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Abstract. Stokes parameters measured in the Solar atmosphere are in general time or space
averages over a magnetic field probability distribution function. Here we show how to write
the Zeeman propagation matrix in a reference frame defined with respect to the direction
of a mean magnetic field and how to average over a random magnetic field distribution. We
concentrate on the case of a normal Zeeman triplet but indicate how to treat general Zeeman
patterns. Numerical results are presented for Gaussian distributions having cylindrical sym-
metry about a mean field. Different models of probability distribution functions (PDF), are
compared.
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Observations and numerical simulations of
magneto-convection show that the magnetic
field in the solar atmosphere is highly intermit-
tent down to scales which are much below the
resolving power of modern telescopes. Thus
observations always provide Stokes parameters
averaged on some distribution P(H) dH of the
vector magnetic field. We discuss here the cal-
culation of mean Stokes parameters for the mi-
cro and macro-turbulent limits. In the micro-
turbulent limit, i.e when the correlation scale
of the magnetic field is much smaller than typ-
ical photon mean free path, the Zeeman prop-
agation matrix can be averaged over the mag-
netic field distribution. This question was first
addressed by Dolginov & Pavlov (1972) and
Domke & Pavlov (1979). The polarized radia-
tive transfer equation can then be solved with
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this mean propagation matrix. When the scale
of variation of the magnetic field is large com-
pared to typical photon mean free path – sit-
uation known as the macro-turbulent limit –
averaging should be performed on the solu-
tion of the transfer equation. MISMA (Micro
structured Magnetic Atmospheres; Sánchez
Almeida et al. 1996) and multi-components
models (Stenflo 1994) correspond to micro
and macro-turbulent situations, respectively.
For magnetic fields with scales of variation of
the order of the line formation depth, macro-
turbulent solutions can serve as building blocks
for the calculation of mean Stokes parame-
ters (Landi Degl’Innocenti 1994; Frisch et al.
2006).

Transfer equations for polarized radiation
are usually written and solved in a reference
frame defined with respect to the atmosphere
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(orthogonal reference frame with the Z-axis
along the normal to the atmosphere; see Fig. 1).
The vector magnetic field distribution is usu-
ally defined with respect to a mean magnetic
field H0 (or to a specified direction), i.e. in
a reference frame where the Z-axis is aligned
with the direction of a mean field, henceforth
referred to as MRF (see Fig. 2). From a the-
oretical and numerical point of view, averag-
ing is easier in this magnetic reference frame.
Rotations between different reference frames
are quite common in the analysis of polarimet-
ric data (see e.g. Casini 2002). We show here
how to obtain the Zeeman propagation matrix
in the MRF. We work out in detail the case of a
normal Zeeman triplet and indicate how to han-
dle the general case. We then indicate how to
perform averages over a vector magnetic field
distribution.

1. Zeeman propagation matrix in the
LOS reference frame

For simplicity we consider a normal Zeeman
triplet and assume that the line of sight (LOS)
is along the normal to the atmosphere. The
Zeeman propagation matrix is of the form

Φ̂ =



ϕI ϕQ ϕU ϕV
ϕQ ϕI χV −χU
ϕU −χV ϕI χQ
ϕV χU −χQ ϕI


. (1)

The absorption coefficients, ϕI,Q,U,V can be
written as (see e.g. Landi Degl’Innocenti 1976;
Rees 1987; Jefferies et al. 1989; Stenflo 1994)

ϕI =
1
2
ϕ0 sin2 θ +

1
4

(ϕ+1 + ϕ−1)(1 + cos2 θ),

ϕQ =
1
2

[ϕ0 − 1
2

(ϕ+1 + ϕ−1)] sin2 θ cos 2φ,

ϕU =
1
2

[ϕ0 − 1
2

(ϕ+1 + ϕ−1)] sin2 θ sin 2φ,

ϕV =
1
2

(ϕ+1 − ϕ−1) cos θ, (2)

where the ϕq (q = 0,±1) are Voigt func-
tions shifted by q∆νH with ∆νH the Zeeman
displacement by magnetic field present at the
point where the absorption coefficients are cal-
culated and θ and φ the polar angles of the mag-
netic field vector H (see Fig. 1). The χQ,U,V are

defined similar to ϕQ,U,V with the Voigt func-
tion replaced by the Faraday–Voigt function.

Following Domke & Pavlov (1979), one
observes that the absorption coefficients can be
rewritten as

ϕI = A0 − 1
3

A2(3 cos2 θ − 1),

ϕV = A1 cos θ,
ϕQ = A2 sin2 θ cos 2φ,

ϕU = A2 sin2 θ sin 2φ. (3)

The Ai contain the frequency variations of the
coefficients and depend only on the magnitude
of the magnetic field. They may be written as

A0 =
1
3

(ϕ−1 + ϕ0 + ϕ+1),

A1 =
1
2

(ϕ−1 − ϕ+1),

A2 =
1
4

(−ϕ−1 + 2ϕ0 − ϕ+1). (4)

The angular dependence of the coefficients can
be expressed in terms of Legendre polynomi-
als Pl(cos θ) and spherical harmonics Yl,m(θ, φ)
(Domke & Pavlov 1979; Frisch et al. 2005,
henceforth Paper I), namely

ϕI = A0 − 2
3

A2P2(cos θ),

ϕV = A1P1(cos θ),

ϕQ = A2

(32π
15

)1/2
<[Y2,2(θ, φ)],

ϕU = A2

(32π
15

)1/2
=[Y2,2(θ, φ)]. (5)

< stands for real part and= for imaginary part.
The Legendre polynomials are special cases of
Ylm corresponding to m = 0. The advantage of
the expressions given in Eq. (5) over the ex-
pressions in Eq. (2) is that the Yl,m obey simple
transformation laws under a rotation of the ref-
erence frame.

2. Zeeman propagation matrix in the
magnetic reference frame (MRF)

We now write the coefficients of the Zeeman
absorption matrix in the MRF (see Fig. 2). The
Euler angles (α, β, γ) of the rotation which



Frisch: Random magnetic fields 3

X

Z

Y

φ φ

θ θ

o

o
H Ho

Fig. 1. Line of sight (LOS) reference frame (X,
Y , Z). The LOS is taken as parallel to the Z-
axis. The directions of the random vector mag-
netic field H and of the mean magnetic field
H0 are defined by polar angles θ, φ and θ0, φ0.
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Fig. 2. Orthogonal right-handed magnetic ref-
erence frame X′, Y ′, Z′ (MRF). The vector
magnetic field H is defined by the polar angles
Θ and Ψ. The MRF is obtained by a rotation of
the LOS reference frame defined by the Euler
angles α = φ0, β = θ0, γ = 0 (see Fig. 1).

brings the LOS reference frame to the MRF
are α = φ0, β = θ0, γ = 0, where θ0
and φ0 are defined in Fig. 1. In this rotation,
the spherical harmonics transform according to
(Varshalovich et al. 1988, p. 141) :

Ylm(θ, φ) =
∑

m′
Ylm′(Θ,Ψ)D(l)

m′m(0,−θ0,−φ0), (6)

where Θ and Ψ are the polar angles of the field
H in the MRF (see Fig. 2). Combining Eq. (6)
with Eq. (5), and using the explicit forms of the
Ylm and D(l)

m′m (see e.g. Brink & Satchler 1968;
Varshalovich et al. 1988; Landi Degl’Innocenti
& Landolfi 2004, henceforth LL04), we find

ϕI = A0 − 2
3

A2

[
P2(cos θ0)P2(cos Θ)

− 3
4

sin 2θ0 sin 2Θ cos Ψ

+
3
4

sin2 θ0 sin2 Θ cos 2Ψ
]
, (7)

ϕV = A1

[
P1(cos θ0)P1(cos Θ)

− sin θ0 sin Θ cos Ψ
]
, (8)

ϕQ = A2

[
cos 2φ0 [1] − sin 2φ0 [2]

]
, (9)

ϕU = A2

[
sin 2φ0 [1] + cos 2φ0 [2]

]
, (10)

with

[1] = sin2 θ0P2(cos Θ) +
1
2

sin 2θ0 sin 2Θ cos Ψ

+
1
2

(1 + cos2 θ0) sin2 Θ cos 2Ψ, (11)

[2] = sin θ0 sin 2Θ sin Ψ

+ cos θ0 sin2 Θ sin 2Ψ. (12)

The anomalous dispersion coefficients are
given by Eqs. (8) to (10) where the Voigt func-
tions in A1 and A2 are replaced by Faraday–
Voigt functions.

3. From the LOS to the MRF – an
alternative method

We present here an other method for obtaining
the elements of Φ̂ in the MRF associated to the
mean magnetic field. The components of the
magnetic field in the LOS frame are

HX = H sin θ cos φ,
HY = H sin θ sin φ,
HZ = H cos θ, (13)
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and the components in the MRF are

HX′ = H sin Θ cos Ψ,

HY ′ = H sin Θ sin Ψ,

HZ′ = H cos Θ. (14)

The magnitude H of the magnetic field is in-
variant under rotation. The vectors HLOS =
(HX ,HY ,HZ)T and HMRF = (HX′ ,HY ′ ,HZ′)T

are related by

HLOS = [R̂(0,−θ0,−φ0)]−1 HMRF, (15)

with

R̂(0,−θ0,−φ0) =
cos θ0 cos φ0 cos θ0 sin φ0 − sin θ0
− sin φ0 cos φ0 0

sin θ0 cos φ0 sin θ0 sin φ0 cos θ0

 , (16)

(see e.g. Jefferies et al. 1989; LL04). Since R̂
is unitary, [R̂]−1 = [R̂]T . From the equations
given above, we can obtain the following sim-
ple relations connecting (θ, φ) with (Θ, Ψ) :

sin θ cos φ = cos θ0 cos φ0 sin Θ cos Ψ

− sin φ0 sin Θ sin Ψ

+ sin θ0 cos φ0 cos Θ, (17)

sin θ sin φ = cos θ0 sin φ0 sin Θ cos Ψ

+ cos φ0 sin Θ sin Ψ

+ sin θ0 sin φ0 cos Θ, (18)

cos θ = cos θ0 cos Θ − sin θ0 sin Θ cos Ψ. (19)

These basic relations yield all the angle factors
in Eqs. (2) or (3). Easy algebra leads to Eqs. (7)
to (12).

4. General Zeeman pattern

The coefficients of the matrix Φ̂ written in
Eq. (2) can be deduced from the classical har-
monic oscillator representation of the Zeeman
effect. They hold for a two-level atom with un-
polarized ground level when the angular mo-
mentum of the lower and upper level are Jl = 0
and Ju = 1. When these conditions are not
satisfied, the elements of Φ̂ have fairly com-
plicated expressions (see e.g. LL04 pp. 289,

377). Their structure is however similar to the
structure of Eq. (5) in the sense that the depen-
dence on frequency and strength of the mag-
netic field can be separated from the depen-
dence on the direction of the magnetic field.
The angular dependence can be expressed in
terms of functions (or tensors) that obey sim-
ple transformation laws under a rotation of the
reference frame. A convenient way of doing
this is by means of the spherical tensors for
polarimetry T K

Q (i,Ω) (Landi Degl’Innocenti
1984; Bommier 1997; LL04, p. 208). The fre-
quency variations can then be expressed in
terms of generalized profiles ΦKK′

Q (ν) (Landi
Degl’Innocenti et al. 1991; LL04, Appendix
A.13). The generalized profiles are weighted
linear combinations of Zeeman component
profiles ϕq (q = 0,±1). The spherical tensors
are combinations of Wigner rotation matrices.
For example, for a normal Zeeman triplet, the
absorption coefficients can be written as

ϕ(i,Ω) =

K=2∑

K=0

T K
0 (i,Ω) Φ0K

0 (ν). (20)

The index i corresponds to the Stokes param-
eters (i = 0, 1, 2, 3 for I,Q,U,V) and Ω is
the direction of the magnetic field. For a given
value of i, the T K

Q (i,Ω) transform according to
Eq. (6), the indices K and Q playing the role
of l and m, respectively. The Ai are simply re-
lated to the Φ0K

0 . Using Tables for T K
Q given in

Bommier (1977) or LL04 (Table 5.6, p.211),
Eqs. (3) or (5) lead to :

A0 = Φ00
0 ; A1 =

√
3
2

Φ01
0 ; A2 = − 3

2
√

2
Φ02

0 .(21)

5. Averaging over the vector
magnetic field distribution

The calculation of mean values of Φ̂ (or of
the solution of the transfer equation) requires
an integration over the probability distribu-
tion function (PDF) P(H) dH of the vector
magnetic field. Figures 3 and 4 show ex-
amples of mean absorption coefficients. They
have been obtained with Gaussian PDF, cylin-
drically symmetrical about a mean field H0.
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Fig. 3. Dependence of 〈ϕI〉 on the magnetic
field distribution. Frequency x in Doppler
width units. Full line corresponds to mean field
H0. The other curves are labeled by the angular
distribution (see text). Panels (a) and (b) corre-
spond to longitudinal and tranverse mean field.

Because of this assumption of cylindrical sym-
metry, all the terms depending on Ψ in Eqs. (7)
to (12) average to zero. The mean absorption
coefficients are thus given by

〈ϕI〉 = Ā0 − 1
3

Ā2(3 cos2 θ0 − 1),

〈ϕV〉 = Ā1 cos θ0,

〈ϕQ〉 = Ā2 sin2 θ0 cos 2φ0,

〈ϕU〉 = 〈ϕQ〉 tan 2φ0, (22)

where

Ā0 =
〈
A0(ν,H)

〉
,

Ā1 =
〈
A1(ν,H) cos Θ

〉
,

Ā2 =
〈
A2(ν,H)

1
2

(3 cos2 Θ − 1)
〉
. (23)

The notation 〈 〉 represents an integration over
Θ and the field strength H weighted by the
vector magnetic field PDF. Similar expressions
can be found in Paper I (Eqs. (16) and (17))
(see also Domke & Pavlov 1979).

The results shown in Figs. 3 and 4 corre-
spond to three different choices for the angular
distribution of the magnetic field fluctuations :

(i) Fluctuations along the direction of the
mean field H0, referred to as 1D distribution.
In this case H is aligned with H0. Hence Θ =
Ψ = 0. The averaging is done only over the
field strength H, with H varying between −∞
and +∞.

(ii) Fluctuations perpendicular to the direc-
tion of the mean field, referred to as 2D dis-
tribution. In this case cos Θ = H0/H. The in-
tegration is thus only over H, with H varying
between H0 and∞.

(iii) Fluctuations with an isotropic distribu-
tion, referred to as 3D distribution. Now the
integration has to be carried out over Θ and H,
with H varying between 0 and∞.

Explicit expressions of the PDF corre-
sponding to these three cases can be found in
Paper I. The results shown in Figs. 3 and 4 have
been calculated with ∆νH0 = 1 (in Doppler
width units), random magnetic field fluctua-
tions with strength f = σ/H0 = 1, where σ
is the width of the Gaussian distribution. The
damping parameter of the absorption profile ϕ0
is zero.

In a random magnetic field, in general both
the strength and the direction of the field are
fluctuating. Fluctuations of the former affect
only the σ-components (producing a broaden-
ing and decrease in amplitude), while fluctu-
ations of the latter affect all the components
(producing essentially a decrease in ampli-
tude). Thus 1D fluctuations do not affect the
π-component of 〈ϕQ〉 nor the π-component of
〈ϕI〉 for θ0 = 90◦. With 2D and 3D distribu-
tions, all the components decrease in ampli-
tude. As can be seen in Fig. 3, the line cen-
ter of 〈ϕI〉 for θ0 = 0◦ is very sensitive to the
angular distribution of the magnetic field PDF.
For 2D distribution, the Zeeman components
are still separated because the projection of the
magnetic field on the vertical stays equal to H0
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Fig. 4. Dependence of 〈ϕQ〉 and 〈ϕV〉 on the
magnetic field distribution. Same model pa-
rameters as in Fig. 3. Panels (a) and (b) cor-
respond to transverse and longitudinal cases.

while the transverse component is zero on the
average with a Gaussian distribution.

When the magnetic field PDF does not
possess cylindrical symmetry about the mean
field, averaging the matrix Φ̂ requires an inte-
gration over Θ, Ψ and H, weighted by the vec-
tor magnetic field PDF (see Eqs. (7) to (12)).

To calculate the mean Stokes parameters,
one must still solve a polarized radiative trans-
fer equation. In the micro-turbulent limit the el-
ements of Φ̂ should be replaced by their mean
values. In the the macro-turbulent limit one
should make use of the elements of Φ̂ given in
Eqs. (7) to (12) and then perform the averaging
of emergent intensity over the vector magnetic
field PDF.

In the case of a Gaussian PDF, the numer-
ical averaging over H, Θ and Ψ can be per-
formed with Gauss–Legendre quadratures. For
Θ and Ψ, 7 to 9 quadrature points are sufficient.

The H integration is more demanding and the
number of grid points depends on the mean
field and fluctuations strength (see Paper I and
Frisch et al. 2006).
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