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ABSTRACT

Polarized scattering in spectral lines is governed by a 4 x 4 matrix that de-
scribes how the Stokes vector is scattered and redistributed in frequency and
direction. Here we develop the theory for this redistribution matrix in the pres-
ence of magnetic fields of arbitrary strength and direction. This general magnetic
field case is called the Hanle-Zeeman regime, since it covers both of the partially
overlapping weak and strong-field regimes in which the Hanle and Zeeman effects
dominate the scattering polarization. In this general regime the angle-frequency
correlations that describe the so-called partial frequency redistribution (PRD)
are intimately coupled to the polarization properties. We develop the theory
for the PRD redistribution matrix in this general case and explore its detailed
mathematical properties and symmetries for the case of a J =0 - 1 — 0
scattering transition, which can be treated in terms of time-dependent classical
oscillator theory. It is shown how the redistribution matrix can be expressed as
a linear superposition of coherent and non-coherent parts, each of which contain
the magnetic redistribution functions that resemble the well known Hummer type
functions. We also show how the classical theory can be extended to treat atomic
and molecular scattering transitions for any combinations of quantum numbers.

Subject headings: Redistribution Matrix: Polarization - Line formation: Partial
Redistribution

! Joint Astronomy Program, Dept. of Physics, IISc, Bangalore-560 012; sampoorna@iiap.res.in



-2 -

1. Introduction

The discovery of the extremely rich structuring of the Second Solar Spectrum (Stenflo &
Keller 1996, 1997) opened the window to a new, previously unexplored territory with great
diagnostic potential. This linearly polarized spectrum, which is formed by coherent scattering
processes, has been mapped with high spectral resolution from the UV at 3160 A to the red
at 6995 A (Gandorfer 2000, 2002, 2005), providing us with a wealth of new information
both about the Sun and about the physics of spectral line formation in magnetized stellar
atmospheres. The Second Solar Spectrum is modified by magnetic fields through the Hanle
and Zeeman effects. The Hanle effect represents the magnetic modification of the scattering
polarization. It is a coherency phenomenon and responds to weak fields, when the Zeeman
splitting is comparable to the small damping width of line transitions. The usual Zeeman-
effect polarization, on the other hand, is produced by stronger fields, when the Zeeman
splitting gets comparable to the much larger Doppler width of the line. A further difference
between the two effects is that the Hanle effect is sensitive to spatially unresolved turbulent
fields with zero net magnetic flux, while the Zeeman effect is blind to such fields (due to its
different symmetry properties). The two effects therefore nicely complement each other (cf.
Stenflo 1994).

Many of the strongest and most conspicuous lines in the Second Solar Spectrum are
strong lines that are formed rather high, often in the chromosphere above the temperature
minimum. From standard, unpolarized and non-magnetic line-formation theory such lines
are known to be formed under conditions that are very far from local thermodynamic equilib-
rium. They are characterized by broad damping wings surrounding a Doppler core. Doppler
shifts in combination with collisions cause photons that are absorbed at a given frequency to
be redistributed in frequency across the line profile in a complex way during the scattering
process. Two idealized, limiting cases to describe this redistribution are “frequency coher-
ence” and “complete redistribution”, but the general theory that properly combines these
two limiting cases goes under the name “partial frequency redistribution”. Strong lines can
only be properly modeled when PRD is taken into account.

The complexity of the redistribution problem escalates when we include polarization
and magnetic fields, since the previously unpolarized scalar redistribution function becomes
a 4 x 4 redistribution matrix that describes how the Stokes 4-vector is redistributed in both
frequency and angle. In the absence of magnetic fields the frequency redistribution factorizes
out from the polarization properties, which can be described by a frequency-independent
4 x 4 phase matrix. Such non-magnetic but polarized PRD has been applied to describe the
polarized line profile of Ca1 4227 A (Saliba 1985; Faurobert-Scholl 1992) and later to model
other strong lines in the Second Solar Spectrum (Fluri et al. 2003a; Holzreuter et al. 2005),
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like Na1 Dy 5890 A, and other important lines such as Sr11 4078 A, and Cr1 3594 A.

To exploit these strong lines for magnetic-field diagnostics we need however to go one
step further, namely to develop the theory for PRD in the presence of magnetic fields of
arbitrary strengths. This is the aim of the present paper. In the presence of magnetic fields
we can no longer factorize the polarization and frequency redistribution problem, but they
get deeply intertwined. This naturally increases the complexity of the problem, but this
complexity also has a rich structure with many symmetries.

The general concepts of theory of PRD were first developed for the scalar problem of
non-polarized scattering (cf. Mihalas 1978). The theory of PRD from a classical perspec-
tive was originally introduced by Zanstra (1941), who addressed the issue of collisions on
non-magnetic frequency redistribution in resonance lines. Stenflo (1994, 1996, 1998) has
developed a modern approach to the classical oscillator theory and applied it to atomic line
transitions. His method can handle light scattering on atomic energy levels in the presence of
arbitrary magnetic fields and various kinds of collisions (treated approximately). This clas-
sical framework was further extended by Bommier & Stenflo (1999, hereafter called BS99)
to handle PRD effects in the presence of arbitrary magnetic fields and collisions. Recently,
Lin et al. (1998) have proposed a classical theory of the Hanle effect (similar to that of
Stenflo 1994), to explain the polarization of He 1 10830 A line observed in a solar filament.
This classical theory has been extended by Lin & Casini (2000) to derive the polarization
properties of the coronal forbidden emission lines, which arise from magnetic dipole (M1)
transitions.

The quantum mechanical framework for the problem of atomic line scattering was de-
veloped by Weisskopf (1933), Wooley (1938), Henyey (1940), Hummer (1962), Lamb & ter
Haar (1971), House (1971), Omont et al. (1972, 1973), Heinzel (1981), Cooper et al. (1982),
Landi Degl’Innocenti (1983, 1984), Domke & Hubeny (1988), Streater et al. (1988), Landi
Degl’'Innocenti et al. (1997), Bommier (1997a,b, 1999, 2003), Casini & Manso Sainz (2005).
See the reviews by Hubeny (1985); Nagendra (2003) for a historical development of the PRD
formulations, and Trujillo Bueno (2003); Uitenbroek (2003) for applications in Astrophysical
line formation theory, and Nagendra et al. (2002, 2003, and papers cited therein), and Fluri
et al. (2003b) for powerful numerical methods of solving the relevant line transfer problem,
of varying complexity.

The theory developed in BS99 solved the time-dependent oscillator equation in combina-
tion with a classical model for collisions (see Stenflo 1994, ch. 10). This gives self-consistent
and non-perturbative expressions for the polarized partial frequency redistribution matrix,
in the presence of magnetic fields of arbitrary strength and direction in the atomic frame.
The explicit form of the redistribution matrix in the laboratory frame was not given. BS99
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hints at the way to arrive at such expressions, which are needed, when the generalized
Hanle-Zeeman redistribution matrix is to be used in a radiative line transfer code.

When we here use the term “Hanle-Zeeman”, we mean the full field-strength regime,
from zero field to completely split lines. This general case contains many sub-regimes, which
only become distinct from each other if one makes idealizations, to deal with each separately.
We do not do any such idealizations here, so in this general case, the sub-regimes partially
overlap or gradually flow into each other. The Hanle effect has three sub-regimes: (i) Very
weak fields, when the field dependence can be disregarded, and the scattering behaves like the
non-magnetic case. (ii) Weak to intermediate fields, when the scattering polarization depends
on both the strength and direction of the field. This is what is most often referred to as the
“Hanle regime”. (iii) Saturated Hanle regime, when the fields are so strong that the scattering
polarization becomes insensitive to the field strength, but still depends on the field direction.
This saturated Hanle regime is what applies to the coronal forbidden lines. The saturation
occurs when the Zeeman splitting becomes much larger than the damping width. Even in this
saturated regime the Zeeman splitting can remain much smaller than the Doppler width, as
it does in the case of the coronal forbidden lines. When the Zeeman splitting is no longer too
small in comparison with the Doppler width, then ordinary Zeeman-effect polarization starts
to show up. The field strengths for which this occurs depend on the relative prominence of
scattering polarization and the polarimetric sensitivity of the instrument. While the Hanle
and Zeeman effects show relative dominance in different regimes, they fundamentally overlap
over the whole field strength regime.

In this paper we derive an explicit form of the Hanle-Zeeman redistribution matrix in
the laboratory frame, for the special case of a normal Zeeman triplet, in a co-ordinate system
in which the polar z axis is oriented along the magnetic field (cf. Fig. 1). This choice of
geometry does not limit the applicability of the theory, since the redistribution matrix for
an arbitrary field direction can be obtained by first choosing a system with the z axis along
the magnetic field, and then applying Mueller rotation matrices to obtain the redistribution
matrix for any other system with an arbitrary orientation of its z axis.

In Section 2, starting from the atomic frame expression for the ensemble averaged co-
herency matrix given in BS99, we derive the corresponding expression in the laboratory
frame. In Section 3 we present the analytical form of the Hanle-Zeeman redistribution ma-
trix. The magnetic redistribution basis functions that we encounter in Sect. 2 (see also
Bommier 1997b) are numerically studied in Sect. 4, because the total scattering probability
essentially depends on their angular and frequency dependence. The scattered Stokes vector
can be interpreted using the properties of these basis functions. The extension of the clas-
sical theory presented in Sections 2 and 3, to treat atomic and molecular scattering for any
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combination of quantum numbers is discussed in Sect. 5. Concluding remarks are given in
Sect. 6.



Fig. 1.— The geometry showing the scattering process in a co-ordinate system where the
polar z axis is oriented along the magnetic field. (€', ¢’) refer to the incident ray, (0, ¢) to
the scattered ray. O is the scattering angle.
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2. Coherency Matrix

The time dependent solution r,(t,&’), of the oscillator equation, which describes the
motion of a particle with charge —e and mass m in a central Coulomb potential, subject
to an external magnetic field B and an external oscillating electric field E', is given by (see
Eqgs. (16) - (18) of BS99)

Tq(ta 61) = Tq,sta.t(ta 61) + CTq,tra.ns(ta 61) 6i6a (1)

where
1 e—27ri§’t

Tgq, stat (t, 61) =

(2)

™ & — (v — qui, — iy /47)’
represents the stationary solution, and

1 6727ri(u07quL7i’y/47r)t

Tq, trans (t, 51) =

(3)

T & — (v — qui, — iv/4m)
represents the transitory solution for a free, damped oscillator. C and ¢ represent the
amplitude and phase of the oscillator. & is the frequency of the incident radiation in the

atomic frame. vy, v are the frame independent line center frequency and Larmor frequency,
respectively.

The spectral properties of the scattered radiation are obtained by taking the Fourier
transform of r,(¢, £'), defined as

+o0 )
(6 €)= / rolt, €) 7 dt, (4)

oo

where £ is the frequency of the scattered radiation in the atomic frame. The ensemble average
of bilinear products, also called the coherency matrix, is denoted by (qu;“,) and contains
all the frequency information, including the partial redistribution effects that correlate the
incident and scattered frequencies with each other. The ensemble average is performed to
include the random phase shifts that arise due to random phase destroying collisions.

2.1. Redistribution in the Atomic Frame

The expression for the ensemble averaged coherency matrix (7,7 is given in BS99, in
the atomic frame (see Egs. (27), (35) and (39) of BS99) as

(Fof)y ~ Acos By_g €Pi=d @1 (E)5(E — €) + B cos By—g cos ay_g €'Pa=d =o'
YEYe (NPT Ve
x® ()@ (), (5)
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where 3, 4, g4 are Hanle angles defined as

(¢ —¢)2mvy
tan fy_g = ——— =, (6)
Y+ Ve
and N9
fana , = L= )2 7)
v+ ’70/2

with v being a sum of radiative and inelastic collisional damping constants and ~, the elastic
collisional damping rate. ¢, ¢’ take values 0, £1. The effect of Hanle angle ,_, vanishes
in the line core due to cancellation between contributions from stationary and transitory
solutions. Thereby only the Hanle angle ,_, remains operative in the line core, and causes
depolarization via the cos a,_y factor, and rotation of the plane of polarization through the

e'®-d' factor. In the line wings the Hanle effect from both o, , and 8, , vanishes as shown
in Stenflo (1998).

The generalized profile function is defined as

1

@g;;7c (5) = 5 [(I)7+’Yc (yq - 6) + Q;—f—'yc (Vq’ - g)]) (8)
with the profile function given by
2/m1
Doy (g — &) = / (9)

v — qur, — & —i(y + ) /4n

where v, = vy — quz,. We can rewrite Eq. (9) as

:léw_i(VO_QVL_g)
T 62 + (vo — qui, — €)%

Dyiye (g =€) (10)

where 0,, = (7 + ) /4.

A and B in Eq. (5) are branching ratios between stationary and transitory solutions, de-
termined by probability arguments and normalization. The stationary solution is the source
of frequency—coherent scattering. The branching ratio A for frequency—coherent process is

(see Eq. (40) of BS99)
I'r

A=—"F 11

'R +T1+Tg (11)

where I'g is radiative rate, while I'1 and I'r are inelastic and elastic collision rates, respec-
tively.

The transitory solution is the source of complete redistribution. Thus branching ratio
B represents the fraction of the scattering processes for which the atom is subject to elastic
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collisions that destroy the frequency-coherence but not the atomic polarization (the 2K-
multipole). Hence B is given by (see Eq. (41) of BS99)

Iy —DW I'r
S Tp+D+Tg T+ T+ DE)’

(12)

where D) is the rate of destruction of the 2K-multipole, with K = 0,1,2 (note that
D©® = 0). We note that Tg +T'1 = v, g = 7., and D) = ~,/2 in the classical theory (see
Egs. (31)-(33) of BS99).

Substituting Eq. (8) into Eq. (5), we obtain

(7o) ~ Acosf, qfew;[@;m( " e )+ Bl =156 )

+B 08 fyg €08 ag_g ¢'Piv [(I)w—%( = &) Q. (v — €)
+O o, (g = &) P (Vg — §) + (I),%L%( — )P (v = &)
+(I)'y+'y ( g)qx;—i—'y ( 5)] (13)

Clearly terms in the square brackets represent the well known type II (in first square bracket)
and IIT (in second square bracket) atomic frame redistribution functions of Hummer (1962).
However, the essential difference is that we now have magnetically shifted frequencies (for
both incoming and outgoing photons), and the profile functions are complex Lorentzians.
The complex profile functions automatically take into account the magneto-optical effects
(imaginary part) and the absorption or emission effects (real part). The radiative transfer
equation is always formulated in the laboratory frame. Therefore the redistribution matrices
that appear in the scattering integral should refer to the laboratory frame. Hence there is a
need to transform them from the atomic frame to the laboratory frame.

2.2. Doppler Redistribution in the Laboratory Frame

The effect of the Doppler shifts (introduced by the motion of scattering atoms relative
to the fixed laboratory frame) is taken into account by convolving the atomic frame redistri-
bution function with a velocity distribution of the scattering atoms, which is conventionally
assumed to be Maxwellian (see Mihalas 1978, Eq. (13.13), p.417). Thus when going from
the atomic frame to the laboratory frame, we first have to replace £’ and £ by their Doppler
shifted values, related through

E=v—y(v-n)/c,
=V —p(v-n)/e, (14)
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where v is the velocity vector, and c is the speed of light. v and v/ are outgoing and incoming
frequencies relative to the laboratory frame. n and n’ are the directions of the outgoing and
incoming radiation. We introduce the dimensionless quantities

vy — V qur, Ow
x = Avn ; vq:x—A—yD; a:A—VD,
which are respectively, the emission frequency, magnetic shift, and damping parameter. Avp
is the Doppler width.

(15)

From Eq. (13) it is clear that each term in the square bracket can be independently
transformed to the laboratory frame. Following Mihalas (1978, ch. 13), one can easily obtain
(after some algebra) the ensemble averaged coherency matrix in the laboratory frame as

(FaTy) ~ Acosfy_g eiﬂq—q’%[RfI(x, n; 7', n') + Rﬂ*(x, n; z', n')] + Bcos f,—y
X COS Qg ei(ﬂqq’“Laqq’)%[Ri’fl(x, n; 2, n') + R}’I’I*q(:c, n; 2/, n')
+RY (z, n; «', ') + RYY *(z, n; o/, '),
(16)
where
72 '
Rlw, n; ', o) = Wsiln@ exp {_ [m} } " (cos(c(i)/Q)’ 2:352_(;);2)) - (7)
and

) 1 too 2 [a—i(v) —u) a Vyr
qq oo n o__ —u q a
R (z, n’x’n)_ﬂsin(%/_oo due [—a2+(v{1—u)2:| H(sin@’sin@ ucot@).
(18)

The symbol Rﬂfq(m, n; 2/, n') stands for complex conjugation only on the incoming profile

(i.e., on the complex Lorentzian in Eq. (18) — the term in the square bracket), while the
symbol Rfllf” *(z, n; o', n') stands for complex conjugation on both the incoming and outgoing
profiles. (Note: a prime on v means incoming radiation, while the absence of a prime on v
means outgoing radiation. This convention does not hold for indices ¢ and ¢'.) In Eqgs. (17)
and (18), © is the scattering angle (the angle between incident and scattered ray — cf. Fig. 1),
and we have introduced the complex function

H(a,x) = H(a,z) — 2iF(a,x), (19)
with the Voigt and Faraday-Voigt functions defined as

/+°° eV dy
reo (T—y)2+a?’

L (@ —y)eVdy
F(a,x)——/_oo o e (20)
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From Egs. (17) and (18) we can construct the real valued mathematical basis functions,

which we call the magnetic redistribution functions (hereafter magnetic RF). They are given
by

Bale 1, 0) = g o {‘ [WH # (o reser)

Biple. o, 0) = g e {‘ [WH 2 (oo i)

for redistribution of type II, which depends only on ¢ and

1 +OO a
qq ' _ I
i, n (@, @', ©) = 72 sm@ / [ 2+ (v — u)Q}
xH (sm ©’ sin @ — ucot 9) (23)
/ 1 Foo 2 a
qq ! _ D
Ry py (7, 2, ©) = m2sin O / due [a2 + (v] — u)Q}
x2F ( Y ot @) (24)
sin®’ sin © ’
, oo (vg — u)
qq ! — e 7
RIII,FH("T’ ', 0) = 2 sm@ / [az + (U‘II _ u)2:|
xH (sm@ s1n@ - ucot ®> ’ (25)
and
) 1 Foo > (vl —u)
qq / — A I D B A
By (@, @', ©) = m2sin O / due [a? + (v} — u)2}
x2F ( Yy cot @) (26)
sin®’ sin © ’

for redistribution of type III, which depends on both ¢ and ¢’. We note that R?LH and
R%OLHH (dropping the arguments for brevity), are nothing but the well known Ry and Ry
scalar redistribution functions of Hummer (1962) in the laboratory frame. It will be shown
in Sect. 4, that the overall behavior of the magnetic RF is similar to the non-magnetic RF
of Hummer, except for changes caused by Zeeman frequency shifts (appearance of several
magnetic components: (2 x 3) in Ry type scattering; (4 x 9) in Ry type scattering).
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For notational simplification, we now introduce the following auxiliary functions (which
are linear combination of magnetic RF introduced above),

hgq’ = [R?I m T RH H] 5 (27)

1 /
f;tlz’ 9 [RIqI,F - R%,F] . (28)

for type II functions. For type III functions, we define a complex h-function :
I _ 111 111
Fog = Rlhyg] + 1S[hyy], (29)

where the real (R) and imaginary () parts are defined through

§R[hIH] - 4 [Rglf HH + RIH HH + RIH HH + RIII HH] ’ (30)
1 !l ! !
) = 7 | Bl en + R ew — FIG ow — Rl ea (31)

which are expressed in terms of HH and FH type of basis functions respectively. An analogous
expression can be written for the complex f-function:

fII¥ — ?R[fIH] + ZC\[ HI ’ (32)

qq

where the real and imaginary parts are now defined through

]. . 7 !
i
[ = [Rglil, HF — Rgl?, HF T Rglql, HF — RquI,HF] ) (33)
1 ! Al ! !
11
Sl = 7 [ BT oo — B o — BRI o+ BRI ] - (34)
We note that f,1,, S[hyy], fii are non-zero only when ¢ # ¢'. The auxiliary quantities

defined above satisfy the following symmetry relations:

H — I o _ 1I
h hq 'q) qu' - _fq’q’

h}lH hHI *, fHI _ I * (35)

aq ¢’ qq

Using Egs. (27) - (34), we can rewrite Eq. (16) as

(Ffy) ~ Acos By ePad [hH, + ifH,] + B cos B,y €08 gy €Pa-a T

{%[hm 3(f III] i l<\s[hm] + R 11 )} ' (36)
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3. Analytical Form of the Hanle-Zeeman Redistribution Matrix

For clarity and compactness we have derived analytical expression for the Hanle-Zeeman
redistribution matrix for the simpler case of a normal Zeeman triplet (J =0 — 1 — 0
scattering transition), and for a co-ordinate system in which the polar axis is along the
magnetic field. Fig. 1 shows the corresponding scattering geometry. The incident ray makes
an angle @ and azimuth ¢' with respect to field direction, while outgoing ray makes an angle
f and azimuth ¢. It is however possible to compute the redistribution matrix for arbitrary
orientations of vector magnetic fields by using transformation matrices.

The Mueller scattering matrix M that describes scattering of the Stokes vector is readily
obtained from the coherency matrix (see Eq. (10) of BS99), using the expression

M =T (b ®uw*) T, (37)

where 1 is the Jones scattering matrix. For explicit expressions of (@ ® w*) and the purely
mathematical transformation matrices T and T !, see Stenflo (1998, Egs. (9) and (10)).

The elements of the Jones scattering matrix are given by (see Eq. (8) of BS99)
(t,
Wy g ~ Z [Tq W ] s;’*eg, (38)

where E; , is the amplitude of the ¢'" spherical component of incoming monochromatic plane
wave, and e2# are geometrical factors for the outgoing () and incoming (f) radiation,
respectively. These geometrical factors are given by

gp=—sinf; el =Fe,
e2=0; &il= —% e*i?, (39)

for the outgoing radiation, with u = cos (see Stenflo 1994, page 57). For the incoming
radiation we simply replace (0, ¢) by (€', ¢'), in the above equations.

The tensor product (& ® w*), requires the construction of bilinear products wq gw}, g
given by

Waglyy = D

BB *
- eqtes enel . (40)
aq' E(II,OE:I'70 !

q “q q

Tq(t, W)y (t, w’)] o

Next we replace the term in the square bracket by the ensemble average (@f;}}, in order to
take into account the collisions (see Sect. 2). Thus Eq. (40) becomes

wang,ﬂ,:Z( 7)Eq 6,835’3’ . (41)

qq’
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Therefore the Mueller matrix M can be calculated using Eqgs. (36), (37), (39), and (41).
The Hanle-Zeeman redistribution matrix is then given by

Rz, n; 2/, ') = g M, (42)

where 3/2 is the normalization constant (see Eq. (8.38) of Stenflo 1994).

We can now write the final expression for the Hanle-Zeeman grand redistribution matrix

as
R(x, n; 2, n') = f{II(x, n; 2, n') + f{III(x, n; z', n'), (43)
where
RH(.Z‘, n; x', 1’1') = AMH, (44)
RHI(Qj, n; $I, n') = BMIH; (45)
with
. 3 0. 1 A A 1 0, I &2, I &2
My = Z ooC 2( 1nte —1 1)C 5(011 -t —1- 1)C to 1C + s 1S+]
3 ~
+4 sin @sin @' [(cy; + cp; ) + (chy — co_1)CL + (sg_y — so1)S+

+(_8%)11 - 3%)1—1)Sl—]a (46)

with a similar expression for My, when all ¢! and s coefficients (see Eqs. (A1) and (A2))
are replaced by the ¢! and s'! coefficients (see Eqs. (A3) and (A4)), respectively. Various
auxiliary coefficients and matrices appearing in Eq. (46) are given in Appendix A. Notice
that Eq. (46) has a form similar to Eq. (49) of Stenflo (1998). Also note that the 3/2
factor of Eq. (42) has already been included in the definition of My and My in Eq. (46).
The Hanle-Zeeman PRD grand redistribution matrix is strongly angle dependent, and needs
special care in numerical evaluation. This matrix appears inside the scattering integral of
the line radiative transfer equation. A sufficiently general form of this matrix is presented in
Eq. (43), which takes care of the radiative and collisional contributions in a neatly factorized
manner (see Nagendra 1994; Nagendra et al. 1999).

4. A Study of Magnetic Redistribution Functions

The magnetic RF defined in Egs. (21) — (26) form the basis for the frequency dependence
of magnetic redistribution matrices, which are expressed as a combination of different types
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of “angular phase matrices” (C and S), and the ¢ and s coefficients. A good knowledge
about the nature of these basis functions would be useful to understand the physics of
Hanle-Zeeman scattering. We will now explore the magnetic RF in some detail. In Sect. 4.1
we discuss the dependence of RF on the scattering angle and incoming frequency for a fixed
value of the field strength. The field strength dependence is considered in Sect. 4.2.

4.1. Dependence of the Magnetic RF on Scattering Angle and Incoming
Frequency

We will here consider the magnetic RF of Hummer’s type IT and III for three scattering
angles © = 30°, 90°, and 150° and incoming frequencies 2’ = 0,2, 4. The damping parameter
is chosen to be a = 1073 and the field strength is chosen such that vy = vy, /Avp = 1. We
introduce the notion of ‘frequency—coherence’ (x ~ z') and ‘magnetic—coherence’ (z ~ vy),
in order to interpret the results.

4.1.1.  RF of type 11

The magnetic RF of Hummer’s type II are shown in Fig. 2. The solid lines refer to
incoming frequency z' = 0, the dotted lines to 2’ = 2 and the dashed lines to 2’ = 4. All
the thin lines correspond to magnetic quantum number ¢ = —1, medium lines to ¢ = 0, and
thick lines to ¢ = +1. The ¢ = 0 case represents the non-magnetic scalar RF of Hummer
(1962).

The function R y4(z, ', ©) is shown in Fig. 2a. For forward (© = 0) scattering, the
function RfLH exhibits exact frequency-coherence (z = ') at all the absorption frequencies
2', while for backward scattering (© = ), the function peaks at + = —z' (see e.g. Henyey
1940; Cannon 1985; Wallace & Yelle 1989). This strong coherence is retained for small
scattering angles. This can be clearly seen for © = 30°. For |z — qug| < 3, the peak position
of the RF varies approximately as max = 2’ cos © + 2quy sin? ©/2 (see also Wallace & Yelle
1989, for the non-magnetic R} y case). In the non-magnetic Rjj y case, it is well known
that for arbitrary scattering angles the frequency-coherence behaves in a very unique way,
namely with the appearance of a double peak in the transition frequencies (2 < z' < 4)
— one coherent peak at x ~ z, with the frequency position of the second non-coherent
peak depending strongly on scattering angle © (see Fig. 7.4 of Cannon 1985). This behavior
is also preserved by the RF for ¢ = 1. For example, (¢,2') = (—1,2) (thin solid line)
and (+1,4) (thick dashed line) show this double peak profile for both ® = 90° and 150°
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scattering angles. Also the RF becomes narrow as the scattering angle changes from 90° to
150° or 30°, which implies a lack of diffusion in frequency space in each scattering event. We
note that for the © = 90° case the (+1,0) (thick solid line) and (+1,2) (thick dotted line)
coincide. Broad coherent emission profiles are observed about x ~ z’ for all the components
g =0, £1, when (a) the incoming frequencies (z') are large (2’ > 3), and (b) the scattering
angles are large (© > 90°) (cf. the thin, medium, and thick dashed lines for © = 90° and
150° scattering). In addition the ¢ = +1 case, as already described, produces double peaks.
The g = +1 case would show broad peaks about x ~ z’, without a non-coherent component,
if we chose still larger values for the incoming frequency z'.

In Fig. 2b we show the function Rf| (z, 2', ©). For (¢,2") = (0,0) (medium solid line),
regardless of the scattering angle, R?LF exhibits an emission component similar to the anti-
symmetric Faraday-Voigt function. The magnitude of this function increases as we go from
© = 30° to 150°. For © = 30° and 90° scattering, the magnetic components (—1,0) (thin
solid lines) are entirely positive and (41, 0) (thick solid lines) entirely negative. The magnetic
components (+1,0) are highly coherent and nearly symmetric, peaking about 2 = 0 in the
© = 30° case. For © = 90° scattering they peak slightly away from line center and are much
broader compared to the corresponding small angle scattering case. In the © = 30° case all
the components ¢ = 0,+1, show highly coherent symmetric peaks at x = z’ for both the
incoming frequencies =’ = 2 and 4. Corresponding cases for © = 90° show broad and slightly
asymmetric peaks about x ~ x’. The profiles corresponding to © = 150° and z' = 0, 2 show
a complex behavior for scattering via all the magnetic substates (¢ = 0,41). All the three
magnetic components for 2’ = 4 (dashed lines) show broad emission profiles peaking at about
x ~ 4. We further note that as the scattering angle decreases, R}ILF become increasingly
coherent, except for the (0,0) case, where it is non-coherent.

In type II magnetic RF two competing processes are at work. They are, the frequency—
coherent effect (controlled by the Gaussian of Egs. (21) and (22)), and the magnetic-coherent
effect for R}, ;; (controlled by the Voigt function of Eq. (21)), and sign reversal property
for Rf; i (controlled by Faraday-Voigt function of Eq. (22)). For small scattering angles
(© < 30°), it is the frequency—coherent effect that dominates (cf. Fig. 2 — top two panels).
As the scattering angle increases, which of these two effects dominate is determined by values
of 2, ¢ and vy (cf. Fig. 2; see also Fig. 7), taken together.
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Fig. 2.— The magnetic RF of Hummer’s type II. The left panel (Fig. 2a) shows R}]LH,
while the right panel (Fig. 2b) shows Rf; p, for different, values of the scattering angle. The
redistribution function Rf; . can take negative values. The different line types are labeled
with a pair of parameters (g,z'). In all the three panels of Fig. 2a, the thin dotted (—1,2)
and thick dashed (+1,4) lines are multiplied by 2 x 103, the thin dashed (-1, 4) and medium
dashed (0, 4) lines are multiplied by 2 x 10%, and the medium dotted (0, 2) line by 20, to be
able to present them in the same panel. In Fig. 2b all the dashed lines of the © = 30° case
are multiplied by a factor of 2, and of the © = 150° case by 5, in order to show the details
clearly. The thin dotted line (—1,2) and medium dotted line (0, 2) of the ©® = 150° case in
Fig. 2b are multiplied by 2. See Sect. 4.1.1 for discussions.
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Fig. 3.— Magnetic RF of Hummer’s type III. The basis function of type HH is shown. The
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dashed lines are multiplied by a factor of 2, since they would otherwise overlap exactly on
the solid lines. The different line types are labeled with (g,¢") as described in the text.
The set of panels exhibit the angular dependence for a given value of z'. The pair (g, ¢")
describes either self-interaction (¢ = ¢') or m-state interference (¢ # ¢'). In all three panels
of Fig. 3b the solid lines are multiplied by 10® and the dotted lines by 10. See Sect. 4.1.2 for
discussions.
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exhibits very broad wings. The model parameters are same as in Fig. 3. See Sect. 4.1.2 for

discussions.
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4.1.2.  RF of type 111

The magnetic redistribution functions of Hummer’s type III are shown in Figs. 3 - 6,
for the same set of parameters as in Fig. 2. Unlike the case of the magnetic RF of Hummer’s
type II, the type III functions depend on the pair of magnetic quantum numbers (g, ¢')
simultaneously. They in fact refer to the interference between the upper level magnetic sub-
states. Thus there are 9 combinations of (¢, ¢'), which are distinguished as different line
types of different line thickness. The thin lines refer to the (g, ¢') pairs as follows: solid:
(—1,—1); dotted: (0,—1); dashed: (+1,—1). Medium thickness lines refer as follows:
solid: (—1,0); dotted: (0,0); dashed: (+1,0). Thick lines refer as follows: solid: (=1, +1);
dotted: (0,+1); dashed: (+1,+1). Note that the HH type profiles with (¢, ¢') = (0,0) are
nothing but the well known Hummer’s non-magnetic RF of type IIL.

Basis Functions of type HH

In Fig. 3 we show R;’Iqll au(z, 2, ©) as a function of outgoing frequency z. All profiles shown
for the 2’ = 4 case (cf. Fig. 3c) are 3 orders of magnitude smaller than those shown in
Fig. 3a. RfIqI’, uy is always positive. Unlike the RF of Hummer’s type II, which shows perfect
coherence for © = 0°, the RF of Hummer’s type IlI is completely non-coherent, CRD like
(for ©® = 90°) and does not show coherence even for © = 0°. For the © = 90° case, the set of
thin (¢, —1) and the set of thick (g, +1) line profiles are shifted symmetrically about z =0
and peak at the shifted frequencies z = +1. The (g, 0) components (the set of medium lines)
are unshifted and peak at + = 0. This behavior can be easily understood from Eq. (23),
which for © = 90° reduces to

/ o 1
R?Iql, HH(x’ xl’ 90 ) = ; H(CL, U;)H(a, UII’)a (47)

i.e., it behaves like CRD (complete non-coherence). For 2’ = 0 in particular the functional
values of H(a,v,; = —1) and H(a,v_, = +1) are the same, because the Voigt function is a
symmetric function. As a result the function RIquI” au(z, ', 90°) = constant x H(a,vy) for
g = 1 and 2’ = 0. This implies that all solid lines (—1, ¢') coincide with the corresponding
dashed lines (41, ¢'). However, to make all the dashed lines visible in Fig. 3a, they have
been multiplied by 2. The triplet-like structure centered around xz = 0 is conserved by the
dotted lines (0, ¢') for 2’ = 0 and all the scattering angles (cf. Fig. 3a). A similar behavior is
exhibited by the set of curves for (+1,¢') (dashed lines) and (—1,¢’) (solid lines) magnetic
substates also, except that they are centered around frequencies x = +1 for ©® = 30° and
150° scattering. For the ' = 0 case (cf. Fig. 3a), all the magnetic components of HH type
RF show narrow profiles for © = 30° and 150° scattering as compared with the 90° scattering
case.
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From Eqgs. (23) - (26) one can easily verify that the following reflection symmetry about
x = 0 is obeyed by the RF':

!

R?Iql, XH(_x’ xla = 9) = Rgﬁ,q)'(H(xa xl7 9)’ (48)
R «p(—, 2/, 7 — ©) = =R %p(z, o', ©), (49)

where the symbol X stands for H or F. The above expressions are generalizations of the
original non-magnetic symmetry relations described in Cannon (1985) to cover the magnetic
scattering case. This reflection symmetry represents a combined symmetry involving both
frequencies and angles. In Fig. 3 the panels for © = 30° and 150° clearly show this reflection
symmetry for 2’/ =0, 2, 4 and X = H in Eq. (48).

Basis Functions of types HF, FH, and FF

Figure 4 shows RfIqI’,HF(a:, z', ©) as a function of scattering angle © (= 30°, 90°, 150°)
and scattered frequency z, for three incoming frequencies (z' = 0, 2, 4). R}’Iqll, yp Obviously
assumes both positive and negative values. The reflection symmetry of RfIqI’,HF given in
Eq. (49) with X = H can be clearly seen in Fig. 4 for © = 30° and 150°. All the magnetic
components for the © = 90° scattering case show a similar behavior for ' = 0, 2, 4: all thin
lines (g, —1) have a positive peak around z = 0 (and a negative peak around z = —2); all
medium lines (g, 0) peak at |z| = 1; all thick lines (g, +1) exhibit a positive peak at z = 2
(and a negative peak at x = 0). Such a behavior can be understood from Eq. (24), which
for © = 90° reduces to

: o 2
R?IqI,HF(x’ xlﬁ 90 ) = ; H(a, v;)F(aa Uq’)' (50)

From Eq. (50) we note that R;’I‘II’, ar(z, ', 90°) has a zero crossing at z = ¢'vy, regardless of
the value of ¢ (see Fig. 4). In Fig. 4a, the dashed lines for © = 90° have been multiplied by
2, as they would otherwise superimpose on the corresponding solid lines (cf. the discussion
following Eq. (47)). The magnetic components (+1,¢') (the dashed lines) for ' = 4 and
© = 30° (and 150°) show double negative (respectively positive) peaks.

The function RfIqI', ru(®, 2, ©) is shown in Fig. 5 for the same set of parameters as in
Fig. 4. Like Rflqll ur» the function R{]Iql’, rp takes both positive and negative values. For © = 90°
the nature of all the components of RF can be understood in terms of the Eq. (25), which
for this particular case simplifies to

, 2
R pu(z, 2/, 90°) = - F(a,vy)H(a,vy). (51)
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From Eq. (51) we note that R;II‘II’, pr (T, 7', 90°) vanishes when 1’ = quy, since then F(a, v, =
0) is zero. Thus all dotted lines (0,¢') are zero (cf. Fig. 5a). At line center ' = 0, the
function F'(a, v’ = 1) assumes a positive fixed value, while F'(a, v’ ; = —1) takes a negative
fixed value. Therefore all the solid lines (—1,¢’) in Fig. ba are modified Voigt functions
H(a,vy), while the dashed lines (+1,¢’) are modified inverted Voigt functions —H (a, vy).
The peak positions of both the solid (—1,¢’) and dashed (+1,¢’) lines are given by z = ¢,
since we have chosen vy = 1. The behavior of RfIqI”FH(x, z', 90°) for ' = 2, 4 can also
be easily explained in terms of Eq. (51). We note that in Figs. 5b and 5c, the function
Rflqlly e, @', 90°) is entirely positive, since F'(a,2 — ¢q) and F'(a,4 — q) are positive for all g.
For '/ = —2 or 2/ = —4, F(a,—2—q) and F'(a, —4 — q) are negative, which leads to inverted
profiles compared to the ones shown in Figs. 5b and 5c for the © = 90° case. The reflection
symmetry of Rflqll, ry as given in Eq. (48) with X = F can be seen in Fig. 5 for © = 30°
and 150°. In Fig. 5c for the wing frequency z’ = 4, the ® = 30° and 150° redistribution
profiles show behavior similar to that exhibited by © = 90°, with a very slight difference in
magnitude (angular isotropy of the scattering probability).

The function Rfﬁ: rp(2, ', ©) given in Eq. (26) is plotted in Fig. 6. Like the HF, FH
type redistribution, R%ql’, rr also has both positive and negative values. To understand the
© = 90° case, we can write Eq. (26) for this particular case as

RfIqI’ ep(z, ', 90°) = %F(a, ve) Fa,vg). (52)
From Eq. (52) we note that Rfﬁ” rp(Z, ', 90°) vanishes when 2’ = quy (cf. Fig. 6a), like the
FH type RF, and has a zero crossing at z = ¢'vyg (cf. Fig. 6), like the HF type RF. In Fig. 6a
for 90° scattering the dotted lines (0, ¢') are zero, the solid lines (—1, ¢') are modified Faraday-
Voigt functions F'(a,vy), while the dashed lines (+1,¢) are modified inverted Faraday-
Voigt functions —F'(a,vy ), for the same reason as noted below Eq. (51). The behavior of
Ri’lqll, rp(z, ', 90°) for 2’ = 2, 4 (cf. Figs. 6b and 6¢) can also be easily understood through
Eq. (52). The reflection symmetry of Rﬂqf, rr as given in Eq. (49) with X = F is clearly seen in
Fig. 6 for the scattering angles © = 30° and 150°. Again, when 2’ =4 and © = (30°,150°),
Rillql,’ rp exhibits a similar behavior as R;’I‘II’, rp (nearly isotropic angular scattering).

The HF redistribution function is not always similar to the FH type, except for 90°
scattering, and in particular, when ¢ = ¢’ (self-interference of m-states). The FH type redis-
tribution is similar to FF for © = 90° scattering, except for the shape of the redistribution
function, which for FH resembles a modified Voigt and for FF a modified Faraday-Voigt
function. Same arguments hold good for mutual comparison of HH and HF type functions.
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Fig. 7.— Effect of field strength on the Hanle-Zeeman redistribution. The magnetic RF of
Hummer’s type IT is shown. The left panels (Fig. 7a) show R y(z, #', ©), while the right
panels (Fig. 7b) show R} (7, 7', ©), for different values of the field strength, parameterized
through vg. The model parameters and line types are given in Sect. 4.2. We note that all
curves for ¢ = —1,0 of R%,H (Fig. 7a) are multiplied by a factor of 10°. For ¢ = +1, the solid
to the dash-dotted lines (four of the curves) are multiplied by 10°, the dash-triple dotted
line by 10%, the long-dashed line by 20, and the thick dotted line by 102, to be able to have
them displayed in the same panel. See Sect. 4.2.1 for discussions.
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4.2. Dependence of the Magnetic RF on Field Strength

To study the dependence of the magnetic RF on vy (field strength), we chose a scattering
geometry that produces maximum linear polarization, namely 90° scattering, assuming a
photon with incoming frequency #' = 3. The damping parameter is chosen as a = 1073. The
field strength parameter vy is varied as follows: vg = 0.0008 (solid line), 0.004 (dotted line),
0.02 (dashed line), 0.1 (dash-dotted line), 0.5 (dash-triple-dotted line), 2.5 (long-dashed line),
and 5 (thick dotted line). This range for vy covers the weakest fields through intermediate to
quite strong fields, with reference to the Doppler width of an optical line (see Stenflo 1998).

4.2.1. Type Il RF

Figure 7 shows the Rf; ; and R . functions of Eqs. (21) and (22). We first discuss Rf; y
(cf. Fig. 7a). The ¢ = 0 case is non-magnetic and hence all the curves merge, showing a
typical double peaked behavior as discussed with regard to Fig.2a. This double peaked
behavior is retained for weak magnetic fields (vg < 0.1) for both ¢ = £1. The peak
amplitudes at (¢,z)=(—1, 0/3) diminish as the field strength increases. For vy > 0.1,
the ¢ = —1 profiles exhibit a single peak at x ~ 2’ ~ 3, which is typical non-magnetic
coherence in the case of R?LH. In contrast the ¢ = +1 profiles exhibit magnetic—coherence
(z =~ vn), and the magnitude of R j; increases with increasing vy, since magnetic-coherence
dominates as compared with the ¢ = —1 case, for which frequency—coherence dominates. We
have found that for small angles (© < 30°) the highly frequency—coherent behavior of R}ILH
is preserved, even if the field strength is as high as vy = 5. For large angle scattering
(© > 30°), the peak positions of R%,H depend on ', ¢ and vy as noted in the last paragraph
of Sect. 4.1.1. For example, when ' = 6 and vy = 2.5, it is the frequency—coherence that
dominates and magnetic—coherent peak appears just as a bump (illustration not shown for
brevity).

Figure 7b shows Rfj . For the ¢ = 0 case we have a single positive peak at x ~ 2 ~
3, as in this case the (non-magnetic) frequency—coherent part (the Gaussian) completely
dominates and erases the negative part of Faraday-Voigt function (cf. Eq. (22)). This
dominance of frequency—coherence over the dispersive effects remains valid for ¢ = —1, but
the peak amplitude decreases with increasing vy. For ¢ = +1 this behavior is observed only
for weak fields (vy < 0.5). For fields with vy = 2.5 the profile shows both positive and
negative peaks, as dispersive effects slowly start dominating over the frequency—coherence.
For vy = 5 the dispersive effects completely dominate over frequency—coherence effects,
resulting in an entirely negative peak at z ~ 2’ ~ 3. For 2/ = 3, the © = 30° and © = 150°
cases (not illustrated here) largely resemble the © = 90° case, differing only in the magnitude
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q
of RH, -

4.2.2.  RF of type 111, HH

In Fig. 8 we show Rflqll, au(@, ' =3, © = 90°) for the same values of the field strength
parameter as in Fig. 7. The behavior of R?Iqll’ an (2, 3, 90°) can be easily understood through
Eq. (47). For the case (¢, ¢')=(g, 0) the function R?IOL an(z, 3, 90°) = (1/7)H(a,3—qun)H (a, ).
Thus the shape of R;’IOL un 18 given by H (a, z), irrespective of the value of vy. The effect of vy
is only to scale H(a, z) up or down, as can be seen from Fig. 8b, where the peak amplitude
decreases with increasing vy for ¢ = —1, while for ¢ = 41 the peak amplitude increases with
vy, reaching a maximum for vy = 2.5 (since then H(a,3 — quvy) becomes H(a,0.5)), and
then decreases for vy > 2.5. In other words, for the (¢,q¢')=(+1,0) case the largest peak
amplitude corresponds to the case when x' = vy.

For the case (—1,¢") (the top panels of Figs. 8a-c) the function RI_Hl,q}’IH(CC, 3,90°) =
(1/m)H(a,3 + va)H(a,z — ¢'vy). Thus RI_Hl’q}’IH peaks at * = ¢'vy. However, as vy in-
creases, the peak amplitude decreases, since the scaling factor H(a,3 + vg) decreases with
vg. In the case of (0,¢') (the middle panels of Figs. 8a-c) the function R?Iqll, am(, 3, 90°) =
(1/m)H (a,3)H (a,x — ¢'vy). Again the peak position is governed by H(a, z — ¢'vy), but now
the scaling factor is independent of vy. Therefore the peak amplitude of the ¢’ = —1 and
¢ = +1 curves and the different vy curves are identical. In the case of (+1,¢') (the bottom
panels of Figs. 8a-c) the function Rf;iq;m(a:, 3,90°) = (1/m)H(a,3 —vu)H (a,z — ¢'vn). The
shape and peak position are governed by H(a,z — ¢'vy), while the scaling factor increases
until vy = 3 and then decreases for vy > 3.

For scattering angles ©® = 30° and © = 150° (not illustrated here), Rfﬁ:HH shows
basically the similar type of behavior as for © = 90°, except that the shape of Rpjj yy is
rather similar to (—1,0) (medium solid line in Fig. 3b), and the peak positions and shapes
of the other components are now determined not only by vy but also by the scattering angle

O.

4.2.3. RF of type 111, HF

The function R}’I"I’, ar(, ', 90°) is given by Eq. (50). Clearly the dependence of R}’Iql’, HF
on vy will be the same as that of R%ql’, um» €xcept that the shape of Ri’lqll’ gr 1s now determined
by the dispersion profile F(a,x — ¢'vy) instead of the absorption profile H(a,z — ¢'vy).
Therefore we do not present these profiles here.
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4.2.4. RF of type 111, FF

The redistribution functions R;II‘II” rp(T, ' =3, © = 90°) for the same range of the field
strength parameter vy as in Figs. 7 and 8 are shown in Fig. 9. The form of the FF type
RF for © = 90° is given in Eq. (52). Clearly the shape and peak position are determined
by the function F(a,x — ¢'vg). For ¢' = 0 it follows from Eq. (52) that Rg&FF(x, 3,90°) =
(4/m)F(a,3 — qun)F(a,z). Hence the shape is basically governed by F'(a,z), which is scaled
up or down by F(a,3 — quy). For ¢ = —1 the scaling factor F(a,3 + vyg) is positive and
decreases as vy increases. Therefore the peak amplitude of RI_HI,OFF decreases with increasing
vg. In contrast, for ¢ = +1, the scaling factor F'(a,3 — vy) is positive as long as vy < 3
and becomes negative for vy > 3. Thus, as clearly shown in Fig. 9, Rf}ll’oFF reverses sign for
vy = 5. Further, since F(a,3 — vy) increases with vy until vy < 3 and then starts decreasing
for vy > 3, the function Rf}ll,OFF also exhibits the same behavior.

The zero crossing of R}II‘II’,FF(x, 3, 90°) is at © = ¢'vy, as noted below Eq. (52). When
(g,¢")=(—1,¢") (the top panels of Figs. 9a-c) we have RI_H%F(JJ, 3,90°) = (4/7)F(a,3 +
vu)F(a,z — ¢'vy). As already noted, F'(a,3 + vy) decreases with vy and hence RI_H%F also
decreases with vg. For (0, ¢') the scaling factor is independent of vy (as it equals F'(a, 3)).
Thus all the curves in the middle panels of Figs. 9a-c have the same value for their peak
amplitude. For (+1,¢’) the same behavior as noted for (+1,0) is observed (see bottom panels
of Figs. 9a-c).

The above discussion on the dependence of R%ql” rp OD Vg is also qualitatively valid for
scattering angles other than © = 90°.

4.2.5. RF of type 111, FH

The dependence of R}II’II’, py on field strength for 90° scattering is basically the same as
that discussed for R}’Iqll, rp> the only difference being the shape and peak position of Rfﬁ’, FH>
which are determined by H(a,z — ¢'vg) (cf. Eq. (51)). Hence we do not illustrate these
functions here.

5. Extension to the General Quantum Scattering Case

Our treatment so far has been limited to the special case of a J =0 — 1 — 0 scattering
transition, since this case can be dealt with in terms of classical time-dependent oscillator
theory and is sufficiently simple to allow a comprehensive and explicit analytical treatment
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of the full and general polarized redistribution problem in the presence of arbitrary magnetic
fields. With this foundation we can now address the issue of how to extend our polarized
PRD theory for the restricted case of triplet to more general case of atomic and molecular
transitions involving arbitrary quantum numbers. Here we indicate how such an extension is
possible and conceptually already understood, although it is outside the scope of this paper
to present this extension in explicit form.

The extension proceeds in a phenomenological way, on the direct analogy between the
Kramers-Heisenberg scattering amplitude in quantum mechanics and the Jones matrix for
classical scattering. The Jones scattering matrix for the classical case can be written (see
Eq. (8.116) of Stenflo 1994) as

Wap ~ Z D_, 2 (53)

while the Kramers-Heisenberg version for general combinations of quantum numbers (see

Eq. (1) in Stenflo 1998) is

NZ f‘?" 6a‘b b|’f‘ €5|LL>' (54)
Whp — w — 17/2

a represents the set of quantum numbers (including the magnetic substates) for the initial
state, b the corresponding set for the intermediate state, and f for the final state. wys is
the resonant frequency for a transition between the magnetic substates with upper magnetic
quantum number m;, and lower magnetic quantum number my. Eq. (54) may be rewritten
as

Wap ~ Z tab tbf (I)_q Eg* 8?1 . (55)
b

Here
g=my—my ¢ =mg—my. (56)

ta and & are respectively the two transition amplitudes (including sign) for the transitions
between the intermediate state b and the initial and final states a and f, given by the matrix
elements in Eq. (54). ®_, is the normalized profile function that has the same form as the
one in Eq. (54) with wy given by (wp—qwy,) in the classical case. In the quantum case —qwy,
is replaced by (gymy — gymy) wy, where wy, is the Larmor frequency and g, ; are the Landé
factors of the intermediate and final states.

When comparing the classical Eq. (53) with the quantum Eq. (55) we see that they
are the same, with two differences: (1) The transition amplitudes ¢ between the magnetic
substates involved in the scattering transition appear as weights. They are not needed in
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the classical or J = 0 — 1 — 0 case, since in this case the three amplitudes involved are
identical. (2) In one of the geometric € factors a ¢’ appears instead of a q.

These two differences between the classical and quantum case however do not influence
the frequency redistribution for an individual m state scattering transition. The product
of the transition amplitudes provides a global, frequency-independent scaling factor for the
strength of the scattering transition. The frequency-independent e factors represent pure
geometric projections, and also have nothing to do with the frequency redistribution problem.
All the frequency redistribution physics is contained in the only frequency dependent factor,
namely ®_,, the profile function, which is the same in the classical and quantum case.

Now it needs to be remembered that the profile function given in the usual version
(Eq. (54)) of the Kramers-Heisenberg dispersion formula, refers to the atomic frame without
Doppler motions or collisions. This is the frequency—coherent case. The whole problem
of frequency redistribution arises exclusively due to the presence of collisions in the atomic
frame, and in addition due to Doppler shifts in the observer’s frame, and to the circumstance
that the Doppler and collisional redistributions get coupled in an intricate way. Once we
have specified the collisional redistribution in the atomic frame, the transformation to the
observer’s frame, while being mathematically complicated, merely involves the introduction
of Doppler redistribution, which has nothing to do with the question of whether the atomic-
frame redistribution has been treated with quantum or classical physics.

The whole question of redistribution therefore boils down to the question on how to treat
the collisional redistribution in the general quantum mechanical case. The way that we did
it in the classical case was to solve the time-dependent equation for an oscillating electron.
When the oscillator equation was decomposed in complex spherical vectors, it decoupled into
independent component equations, one for each ¢g. The solution could then be expressed with
two terms, one for the static and one for the transitory solution in the atomic frame. The
frequency—coherent part Ry of the redistribution has its source in the stationary solution,
while the complete redistribution part Ry has its source in the transitory solution.

In the classical collision theory of Stenflo (1994) and BS99 the effect of elastic collisions
is to destroy the phase coherence by truncating the damped oscillation of the transitory
solution (the stationary solution is not affected by the collisions, since it is driven by the
incident electromagnetic field). This leads to both collisional broadening and to collisional
depolarization (D)), with a depolarization rate that is half the broadening rate (7).

An immediate and natural phenomenological extension of the classical collision theory to
general quantum transitions is to treat each radiative emission transition between magnetic
substates m; and mj, which represents a given value of ¢ in the quantum Eq. (55), as a
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damped oscillation that gets truncated by collisions. The subsequent Fourier transformation
of this truncated oscillation then leads to the broadening and depolarization in exactly the
same way as in the classical case. Therefore, when considering the scattering transitions
for each individual combination of m states separately, the classical frequency redistribution
theory can be carried over to be used directly.

In this way we have fully defined how the present theory can be generalized to any
quantum scattering transitions. Although the classical and quantum cases behave the same
for transitions between the individual m states, the two cases will differ considerably when the
individual m state transitions are added together due to the different transition strengths and
due to the different m, — m; combinations in the geometric factors. These differences will
be enhanced and convolved when the bilinear products between the Jones matrix elements
are formed (see Eq. (8) of Stenflo 1998), which contain the various interference terms that
describe the Hanle effect.

A further extension can be done to the case when the ground state acquires atomic
polarization due to optical pumping. This is done by attaching the weight py,, . , to the
bilinear products wa s wy, 5 before summing over all the initial m states m, and my. Here
Pmam,, 18 a density matrix element of the initial state. When m, equals my, then p describes
the m state population, when they are different it describes the m state coherences. p has
to be found by solving the statistical equilibrium problem.

Although a full generalization of our polarized redistribution theory for arbitrary mag-
netic fields is thus rather straightforward, it does not easily lend itself to a comprehen-
sive presentation in such an explicit analytical form, as we could do here for the special
J =0 —1— 0 case. The various magnetic redistribution basis functions with their intrin-
sic symmetries that we have described for the special case, continue to be ingredients in any
general quantum redistribution theory, although these basis functions will be combined and
weighted differently from case to case, depending on the particular combination of quantum
numbers. Nevertheless, the present work provides insight into the mathematical structure
of the general case while elucidating the underlying physics.

6. Concluding Remarks

The discovery of the wealth of structures in the Second Solar Spectrum has created an
urgent need for new theoretical tools, which were not available before, since there had not
been a concrete demand for them. Still the theory is severely lagging behind the observational
developments. The full Second Solar Spectrum has been mapped with high spectral reso-
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lution and polarimetric sensitivity from 3100 — 7000 A. The spatial and temporal variations
of the scattering polarization in selected portions of the Second Solar Spectrum are being
explored in various magnetic regions on the Sun, and narrow-band filter systems are being
introduced to map the Hanle-Zeeman effect in different spectral lines (Feller et al. 2006).
Many of these lines are strong chromospheric lines with both Doppler core and damping
wings, and they offer great promise for diagnosing the magnetic field in the solar chromo-
sphere via the Hanle effect. This promise can only be fulfilled if we have the right tools
for a quantitative analysis of the observations. For chromospheric lines these tools need to
account for partial frequency redistribution (PRD) of polarized radiation in the presence of
magnetic fields of arbitrary strength and orientation. In the present paper we have developed
this theory in the form of the Hanle-Zeeman redistribution matrix, and we have explored its
mathematical structure in detail.

Our PRD theory is based on a classical approach, via the solution of the time-dependent
classical oscillator equation. This might seem as a limited approach, and that a correct
treatment should instead be in terms of quantum physics. However, as we will show explic-
itly in a forthcoming paper, our classical approach produces a Hanle-Zeeman redistribution
matrix that is identical to that obtained with a perturbative quantum field theory for a
J =0 — 1 — 0 scattering transition. All the mathematical functions that we have described
in the present paper, including all their intricate relations and symimetries, are obtained ex-
actly via QED. This equivalence is far from obvious and instead rather miraculous, hinting
at a deeper meaning, since the formalisms are vastly different, and the quantum theory is
perturbative while the classical theory is non-perturbative. Here we have used the classi-
cal approach, since it is (in our opinion) much more transparent and lends itself to a more
intuitive understanding of the physics involved.

Several chromospheric spectral lines are of the type J = 0 — 1 — 0 that we have treated
here. Examples are the well-studied Ca1 4227 A line and the Cr1 3594 A line, which is found
(for still unknown reasons) to be the most polarizing line in the whole spectrum (from 3100
— 7000 A) (Stenflo 2006). Most other lines have different quantum number structures, which
means that the present PRD theory needs to be extended to cover these other cases. In the
preceding section we have outlined how a straightforward extension can be done, and how
the mathematical framework of the present paper can be used as an ingredient of such a
generalized theory. Since the theory can be discussed in a comprehensive way for the special
J =0 — 1 — 0 case, we have limited our explicit treatment to this particular case, while
showing how it may be generalized.

While we now have a well formulated and understood theory for the general Hanle-
Zeeman redistribution matrix, its practical implementation within a polarized radiative-
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transfer framework will be a major challenge, in particular the development of numerical
computer codes that can solve the polarized transfer problem with PRD for realistic mag-
netized atmospheres. The present paper lays a foundation for progress toward this goal.

M.S. is financially supported by the Council of Scientific and Industrial Research (CSIR)
through an SRF Grant No. 9/890(01)/2004-EMR-I, which is gratefully acknowledged. The
authors are grateful to the Referee for constructive remarks and useful suggestions which
resulted in a considerable improvement of the paper.

A. The Auxiliary coefficients and phase matrices related to the redistribution
matrix R(z, n; 2/, n')

Here we list the various auxiliary coefficients and matrices appearing in Eq. (46) in the
text. Following Stenflo (1998) we introduce the auxiliary coefficients:

ch = cos fy-g {cosl(q — 4)(® — #)] (hlh cos Byg — 1 sin By y)

+sin[(q — ql)(¢ - ¢I)] (hfﬁ]f sin Sy + f;}]' Cos /Bq—q’)}a (A1)
quf = €0S fy—¢ {sin[(qg — q') (¢ — ¢I)] (hf]f]f oS fy—g — f(g' sin 5(1—(1’)
—cos[(q — ql)(¢ - ¢I)] (h};]' sin fBg—¢ + f;;' Cos ﬁq—q’)}a (A2)
for type II functions, and
c};IqI' = €0 ffg—q COS gy { cosl(q — ¢')(¢ — ¢')] [(%[hm %[ﬁg ) cos(Bg—¢ + tg—¢)
(‘S[hm] + §R[ o ) sin(B—g + ag—q)] +sin[(qg — q)(¢—9¢')] [(%[hg}']
FRIFI]) cos(By g + o)+ (RID] - SIWDsin(By ¢ + 00 )]} (A3)
qull = €08 fg_g COS Qg { sinf[(¢ — ¢')(¢ — ¢')] [(%[hm %[fm]) cos(By—g + g—q)

_(%[hm] + R/ D) sin(By—g + ag—q)] = cosl(q — ¢
+Rfgq1]) c08(Bg—g + Agg) + (Rlhryg] — S[fyg]) sin

(¢ = ) [(S[hgy]
¢ T O‘q—q’)]}v (A4)

for type III functions. The angular phase matrices appearing in Eq. (46) are listed below :
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Here Eij denotes a matrix that has a single element E;; = 1, while all the remaining elements
are zero. We note that the above matrices are identical to those introduced in Stenflo (1998).
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