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Stochastic polarized line formation
II. Zeeman line transfer in a random magnetic field
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ABSTRACT

Context. The Zeeman effect produced by a turbulent magnetic field or a random distribution of flux tubes is usually treated in
the microturbulent or macroturbulent limits where the Zeeman propagation matrix or the Stokes parameters, respectively, are
averaged over the probability distribution function of the magnetic field when computing polarized line profiles.
Aims. To overcome these simplifying assumptions we consider the Zeeman effect from a random magnetic field which has a finite
correlation length that can be varied from zero to infinity and thus made comparable to the photon mean free-path.
Methods. The vector magnetic field is modeled by a Kubo–Anderson process, a piecewise constant Markov process characterized
by a correlation length and a probability distribution function for the random values of the magnetic field. The micro and macro
turbulent limits are recovered when the correlation goes to zero or infinity.
Results. An integral equation is constructed for the mean propagation operator and explicit expressions are obtained for the
mean values and second-order moments of the Stokes parameters at the surface of a Milne–Eddington type atmosphere. The
expression given by Landi Degl’Innocenti (1994) for the mean Stokes parameters is recovered. Mean values and rms fluctuations
around the mean values are calculated numerically for a random magnetic field with isotropic Gaussian fluctuations. The effects
of a finite correlation length are discussed in detail. Various extensions of the Milne–Eddington and magnetic field model are
considered and the corresponding integral equations for the mean propagation operator are given.
Conclusions. The rms fluctuations of the Stokes parameters are shown to be very sensitive to the correlation length of the
magnetic field. It is suggested to use them as a diagnostic tool to determine the scale of unresolved features in the solar
atmosphere.

Key words. line : formation – polarization – magnetic fields – methods: analytic – Sun: atmosphere

1. Introduction

The Zeeman effect has been used in Astrophysics for more
than a century to measure magnetic fields in the Sun,
stars and other objects. The very first analyses of the
Zeeman effect were carried out with uniform magnetic
fields. Together with a higher quality of data, appeared
multi-components models (Stenflo 1994), each component
having a different but uniform, or slowly varying, mag-
netic field. For these models, the observable Stokes pa-
rameters are given by a conveniently weighted average of
the Stokes parameters of each component. Prompted by
measurements of asymmetrical Stokes V profiles, multi-
components models of another type were introduced un-
der the name of MISMA (Sánchez Almeida et al. 1996).
In this model, each component is optically thin and the
Zeeman propagation matrix is replaced by an average over
the various components. These two types of models can be
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made quite sophisticated. With the terminology used for
random velocity fields broadening, one can say that the
first model is of the macroturbulent type, since the aver-
aging is over the radiation field, whereas the second type
of model is of the microturbulent type since the averaging
is done locally over the propagation matrix.

These two types of models may be insufficient to en-
compass the complexity of the solar atmosphere which
shows inhomogeneities, undoubtedly related to the mag-
netic field structure, down to scales at the limit of the reso-
lution power of present day telescopes. For example there
is an active discussion on the fine structure of sunspot
penumbrae. It seems accepted that penumbral magnetic
fields have a more or less horizontal component in the form
of flux tubes embedded in a more vertical background.
However the diameter of these flux tubes and their spatial
distribution is still a matter of controversy, the number
quoted in the literature varying from 1–15km to 100 km
(Sánchez Almeida 1998; Martinez Pillet 2000; Borrero et
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al. 2005). In addition, because of very large kinetic and
magnetic Reynolds numbers prevailing in the solar atmo-
sphere(Childress & Gilbert 1995), turbulent magnetic and
velocity fields have spectra extending over a wide range of
wave-numbers. We were thus strongly motivated to con-
sider the Zeeman effect in a medium where the magnetic
field is random with a correlation length, i.e. character-
istic scale of variation, comparable to radiative transfer
characteristic scales. The importance of this problem has
been stressed again recently (Landi Degl’Innocenti 2003;
Landi Degl’Innocenti & Landolfi 2004, henceforth LL04).

The general regime, neither macro nor microturbulent,
leads to polarized radiative transfer equations with ran-
dom coefficients. Only a few papers have been devoted
to this subject in the past(see however, Faulstich 1980;
Landi Degl’Innocenti 1994, henceforth L94). Recently this
field seems to be receiving some renewed interest (Caroll
and Staude 2003, 2005; Silant’ev 2005). Similar problems,
somewhat simpler though, have been solved in the seven-
ties for the transfer of unpolarized radiation in the pres-
ence of a turbulent velocity with a finite correlation length
(see Mihalas 1978 for a list of references). Turbulent veloc-
ity field models introduced were less or more sophisticated.
The simplest one, is the Kubo–Anderson process (hence-
forth KAP). For radiative transfer problems, it was em-
ployed in the context of turbulent velocity fields for LTE
lines (Auvergne et al. 1973) and non-LTE lines (Frisch
& Frisch 1976; Froeschlé & Frisch 1980), and also in the
context of random magnetic fields for the Zeeman (L94)
and Hanle (Frisch 2006) effects. Actually the KAP was in-
troduced for nuclear magnetic resonance (Anderson 1954;
Kubo 1954). It was also employed to model the electric
field in the stochastic Stark effect (Brissaud & Frisch 1971;
Frisch & Brissaud 1971). The name Kubo–Anderson pro-
cess was introduced in Auvergne et al. (1973).

The idea of the KAP is to describe the atmosphere in
a number of “eddies” having lengths distributed according
to a Poisson distribution with given density. It is assumed
that in each eddy the magnetic field and other random
parameters, such as the velocity or temperature, are con-
stant and their values drawn at random from a probability
distribution function. The mean polarized radiation field
is obtained by averaging over this distribution and the
distribution of the length of the eddies. A KAP is thus
characterized by a correlation length and a distribution
function for the values of the random variables. The corre-
lation length and the distribution function can be selected
independently. This model is fairly simple but has the cor-
rect micro and macroturbulent limits corresponding to a
correlation length which is zero or infinite. As we show
here, when associated to a simple atmospheric model like
the Milne–Eddington model, it yields a convolution-type
integral equation for the mean propagation operator from
which one can deduce explicit expressions for the mean
and rms fluctuations of the Stokes parameters at the sur-
face of the atmosphere, and also for the cross-correlations
between Stokes parameters. In L94, only the mean Stokes
parameters at the surface are considered. It is quite clear

that having explicit expressions is very useful for exploring
finite correlation length effects.

In this paper the main focus is on the effects of ran-
dom magnetic fields with a finite correlation length. For a
full description of say, turbulent eddies or random distri-
bution of flux tubes in a sunspot penumbrae, it is neces-
sary to incorporate all the other relevant atmospheric pa-
rameters which typically should be described by the same
type of random process as the magnetic field, in particu-
lar the same correlation length. When the magnetic field
is described by a KAP, incorporating other random pa-
rameters, in particular a velocity field, also described by
a KAP with the same correlation length as the magnetic
field is no additional work as we explain in the Remark at
the end of Section 2.6.

In Section 2 we define the random magnetic field
model, establish a convolution-type integral equation for
the mean propagation operator, solve it exactly for its
Laplace transform and give an explicit expression for the
mean value of the Stokes parameters at the surface of the
atmosphere. The latter is used in Section 3 to study nu-
merically the sensitivity of the mean Stokes parameters
to the correlation length of a random magnetic field with
isotropic Gaussian fluctuations. In Section 4 we establish
an explicit expression for the second-order moments of
the Stokes parameters and study numerically the disper-
sion of the Stokes parameters about their mean values.
The second-order moments give also access to the mean
cross-correlations between Stokes parameters. In Section 5
we introduce various extensions of the Milne–Eddington
and magnetic field model and establish the corresponding
integral equations for the mean propagation operator. A
summary of the main results is presented in Section 6.

2. The Mean Stokes parameters

2.1. The surface value of the Stokes parameters

We consider a line formed in LTE in semi-infinite one-
dimensional medium and assume that the source function
is a linear function of depth. The radiative transfer equa-
tion for the Stokes vector I = [I,Q, U, V ]T for rays prop-
agating outwards along the normal to the surface may be
written as
d

ds
I(s) = K(s)[I(s)− S(s)]. (1)

Here, s is the ray-path coordinate which varies inside the
medium from 0 to ∞, with the surface at s = 0, K the
4 × 4 propagation matrix and S(s) the source function
vector which is of the form

S(s) = (B0 + B1 s)U , (2)

where B0 and B1 are constants and U a constant vec-
tor. If S(s) is of thermal origin, say the Planck function,
U = [1, 0, 0, 0]T. The Stokes vector and the matrix K are
functions of frequency. We omit the frequency variable
since there is no scattering term to couple the frequencies
of incident and emergent beams.
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Following the usual procedure, we define the evolution
operator O(s, s′), as the linear operator which transforms
I(s′) into I(s) when the source term S in Eq. (1) vanishes
(Landi Degl’Innocenti 1987; see also the Appendix A).1

Since photons propagate from positive s (inside) to s = 0
(surface), we always take s′ > s. The formal solution of
the transfer equation at s = 0 may be written as

I(0) =
[
B0E + B1

∫ ∞

0

O(0, s) ds
]
U , (3)

where E is the 4× 4 identity matrix. We are interested in
the calculation of 〈I(0)〉KA, the mean value of I(0) over
all the realizations of the random magnetic field, given by

〈I(0)〉KA =
[
B0E + B1

∫ ∞

0

〈
O(0, s)

〉
KA

ds
]
U . (4)

The notation 〈· · ·〉KA will always mean an average over all
the realizations of the KAP.

2.2. The random magnetic field model

Assuming that the magnetic field H(s) is a KAP implies
that H(s) is piecewise constant, jumping at randomly cho-
sen points between random values. The jumping point si

are uniformly and independently distributed in [0, +∞]
with a Poisson distribution of density ν independent of s.
In each interval si−1 < s < si, the magnetic field takes a
constant value H(s) = Hi. The Hi are random variables
with a probability distribution function P (H) indepen-
dent of s. Hence a KAP is fully characterized by a prob-
ability distribution function and a correlation length here
defined as 1/ν. We recall that for a Poisson distribution
of density ν, the probability of having r jumps in an in-
terval of length L is e−νL(νL)r/r!. Since H(s) is a KAP,
any element of the Zeeman propagation matrix K is also
a KAP.

The absence of memory of the Poisson process implies
that a KAP is a Markov process (see the definition after
Eq. (7)). The Markov property and the fact that H(s) is
piecewise constant are the two properties which allow us
to obtain an integral equation for the mean propagation
operator. In addition, because P (H) and ν are chosen in-
dependent of s, the KAP is a stationary process (uncon-
ditioned statistical properties are invariant under space
translations). As a consequence, the integral equation for
the mean propagation operator is of the convolution type
(see Eq. (10)). Examples of integral equations, which are
not of the convolution type because the stationarity as-
sumption has been relaxed, are given in Section 5.

2.3. The mean propagation operator

The mean value 〈O(0, s)〉KA can be calculated by sum-
ming the contributions from realizations having N=0,

1 This article contains one appendix which is pub-
lished in the electronic version of A&A available at
http://www.edpsciences.org/aa.

N=1, N=2, etc. jumping points (e.g. Brissaud & Frisch
1971). This technique yields the mean value as sum of
a series. The latter is equivalent to a Neumann series
expansion of the convolution-type integral equation (see
Eq. (10). Following Brissaud & Frisch (1974) (see also
Auvergne et al. 1973) we show how to establish a integral
equation for 〈O(0, s)〉KA directly. A summation method is
used in Section 4 to calculate the second-order moments
of the Stokes parameters.

When the propagation matrix is independent of space,
the propagation operator O(s, s′) is an exponential and
depends only on the difference s− s′. Henceforth referred
to as the “static” evolution operator and denoted by OS

(S stands for static), it may be written as

OS(s, s′) = e−(s′−s)K . (5)

The exponential of the constant matrix K is defined in
a standard way, e.g. by its power-series expansion. The
operator OS will play an important role in the following.

First we consider all the realizations without jumping
point between 0 and s. For each realization K is constant
in the interval [0, s] and the propagation operator is given
by its static value. The probability that there is no jump
in the interval [0, s] is e−νs. Thus, the contribution to the
mean propagation operator from the realizations with no
jump is given by :
〈
O(0, s)

〉(no jump)

KA
= e−νs

〈
e−Ks

〉
= e−νs

〈
OS(s)

〉
, (6)

where 〈. . .〉 denotes an average involving only the proba-
bility distribution function P (H) of the magnetic field.

Next we assume that there are one or several jumping
points between 0 and s and denote by t the last jumping
point before s. For a Poisson distribution, the probability
distribution of s−t is the same as the probability distribu-
tion of the intervals between successive jumps. Hence the
probability that t falls within the small interval [s′, s′+δs′]
is given by the usual Poisson formula νδs′e−ν(s−s′).

The mean of the propagation operator, when there is
at least one jump, is obtained by integrating its condi-
tional mean, knowing that the last jump falls in the small
interval δs′, weighted by the probability of the condition-
ing event. The integral is over all possible values of s′,
that is from 0 to s. (Note that the probability that the
KAP has its last jump in the small interval δs′ is propor-
tional to δs′, but the conditional probability is, to leading
order, independent of δs′.) The mean of the propagation
operator for the case with at least one jump may thus be
written as

〈
O(0, s)

〉(jumps)

KA
=

∫ s

0

νe−ν(s−s′)〈O(0, s)
〉
KA,s′ ds′, (7)

where
〈
. . .

〉
KA,s′ denotes the conditional mean, evaluated

with the conditional probability.
Two key properties are now used : (i) The Markov

property of the KAP, which guarantees that, after con-
ditioning, the “past” (0 < t < s′) and the “future”
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(s′ < t < s) are independent and (ii) the semi-group prop-
erty O(0, s) = O(0, s′)O(s′, s) (see Appendix A).

Using (i) and (ii), and the fact that the propagation
operator in the interval [s′, s] is just the static one, we
have
〈
O(0, s)

〉
KA,s′ =

〈
O(0, s′)

〉
KA,s′

〈
OS(s− s′)

〉
. (8)

We claim that
〈
O(0, s′)

〉
KA,s′ =

〈
O(0, s′)

〉
KA

. (9)

Indeed, the knowledge that a jump occurs at s′, imposes
no constraint on previous jumping points and previous
values of K(t). Observe that the r.h.s. is an unconditional
average.

Adding the contributions from Eqs. (6) and (7), we
obtain a closed convolution-type integral equation for the
mean propagation operator :
〈
O(0, s)

〉
KA

= e−νs
〈
OS(s)

〉

+
∫ s

0

νe−ν(s−s′)〈O(0, s′)
〉
KA

〈
OS(s− s′)

〉
ds′. (10)

The stationary property implies that Eq. (10), written
here for the interval [0, s], holds for any interval [s1, s2],
provided the necessary changes are made.

Equation (10) can be solved explicitly by introducing
the Laplace transforms,

Õ(0, p) ≡
∫ ∞

0

e−psO(0, s) ds, (11)

ÕS(p) ≡
∫ ∞

0

e−psOS(s) ds, (12)

where it is assumed that <(p) ≥ 0 to ensure convergence.
The notation ≡ means that we are introducing a defini-
tion. Equation (5) implies that

〈
ÕS(p)

〉
=

〈
[pE + K]−1

〉
. (13)

Taking the Laplace transform of Eq. (10) and transform-
ing the integral

∫∞
0

ds
∫ s

0
. . . ds′ into

∫∞
0

ds′
∫∞

s′ . . . ds, we
obtain
〈
Õ(0, p)

〉
KA

=
〈
ÕS(p+ν)

〉
+ν

〈
Õ(0, p)

〉
KA

〈
ÕS(p+ν)

〉
,(14)

which leads to

〈
Õ(0, p)

〉
KA

=
〈
ÕS(p + ν)

〉[
E − ν

〈
ÕS(p + ν)

〉]−1

. (15)

We note that the two factors in Eq. (15) commute, the
product being of the form A[E + αA]−1 with α a scalar.
This can be shown by expanding the second factor in pow-
ers of A or by using E = AA−1.

In principle, by performing an inverse Laplace trans-
form on the r.h.s. of Eq. (15) we can obtain the mean
propagation operator 〈O(0, s)〉KA. Actually in our appli-
cations, only the Laplace transform is needed.

2.4. Mean values of the Stokes parameters at the
surface

Returning to Eq. (4), we see that the integral in the r.h.s.
is the Laplace transform of 〈O(0, s)〉KA for p = 0 (see
Eq. (11)). The mean value of the Stokes vector at the
surface can thus be written as
〈
I(0)

〉
KA

=
[
B0E + B1

〈
Õ(0, 0)

〉
KA

]
U , (16)

where, according to Eq. (15),
〈
Õ(0, 0)

〉
KA

=
〈
ÕS(ν)

〉[
E − ν

〈
ÕS(ν)

〉]−1

, (17)

with 〈ÕS(ν)
〉

given by Eq. (13) with p = ν.
Equation (16), combined with Eqs. (17) and (13),

yields an explicit expression for the mean value of the
Stokes vector at the surface. The sole averaging which has
to be performed is the averaging over P (H) in Eq. (13).

As mentioned above, this expression has first been ob-
tained in L94, with a stochastic magnetic field model iden-
tical to ours, even if it is not referred to as a KAP. The
proof, which is very elegant, starts from Eq. (4). The inte-
gral over [0,∞] is first replaced by a sum from i = 1 to ∞
over all the intervals [si−1, si]. Elementary algebra shows
that each term in the sum is of the form


j=i∏

j=2

exp(−∆sj−1Kj−1)


 [

E − exp(−∆sjKj)
]
K−1

j , (18)

where Kj is the constant value of Zeeman propagation
matrix in the interval ∆sj = sj−sj−1. The si are assumed
to be distributed according to a Poisson law characterized
by a density 1/se and the Ki to be uncorrelated. The
mean value of the Stokes vector is then obtained by aver-
aging over all the possible partitions of the s-axis and over
the probability distribution function of K. The expression
given in L94 is
〈
I(0)

〉
KA

= B0U + B1

{[
E − 〈

(1 + seK)−1
〉]−1

[〈
K−1

〉− 〈
(1 + seK)−1K−1

〉]}
U . (19)

Replacing se by 1/ν, it can be checked that Eq. (19) is
identical to our result. A more detailed proof can be found
in LL04.

2.5. The macro and micro-turbulent limits

The macroturbulent limit corresponds to a correlation
length 1/ν going to infinity. In this case the magnetic field
is independent of optical depth but its value is random
with a probability distribution function P (H). Setting
ν = 0 in Eq. (17) we obtain for the macroturbulent limit,
〈
I(0)

〉
macro

=
[
B0E + B1

〈
K−1

〉]
U . (20)

In the microturbulent limit, the correlation length 1/ν
goes to zero. Using
〈
[νE + K]−1

〉
' 1

ν

〈
E − 1

ν
K

〉
, ν →∞, (21)
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one obtains
〈
I(0)

〉
micro

=
[
B0E + B1

〈
K

〉−1
]
U . (22)

The micro and macroturbulent limits can be constructed
with the standard Unno–Rachkovsky solution (e.g. Rees
1987; Jefferies et al. 1989; LL04). It suffices to aver-
age K over P (H) in the microturbulent limit and the
Unno–Rachkovsky solution itself in the macroturbulent
limit. Following L94, we can say that the result given in
Eqs. (16) and (17) is a generalization of the traditional
Unno–Rachkovsky solution for random magnetic fields.
We can also remark that the macroturbulent limit is of
the same nature as a standard multi-component model
whereas the microturbulent limit is of the MISMA type.
Of course, these models usually incorporate many physical
processes in addition to the Zeeman effect.

2.6. Residual emergent Stokes vector

The propagation matrix will usually contain a contribu-
tion from the background continuum opacity which we
assume here to be unpolarized. The propagation matrix is
then of the form

K = κcE + κoΦ, (23)

where κc is the continuum opacity, assumed to be indepen-
dent of frequency, κo the frequency integrated line opacity
and Φ the spectral line propagation matrix. We assume
that the continuum and line source functions are identical
and given by the Planck function. We introduce the ratio
κo/κc = β, with β a constant, and the continuum optical
depth dτc = κc ds which is now used as the space variable.
The radiative transfer equation can then be written as

dI

dτc
= [E + βΦ][I − S]. (24)

We assume that the Planck function is linear in τc and
write S(τc) = (B0 + B1τc)U with U = [1, 0, 0, 0]T. The
assumptions of a constant β and a linear source function
are characteristic of a Milne–Eddington model.

At the surface, the Stokes vector in the continuum is
given by

Ic(0) = (B0 + B1)U . (25)

With our choice for U , only the first component of Ic, i.e.
the intensity component Ic, is non zero.

Equation (16) shows that the magnetic field effects are
contained in 〈Õ(0, 0)〉KA. This suggests to introduce

r(0) ≡ [E − Õ(0, 0)]U =
1

B1
[Ic(0)− I(0)], (26)

with Õ(0, 0) the Laplace transform for p = 0 of the prop-
agation operator (see Eq. (11)). For simplicity, r(0) will
be referred to as the residual Stokes vector, although

x

y

n

z

H
H o

θ oθ

φo

φ

Fig. 1. Definition of θ, φ, θo and φo, the inclinations and longi-
tudes of the random magnetic field vector H, and of its mean
Ho. The angles θ and θo are defined with respect to the direc-
tion z along the line of sight.

the usual residual Stokes vector, also called line depres-
sion Stokes vector (Stenflo 1994, p. 244), is defined as
[Ic(0)− I(0)]/Ic(0). Equations (16) and (17) yield

〈
r(0)

〉
KA

=
[
E − 〈

ÕS(ν)
〉[

E − ν
〈
ÕS(ν)

〉]−1
]
U

=
[
E − (1 + ν)

〈
ÕS(ν)

〉][
E − ν

〈
ÕS(ν)

〉]−1

U , (27)

where
〈
ÕS(ν)

〉
=

1
1 + ν

〈[
E +

β

1 + ν
Φ

]−1
〉
. (28)

The expression of
〈
ÕS(ν)

〉
follows from Eq. (13) where we

have set p = ν and K = E + βΦ.
The mean residual Stokes vector can also be written

as
〈
r(0)

〉
KA

= (1 + ν)

Rmacro

(
β

1 + ν
Φ

)[
E + νRmacro

(
β

1 + ν
Φ

)]−1

U , (29)

where

Rmacro(λΦ) ≡ 〈
λΦ[E + λΦ]−1

〉
, (30)

with λ a scalar.
In the macroturbulent and microturbulent limits,

Eq. (29) reduces to
〈
r(0)

〉
macro

= Rmacro(βΦ)U , (31)

〈
r(0)

〉
micro

= β
〈
Φ

〉[
E + β

〈
Φ

〉]−1

U . (32)

The microturbulent limit is readily obtained by subtract-
ing Ic(0) from Eq. (22). The mean value 〈Φ〉 has been in-
vestigated in some detail for random magnetic fields with
isotropic and anisotropic Gaussian fluctuations in Frisch
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et al. (2005) (henceforth Paper I) (see also Dolginov &
Pavlov 1972; Domke & Pavlov 1979; Frisch et al. 2006;
Sampoorna et al. 2006).

The expressions given here for the residual Stokes
vector are similar to the expressions given in Auvergne
et al. (1973) for the broadening by a turbulent velocity
field. The only difference is that the line absorption
coefficient is now a matrix instead of a simple scalar.
From a numerical point of view, it is more convenient to
work with the residual Stokes vector than with the Stokes
vector itself because the averaging is done on quantities
which go to zero at large frequencies.

Remark
In the proof given above we have assumed for simplic-
ity that randomness in Φ, and thus in K, comes only
from the magnetic field. If randomness comes from other
physical parameters and provided they are described with
the same type of random process as the magnetic field,
in particular the same correaltion length, all the theoreti-
cal results given here will still hold, but the averaging over
P (H) must be replaced by an averaging over a joint prob-
ability distribution function P (H, α1, α2, . . .), where the
αi are scalar or vector random parameters. This remark
holds also for the results in Section 4 on the second-order
moments.

3. Numerical evaluation of the mean Stokes
parameters

In this Section we use Eq. (29) to study the dependence of
〈r(0)〉KA on the correlation length of a random magnetic
field with isotropic Gaussian fluctuations. We assume that
the velocity field is microturbulent. Its effects can thus be
incorporated in the definition of the profile Φ and of the
Doppler width. This assumption allows us to clearly iden-
tify the effects of the random magnetic field. The function
P (H) is defined in Section 3.1 and numerical results are
presented in Section 3.2.

3.1. Probability distribution function of the vector
magnetic field

To calculate 〈r(0)〉KA we must perform the averaging over
P (H) of the r.h.s. in Eq. (30) where λ = β/(1 + ν). For
a random magnetic field with isotropic Gaussian fluctua-
tions,

P (H) dH =
1

(2π)3/2σ3
exp

[−(H −Ho)2

2σ2

]
H2 sin θ dθ dφ dH, (33)

where Ho is the mean value of H and 3σ2 =
〈
(H−Ho)2

〉
,

the dispersion around the mean value. The angles θ and φ
are the inclination and longitude of the random magnetic
field with respect to the line of sight (see Fig. 1). The di-
rection of the mean field is defined by the angles θo and φo.
The amplitudes of H and Ho are denoted by H and Ho.

Fig. 2. Variation of the full width at half maximum L(ν) of
the emergent Stokes I profile with the jump frequency ν for
various values of the line strength β. The model parameters
employed are yo = ∆Ho = 0.1; γH = 1; θo = 0◦; φo = 0◦ and
a = 0.

The Zeeman shift by the mean magnetic field is ∆Ho. Here
∆ = g e

4πmc
1

∆D
, with g the Landé factor, e and m the mass

and charge of the electron, c the speed of light and ∆D the
Doppler width. Frequencies, denoted by x, are measured
in units of the Doppler width, with zero at line center.
The Doppler width is given by ∆D = νo(v2

th + v2
turb)1/2/c,

where vturb and vth are the rms microturbulent and ther-
mal velocity and νo is the frequency at line center. The
usual factor 1/

√
π is absorbed in the definition of Φ (see

Paper I).
The effects of the random magnetic field are controlled

by two parameters :

yo ≡ Ho√
2σ

and γH ≡ ∆
√

2σ or ∆Ho, (34)

where ∆Ho is the Zeeman shift by the mean magnetic
field and γH the Zeeman shift by the rms fluctuations, also
measured in Doppler width unit, which acts as a magnetic
broadening on the σ-components of the Zeeman propaga-
tion matrix. The parameter yo = Ho/

√
2σ = ∆Ho/γH,

is the ratio of these two shifts. When yo is smaller than
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Fig. 3. Dependence of the mean Stokes parameters on the cor-
relation length 1/ν for a weak mean magnetic field and strong
turbulence (f = 10). The model parameters are: β = 10,
∆Ho = 0.1, γH = 1. The mean field Ho is in the direction
of LOS. The full lines show the macro (ν = 0) and micro
limits. The line types are: dotted (ν = 1); dashed (ν = 10);
dot-dashed (ν = 50). The long-dashed lines correspond to the
Unno–Rachkovsky (UR) solution calculated with Ho.

unity (yo < 0.1− 0.2), ∆Ho is smaller than the combined
Doppler and random magnetic field broadening measured
by the parameter γ1 =

√
1 + γ2

H. In this limit, the σ-
components are not resolved. In contrast, when yo is larger
than unity, say yo > 2, the σ-components are well sepa-
rated, provided ∆Ho is larger than unity. We also intro-
duce f = 1/yo which measures the strength of the tur-
bulent fluctuations, large values corresponding to strong
turbulence and small ones to weak turbulence.

3.2. Numerical results. Effects of a finite correlation
length

The numerical method for averaging over P (H) is de-
scribed in Paper I, where it is applied to the calcula-
tion of 〈Φ〉. Although the expressions here are somewhat
more complicated, the same technique can be applied. The
averaging involves a triple integration over the variables

Fig. 4. Same as Fig. 3 but for moderate turbulence (f = 1).
The model parameters are: β = 10, ∆Ho = 1, γH = 1.

y = H/
√

2σ, θ and φ. The y-integration requires some
care. It is performed using a Gauss–Legendre quadrature
formula with 10 to 30 points in a range [0, 2ymax]. We
have choosen ymax = 1 for yo < 1 and ymax = yo for
yo > 1. The mean residual Stokes parameters are cal-
culated in a frequency-bandwidth [−xmax, +xmax] with
xmax = 4γHymax. All the calculations reported here are
performed with a damping parameter a = 0. In Paper I it
is shown that the elements of 〈Φ〉 are not very sensitive
to the value of a, unless it becomes larger than 0.1.

Equation (29) shows that 〈r(0)〉KA involves the pa-
rameter ν and the ratio β/(1+ν). When β is small, and a
fortiori β/(1+ν), Eq. (28) (or (30)) shows that β

1+ν Φ can
be neglected compared to the identity matrix. Hence, for
small values of β, 〈r〉micro ' 〈r〉macro ' β〈Φ〉U . Therefore
for weak lines, the Stokes parameters depend only on
P (H) (through 〈Φ〉) in the region of the line formation.
For lines sensitive to the value of ν, the microturbulent
regime is reached when β/ν < 1, i.e. when the correlation
length has a line optical depth smaller than unity. These
remarks are illustrated in Fig. 2 which shows L(ν), the full
frequency width at half-maximum of 〈I(0)〉KA (the mean
value of Stokes I), for different choices of β and ν. We
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Fig. 5. Same as Fig. 4, but with the mean field Ho perpendic-
ular to the direction of the LOS.

have assumed ∆Ho = 0.1 and γH=1, in order to have for
Stokes I a single well defined peak allowing for an unam-
biguous definition of L(ν). Figure 2 clearly shows that the
dependence on ν increases with β and that the microtur-
bulent regime, indicated by the fact that L(ν) reaches a
constant value, sets in at roughly ν ' β.

Numerical results illustrating the ν dependence of 〈rI〉,
〈rV〉 and 〈rQ〉, the Stokes I, Q and V components of
〈r(0)〉KA, are shown in Figs. 3 to 9 for different values
of β (10 and 100) and different magnetic field param-
eters. To simplify the notation, without risk of confu-
sion, we have omitted the subscript “KA” and the value
τc = 0 for the components of 〈r(0)〉KA. In all the figures
γH = ∆

√
2σ = 1, which means that the random magnetic

field broadening is of the same order as the broadening
by the combined thermal and turbulent velocities. Hence
the strength of the fluctuations is always f = 1/∆Ho.
For comparison we also show the Unno–Rachkovsky so-
lution calculated with the mean field Ho, henceforth re-
ferred to as the mean Unno–Rachkovsky solution and de-
noted UR. The relative variation between the micro and
macroturbulent limits are evaluated by considering the ra-

Fig. 6. Dependence of the mean Stokes parameters on the cor-
relation length 1/ν of the magnetic field for a strong mean
field and weak turbulence (f = 1/3). The model parameters
are: β = 10, ∆Ho = 3, γH = 1. The mean field Ho is in the
direction of the LOS. The line types have the same meaning
as in Fig. 3.

tio δ〈rX〉 = [|〈rX〉micro − 〈rX〉macro|]/|〈rX〉micro| where the
subscript X stands for I, Q or V .

(i) Behavior of 〈rI〉. All the figures (3 to 9) clearly
show that the profiles corresponding to a finite value of ν
lie, as expected, between the microturbulent and macro-
turbulent limits, with the microturbulent profiles being
at all frequencies broader than the macroturbulent ones,
especially around the frequencies corresponding to the σ-
components. When β = 10 (Figs. 3 to 7), the relative vari-
ations, measured with δ〈rI〉, are between 10% and 20% at
line center and also in the σ-components, when the latter
are well separated. The main trend at line center is an
increase of δ〈rI〉 with ∆Ho. The value of f seems to be
essentially irrelevant. In Fig. 6, where the mean field is
longitudinal, 〈rI〉 shows an unpolarized π-component cre-
ated by the angular averaging of the sin2 θ factor in the
π-component of the absorption coefficient (see Paper I).
The strength of this component is very sensitive to the
angular distribution of the magnetic field fluctuations.
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Fig. 7. Same as Fig. 6, but with the mean field Ho perpendic-
ular to the direction of the LOS.

When β = 100 (Figs. 8 and 9), 〈rI〉 deviates strongly
from the UR solution. When Ho is longitudinal (Fig. 8),
a peak appears at line center and its value is almost inde-
pendent of the correlation length. As shown by the Unno–
Rachkovsky solution the central component behaves es-
sentially as β〈ϕI〉/(1 + β〈ϕI〉), with 〈ϕI〉 the mean value
of the absorption coefficient. At line center, when the
magnetic field is random, 〈ϕI〉 becomes much larger than
its deterministic counterpart calculated with Ho. Hence
when β is fairly large, the value of the central peak may
approach unity. When Ho is in the transverse direction,
one observes drastic changes between the macroturbulent
and microturbulent limits which can also be explained in
terms of the behavior of 〈ϕI〉.

(ii) Behavior of 〈rV〉. A striking feature (see Figs. 3,
4, 6, 8) is the strong deviation from the UR solution for
strong and moderate turbulence (see Figs. 3 and 4 with
f = 10 and f = 1) while for weak turbulence, 〈rV〉 stays
very close to the UR solution (see Figs. 6 and 8 with
f = 1/3). The relative variations between the micro and
macroturbulent limits seems to be largely independent of
the value of f . They are always smaller than 10% and in
general smaller than the variation of 〈rI〉 at line center, ex-

Fig. 8. Dependence of the mean Stokes parameters on the cor-
relation length 1/ν of the magnetic field for a strong line :
β = 100. The other model parameters are ∆Ho = 3 and
γH = 1. They are the same as in Fig. 6 and correspond to
a weak turbulence case (f = 1/3). The mean field Ho is in the
direction of the LOS. The line types have the same meaning
as in Fig. 3.

cept for the case of Fig. 3 where they are both of the same
order and slightly less than 10 %. It thus seems that 〈rV〉,
can be calculated with the microturbulent limit, with rea-
sonable confidence, ignoring the correlation length of the
magnetic field.

(iii) Behavior of 〈rQ〉. Figures 5, 7, 9 show a strong
deviation from the UR solution which decreases when
the strength of the turbulent fluctuations decreases. For
β = 10, at line center δ〈rQ〉 reaches 75% when f = 1 but
decreases to 20% when f = 1/3. For this value of β, one
can observe that the line center is more sensitive to the
correlation length than the σ-components. For β = 100
and although f = 1/3 only (see Fig. 9), 〈rQ〉 is very sensi-
tive to the correlation length, at line center and also in the
wings. At line center, 〈rQ〉 is bounded by the macro and
microturbulent limits, but in the σ-components the be-
havior is not so simple because the position of the peaks
moves away from the line center when ν increases. The
maximum depth of the σ-components stays however al-
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Fig. 9. Same as Fig. 8, but with the mean field Ho perpendic-
ular to the direction of the LOS.

ways above the macroturbulent value. Finally we remark
that for weak fluctuations (f = 1/3), 〈rQ〉 will depart
more from the UR solution than 〈rV〉 (compare Figs. 6
and 7).

All the figures shown in this Section confirm the re-
mark that microturbulence is reached when β/ν ' 1.

4. Second-oder moments and dispersion of the
Stokes parameters

We now examine the fluctuations of the Stokes parameters
around their mean values. For each Stokes parameter, we
consider the square of the dispersion,

σ2
i (0) ≡ 〈I2

i (0)〉KA − 〈Ii(0)〉2KA, (35)

where Ii stands for I, Q, U or V . To calculate these quanti-
ties, we must consider second-order moments of the Stokes
parameters, i. e. quantities of the form 〈Ii(0)Ij(0)〉KA.

Second-order moments are investigated in Brissaud &
Frisch (1974) for systems of linear stochastic equations,
but only for homogeneous systems or systems with a white
noise inhomogeneous term. Here we show that explicit ex-
pressions for second-order moments can also be obtained

for inhomogeneous systems with a constant inhomoge-
neous term. Our method is inspired by Brissaud & Frisch
(1974).

When the source function S(τc) varies linearly with op-
tical depth, one can easily obtain a vector transfer equa-
tion with a constant inhomogeneous term. It suffices to
introduce the new unknown vector

Y (τc) ≡ I(τc)− S(τc). (36)

Since S is non-random, I and Y will have the same dis-
persion. The vector Y satisfies the transfer equation

dY

dτc
= [E + βΦ]Y −B1U = KY −B1U , (37)

where the inhomogeneous term B1U is a constant vector.
In this Section, to simplify the notation, we set τc = s.
The solution of Eq. (37) can be written as

Y (s) = B1

[∫ ∞

s

O(s, s′) ds′
]
U , (38)

where O(s, s′) has been introduced in Section 2 as the
propagation operator for Eq. (1).

In Section 4.1, we use Eq. (38) to establish a transfer
equation for the tensor product Y (s)⊗ Y (s) and solve it
for Y (0) ⊗ Y (0). In Section 4.2 we establish an explicit
expression for 〈Y (0)⊗ Y (0)〉KA by a summation method
and use it in Section 4.3 to illustrate the dependence of
the dispersion on the correlation length and strength of
the magnetic field fluctuations.

4.1. Transfer equation for the second-order moment of
the Stokes vector

To calculate the dispersions σ2
i (0), we need only

〈Yi(0)Yi(0)〉KA, however the latter cannot be calculated
independently of the other 〈Yi(0)Yj(0)〉KA. We therefore
introduce the tensor product

Y (s)⊗ Y (s) = Yi(s)Yj(s), with i, j = 1, 4. (39)

We associate the indices 1 to 4 to I, Q, U and V , respec-
tively. We consider Yi(s)Yj(s) to be the components of a
16-dimension vector. For symmetry reasons, there is actu-
ally only 10 different components. One could also consider
Yi(s)Yj(s) to be elements of a 4×4 matrix. However there
is no real advantage to work with a matrix and further-
more such a description will not hold for third or higher
moments.

It follows from Eq. (37) that Y (s)⊗Y (s) satisfies the
transfer equation

d

ds

[
Y (s)⊗ Y (s)

]
=

KY ⊗ Y + Y ⊗KY −B1

(
U ⊗ Y + Y ⊗U

)
. (40)

We recall that the tensor product, also called Kronecker
product (Iyanaga & Kawada 1970, p. 851), of a m × n
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matrix C by a r × s matrix D is a mr × ns matrix which
can be written as

C ⊗D =




C11D . . . C1nD
...

. . .
...

Cm1D . . . CmnD


 . (41)

A useful formula satisfied by tensor products is

(C1 ⊗D1)(C2 ⊗D2) = C1C2 ⊗D1D2, (42)

provided the matrix products can be defined. It is used
here several times with one of the matrix, say C1, equal
to the identity matrix E. In that case,

(E ⊗D1)(C2 ⊗D2) = C2 ⊗D1D2. (43)

It follows from Eq. (43), that Eq. (40) can be rewritten
as
d

ds

[
Y (s)⊗ Y (s)

]
= K(Y ⊗ Y )−B1Y , (44)

where

Y ≡ U ⊗ Y + Y ⊗U , (45)

K ≡ K ⊗E + E ⊗K, (46)

with Y a 16-dimension vector and K a 16 × 16 matrix.
We use calligraphic letters to denote 16× 16 matrices and
16-dimension vectors (the indices run from 1 to 16).

The Green’s function (or propagation operator)
G(s, s′) associated to Eq. (44) satisfies

d

ds
G(s, s′) = K(s)G(s, s′), with G(s, s) = E, (47)

where E is the 16 × 16 identity matrix. The function
G(s, s′) has a static version GS(s) corresponding to K (i.e.
K) independent of s. Combining the transfer equation
for O(s, s′) (identical to Eq. (47) with K(s) replaced by
K(s)), Eqs. (46) and (47), one can show that

G(s, s′) = O(s, s′)⊗O(s, s′). (48)

We note that in Brissaud and Frisch (1974), G(s, s′) is
referred to as the double Green’s function.

In terms of G(s, s′), the solution of Eq. (44) at the
surface may be written as

Y (0)⊗ Y (0) = B1

∫ ∞

0

G(0, s)Y(s) ds. (49)

Using now Eqs. (38), (43) and (45), we obtain

Y (0)⊗ Y (0) = B2
1

[∫ ∞

0

G(0, s)

×
∫ ∞

s

[Ol(s, s′) + Or(s, s′)] ds′ ds
]
(U ⊗U), (50)

where

Ol(s, s′) ≡ E ⊗O(s, s′); Or(s, s′) ≡ O(s, s′)⊗E. (51)

Equation (50) is the starting point for the calculation of
the mean value of Y (0)⊗ Y (0).

4.2. Averaging second-order moments

In this Section we show that the average of Y (0)⊗ Y (0)
over all the realizations of the KAP can be written in the
form
〈
Y (0)⊗ Y (0)

〉
KA

= B2
1M(U ⊗U), (52)

where M is a 16× 16 matrix which can be written as

M = Ml + Mr, (53)

with

Ml,r =
[
E − ν

〈G̃S(ν)
〉]−1

×〈G̃S(ν)Õl,r

S (ν)
〉[E − ν

〈Õl,r

S (ν)
〉]−1

, (54)

Õl

S(ν) ≡ E ⊗ ÕS(ν), Õr

S(ν) ≡ ÕS(ν)⊗E, (55)

and G̃S(ν) the Laplace transform of the static double
Green’s function. We recall that ÕS(ν) is the Laplace
transform for p = ν of the static propagation operator
O(s, s′) (see Eq. (12)). The explicit expressions of the
Laplace transforms are (see Eq. (13))

ÕS(ν) =
[
νE + K

]−1

; G̃S(ν) =
[
νE + K

]−1

. (56)

We now give a proof of Eq. (54) based on the summation
of a series, the Nth term of the series corresponding to all
possible realizations having N jumping points.

Proof
Taking the average of Eq. (50), we see that

Ml =
〈∫ ∞

0

G(0, s)
∫ ∞

s

Õl
(s, s′) ds′ ds

〉
KA

, (57)

with a similar definition for Mr. To simplify the notation,
we drop the superscript l on Ml and Ol.

We now consider an interval [0, s′], and examine all
the realizations of the KAP. We characterize them by
the number of jumping points N in the interval [0, s′].
We stress that s′ varies from s to ∞, while s varies from
0 to ∞. In Section 2.3 we have already introduced the
elements needed here, namely that the probability to
have no jump in an interval of length L is e−νL and that
the probability to have a jump in a small interval δsi

around si is νδsi. The proof is based on the remarks that
G(s, s′) and O(s, s′) satisfy a semi-group property and
that they can be replaced by their static values if there is
no jumping points between s and s′.

For N=0 we have no jump in [0, s′] hence no jump in
[0, s] and [s, s′], so we can replace G(0, s) and O(s, s′) by
GS(s) and OS(s′ − s), respectively. We can thus write

M0 =
〈∫ ∞

0

∫ ∞

s

e−νsGS(s)e−ν(s′−s)OS(s′ − s) ds′ ds
〉
, (58)
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where the exponential term is the probability that there is
no jump in the intervals [0, s] and [s, s′] and the averaging
over the random value of the vector magnetic field, i.e.
over P (H). The r.h.s. can be expressed in terms of the
Laplace transforms of the static propagation operators.
We thus obtain

M0 =
〈G̃S(ν)ÕS(ν)

〉
, (59)

where the average in the r.h.s. is over P (H).

For N=1, we have one jump, say at a point s1, within
an interval δs1, which can lie in either one of the in-
tervals [0, s] or [s, s′]. We consider the two cases separately.

Case (a) : 0 < s1 < s < s′

First we use the semi-group property to write

G(0, s)O(s, s′) = G(0, s1)G(s1, s)O(s, s′). (60)

Since there is no jump in each of the intervals [0, s1], [s1, s],
[s, s′], we can replace the propagation operators by their
static value, which depend only on the random value of
the vector magnetic field H. Now we remark that with the
conditioning at s1, the random values of H to the left and
to the right of s1 become independent. This implies that
we can average separately over P (H) the factor GS(s1)
and the product GS(s − s1)OS(s′ − s). After averaging
over all possible values of s1, we thus obtain

M1,a =
∫ ∞

0

∫ s

0

∫ ∞

s

νe−νs1

〈
GS(s1)

〉
e−ν(s−s1)e−ν(s′−s)

×
〈
GS(s− s1)OS(s′ − s)

〉
ds′ ds1 ds, (61)

where the product of exponential terms, multiplied by ν,
is the probability of having only one jump at s1 (within
δs1).

The integrations over s1, s and s′ can be car-
ried out explicitly in terms of the Laplace transforms
G̃S(ν) and ÕS(ν). The integral over s′ is already a
Laplace transform. Changing the order of integration,
the integral

∫∞
0

ds
∫ s

0
. . . ds1 can be transformed into∫∞

0
ds1

∫∞
s1

. . . ds. We thus obtain

M1,a = ν
〈G̃S(ν)

〉〈G̃S(ν)ÕS(ν)
〉
, (62)

where the averages are over the distribution P (H).

Case (b) : 0 < s < s1 < s′

Since s1 is to the right of s, we now write

G(0, s)O(s, s′) = G(0, s)O(s, s1)O(s1, s
′). (63)

Proceeding exactly as above, we obtain

M1,b =
∫ ∞

0

∫ ∞

s

∫ s′

s

e−νs e−ν(s1−s)
〈
GS(s)OS(s1 − s)

〉

× νe−ν(s′−s1)
〈
OS(s′ − s1)

〉
ds1 ds′ ds. (64)

Transforming the integral
∫∞

s
ds′

∫ s′

s
. . . ds1 into∫∞

s
ds1

∫∞
s1

. . . ds′, integrating over s′, then over s1

and finally over s, we obtain

M1,b = ν
〈G̃S(ν)ÕS(ν)

〉〈ÕS(ν)
〉
. (65)

For N=2, we have three different cases : (a) two jumping
points, say s1 and s2, in the interval [0, s] and zero in the
interval [s, s′]; (b) one jumping point s1 in [0, s] and one
jumping point s2 in [s, s′]; (c) zero jumping points in [0, s]
and two jumping points in [s, s′]. With the same kind of
arguments as above, we obtain

M2,a = ν2
〈G̃S(ν)

〉2〈G̃S(ν)ÕS(ν)
〉
,

M2,b = ν2
〈G̃S(ν)

〉〈G̃S(ν)ÕS(ν)
〉〈ÕS(ν)

〉
,

M2,c = ν2
〈G̃S(ν)ÕS(ν)

〉〈ÕS(ν)
〉2

. (66)

We can now construct the general formula for an arbi-
trary number of jumps. We denote by s− the last jumping
point before s and by s+ the first jumping point after
s (s− < s < s+). The two intervals [s−, s] and [s, s+]
will produce a term 〈G̃S(ν)ÕS(ν)〉. All the intervals to
the right of s+ will contribute with factors 〈ÕS(ν)〉 and
all the intervals to the left of s− with factors 〈G̃S(ν)〉. If
the last jumping point sN is such that sN < s, the term
〈G̃S(ν)ÕS(ν)〉 comes from the intervals [sN, s] and [s,∞]
and if the first jumping point s1 is such that s < s1, then
this term comes from the intervals [0, s] and [s, s1].

Summing all the contributions from N=0 to infinity,
we find the result given in Eq. (54) for the matrices Ml

and Mr. The central term corresponds to the interval
[s−, s+], the term to its right contains the contributions
of all the intervals to the right of s+ and the term to its
left the contributions of all the intervals between 0 and
s−.

We can now write an explicit expression for σ2
i (0).

Since we have assumed that the line and continuum
source functions are unpolarized, U = [1, 0, 0, 0]T and
U = [1, 0, . . . , 0]T. Hence, only the first column in the ma-
trix M will contribute to 〈Y (0)⊗Y (0)〉KA. For Stokes I
and V we thus have

σ2
1(0) = B2

1

[
M(1, 1)− [〈Õ(0, 0)〉KA(1, 1)

]2]
, (67)

and

σ2
4(0) = B2

1

[
M(16, 1)− [〈Õ(0, 0)〉KA(4, 1)

]2]
, (68)

where the matrix 〈Õ(0, 0)〉KA is given in Eq. (17) and
the numbers refer to the matrix elements. We have simi-
lar expressions for the dispersion around the mean values
of Stokes Q and U . We note also that the knowledge of
the elements of M gives access to the cross-correlations
[〈Ii(0)Ij(0)〉KA − 〈Ii(0)〉KA〈Ij(0)〉KA], i 6= j.

In the microturbulent and macroturbulent limits, the
expressions for the dispersion of the Stokes parameters are
simpler. In the microturbulent limit, the dispersion is sim-
ply zero since all the coefficients in the transfer equation
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Fig. 10. Mean Stokes parameters with dispersion for moder-
ately strong fluctuations of the magnetic field. The model pa-
rameters are : β = 10, ∆Ho = 1.0, γH = 1. The direction of the
mean magnetic field Ho is defined by θo = 45◦ and φo = 30◦.
The full lines show the mean profiles and the discontinuous
lines the mean values plus and minus the square root of the
dispersion. The line types are : dotted (ν = 0); dot-dashed
(ν = 1); triple-dot-dashed (ν = 10). In this figure 〈. . .〉 stands
for 〈. . .〉KA.

are replaced by their mean values. One is actually deal-
ing with a deterministic problem. In the macroturbulent
limit the second order moments can be deduced from the
Unno–Rachkovsky solution which leads to

Mmacro =
〈
K−1 ⊗K−1

〉
. (69)

One can check that Eq. (54) with ν = 0 is consistent with
this expression. The macroturbulent limit is interesting
because it provides an upper limit for the dispersion. This
point is illustrated in the next section.

We checked the result given in Eqs. (52) to (56) by ap-
plying our summation method to a scalar transfer equa-
tion where the propagation matrix K is replaced by an ab-
sorption coefficient K. For this scalar problem, the second-
order moment can also be calculated with a method intro-
duced by Bourret et al. (1973) which relies on the intro-
duction of new quadratic dependent variables, chosen in

Fig. 11. Variation of the dispersion with the strength of the
magnetic field fluctuations. The dispersion is shown only for
the macroturbulent limit ν = 0. The line strength β and the
mean magnetic field parameters are the same as in Fig. 10.
The curves are labeled with the value of f .

such a way that they satisfy a homogeneous system of lin-
ear stochastic equations. This method, restricted to scalar
problems, has been applied by Auvergne et al. (1973) for
the broadening of spectral lines by a turbulent velocity
field.

Once the problem of calculating the second-order mo-
ments of 〈Ii(0)Ij(0)〉KA has been reduced to the calcula-
tion of the mean value of the r.h.s. in Eq. (50), it is very
likely that methods somewhat different from the summa-
tion method presented here can be set up. In particu-
lar L94 method should work, although it could be alge-
braically somewhat cumbersome since it does not make
direct use of the Laplace transform of the evolution oper-
ator.

4.3. Numerical evaluation of the dispersion

To calculate the dispersion of the Stokes parameters we
must evaluate the elements of the matrix M. The aver-
ages over P (H) (see Eq. (54)) are performed with Gauss–
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Legendre quadratures. The integration over the magnetic
field intensity can be carried out with the same grid points
as for the calculation of the mean Stokes parameters (see
Section 3.2). The angular integrations over the polar an-
gles θ and φ require more refined grids. Typically one
needs around 30 points to calculate the dispersion while
10 or less are enough for the mean values. We note also
that the width xmax of the frequency domain must be sig-
nificantly increased.

In the macroturbulent limit, the calculation of the dis-
persion is much simpler since

σ2
i (0)macro = 〈I2

i (0)〉 − 〈Ii(0)〉2, (70)

where Ii(0) is the Unno–Rachkovsky solution for the
Stokes parameter Ii.

We note also that all the results obtained for the
second-order moments of the Stokes parameters hold for
the residual Stokes parameters, provided we divide them
by B2

1 (see Eq. (52)).
Figure 10 shows 〈rX〉±σX, (σX > 0) for the four Stokes

parameters and different values of ν (we use the subscript
the same convention as in Section 3.2). The magnetic field
parameters are ∆Ho = 1.0 and γH = 1 as in Figs. 4 and
5 and hence correspond to a case of moderately strong
fluctuations (f = 1). The direction of the mean field is
θo = 45◦ and φo = 30◦. Comparing with Figs. 4 and 5
where φo = 0◦ and θo = 0◦ or θo = 90◦, we see that 〈rQ〉
has become much smaller, as expected, and has become
almost insensitive to the value of ν (on the scale of Fig. 10).
Of course, 〈rV〉 has also become somewhat smaller and
remains almost independent of ν. For 〈rI〉, the dependence
on ν does seem to depend on the direction of the mean
field.

In contrast with the mean values, we see that the σX

are very sensitive to the value of ν. They have their largest
values in the macroturbulent limit (ν = 0) and go to
zero in the microturbulent limit. In the macroturbulent
limit, the dispersion is quite large compared to the mean
value. For the mean Stokes profiles, we have seen that the
microturbulent limit is essentially reached when ν ' β.
Figure 10 shows that the dispersion has still a significant
value when ν ' β. This makes the dispersion much more
sensitive to the characteristic scale of the random mag-
netic field.

Figure 11 shows the macroturbulent limit of σX cal-
culated with Eq. (70) for ∆Ho = 1.0 (as in Fig. 10) and
different values of f varying between 0.5 and 4. For Stokes
I, Q and U the dispersion has maxima at line center and
at the frequencies corresponding to the inflexion points in
the Stokes I profile. For Stokes V , the dispersion is zero at
line center for symmetry reason, and has its maximum at
the inflexion points of I also. The minima of σQ and σU

correspond to the zero-crossing frequencies in the mean
Stokes profiles.

Starting from a case of weak fluctuations (f = 0.5),
we observe that the dispersion increases with f , as ex-
pected, until say f = 2. For larger values of f , we observe
a decrease of the peak value in the wings of σQ, σU and

σV, associated to a significant broadening which reflects
the fact that the stronger the fluctuations of the magnetic
field, the further out from line center can they be felt. At
line center σQ and σU keep increasing with f , even be-
yond f = 2. Numerical experiments, not presented, here
indicate that σQ and σU saturate to a value around 0.25
but that this phenomenon is related to the choice of P (H).
When the random magnetic field has a fixed direction and
varies in intensity only, the values of σQ and σU at line
center will decrease after going through a maximum. For
Stokes I, the dispersion has a fairly complicated behav-
ior, specially around the line center. The initial increase is
also followed by some kind of saturation, but again, this is
related to the choice of P (H). In the wings, the behavior
is essentially the same as for the other Stokes parameters.
A more detailed analysis of the dispersion is deferred to a
subsequent paper.

5. Various extensions

When some of the assumptions that were introduced to
obtain explicit expressions for the mean Stokes parameters
are dropped, it may still be possible to write an integral
equation for the mean propagation operator. In some cases
this equation can still be solved explicitly by a Laplace
transform method, but in general a numerical solution is
required. A few examples are given below.

5.1. Exponential source function

It follows from the solution of Eq. (1) (see Eq. (A.11))
that the mean value of the Stokes vector at the surface
can be written as

〈I(0)〉KA = S(0) +
∫ ∞

0

〈O(0, s)〉KA

[dS(s)
ds

]
ds. (71)

When S is linear in s one recovers Eq. (4). When S has
an exponential variation e−αs with α a constant, 〈I(0)〉KA

can be expressed in terms of the Laplace transform of
〈O(0, s)〉KA for p = α.

Let us consider an example presented in LL04 (p. 419)
in which the continuum and line source functions are
different and both have exponential terms. The transfer
equation is now of the form

dI

dτc
= [E + βΦ]I − [ESc + βΦSl]U . (72)

The line and continuum source functions Sl and Sc are
given by

Sc(τc) = B0 + B1τc + A1e−α1τc , (73)

Sl(τc) = B0 + B1τc + A1e−α1τc −A2e−α2τc . (74)

The term A1e−α1τc can describe a chromospheric rise of
temperature and the term A2e−α2τc allows for a drop of
the line source function below the continuum source func-
tion at optical depths τc ≤ 1/α2. Simple algebra (see also



H. Frisch et al.: The Zeeman effect in a random medium 15

LL04) yields for the mean Stokes vector

〈I(0)〉KA =
[
Sl(0)E + B1〈Õ(0, 0)〉KA

−α1A1〈Õ(0, α1)〉KA + A2(1 + α2)〈Õ(0, α2)〉KA

]
U ,(75)

where Õ(0, p) is defined in Eq. (11) and its mean value in
Eq. (15).

When S contains an exponential, it does not seem pos-
sible to transform the original transfer equation into a new
equation with a homogeneous source term and obtain with
the method described in Section 4 an explicit expression
for the dispersion around the mean Stokes parameters.

5.2. Arbitrary depth-dependence of source function
and line strength

We now assume that the line and continuum source func-
tions and the ratio β = κo/κc (introduced in Section 2.6)
can vary with optical depth, but not the Zeeman propa-
gation matrix Φ. This implies that the Doppler width is
taken constant. There is no hope to obtain an exact result
for the mean Stokes parameters, however an expression
given in Pecker and Schatzman (1959) for the difference
Ic(0) − I(0), in the case of non-polarized transfer, could
be a good starting point for their numerical calculation.
For the polarized case, the expression given in the above
reference becomes

Ic(0)− I(0) =
[
w(0)E +

∫ ∞

0

w′(s)O(0, s) ds
]
U . (76)

Here s is the continuum optical depth along the line of
sight, w′(s) and w(0) are the derivative and surface value
of the function

w(s) =
∫ ∞

s

Sc(s′)e−s′ds′ − Sl(s)e−s, (77)

and

O(s, s′) = exp
[
−Φ

∫ s′

s

β(s′′) ds′′
]
. (78)

The derivation of Eq. (76) starts from the solutions of
Eq. (72) for Ic(0) and I(0). The main steps are the fol-
lowing : one combines the two terms containing Sc and
introduces dI+

c (s)/ds with I+
c (s) =

∫∞
s

Sc(s)e−s ds. An
integration by parts then yields Eq. (76).

The mean value 〈O(0, s)〉KA still satisfies Eq. (10) but
the static propagation operator, as shown by Eq. (78), is
now a function of s and s′.

5.3. Depth-dependence of correlation length

In the preceding sections, it has been assumed that ν, the
density of the Poisson distribution, is independent of the
optical depth s along the line of sight. If we let ν vary with
depth, the Poisson process becomes a non-homogeneous

Poisson process.2 The probability that no jumps occur
between s and s′ is exp[− ∫ s′

s
ν(s′′) ds′′]. Equation (10)

becomes

〈O(0, s)〉KA = 〈OS(s)〉e−
∫ s

0
ν(s′) ds′

+
∫ s

0

ν(s′)e−
∫ s′

s
ν(s′′) ds′′〈O(0, s′)〉KA〈OS(s− s′)〉 ds′, (79)

with OS(s) still given by Eq. (5). This integral equation
can only be solved numerically.

Some other generalizations can still lead to convolution
equations for the mean evolution operator. For example, if
ν depends on the modulus of the random magnetic field or
if the random magnetic field consists of several fields with
different characteristic scales. Such generalizations have
been considered for the statistical Stark effect (Brissaud
& Frisch 1971).

5.4. Arbitrary direction of propagation

The results given in the previous sections hold for an out-
ward directed ray normal to the surface of the atmosphere.
They can easily be extended to the case of a ray making
an angle θ with the vertical. It suffices to project on to
the line of sight the quantities which describe the varia-
tions of the model along the normal to the atmosphere,
such as the source function, absorption coefficients, and
correlation length.

For the example treated in Section 5.1, 〈I(0, µ)〉KA will
be given by Eq. (75) with B1 changed to B1µ and α1 and
α2 changed to µα1 and µα2, where µ = cos θ. For the
linear source function Sl = Sc = B0 + B1τc treated in
Section 2.6, the usual residual Stokes vector (Ic(0, µ) −
I(0, µ))/Ic(0, µ) will be given by Eq. (27) multiplied by
B1µ/(B0 + B1µ). For the example treated in Section 5.2,
w(s) and O(s, s′) become

w(s, µ) =
∫ ∞

s

Sc(s′)e−s′/µ ds′

µ
− Sl(s)e−s/µ, (80)

and

O(s, s′, µ) = exp
[
−Φ

∫ s′

s

β(s′′)
ds′′

µ

]
. (81)

Here s denotes the optical depth in the continuum in the
direction normal to the atmosphere.

For the calculation of 〈O(s, s′, µ)〉, the correlation
length should also be projected along the line of sight,
which means transforming 1/ν into 1/µν. Thus in
Eqs. (27) – (29), ν should be changed to νµ. This is also
the change made in LL04 (see Eq. 9.280, p. 500), where
te, the mean length of the eddies measured in the vertical
direction, becomes te/µ along the line of sight. As a con-
sequence, the more inclined with respect to the vertical
are the rays, the closer is one to a macroturbulent type
of averaging. This is consistent with a picture of random

2 http://en.wikipedia.org/wiki/Non-homogeneous

Poisson process
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fluctuations organized in turbulent layers. Now, even in a
plane parallel atmosphere, one may want to have a more
or less isotropic distribution of turbulent eddies. This can
be achieved by keeping the same value of ν (i.e. same cor-
relation length) in all directions.

6. Summary and concluding remarks

This paper presents the first detailed investigation of the
Zeeman effect created by a random magnetic field with a
finite correlation length. The goal of this work is to over-
come usual treatments whereby the correlation length of
the magnetic field is either much smaller, or much larger,
than a photon mean free-path, i.e. the microturbulent and
macroturbulent limits. The random magnetic field is de-
scribed by a Kubo–Anderson process which takes con-
stant but random values on intervals of random length
distributed according to a Poisson distribution of density
ν. The random magnetic field is thus characterized by a
mean correlation length defined here as 1/ν and the prob-
ability distribution function P (H) of the random values
taken by the magnetic field. The micro and macroturbu-
lent limits are recovered when the correlation length goes
to zero or infinity.

The Kubo–Anderson process has been associated to a
Milne–Eddington atmospheric model with a linear source
function. This combination has allowed us to construct
explicit expressions that were used to study numerically
the mean Stokes parameters and their dispersion at the
surface of the atmosphere. The main theoretical results
concern the construction of :
(i) a convolution-type integral equation for the mean prop-
agation operator associated to the Zeeman effect which
can be solved explicitly for its Laplace transform;
(ii) an explicit expression for the mean Stokes parameters
at the surface of the atmosphere which corroborates a re-
sult obtained by Landi Degl’Innocenti (1994);
(iii) an explicit expression for the second-order moments
of the Stokes parameters which are needed to evaluate the
dispersions and cross-correlations of Stokes parameters.

We have also given integral equations for the mean
propagation operator when one relaxes some of the as-
sumptions defining a Milne–Eddington model or Kubo–
Anderson process, like depth-independent correlation
length. These integral equations are not of the convolu-
tion type and must be solved numerically.

Numerical investigations have been carried out for a
probability distribution function P (H) describing a ran-
dom magnetic field with mean value Ho and isotropic
Gaussian fluctuations with dispersion

√
3σ. We have as-

sumed a microturbulent velocity with a Gaussian distri-
bution which is equivalent to incorporating an additional
thermal broadening into the Doppler width of the line.
In agreement with the Milne-Eddington model, the ra-
tio β = κo/κc of the line to continuum opacity has been
taken constant. For weak lines (β order of unity or less),
the Stokes parameters are essentially given by the pro-
files of the absorption coefficients and hence depend only

on P (H). For stronger lines, sensitive to the correlation
length of the magnetic field, the mean Stokes parameters
lie between the micro and macroturbulent limits. This is
strictly true for Stokes I, because it is a positive quan-
tity, and at line center for Stokes Q and U . It is a bit
more complicated for Stokes V and the σ-components of
Stokes Q and U , because the position of the peaks de-
pend on the correlation length. The microturbulent limit
is reached when the correlation length is around unity in
the line optical depth unit, i.e. when β/ν ' 1.

The numerical calculations have been performed for
β = 10 (a few cases with β = 100 have also been consid-
ered) for different values of the mean magnetic field Ho,
dispersion σ and correlation length 1/ν. The dispersion
and mean field have been combined to construct a dimen-
sionless parameter f =

√
2σ/Ho which measures the rel-

ative strength of the magnetic field fluctuations. The as-
sumption that the magnetic field fluctuations are isotropic
influences some of the results but not the general trends
which are summarized here.

Concerning the mean values, we have found that :
(i) for Stokes I, the variation between the micro and
macroturbulent limits is between 10% and 20%. It grows
with the strength of the mean field Ho but seems fairly
insensitive to value of f . Departures from the UR solu-
tion (Unno–Rachkovsky solution calculated with the mean
field Ho) can become quite large at line center when the
σ-components are well separated, but this is partly due to
the isotropy assumption.
(ii) Stokes V shows very little dependence on the correla-
tion length and hence, with reasonable confidence, may be
calculated with the microturbulent limit. The departures
from the UR solution are very large, unless f is signifi-
cantly smaller than unity.
(iii) for Stokes Q, the line center is quite sensitive to the
correlation length of the magnetic field but only when Ho

is in the transverse direction with respect to the line of
sight, or close to it. For a given random magnetic field,
the departures from the UR solution are larger for Stokes
Q than for Stokes V .

In sharp contrast with the mean Stokes parameters,
dispersions around mean values are very sensitive to the
correlation length and could probably serve as a diagnos-
tic tool to determine the scale of unresolved features in the
solar atmosphere. Dispersions have their maximum values
in the macroturbulent limit, go to zero in the microtur-
bulent limit and are very sensitive to the value of f . In
relative value, the dispersion is smaller for Stokes I than
for the polarization components Q, U and V .

In addition to the magnetic field, a whole set of
other atmospheric random parameters (velocities, temper-
atures, densities, . . .) are needed to properly describe a
distribution of flux tubes or magnetohydrodynamic tur-
bulence. These additional parameters should typically be
described by the same type of random processes as the
magnetic field, in particular the same correlation length.
In this case all the theoretical results given here will hold,
provided P (H) is replaced by a joint distribution function
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P (H, α1, α2, . . .), where the αi stand for the other random
parameters. If the random parameters have different cor-
relation lengths, a KAP-type of modeling can still be set
up. An example can be found in the case of the stochastic
Stark effect (Brissaud & Frisch 1971). A composite KAP
is introduced to handle simultaneously the ion and elec-
tron electric fields with their quite different characteristic
lengths due to the large mass difference between the two
types of particles.
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Appendix A: Some properties of the transport
operator

For the benefit of the reader we recall here some of the
main properties of the radiative transport operator for
polarized transfer (Landi Degl’Innocenti 1987). The ho-
mogeneous transfer equation associated to Eq. (1) of the
text may be written as

d

ds
I(s) = K(s)I(s), (A.1)

where s is the ray-path coordinate which varies from 0 at
the surface to ∞ in the interior, K the 4× 4 propagation
matrix and I the 4-dimensional Stokes vector. We con-
sider rays propagating from infinity to the surface in the
direction normal to the surface.

The Green’s function, also called evolution or trans-
port or propagation operator, is here defined by

I(s) = O(s, s′)I(s′), (A.2)

with s′ > s because photons propagate from the interior
(positive values of s) to the surface at s = 0. In Landi
Degl’Innocenti (1987) and LL04, photons propagate from
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−∞ to 0, hence O(s, s′) is defined with s′ < s (as in time-
dependent problems). The evolution operator obeys the
limiting condition,

O(s, s) = E, (A.3)

where E is the identity operator, and the semi-group prop-
erty, which can be written as

O(s, s′) = O(s, s′′)O(s′′, s′), s ≤ s′′ ≤ s′. (A.4)

The evolution operator further satisfies two differential
equations,

d

ds
O(s, s′) = K(s)O(s, s′), (A.5)

and

d

ds′
O(s, s′) = −O(s, s′)K(s′), (A.6)

which can be derived from Eqs. (A.1) and (A.2) by taking
the derivatives of Eq. (A.2) with respect to s and s′.

When the propagation matrix is a constant, the evo-
lution operator is given by

O(s, s′) = exp
[−(s′ − s)K

]
. (A.7)

Using Eqs. (A.3) and (A.5) one can verify that the expres-
sion

I(s) = −
∫ s

so

O(s, s′)K(s′)S(s′) ds′ + O(s, so)I(so), (A.8)

where I(so) is the prescribed value of I at so, satisfies
Eq. (1) of the text. Assuming that the source function
increases less rapidly than an exponential at infinity, we
obtain for the Stokes vector at the surface of a semi-infinite
atmosphere,

I(0) =
∫ ∞

0

O(0, s)K(s)S(s) ds. (A.9)

Using Eq. (A.6) we can rewrite this equation as

I(0) = −
∫ ∞

0

[ d

ds
O(0, s)

]
S(s) ds, (A.10)

and after integrating by parts,

I(0) = S(0) +
∫ ∞

0

O(0, s)
[ d

ds
S(s)

]
ds. (A.11)

When S(s) = (B0 + B1s)U , we immediately obtain the
result given in Eq. (3) of the text.


