TOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 40 (2007) 3153-3162 doi:10.1088/0953-4075/40/15/014

Theoretical studies of the atomic transitions in
boron-like ions: Mg VIII, Si X and S XII

H S Nataraj', B K Sahoo?, B P Das!, R K Chaudhuri' and D Mukherjee’

! Non-Accelerator Particle Physics Group, Indian Institute of Astrophysics, Bangalore-34, India
2 Max Planck Institute for the Physics of Complex Systems, Néthnitzer Street 38,

D-01187 Dresden, Germany

3 Department of Physical Chemistry, Indian Association for Cultivation of Science,
Kolkata-700 032, India

E-mail: nataraj@iiap.res.in

Received 23 May 2007, in final form 27 June 2007
Published 25 July 2007
Online at stacks.iop.org/JPhysB/40/3153

Abstract

In this paper, we have carried out the calculations of the weighted oscillator
strengths and the transition probabilities for a few low-lying transitions of
boron-like ions: Mg VIII, Si X and S XII, which are astrophysically important,
particularly in the atmosphere of the solar corona. We have employed an
all-order relativistic many-body theory called the relativistic coupled-cluster
theory to calculate very precisely these atomic quantities of astrophysical
interest. We have reported for the first time the transition probabilities for some
forbidden transitions which are unavailable in the literature, either theoretically
or experimentally. We also discuss the physical effects associated with these
transitions. Our data can be used for the identification of spectral lines arising
from the coronal atmospheres of the Sun and Sun-like stars having an extended
corona.

1. Introduction

With the remarkable advances in the field of observational astronomy such as the
deployment of satellite probes for data acquisition, there is considerable interest in accurate
calculations of the oscillator strengths and the transition probabilities for highly stripped
ions which are very important in astrophysics, mainly in the identification of spectral lines
[1-5]. Various electromagnetic transitions from the low-lying single-valence excited states,
2s? 2p3)2 (2P3/2), 2s? 33(251/2), 2s? 3d3/2(2D3/2), and 2s? 3ds)n (2D5/2) to the ground state in the
highly ionized boron-like ions such as Mg’*, Si°* and S!'* are observed in the solar atmosphere
[6, 7]. Most of the lines correspond to the soft x-ray waveband and have the potential to probe
the chromosphere—corona transition region and possibly the coronal hole regions of the solar
atmosphere [7-9], where the temperatures would be of the order of a million Kelvin. The
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relative line intensity ratios in Mg VIII and Si X line emission spectrum have been found to
be density sensitive [10, 11]. The EUV line intensity ratios of these ions have been studied
[12] to infer the electron density in different solar features such as active region, quiet sun
and off-limb. Therefore, lines emitted from boron-like ions can be used as a powerful tool
in the diagnostics of the electron density [13] and the temperature in the solar atmosphere.
Interestingly, the soft x-ray coronal emission lines of S XII in the stellar binary Capella, which
is one of the nearby Sun-like stars, have been observed by Audard et al [14] using the high
resolution RGS XMM-Newton satellite.

There are a few calculations of certain transition probabilities of the considered boron-like
ions available in the literature; some of them are completely non-relativistic and based on the
multi-configuration Hartree—Fock (MCHF) method [15-17]; some others are based on MCHF
calculations with Breit—Pauli corrections (MCHF+BP) [18-20] and there are a few calculations
based on the relativistic many-body perturbation theory (MBPT) [21] and the relativistic multi-
reference configuration interaction (MRCI) method [22]. Often the theoretical calculations
are scaled to match the observed transition energies [6, 20]. Given the increasing need for
accurate spectroscopic data in astrophysics, it is necessary to use all-order relativistic many-
body methods like the relativistic coupled-cluster (RCC) theory [23] to calculate the principal
atomic quantities of astrophysical interest such as the energy levels, the oscillator strengths,
the transition probabilities and the lifetimes of the excited states.

The study of boron-like ions is interesting from the point of view of the strong core—
valence electron correlation effects and also because the transition energies are in reach of
current laboratory astrophysics experimental facilities such as the electron beam ion trap
(eBIT) [24]. In this paper, we present both the allowed and forbidden transition amplitudes
and the corresponding transition probabilities of a few low-lying states in the boron-like ions.
We also discuss the behaviour of correlation effects associated with these calculations.

The organization of the paper is as follows. In section 2, we give the working formulae
for the transition probabilities and the oscillator strengths and briefly discuss the RCC method
employed in calculating these quantities. In section 3, we present the results and compare
them with those available in the literature and the conclusions are drawn in the last section.

2. Theory and method of calculation

The spontaneous transition probabilities due to E1, E2, M1 and M2 operators from a state
|Js M) to the state |J; M;) are given by [25],

B_ 64rie’al g _ 2.0261 x 10°° . 2.1

I T 3hA3 (20 + 1) MBI+ '
AE2 64r%e’ag GE2 _ 1.12 x 1072 GE2 22

Il T ShAS 2 + 1) BRI +1) ’

M _ 64rte’al(a)2)? i _ 26971 101 Qi @3)

I T 3nA3 (20 + 1) BRI +1) ’ ’

and
M2 647r662a3‘(a/2)2 Mz 1491 x 1077 M2 2.4)

ETAShAS QI+ ) T T QI+ 1)
respectively, where, the numerical factor applies for the wavelength X in cm and the transition
line strength S©, defined as the absolute square of the transition matrix element, i.e.

Sy = 11011, 2.5)
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where (J¢||O||J;) is the reduced-matrix element for the appropriate multipole operator O, in
atomic units (au). Here, J is the total angular momentum quantum number.

The single-particle reduced-matrix elements for the E1 and E2 operators in length gauge
and the gauge-independent M1 and M2 operators are, respectively, given by [26],

3 o0
(kpllellici) = E(Kf||cél)||/<i>/0 {1 kPP (r)Pi(r) + Q () Qi ()] + ja(kr)

. [Kf TP Q) + QB+ TP 01) = O ()P, (r)]] } &
(2.6)

15 o0
(krlle2lk;) = ﬁwfnc(”nm /0 [P Pi(r) + Q (1) Qi (] + ja(kr)

x ["f T SPr ) Qi () + Oy (1) Pi ()] + [P () Qi () — Q () P (r)]] } dr,
2.7)

6 ) CKptKi,
bepllm i) = —{=wf1C IIKi)/O 5 NP Qi(r) + Qs () Fi(r)]dr. (2.8)
and

30 o T kptk
bepllm2liei) = —7 (= /1€ ||Ki)/(; 3 k) [Pr(r)Qi(r) + Qs (r) Pi(r)]dr, (2.9)

where « is the relativistic angular momentum quantum number. The radial functions P;(r) and
Q; (r) are the large and small components of the ith single-particle Dirac orbital, respectively.
The coefficients of the Racah tensor are given by

(kA ICY ki) = (=D Q2j + DQ2Ji+ 1) ({;2 o /2>n(zf,y,zi), (2.10)

where j is the single-particle angular momentum quantum number. The parity selection rule
is given by

1 forll+12+[3 =even
w(l1,12,13) = (2.11)
0 otherwise.

In equations (2.6) through (2.9), we define the wave vector k as k = waw, where
w = €; — €, is the excitation energy at the single-particle level, « is the fine structure constant,
! is the orbital angular momentum quantum number and j, (kr) is a spherical Bessel function
of order n. Since kr is sufficiently small, we apply the following approximation to calculate
the above matrix elements:

Zn

135...2n+1)"

The oscillator strength and the corresponding transition probability for a transition of any
multipole type are related by the general formula

Jn(2) ~ (2.12)

Furya = 14992 x 10*16A(,/;,i)gg—fx2, 2.13)

where g, and g; are the degeneracies associated with the final and initial states, respectively,
A is the wavelength in A and Ay, is the transition probability in s~'.
Generally, in the astrophysical context, one uses the weighted oscillator strength which is

the product of the degeneracy of the initial state and the oscillator strength and is symmetric
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with respect to the initial and final states, i.e.

8f = Qi+ Dfiy = =QJp+ 1) fri. (2.14)

As can be inferred from the above equations, there is a great need for precise values of the
transition wavelengths and the transition line strengths for the accurate determination of the
oscillator strengths and the transition probabilities. This demands a highly powerful many-
body method which would include fully relativistic effects and the electron correlation effects
that are sufficiently large especially in many-electron systems. So we employ the RCC theory,
which is briefly discussed below, to calculate these quantities of interest.

The starting point of our method is the relativistic generalization of the valence universal
coupled-cluster (CC) theory introduced by Mukherjee et al [27, 28] which was put later in
a more compact form by Lindgren [23, 29]. In this approach, first we obtain the closed-
shell Dirac—Fock (DF) wavefunction (| ®()) which corresponds to the electronic configuration
1s22s%. This amounts to solving the DF equations for N — 1 electrons where N is the total
number of electrons in the system. These equations can be expressed as

[cd; - Pi + (Bi — 1) + Viwue (ri) + Upr(ri)11¢7) = €:1éi), (2.15)

where c is the speed of light in vacuum, & and B are the Dirac matrices, Vi (7;) is the nuclear
potential and Upg(r;) is the effective average potential called the Dirac—Fock potential, which
is given by

NI

1 1
Upr(rldi) = | (01— 19,161 — (6;1—1¢0)1¢;) | - (2.16)

, 12 12

j=1
The large and small radial components of the single-particle relativistic wavefunctions are
expanded in terms of the Gaussian-type orbitals (GTOs) of the form [30, 31],

gL(r) = Ntrtie o 2.17)

and
d &
s (r) = N [d_ N _} gk (), (2.18)
r r

where N' and N are the normalization factors for the large and small radial components,
respectively, of the one-electron orbitals, n,, varies for each relativistic symmetry and takes
an integer value as 1 for s, 2 for p;/, and so on.

In equation (2.17) we have used the even tempering condition for the exponents, i.e,

Gi=¢ton ! where i=1,2,3,...,n, (2.19)

where o and n are the user-defined parameters and n is the size of the basis set. In

equation (2.18), the kinetic balance condition is imposed on the small-radial components

to avoid the variational collapse of the wavefunctions into the negative energy continuum [30].
The differential equations (2.15) become matrix eigenvalue equations of the form [32],

FC = SCe (2.20)

where F, S, C and € are the Fock matrix, overlap matrix, eigenvector and eigenvalue matrix,
respectively. This is then transformed to a true eigenvalue problem and diagonalized to get the
energies (eigenvalues) and the mixing coefficients (eigenvectors) for both the occupied and
the virtual orbitals. The virtual orbitals (including the 2p;,, valence orbital) obtained by this
procedure are clearly generated in the VN ~! potential of the frozen core orbitals. The details
of this method can be found elsewhere [32, 33].
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The exact wavefunction (|\W)) for the corresponding closed-shell system is calculated in
the RCC theory using

|Wo) = e’ | Do), 2.21)

where T is the excitation operator for the core orbitals. It is the sum of all single, double,
triple and higher order excitations of occupied electrons. The open-shell reference state for
the desired valence electron, v, can be written as |®,) = ai|<I>0), where ai is the creation
operator for the valence electron and |®) is a closed-shell reference state which is the Slater
determinant representing the 1s”>2s? configuration, whereas |®,) is the Slater determinant
representing, for example, the 1s® 2s* 2p; /» configuration.

The exact wavefunction for the open-shell atomic system can be expressed in the RCC
theory as

W,) = e’ {5} D), (2.22)

where S, corresponds to the excitation operator for the valence and valence-core orbitals.
Since the systems considered in the present case contain a single-valence electron in their
electronic configurations, the nonlinear terms in the expansion of the exponential function of
S, will not exist and the above wavefunction ultimately reduces to the form

W) = e"{1+S,}|D,), (2.23)

where { } indicates that the operator is normal ordered.

Even in the few-electron systems, it is not possible to consider all correlated excitations
due to huge requirement of the computer memory. In fact, it has been found that the CC
theory with both single and double excitations (CCSD) is quite successful in incorporating the
maximum correlation effects. However, we have considered the CCSD method along with
the important triple excitations (CCSD(T) method). The electron affinity energy (AE)) for
the valence electron v and the RCC operator amplitudes are calculated self-consistently using
the following coupled equations:

(¢L|{176\T}|q)0> = AEyL0 (2.24)
( Dk |{HeT}S,|®,) = —(Dk|[{HeT} D) + (D[S, D) + 8k ,JAE,, (2.25)

where |®; ) with L(=1, 2) represents the singly or doubly excited state from the closed-shell
reference (DF) wavefunction (L = 0) and AE) is the correlation energy for the closed-shell
system and |®g) with K (=1, 2) denotes the singly or doubly excited state from the single-
valence reference state (K = v). The excitation energies (EE) between different states are
calculated from the electron affinity energies.

We calculate the transition matrix elements of any physical operator O by using

(Wr|O|W;)
(W | W) (Wi | W;)

@ {1+SLYO[1 +S;}|;
_ (@ f|{1+S,}O11+8;}@;) | 026

\/<q>f|{1 + 8L el e {1+ 1@ ) (@i {1+S] }eT"eT {1+8,}|®;)

(O)iy =

where O = ¢”' O¢”. First, we compute the operator O as the effective one-body and two-
body operators using the generalized Wick theorem [23] and later sandwich this between the
necessary S, operators. It has to be noticed that the fully contracted O does not contribute
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Table 1. Comparison of the calculated excitation energies with the tabulated NIST data. The
ground state is 1322522p| /2

EE (cm™ 1)

Atomic system  Upper states ~ This work ~ NIST [34]

Mg VIII 252 3ds 2 1339798 1336030
252 3d3), 1339584 1335860
252 3p3)n 1276642
252 3p1 2 1275753
2523512 1210608 1210690
252 2p3)n 3433 3302
SiX 252 3ds» 1980585 1979730
252 3d3), 1980086 1979260
252 3p3)n 1904 870
2s23py 2 1902937
252 3812 1821314 1822000
252 2p3)n 7261 6990
S XII 252 3ds 2 2753686 2748100
252 3d32 2752714 2747400
252 3p32 2659966
252 3py 2 2656319
252 3512 2559004
252 2p32 13465 13135

in the present calculations. The contribution from the normalization of the wavefunctions
(Norm) is given by

Norm = (W;|0|¥;) ﬁq , (2.27)
FNi

where N, = (@, T eT|®@,) + (@,]Sie” e”S,|®,) for the valence electron v(= i, f).

3. Results and discussion

In table 1, we present our calculated EEs for the 252 2p32, 252 3s; /25 2s2 3p1,2, 252 3p3,2,
252 3d5 /2 and 252 3d; /2 states from the ground state 252 2py, for all the considered systems
and compared our results with the available National Institute of Standards and Technology
(NIST) database [34]. Our results, in general, agree very well with the measured NIST
energies except for the fine structure level of the ground states, i.e. 25> 2p3 /2 states. This shows
that the higher order relativistic effects are important for these states and also the quantum
electrodynamics (QED) corrections may be required to match the observed results. In all the
systems considered, EEs were not known for the 2s? 3p3;2 and 252 3piy2 states, and here we
have presented them for the first time that can be used in the astrophysical observations for
the identification of spectral lines.

We have used the length gauge in the calculation of the transition properties of E1 and E2.
In table 2, we have reported the weighted oscillator strengths and the transition probabilities
of a few allowed electric dipole transitions obtained from the RCC calculations. We observe
that the transition probabilities for 2s? 3d3, — 2s®2pj, transitions are larger than those of
2s%3s — 282 2py,» transitions, maybe because the overlap of radial wavefunctions of the
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Table 2. Weighted oscillator strengths and transition probabilities for the allowed E1 transitions

to the ground state.

Weighted oscillator

Transition probability

strength (au) (10 s~y
Atomic system  Upper state  This work  Others This work  Others
Mg VIII 257 3s1,2 0.051 0.052 [20] 0.251 0.255 [20]
257 3d3)2 1.188 1.205 [20] 3.555 3.589 [20]
SiX 2s? 3s12 0.048 0.049 [20] 0.529 0.541 [20]
0.044 [18] 0.481 [18]
0.051 [15] 0.585 [15]
2s? 3d3)2 1.234 1.247 [20] 8.066 8.149 [20]
1.232[18] 8.010 [18]
1.234 [15] 8.310 [15]
S XII 2s? 3s12 0.045 0.047 [15] 0.987 1.06 [15]
257 3d3)2 1.260 1.256 [15] 15932 16.2 [15]

Table 3. Contribution from the individual terms for E1 transition amplitude (in au) of 2s23s —
252 2p1/2 and 252 3d3 — 252 2p12 transitions.

RCC terms Mg VIII

SiX

S XII

252 3s — 2s%2p; /2 transition amplitudes

0 128 x 1071 984 x 1072 7.93 x 1072
0S; —6.52 x 1073 —4.09 x 1073 —3.04 x 103
s}ﬁ —538 x 1073 —2.68 x 1073 —1.10 x 1073
sl 0s; 190 x 1073 127 x 1073 9.12 x 10~*
Norm 6.14 x 107> 1.04x 107*  1.03 x 10~
Total .18 x 1071 930 x 1072 7.62 x 1072
DF 128 x 1071 9.89 x 1072 7.99 x 1072
252 3d32 — 242 2p12 transition amplitudes
0 —521 x 107! —4.36 x 1071 —3.75 x 107!
0S; 173 x 1072 120 x 1072 928 x 1073
s}ﬁ —3.03 x 1072 —2.36 x 102 —1.87 x 1072
sl 0s; —3.66 x 1073 —3.06 x 1073 —1.51 x 1073
Norm —254 %1073 =234 x 1073 —2.09 x 103
Total —540 x 107! —4.53 x 107! —3.88 x 107!
DF —532 x 107" —4.45 x 107" —3.83 x 107!

former two states is larger than that of the latter two states. We compare our results with the
MCHF+BP results of [20] in which the calculated energies are scaled to match the observed
transition energies and with a few non-relativistic results available in the literature [18, 15].
Their methods are less powerful than the all-order RCC theory in incorporating the electron
correlation effects and rigourous relativistic effects, and also the RCC method has distinct
advantages over the former two [23, 35, 36]. Here, we have used the unscaled computed
wavelengths in calculating the transition probabilities.

In order to understand the correlation -effects,

we have given explicitly the

individual contributions to the electric dipole transition amplitudes, in table 3, for the
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Table 4. Computed transition amplitudes and transition probabilities for selected forbidden

transitions.
Atomic Upper Transition amplitude (au) Transition probability s
system state Multipole ~ DF CCSD(T) A (in %)  Present [20] [22]
Mg VIII  2s?3ds, M2 1.34 x 10° 1.33 x 10° —1.13 1.90 x 10°
2§?3d3, M2 —4.12 x 1071 —4.01 x 1071 -2.76 2.58 x 107
2s?3ps, E2 —2.54 x 1071 —2.67 x 107! 4.98 6.78 x 10°
2s23py;, Ml 124 x 1073 —2.86 x 1073 14321 1.15 x 102
25?3p1, Ml 262 x107* 576 x 107*  54.44 9.28 x 10°
2s?2ps,  E2 —2.96 x 107! —2.70 x 107! —9.96 9.85 x 1077 8.8804 x 1077 9.61 x 1077
2s22p3;, M1 —1.15x 10 —1.12 x 10° —2.7 348 x 107" 32905 x 107" 3.21 x 107!
Si X 2§?3ds, M2 1.13 x 10° 1.13 x 10° 0.33 9.65 x 103
2§%3d3, M2 —3.38 x 107! —3.34 x 107! -2.77 1.27 x 103
2s23py, B2 —1.71 x 107" —1.79 x 107! 4.89 2.27 x 107
25?3p3, Ml 1.74 x 1073 —1.49 x 1073 217.08 1.06 x 10?
25?3p1, Ml 380 x 107* 591 x 107* 57.37 7.24 x 10!
2s?2p3,  E2 —2.01 x 107! —1.84 x 107! —-9.15 1.92 x 107 1.7837 x 107 191 x 1073
2s22p3;, M1 —1.15x 10 —1.12 x 10° —2.54 3.27 x 10° 3.1475 x 10° 3.06 x 10°
S XII 25?3ds, M2 9.67 x 107" 9.79 x 107! 1.14 3.77 x 10*
2§?3d3, M2 —2.96 x 107! —2.86 x 107! —3.68 4.80 x 103
2823py, B2 —1.24 x 107" —1.30 x 107! 478 6.28 x 107
2523py;, Ml 233 x 1073 =329 x 107*  808.1 1.37 x 10!
25?3p1, Ml 524 x107* 658 x 107* 204 1.10 x 10?
2s22py;, B2 —1.46 x 1071 —1.34 x 107! —8.63 223 x 1074 229 x 1074
25?2p3, Ml —1.15 x 10°  —1.13 x 10° —2.38 2.09 x 10! 2.03 x 10!

2s23s — 2s2 2p1,2 and 252 3dzpp — 252 2py o transitions, from the following four terms:
(D f]O|D;), (D /]OS;|D;), (D |SJ}5|<I>,-), (@ |S;5$i |®;) which are obtained on expanding
equation (2.26) and the contri@tions from the normalization factor. As expected, the
contribution from the term (® /| O|®;) is large compared to the other three terms as it contains
the DF term and a few core correlated terms, whereas (® f|S;58i|CI>,-) is smaller than the
rest as it contains two orders in the S, amplitude. The contribution from (<I>f|S;5|d>,~) is

larger compared to (P f|58,- |®;) in the 2s? 3s state, whereas it is the other way round in the
case of the 2s?3ds /2 state. However, the trends for all three ions are almost the same for
any given transition. We have also presented the DF results in the bottom line of the table in
order to emphasize the correlation contributions to the total results. The correlation effects
for the electric dipole transition amplitudes are small compared to the DF values and they are
negative, thereby reducing the contribution of DF values in both cases.

In table 4, we have given the DF and CCSD(T) results of the important forbidden transition
amplitudes due to M1, E2 and M2 transitions, which are interesting in the astrophysical context.
We have presented the percentage difference between these results (A) which represent the
contribution due to electron correlation effects. In a recent calculation of M1 transition
probabilities in B-like ions using the MRCI method with QED corrections [37], it was shown
that the contribution of the inter-electronic interaction correlation is small for the transition
from 2s?2p3,, to the ground state for S XII. However, we observe that the contribution
from the electron correlation effects is non-negligible in many of the considered transitions.
Interestingly, the M1 transition amplitude for the transition from 2s? 3p; 2= 252 2p, 2 has
very large correlation effects which even change the sign of the CCSD(T) result from the DF
result.

We have also presented, in table 4, the transition probabilities calculated using the
transition amplitudes and wavelengths obtained using the CCSD(T) method. These results
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are compared with other calculated results available in the literature [20, 22]. As seen from
table 4, our results are in good agreement with the Coulomb-gauge results of [22]. We have
presented the results for a few other transitions which have not been studied earlier. One can
obtain the oscillator strengths using the general formula given in equation (2.13) for these
transitions using the above results.

Our results on the transition probabilities and lifetimes of the low-lying transitions in the
boron iso-electronic ions may be helpful in the near future for the identification of spectral
lines in the regions of extremely low-density plasma such as those present in the coronal
atmospheres of the Sun and a few Sun-like stars. They also serve as bench mark results for
laboratory astrophysics experiments, using eBIT.

4. Conclusion

We have calculated the weighted oscillator strengths for a few electric dipole transitions and the
transition probabilities for some low-lying excited states of boron-like ions: Mg VIII, Si X, and
S XII, which are abundant in the solar atmosphere, using the relativistic coupled-cluster theory.
It is shown that the contributions of electron correlation effects to the transition amplitudes
are non-negligible in some transitions. Our results, in general, are in good agreement with the
calculated values available in the literature, thereby demonstrating the power of this theory to
generate accurate and reliable atomic data for astrophysics.
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