

trons [32,33]. In the interaction representation, ψ and Aν satisfy the free field

equations of Dirac and Maxwell respectively. The quantity ψ̄ = ψ†γ4, where

ψ† denotes the hermitian conjugate of ψ and γ1, γ2, γ3, γ4 are 4× 4 Dirac ma-

trices. To facilitate calculations using the atomic wave functions {ψn}, we may

use the non-relativistic two componental forms of ψ and ψ̄ in c number theory

for electrons, retain the Maxwell field in q number theory and represent the
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interaction of the radiation field in the Coulomb gauge with the atom as

Hint = eiHAt
Z∑

j=1

e
[
−iA(rj , t) · ▽▽▽j +

1

2
σσσj ·

(
▽▽▽j × A(rj, t)

)]
e−iHAt , (10)

where σσσj denote the Pauli spin matrices of the electron labeled j located at

rj and Z denotes the atomic number. The quantum field variable A(r, t) in

interaction representation may be expressed as

A(rj, t) =
1

(2π)3/2

∫
d3k′′√
2ω′′

∑

µ′′

[
ak′′µ′′Ak′′µ′′(r)e−iω′′t +

a+
k′′µ′′Ak′′µ′′(r)∗eiω′′t

]
, (11)

where ω′′ = |k′′| and the creation and annihilation operators, denoted by a+
kµ

and akµ respectively, satisfy the commutation relation

[
akµ, a

+
k′µ′

]
= δ(k − k′) δµµ′ , (12)

for any pair k, µ and k′, µ′ in general, while

Akµ(r) = ε̂εεµ e
ik·r , (13)

denotes a c number and Akµ(r)∗ denotes its complex conjugate. In particular,

the operators are also used to generate the initial and final states of radiation

in Eq. (9) through

|k′µ′〉 = a+
k′µ′ | 〉0; 〈kµ| = 0〈 |akµ , (14)

where | 〉0 denotes the vacuum state of the radiation field.
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2.3 The Scattering process

The S-matrix for scattering may be defined, as usual [34], by

S = lim t→∞

t0→−∞

U(t, t0) , (15)

where the evolution operator satisfies

U(t, t0) = 1 − i
∫ t

t0
dt′Hint(t

′)U(t′, t0) , (16)

which on iteration leads to the perturbation series

S = 1 +
∞∑

N=1

(−i)N
∫ ∞

−∞
dt1

∫ t1

−∞
dt2 · · ·

∫ tN−1

−∞
dtNHint(t1) · · ·Hint(tN ) , (17)

since Hint(t) given by Eq. (10) is linear in A (see Eq. (11)), the first order

(N = 1) term can contribute to either absorption through the first term in

Eq. (11) or to emission through the second term in Eq. (11) and the integral

over dt1, from −∞ → ∞ leads to the respective energy conservation criteria

of Bohr. In the scattering problem under consideration, the lowest order (in e)

contribution to 〈f |S|i〉 is obtained from the N = 2 term, which we may denote

as 〈f |S2|i〉. We introduce
∑

n |ψn〉〈ψn| = 1 between Hint(t1) and Hint(t2),

neglect contribution from two photons in the intermediate state and employ

the notation |n〉 = |ψn〉| 〉0. This leads, on using Eqs. (11) and (12), to

〈n|Hint(t2)|i〉 = Ani(k
′, µ′)e[i(En−Ei−ω′)t2] , (18)

〈f |Hint(t1)|n〉 = Efn(k, µ)e[i(Ef+ω−En)t1] , (19)

where Ani(k
′, µ′) and Ef,n(k, µ) denote amplitudes for absorption and emis-

sion, involving Ak′µ′(rj) and Akµ(rj)
∗ respectively, which are independent of

time variable, instead of A(rj, t). We may change the variable of integration

from t2 to t′2 = t2−t1, ranging from −∞ → 0, associate a width Γn with ψn by
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introducing a factor exp(Γnt
′
2) (see [35,36]) and obtain after completing both

the integrations, the expression

〈f |S2|i〉 = −2 π i δ(Ef + ω − Ei − ω′) Tfi(kµ;k′µ′) , (20)

where the on-energy-shell T -matrix element is of the form

Tfi(k, µ;k′, µ′) =
∑

n

Efn(k, µ) φn Ani(k
′, µ′) , (21)

and the profile function is given by

φn = (ωnf − ω − iΓn)−1; ωnf = En − Ef , (22)

on making use of En − Ei − ω′ = ωni − ω′ = ωnf − ω by virtue of the energy

δ-function in Eq. (20). Using Eq. (4) and observing that {ψn} are completely

antisymmetric with respect to the labels 1, 2, · · · , j, · · · , Z of the electrons, we

have

Ani(k
′, µ′)=

∑

m′

n,m′

i

c
s∗n
m′

n
csi

m′

i
〈Jnm

′
n|A(k′, µ′)|Jim

′
i〉 ,

Efn(k, µ)=
∑

m′

f
,m′′

n

c
s∗
f

m′

f
csn

m′′
n
〈eJfm

′
f |E(k, µ)|Jnm

′′
n〉 , (23)

where the matrix elements on the right hand side satisfy

〈JuMu|A(k, µ)|Jlml〉 = 〈Jlml|E(k, µ)|Jumu〉∗ , (24)

between any pair of lower and upper atomic states and

E(k, µ) =
Ze

(2π)3/2
√

2ω

[
−iA∗

k,µ · ▽▽▽ +
1

2
σσσ · (▽▽▽× A∗

k,µ)
]
, (25)

with respect to an electron in the atom. Since atomic transitions during ab-

sorption and emission conserve total angular momentum and parity, we use
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the standard multipole expansion [26] for Ak,µ given by Eq. (13), viz,

Ak,µ = eik·rε̂εεµ = (2π)1/2
∞∑

L=1

L∑

M=−L

(i)L[L]DL
Mµ(φ, θ, 0)

[
A

(m)
LM + iµ A

(e)
LM

]
, (26)

where [L] = (2L + 1)1/2 and (θ, φ) denote polar angles of k, while A
(m)
LM and

A
(e)
LM denote respectively the ‘magnetic’ and ‘electric’ 2L-pole solutions of the

free Maxwell equations. Using the notation

J (m/e)
LM (ω) =

Z e iL[L]

2π
√

2ω

[
−iA(m/e)

LM · ▽▽▽ +
1

2
σσσ ·

(
▽▽▽×A

(m/e)
k,µ

)]
, (27)

and noting that Eq. (27) is an irreducible tensor of rank L, we may apply the

Wigner-Eckart theorem to write

〈Jumu|A(k, µ)|Jlml〉 = A(k, µ)muml
=
∑

L

C(Jl, L, Ju;ml,M,mu)JL(ω)

×(iµ)g+(L)DL
Mµ(φ, θ, 0) , (28)

where the reduced matrix elements are given by

JL(ω) = 〈Ju||J (m)
L (ω)||Jl〉g−(L) + 〈Ju||J (e)

L (ω)||Jl〉g+(L) , (29)

in terms of the projection operators

g±(L) =
1

2

[
1 ± (−1)Lπuπl

]
. (30)

In the above equation πu, πl denote the parities of the upper and lower levels.

Using Eq. (24), we have

〈Jlml|E(k, µ)|Jumu〉 = E(k, µ)mlmu =
∑

L

C(Jl, L, Ju;ml,M,mu)JL(ω)∗

×(−iµ)g+(L)DL
Mµ(φ, θ, 0)∗ . (31)

Thus, we may express Eq. (21) as

Tfi(kµ;k′µ′) =
∑

n

φn

∑

m′

f
m′

i

c
s∗
f

m′

f
csi

m′

i

[
E(k, µ)GsnA(k′, µ′)

]

m′

f
m′

i

, (32)
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where the summation
∑

n implies summation with respect to sn as well, and

A(k′, µ′) and E(k, µ) denote matrices, whose elements

〈Jnm
′
n|A(k′, µ′)|Jim

′
i〉=A(k′, µ′)m′

nm′

i
;

〈Jfm
′
f |E(k, µ)|Jnm

′′
n〉= E(k, µ)m′

f
m′′

n
, (33)

may be written explicitly using Eqs. (28) and (31) and G denotes a hermitian

(2Jn + 1) × (2Jn + 1) matrix, which is defined in terms of its elements

Gsn

m′′
nm′

n
= csn

m′′
n
c
s∗n
m′

n
. (34)

Clearly, the summation over n on right hand side of Eq. (32) indicates a sum-

mation with respect to all the atomic states {ψn}, which constitute the com-

plete orthogonal set. Since n is a cumulative index
∑

n includes
∑

Jn

∑2Jn+1
sn=1 ,

apart from summation with respect to other quantum numbers. The left hand

side of Eq. (32) is written for a given ψi and ψf with energies Ei and Ef re-

spectively. The quantities si and sf are specified by left hand side of Eq. (32)

and hence they are fixed entities on right hand side of Eq. (33).

In the absence of the electric quadrupole field, the sf , sn, si may be replaced

respectively by appropriate Mf ,Mn,Mi which are determined by the Kro-

necker δ-function in Eq. (7), when the magnetic field B alone is present and

is directed along (θB, φB). Thus, c
s∗
f

m′

f
and csi

m′

i
are replaced respectively by

D1
m′

f
Mf

(φB, θB, 0)∗ and D1
m′

iMi
(φB, θB, 0) with Mf and Mi being fixed by left

hand side. It may be noted that φn depends on Mn and the summation over

n includes
∑

Jn

∑Jn

Mn=−Jn
, with Gsn replaced now by GMn whose elements are

given by

GMn

m′′
nm′

n
= D1

m′′
nMn

(φ, θ, 0) D1
m′

nMn
(φ, θ, 0)∗ . (35)
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If the magnetic field B is along the Z-axis of ARF itself, the sf , sn, si in

Eq. (32) may respectively be replaced by mf , mn, mi determined by the Kro-

necker δ-function in Eq. (8). Thus, c
s∗
f

m′

f
and csi

m′

i
are replaced respectively by

δm′

f
mf

and δm′

i
mi

, where mf and mi are fixed by left hand side of Eq. (32).

Therefore, the summation with respect to m′
f and m′

i on right hand side of

Eq. (32) drops after making the replacements c
sf

m′

f
= 1 and csi

m′

i
= 1. The ψn

depends on mn and the summation over n includes
∑

Jn

∑Jn

mn=−Jn
, with Gsn

replaced by Gmn , whose elements are given by

Gmn

m′′
nm′

n
= δm′′

nmn δm′

nmn , (36)

i.e., Gsn gets replaced by a diagonal matrix with zeros everywhere except

Gmn
mnmn

= 1 in Eq. (32).

It may be noted that the atomic transitions from ψi to ψn following absorption

of ω′ and from ψn to ψf consequent to the emission of ω are virtual transitions,

which do not satisfy the celebrated Bohr criteria. This is in contrast to ab-

sorption or emission represented by the N = 1 term. They are real transitions

which satisfy the Bohr criteria as already pointed out. The summation over n

includes all atomic states ψn with different energy eigenvalues En. However,

all of them do not contribute equally to Eq. (32). The presence of φn on right

hand side of Eq. (32) indicates that one has to pay more attention to con-

tributions coming from those states ψn with En close to Ei + ω′ = Ef + ω.

If there is an En such that En = Ei + ω′ = Ef + ω, the contribution from

this state alone overshadows all other contributions. The scattering is then

referred to as resonance scattering. In particular, if Ei = Ef the terminology

‘two level resonance scattering’ is employed. This is shown as (a) in Fig. 2,

where ω′ = ω. On the other hand if Ef > Ei as in (b) of Fig. 2, the resonance
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scattering is referred to as three level resonance or fluorescence.

If there is no electric quadrupole field and the atom is exposed only to a pure

magnetic field B, such that the (2Jn +1) states |JnMn〉 refer to distinctly sep-

arated energy levels as in Zeeman effect, one can envisage resonance scattering

taking place individually with each one of these taking the role of the upper

level, as shown in (a) and (b) of Fig. 2, if the condition EMn = Ei+ω
′ = Ef +ω

is satisfied. On the other hand, if gB < Γn, the levels are not distinct and all

of them contribute coherently to form a single line. This is referred to as quan-

tum interference in the context of Hanle scattering, which is shown as (c) in

Fig. 2. In contrast to Hanle effect where interference occurs between magnetic

substates with the same Jn, interference effects between states with different

Jn have also been observed in polarization studies of Solar Ca II H-K and Na

I D1 and D2 lines [13], wherein it is mentioned that this can take place even

when the lines are 3.5 nm apart. The general terminology, ‘Raman scatter-

ing’ has been employed [12,13] to denote scattering, where contributions from

several intermediate states are involved. In general, therefore, we may rewrite

Eq. (21) in the form

Tfi(k, µ;k′, µ′) = 〈ψf |E(k, µ)|ψv〉 , (37)

where |ψv〉 represents a virtual state defined by

|ψv〉 =
∑

n

cvn|ψn〉; |cvn〉 = φn〈ψn|A(k′, µ′)|ψi〉 , (38)

which is clearly not an eigenstate of energy. In Raman effect, shown as (d) in

Fig. 2, the lines corresponding to Ef < Ei are referred to as anti-Stokes lines,

in contrast to those with Ef > Ei referred to as Stokes lines.
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2.4 The dipole approximation

If we neglect the spin-dependent second term in Eq. (25) and employ dipole

approximation eik·r ≈ 1 in Akµ(r) given by Eq. (13), then we may express

Eq. (24) as

〈ψu|A(k, µ)|ψl〉 ≈ 〈ψu|ε̂εεµ · p|ψl〉 ≈ 〈ψl|E(k, µ)|ψu〉∗ . (39)

In the above equation the momentum operator p = −i▽▽▽ may be replaced by

[r, H0], to obtain

〈ψu|ε̂εεµ · [r, H0]|ψl〉 ≈ (El − Eu)〈ψu|ψl〉, (40)

if Eu, El denote the energy eigenvalues of ψu, ψl when considered as eigenstates

of Eq. (1). We, thus, realize the Kramers-Heisenberg form represented by

Eq. (1) of [14].

3 The scattering matrix for atoms in external electric quadrupole

and uniform magnetic fields

The central result of the previous section is the derivation of the general

expression for the on-energy-shell T -matrix element Tfi(µ, µ
′). If the incident

radiation is in a pure state

ε̂εεi =
∑

µ′

ciµ′ ε̂εε
′
µ′ , (41)

the amplitude for detecting the scattered radiation in a pure state

ε̂εεf =
∑

µ

cfµε̂εεµ , (42)
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is given by

Tfi(ε̂εεf , ε̂εεi) =
∑

µµ′

cf
∗

µ ciµ′ Tfi(µ, µ
′) , (43)

where
∑

µ′ |ciµ′ |2 = 1 =
∑

µ |cfµ|2. On the other hand, it is more convenient

to employ the density matrix formalism [37,24,25] to describe the states of

polarization of the incident and scattered radiation, as it is more general and

can handle mixed states of polarization as well.

3.1 The density matrix for polarized radiation

The density matrix ρ for polarized radiation may be written as

ρ =
1

2

[
I + σγ

xQ+ σγ
yU + σγ

zV
]

=
1

2

3∑

p=0

σγ
p Sp , (44)

in terms of the well-known [12] Stokes parameters (I = S0, Q = S1, U =

S2, V = S3) and Pauli matrices σγ
x = σγ

1 , σ
γ
y = σγ

2 , σ
γ
z = σγ

3 and the unit

matrix σγ
0 whose rows and columns are labeled by the left and right circular

polarization states |µ = ±1〉 of radiation. Clearly,

Sp = tr(σγ
p ρ), p = 0, 1, 2, 3 (45)

where tr denotes the trace or spur. A column vector S with elements Sp, p =

0, 1, 2, 3 is referred to as the Stokes vector for polarization. If we consider

Eq. (21) as a 2 × 2 matrix T with elements Tµµ′ ≡ Tfi(µ, µ
′), the density

matrix ρ of scattered radiation is given by

ρ = T ρ′ T † , (46)
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where ρ′ denotes the density matrix of polarized radiation incident on the

atom. Using Eq. (45), we have

Sp =
1

2

3∑

p′=0

tr(σγ
p Tσ

γ
p′ T

†)S′
p′ , (47)

for the Stokes parameters of the scattered radiation, in terms of the matrix T ,

its hermitian conjugate T † and the Stokes parameters S′
p′ characterizing the

radiation incident on the atom.

3.2 The scattering matrix

If the Stokes vector S′ with elements (I ′ = S ′
0, Q

′ = S ′
1, U

′ = S ′
2, V

′ = S ′
3),

characterizes the radiation incident on the atom, the Stokes vector S charac-

terizing the scattered radiation may be expressed as

S = R S′ , (48)

where the 4× 4 matrix R is referred to as the scattering matrix. Comparison

of Eqs. (47) and (48) readily identifies the elements of R as

Rpp′ =
1

2

∑

µµ′

µ′′µ′′′

(σγ
p )µ′′µTµµ′(σγ

p )µ′µ′′′(T †)µ′′′µ′′ , (49)

where we may use Eq. (32) for Tµµ′ and note that (T †)µ′′′µ′′ = T ∗
µ′′µ′′′ , for which

we may use the complex conjugate of Eq. (32). We may thus write

Tµµ′ =
∑

n

φn

∑

m′

f
m′

i

c
s∗
f

m′

f
csi

m′

i
Mm′

f
m′

i
(µ, µ′) ,

(T †)µ′′′µ′′ =T ∗
µ′′µ′′′ =

∑

n′

φ∗
n′

∑

m′′

f
m′′

i

c
sf

m′′

f
c
s∗i
m′′

i
Mm′′

f
m′′

i
(µ′′, µ′′′)∗ , (50)

where
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Mm′

f
m′

i
(µ, µ′) =

[
E(k, µ)GsnA(k′, µ′)

]

m′

f
m′

i

,

Mm′′

f
m′′

i
(µ′′, µ′′′)∗ =

[
E(k, µ′′)Gsn′A(k′, µ′′′)

]∗

m′′

f
m′′

i

,

=
[
A†(k′, µ′′′)Gsn′E†(k, µ′′)

]

m′′

i m′′

f

, (51)

since Gsn′ is hermitian. Using the above in Eq. (49), we have

Rpp′ =
1

2

∑

µµ′

µ′′µ′′′

(σγ
p )µ′′µ(σγ

p′)µ′µ′′′

∑

nn′

φnφn′

∑

m′

f
m′

i

m′′

f
m′′

i

[
E(k, µ)GsnA(k′, µ′)

]

m′

f
m′

i

×csi

m′

i
c
s∗i
m′′

i

[
A†(k′, µ′′′)Gsn′E†(k, µ′′)

]

m′′

i
m′′

f

c
sf

m′′

f
c
s∗
f

m′

f
. (52)

Following Eq. (34), we may define hermitian matrices Gsi and Gsf through

their elements

Gsi

m′

i
m′′

i
= csi

m′

i
c
s∗i
m′′

i
, (53)

Gsf

m′′

f
m′

f
= c

sf

m′′

f
c
s∗
f

m′

f
, (54)

so that we may rewrite Eq. (52) as

Rpp′ =
1

2

∑

µµ′

µ′′µ′′′

(σγ
p )µ′′µ(σγ

p′)µ′µ′′′

∑

nn′

φnφ
∗
n′

Tr
[
E(k, µ)GsnA(k′, µ′)GsiA†(k′, µ′′′)Gsn′E†(k, µ′′)Gsf

]
, (55)

where Tr ≡ ∑
m′

f
denotes the Trace or Spur of the (2Jf +1)× (2Jf +1) matrix

within the square brackets, which is defined through matrix multiplication of

the eight matrices, each of which is well-defined through Eqs. (28), (29), (35),

(53), (54) for any specified atomic transition from an initial state ψi with

energy Ei and total angular momentum Ji to a final state ψf with energy

Ef and total angular momentum Jf , when the atom is exposed to a combined

external electric quadrupole field and a uniform magnetic field. It may be noted

that si and sf are fixed and the summation over n, n′ includes summation over
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sn, sn′.

3.3 The particular case of resonance scattering via electric dipole transitions

between Ji = Jf = 0 and Jn = 1

In this important particular case, which has often been investigated in the

presence of pure magnetic fields, it is clear that Gsi = Gsf = 1 in Eq. (55) and

L = L′ = 1 in Eqs. (28) and (29), so that we may write the trace appearing

in Eq. (55) as

Tr
[
A(k′, µ′)A†(k′, µ′′′)Gsn′E†(k, µ′′)E(k, µ)Gsn

]

=
∑

m′
nm′′

n
m′′′

n m′′′′
n

[
A(k′, µ′)A†(k′, µ′′′)

]

m′
nm′′′

n

(
Gsn′

)

m′′′
n m′′′′

n

×
[
E†(k, µ′′)E(k, µ)

]

m′′′′

n m′′

n

(
Gsn

)

m′′

nm′

n

. (56)

We may use Eq. (18), in combination with Eq. (28), to write

[
A(k′, µ′)A†(k′, µ′′′)

]

m′

nm′′′

n

= |J1(ω
′)|2µ′µ′′′D1

m′

nµ′(φ′, θ′, 0)D1
m′′′

n µ′′′(φ′, θ′, 0)∗ ,

(57)

and Eq. (19), in combination with Eq. (31), to write

[
E†(k, µ′′)E(k, µ)

]

m′′′′

n m′′

n

= |J1(ω)|2µµ′′D1
m′′′′

n µ′′(φ, θ, 0)D1
m′′

nµ(φ, θ, 0)∗ . (58)

Using Eq. (34) for
(
Gsn

)

m′′
nm′

n

and
(
Gsn′

)

m′′′
n m′′′′

n

, we may attach c
s∗n
m′

n
c
sn′

m′′′

n
along

with (σγ
p′)µ′µ′′′ to Eq. (57), while we may attach csn

m′′
n
c
s∗
n′

m′′′′
n

along with (σγ
p )µ′′µ

to Eq. (58), so that
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∑

µ′µ′′′

(σγ
p′)µ′µ′′′µ′µ′′′

∑

m′
nm′′′

n

c
s∗n
m′

n
c
sn′

m′′′

n
D1

m′

nµ′(φ′, θ′, 0)D1
m′′′

n µ′′′(φ′, θ′, 0)∗

=
2∑

λa=0

λa∑

µa=−λa

λa∑

ma=−λa

fp′(λa, µa)Fnn′(λa, ma)D
λa
maµa

(φ′, θ′, 0) , (59)

∑

µµ′′

(σγ
p )µ′′µµ

′′µ
∑

m′′

nm′′′′

n

csn

m′′
n
c
s∗
n′

m′′′′
n
D1

m′′′′
n µ′′(φ, θ, 0)D1

m′′
nµ(φ, θ, 0)∗

=
2∑

λe=0

λe∑

µe=−λe

λe∑

me=−λe

fp(λe, µe)Fn,n′(λe, me)
∗Dλe

meµe
(φ, θ, 0) . (60)

Thus, we have

Rpp′ =
1

2
|J1(ω)|2|J1(ω

′)|2
∑

nn′

φnφn′

2∑

λa=0

2∑

λe=0

Fn,n′(λa, ma)Fn,n′(λe, me)
∗

fp(λe, µe)fp′(λa, µa)D
λe

meµe
(φ, θ, 0)Dλa

maµa
(φ′, θ′, 0) , (61)

where

Fn,n′(λ,m) =
∑

m′
n

C(1, 1, λ;m′
n,−m′′′

n , m)(−1)m′′′

n c
s∗n
m′

n
c
sn′

m′′′

n
, (62)

fp(λ, µ) =
∑

λ

C(1, 1, λ;µ′,−µ′′′, µ)(−1)−µ′′′

µ′µ′′′(σγ
p )µ′µ′′′ . (63)

The fp(λ, µ) for p = 0, 1, 2, 3 may explicitly be written as

f0(λ, µ)=
2√
3

[
δλ,0 +

1√
2
δλ,2

]
δµ,0 ,

f1(λ, µ)=−δλ,2

[
δµ,2 + δµ,−2

]
,

f2(λ, µ)= iδλ,2

[
δµ,2 − δµ,−2

]
,

f3(λ, µ)=
√

2 δλ,1δµ,0 . (64)

It is interesting to note that Fn,n′(λ,m), in the particular case of an atom

exposed to a pure magnetic field B directed along (θB, φB) may be written as

Fn,n′(λ,m)=FMn,M ′

n
(λ,m)

= (−1)M ′

n−m C(1, 1, λ;Mn,−M ′
n,Mλ)

√
4π [λ]−1

YλMλ
(θB, φB) , (65)
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in terms of the spherical harmonics. From Eq. (61) we can recover the Hanle-

Zeeman scattering matrix of Stenflo [14] by setting the electric field strength to

zero, and employing Eq. (65). The profile functions appearing in Eq. (61) are in

the atomic frame. To obtain the Hanle-Zeeman scattering matrix, one needs to

follow exactly the procedure outlined in [14], to transform φn to the laboratory

frame through a Doppler convolution. In the weak field limit, we recover the

well known Hanle scattering phase matrix of Landi Degl’Innocenti and Landi

Degl’Innocenti [38], by assuming φMnφ
∗
M ′

n
to be independent of Mn,M

′
n. In

the strong field limit, gB is large compared to the line widths. Hence the

three Zeeman component lines are well separated. If we neglect the coupling

between the Zeeman substates (drop the summation over n in Eq. (61), by

setting n = n′), we recover the restrictive phase matrix of Obridko [39], which

is basically a modified resonance scattering by individual Zeeman components.

4 Numerical Results and Discussions

The calculations presented in this paper are applicable to magnetic fields of

arbitrary strength, and also the presence of quadrupole electric fields sur-

rounding the radiating atom. To check the correctness of our derivation, we

have reproduced the results of Stenflo (1998, Fig. 3) for the particular case of

Hanle-Zeeman effect [40]. In weak magnetic fields, pure Hanle effect prevails.

In strong fields, the Zeeman effect is the dominant process. In intermediate

fields, there is a smooth transition from weak field Hanle effect to the strong

field Zeeman effect. These two effects exhibit relative dominance in differ-

ent regimes of field strength, but they fundamentally overlap over the entire

regime.
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We consider the simplest case of a J = 0 → 1 → 0 type transition which

produces a standard Zeeman triplet. In this Section we present the results of

a single scattering experiment (see Eq. 48). We consider a 90◦ scattering of

an unpolarized beam of radiation incident on the atom. The incident radia-

tion is also assumed to be frequency independent (broadband pulse). Since

S′ = (1, 0, 0, 0)T, the scattered Stokes intensity components are nothing but

(I, Q, U, V ) = (R11, R21, R31, R41), which measure the maximum degree

of anisotropy for a given angle of scattering. The external magnetic field is

assumed to be oriented along the Z− axis of the astrophysical (laboratory)

reference frame (see Fig. 1).

The scattering is assumed to be frequency coherent in the laboratory frame.

A Voigt profile function with a damping parameter a = 0.004 in units of

the Doppler width ∆νD = (ν0/c)
√

2kT/Ma is employed to compute all the

results. In Sect. 4.1 we present the results for pure magnetic case. In Sect. 4.2

the results of scattering on atom immersed in pure electric quadrupole field

is considered. Finally in Sect. 4.3 we consider the combined case of uniform

magnetic and quadrupole electric fields.

4.1 The pure magnetic field case

Fig. 3 shows singly scattered polarization profiles for this case. The field

strength B is chosen to represent the entire regime of Hanle-Zeeman effect

(vB = 0.0008 – 2.5 in steps of a factor 5). The splitting parameter vB is de-

fined as vB = νL/∆νD where νL = eB/4πmc is the Larmor frequency. The

geometry of scattering chosen by us (θ′ = 0◦, φ′ = 0◦; θ = 90◦, φ = 45◦)
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corresponds to Stokes I and Q given by

I =
3

8

[
φ1φ

∗
1 + φ−1φ

∗
−1

]
; Q = −I. (66)

The profile functions φ1 and φ−1, are now in the laboratory frame. They are

obtained by a convolution of the atomic frame Lorentzian (see Eq. (22)) with

the Doppler profile. The real part of φ1 for example, is a Voigt function whereas

the imaginary part is a Faraday-Voigt function (see [14]). In the laboratory

frame the frequency is expressed in dimensionless units (v = (ν0 − ν)/∆νD).

Clearly, for weak fields the Zeeman splitting is not complete. Hence the I

profile simply broadens without exhibiting a separation of the components.

This kind of intensity profiles are very typical of Hanle and Hanle-Zeeman

regime in the second solar spectrum of the Sun (see [12]). The case of vB = 2.5

represents a strong field Zeeman effect, and we clearly see a well separated

doublet. Since the line of sight (the scattered ray) is perpendicular to the

magnetic field, according to conventional Zeeman effect theory (Zeeman effect

treated as absorption/emission), one expects a triplet pattern in I profile, and

a Q profile with π component having opposite polarization compared to the

two σ components, along with U = V = 0. However, we now observe only

a doublet in the I profile (see Fig. 3), showing that the mechanism involved

is indeed a ‘scattering’ process and not ‘absorption followed by uncorrelated

emission’ process. With the help of classical theory of dipole scattering, one

can argue that, for 90◦ scattering and for a magnetic field along the Z -

axis, the π component is not excited at all by the incident radiation. Only

the components with electric vibration perpendicular to the scattering plane

(containing the incident and scattered ray) are excited, and hence the two σ

components appear in the I profile.
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From Eq. (66) and also from the Fig. 3, we see that Q/I = −1, i.e., inde-

pendent of frequency as well as the field strength. In other words scattered

polarization is same as the well known non-magnetic pure Rayleigh scattering

polarization. This is to be expected, because in the weak field regime, the Hanle

effect is absent for vertical magnetic fields, and the scattered polarization can

arise only due to Rayleigh scattering process. In the strong field regime, both

the sigma components have linear polarization of equal magnitude, and scat-

ter independently (see Eq. (66)). Therefore we obtain a maximum degree of

linear polarization, namely Q/I = −1. We refer to this case as ‘Zeeman scat-

tering’ or equivalently ‘Rayleigh scattering in strong magnetic fields’ (see also

[11,23]).

4.2 The case of pure electric quadrupole field

Fig. 4 shows the singly scattered Stokes profiles in the presence of a pure elec-

tric quadrupole field surrounding the atom. The single scattering experiment

is considered as in the pure magnetic field case. The electric field is charac-

terized by two parameters, namely the electric splitting parameter A which is

taken in the same way as magnetic splitting parameter, namely vA = 0.0008

– 2.5 in steps of 5, where vA is electric splitting parameter in Doppler width

units. The asymmetry parameter η is fixed at 1. The upper Jn = 1 level splits

into 3 levels with energies −2A, 0 and +2A corresponding to the eigenstates

ψ1 = |1, 0〉, ψ2 = (|1,−1〉− |1, 1〉)/
√

2, and ψ3 = (|1,−1〉+ |1, 1〉)/
√

2, respec-

tively (see Fig. 2c of [24]). For the scattering geometry employed by us, the

Stokes parameters are given by the analytic expressions
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I =
3

8

[
φ2φ

∗
2 + φ3φ

∗
3

]
; Q =

3

8

[
φ2φ

∗
2 − φ3φ

∗
3

]
,

U =
3

8

[
φ2φ

∗
3 + φ3φ

∗
2

]
; V =

3

8
i
[
φ2φ

∗
3 − φ3φ

∗
2

]
. (67)

The profile functions φ2 and φ3 correspond to the eigenstates ψ2 and ψ3 re-

spectively, and are given by

φ2,3 = H(v + (1 ∓ η)vA, a) + 2 i F (v + (1 ∓ η)vA, a), (68)

in the laboratory frame. Here H and F are the well known Voigt and Faraday-

Voigt functions [14]. From Eq. (67), we note that U and V are generated purely

due to the coupling between the eigenstates ψ2 and ψ3.

For weak electric fields (vA < 0.1) the shapes of the I profile are not affected

significantly, when compared to the corresponding pure magnetic case (see

Fig. 3). For vA > 0.1 there is a blue shift compared to the pure magnetic

case, which increases gradually for larger values of vA until we get a doublet

that is asymmetrically placed about the line center. The Q/I profiles have an

interesting shape, in the sense that they are similar to the V/I profiles of the

pure magnetic field case. For vA = 0.0008 and 0.004, Q/I is extremely small.

As vA increases, Q/I gradually increases, and the zero cross-over point of Q/I

shifts toward the blue (see for eg. dash-triple dotted line in Fig. 4). U/I and

V/I show interesting behavior. Unlike Q/I, the ratio U/I takes largest value

for vA = 0.0008, and is entirely positive (see upper most solid line in U/I panel

of Fig. 4). For vA = 0.004 (dotted line) U/I takes both positive and negative

values. As vA increases we note that U/I goes to zero in the line core (except

for vA = 2.5 – dash-triple dotted line which shows a small positive peak around

v = 2.5), and becomes entirely negative and nearly constant in the wings. The

shape of V/I is similar to that of U/I (namely, taking constant values at line
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core and line wings with a swift transition around v ≃ 3). The magnitude of

V/I initially increases with vA and then rapidly decreases toward zero, as vA

increases. For vA > 0.1, the V/I is nearly zero throughout the line profile (see

Fig. 4).

If the mechanism involved is a pure emission process, then one would expect

all the three wave functions ψ1,2,3 to contribute, and produce line components

in Stokes I, along with Q = V = 0, and U 6= 0 (see Eqs. (69)–(72) in [24]).

However when the interaction of radiation is treated as scattering (represented

through angular correlations between incident and scattered ray), we see that

only a doublet is seen in Stokes I (since ψ1 is not excited at all according to

Eq. (67)) with Q, U and V non-zero. This is the essential difference between

the spontaneous emission process and the scattering process in quadrupole

electric fields. We have also computed the Stokes profiles for the η = 0.5 case,

and find that they do not differ qualitatively from η = 1 case, except for

changes caused by different amount of level splitting.

4.3 The case of combined magnetic and quadrupole electric fields

In Fig. 5 we show the Stokes profiles for this case. We employ ratio A/B =

0.5 (which defines the relative strength of electric field with respect to the

magnetic field), and the asymmetry parameter η = 1. The splitting parameter

vB (= 0.0008 – 2.5) is employed as in the pure magnetic case. The simplest

geometry of the combined magnetic and quadrupole fields with B along the

Z-axis of the PAF, and PAF itself coinciding with the ARF, is employed in the

computation of the results in this section. The scattering geometry is same as

in Figs. 3 and 4. The upper level Ju = 1 is split into three levels n = 1, 2, 3
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with energies

E1 = −2rB ; E2,3 = [r ∓ (r2η2 + 1)1/2]B, (69)

where r = A/B. The corresponding eigenstates are given by (see [24])

ψ1 = |1, 0〉 ; ψ2 = b1|1,−1〉 + b2|1, 1〉 ; ψ3 = −b2|1,−1〉 + b1|1, 1〉, (70)

where the interference coefficients are defined by

b1 =
rη + 1 + (r2η2 + 1)1/2

2

[
r2η2 + 1 + rη(r2η2 + 1)1/2

]1/2
,

b2 =
rη − 1 + (r2η2 + 1)1/2

2

[
r2η2 + 1 + rη(r2η2 + 1)1/2

]1/2
. (71)

Fig. 6 shows the energy level splitting for spin-1 upper level, exposed to the si-

multaneous presence of an external electric quadrupole and uniform magnetic

fields. Notice that “level-crossing” occurs when the electric field strength in-

creases. It is worth noting that these levels are not pure states, but superposed

states. The cross-over occurs for only a single value of electric quadrupole field

strength at which the levels become degenerate.

Fig. 5 presented in this paper can be interpreted using the panel (c) of Fig. 6.

For r = 0.5, the energy eigenstates E1 and E2 are below the A = B = 0

reference line. For the geometry chosen, the state ψ1 = |1, 0〉 is not excited, as

can be seen from the following analytic expressions for the scattered Stokes

parameters :
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I =
3

8

[
φ2φ

∗
2 + φ3φ

∗
3

]
,

Q=
3

8

[
2 b1 b2 (φ3φ

∗
3 − φ2φ

∗
2) + i (b21 − b22)(φ3φ

∗
2 − φ2φ

∗
3)
]
,

U =
3

8

[
φ2φ

∗
3 + φ3φ

∗
2

]
,

V =
3

8

[
(b21 − b22)(φ2φ

∗
2 − φ3φ

∗
3) + 2 i b1 b2 (φ3φ

∗
2 − φ2φ

∗
3)
]
. (72)

The profile functions φ2 and φ3 in the above expressions correspond to the

eigenstates ψ2 and ψ3 respectively, and are given by

φ2,3 = H

(
v+

(
r∓

√
r2η2 + 1

)
vB, a

)
+2 i F

(
v+

(
r∓

√
r2η2 + 1

)
vB, a

)
, (73)

in the laboratory frame for any η.

The Stokes I profiles in the combined case are quite similar in amplitude

and shape to those in the pure magnetic case, except for the position of the

component lines (for vB > 0.1). For vB = 0.0008 and 0.004 (solid and dotted

lines which nearly overlap on each other in Q/I panel of Fig. 5), the Q/I

profiles are very different compared to the corresponding pure electric field

case, and are entirely negative. For vB > 0.004, these Q/I profiles resemble

their corresponding counterparts of the pure electric field case in terms of the

frequency dependence. Clearly, there is a decrease in the magnitude of Q/I

when compared to both the pure magnetic and the pure electric case.

U/I in the combined case is quite similar to the pure electric case (compare

U/I in Eq. (67) with Eq. (72) for r = 0.5 and η = 1). In other words, we can

conclude that for this particular geometry the entire frequency dependence of

the U/I comes from the electric field effect. The only difference is in vB = 2.5

(dash-triple dotted line) case, where in the small peak is enhanced as well as

it is now centered around 1.5, unlike in pure electric field case. V/I profiles

in combined case bear resemblance to Q/I profiles in shape, differing only in
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magnitude and sign (for vB > 0.0004). Clearly, the quadrupolar electric field

produces an additional depolarization in Q/I (compared to the Q/I of pure

magnetic case in Fig. 3), and a rotation of the plane of polarization (or gen-

eration of new U/I). Therefore in the special geometry of vertical magnetic

fields (B parallel to the Z-axis of PAF and ARF simultaneously), if one ob-

serves strong U/I and V/I signals as well as relatively smaller Q/I signals in

a 90◦ scattering (eg. as in the case of extreme limb observations of the Solar

chromosphere; or like the special scattering geometry that we considered for

discussion), it could indicate the asymmetries arising from the quadrupolar

electric fields surrounding the atom. Notice that in the absence of electric

fields, U/I = V/I = 0 and Q/I = −1 for the vertical magnetic fields (see

Fig. 3). Another diagnostic indicator of quadrupolar electric fields is the net

blue shift of the Stokes profiles, unlike the linear Stark effect which produces

symmetric shifts with respect to the line center.

For the sake of discussion, we have computed the scattered Stokes profiles

for η = 0 also in the combined case. This case is interesting, because, from

Fig. 6 we observe that for r ≤ 0.5, the splitting is independent of η, namely

the splitting pattern is same for both η = 0 and 1. As a result, the Stokes I

for both η = 0 and 1 cases are nearly identical. This can be understood from

Eq. (72) by setting η = 0. The profile functions φ2,3 are now given by Eq. (73)

with η = 0. We note that the real part of φ2 for η = 0 and 1 respectively

are H(v− 0.5vB, a) and H(v− 0.62vB, a). Similarly for φ3, corresponding real

parts are H(v + 1.5vB, a) and H(v + 1.62vB, a). For this reason, the Stokes I

as well as U/I profile for η = 0 and 1 are nearly identical. However the Q/I

and V/I profiles are quite different (see Eqs. (72)). The Q/I profiles of η = 0

case have shapes and magnitudes similar to the V/I profiles of Fig. 4. The
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V/I profiles of η = 0 case have shapes and magnitudes similar to Q/I profiles

of Fig. 4, except for a sign difference.

5 Conclusions

The scattering matrices for the combined effect of electric quadrupole field and

uniform magnetic fields (of arbitrary strength) are derived using quantum elec-

trodynamic approach. The scattering matrix for Hanle-Zeeman effect is vali-

dated by comparing with the published results of Stenflo [14]. The quadrupole

electric field is characterized by strength and asymmetry parameters, which

produce unique diagnostic signatures that may be employed to detect the elec-

tric charge distribution asymmetries in the solar atmosphere. The theoretical

formulation is quite general and can handle not only the simplest case of a

triplet (J = 0 → 1 → 0) transition that is employed for illustrations in this pa-

per, but also an arbitrary choice of quantum numbers. We have demonstrated

the properties of the coherence or interference phenomena, like strong field

Zeeman scattering, Hanle and magnetic Raman scattering that are important

in the interpretation of spectral lines in the second solar spectrum.

Acknowledgements

GR is grateful to Professors B. V. Sreekantan, R. Cowsik, J. H. Sastry, R.

Srinivasan and S. S. Hasan for facilities provided for research at the Indian

Institute of Astrophysics. Yee Yee Oo wishes to thank the Director of Indian

Institute of Astrophysics, the Chairman, Physics Dept., Bangalore University

for extending the research facilities. She also acknowledges ICCR, Government

31



of India for financial support to visit India, during which the major part of

the work was carried out. MS is financially supported by Council of Scientific

and Industrial Research (CSIR), through a SRF (Grant No :9/890(01)/2004-

EMR-I), which is gratefully acknowledged. Authors would like to thank Mr.

K. Nagaraju for useful discussions.

References

[1] Hale GE. On the probable existence of a magnetic field in sun-spots. Astrophys

J 1908;28;315-43.

[2] Chandrasekhar S. Radiative Transfer. Oxford Clarendon Press; 1950.

[3] Landi Degl’Innocenti E. Polarization in spectral lines. I - A unifying theoretical

approach. Sol Phys 1983a;85:3-31.

[4] Landi Degl’Innocenti E. Polarization in Spectral Lines. II: A Classification

Scheme for Solar Observations. Sol Phys 1983b;85:33-40.

[5] Landi Degl’Innocenti E. Polarization in spectral lines. III - Resonance

polarization in the non-magnetic, collisionless regime. Sol Phys 1984;91;1-26.

[6] Landi Degl’Innocenti E. Polarization in spectral lines. IV - Resonance

polarization in the Hanle effect, collisionless regime. Sol Phys 1985;102:1-20.

[7] Landi Degl’Innocenti E, Bommier V, Sahal-Bréshot S. Resonance line
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Fig. 1. The scattering geometry: (XQ,YQ,ZQ) refers to the Principal Axes Frame

(PAF) characterizing the electric quadrupole field. The radiation is incident along

(θ′, φ′) and scattered along (θ, φ) with respect to the astrophysical reference frame

(ARF) denoted by (X,Y,Z). The magnetic field ~B is oriented along (θ̃B , φ̃B) with

reference to PAF and (θB , φB) with reference to the astrophysical reference frame

(the azimuthal angles φ̃B and φB are not marked in the figure).
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Fig. 2. Level diagrams showing the atom-radiation interaction processes discussed

in this paper. (a) two-level resonance scattering process, (b) three-level fluorescence

scattering process, (c) Hanle scattering process in weak magnetic fields and (d) the

general case of Raman scattering.
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Fig. 3. Stokes Profiles for Pure magnetic field case. Magnetic field is oriented

along the Z -axis of the ARF (see Fig. 1). The model parameter employed are:

a = 0.004, the scattering geometry defined by θ′ = 0◦, φ′ = 0◦; θ = 90◦, φ = 45◦,

and the magnetic field strength defined by vB = 0.0008 (solid line), 0.004 (dot-

ted line), 0.02 (dashed line), 0.1 (dash-dotted line), 0.5 (dash-double dotted line),

and, 2.5 (dash-triple dotted line). Notice a constant degree of linear polarization

Q/I = −100%.
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Fig. 4. Stokes line profiles for pure quadrupolar electric field case. The

model parameters employed are: a = 0.004, with the scattering geometry

θ′ = 0◦, φ′ = 0◦; θ = 90◦, φ = 45◦, and the electric field strength defined through

the splitting parameter vA = 0.0008 (solid line), 0.004 (dotted line), 0.02 (dashed

line), 0.1 (dash-dotted line), 0.5 (dash-double dotted line), and, 2.5 (dash-triple dot-

ted line), and the asymmetry parameter η = 1. Notice the blue shift of the profiles

compared to the pure magnetic field case for large values of vA (> 0.1).
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Fig. 5. Stokes Profiles for combined quadrupolar electric and uniform magnetic field

case. The ratio r = A/B = 0.5 and the asymmetry parameter η = 1. Other input

model parameters, scattering geometry and the line types are same as in Fig. 3.
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Fig. 6. Energy level diagrams showing the combined effect of magnetic and electric

quadrupole fields. The panels (a, b, c) represent different asymmetry parameters η.

The energies E1, E2, and E3 corresponding to the states ψ1, ψ2, and ψ3 respectively

are plotted. The value r = 0 corresponds to the pure Zeeman case.
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