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We obtain the ground-state quantum phase diagram for a two-species Bose mixture in a one-dimensional
optical lattice using the finite-size density-matrix renormalization group method. We discuss our results for
different combinations of inter- and intraspecies interaction strengths with commensurate and incommensurate
fillings of the bosons. The phases we have obtained are a superfluid and a Mott insulator, and a phase
separation where the two different species reside in spatially separate regions. The spatially separated phase is
further classified into phase-separated superfluid and Mott insulator. The phase separation appears for all the
fillings we have considered, whenever the interspecies interaction is slightly larger than the intraspecies
interactions.
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I. INTRODUCTION

Studies of quantum phase transitions are currently of great
interest as they provide important insights into a wide variety
of many-body systems �1,2�. The pioneering observation of
the superfluid �SF� to Mott insulator �MI� transition in an
optical lattice using cold bosonic atoms �3�, which had been
predicted by Jaksch et al. �4�, highlights the exquisite control
of the interatomic interactions that is possible in such sys-
tems. In that experiment, performed using 87Rb atoms, the
tunneling of the atoms to neighboring sites and also the
strength of the on-site interactions were controlled by tuning
and/or detuning the laser intensity in order to achieve the
transition from the SF phase �random distribution of atoms�
to the MI phase, where there are a fixed number of atoms per
site �3�. Recent developments involving the manipulation of
ultracold atoms have led to the realization of genuine one-
dimensional systems such as the Tonks-Girardeau gas �5�.
Several interesting phenomena including the SF-MI transi-
tion have been observed in one-dimensional optical lattices
�6�.

In the past few years, on the theoretical side, many inves-
tigations have been carried out using a single species of
bosonic atoms in optical lattices �7,8�. Recently, cold bosonic
mixtures �9�, fermions �10�, and Bose-Fermi mixtures
�11,12� in optical lattices have attracted much attention. Mix-
tures of different species are very interesting since additional
phases could appear due to the interspecies interactions
�13,14�.

In the present work, we consider a system with two spe-
cies of bosonic atoms or, equivalently, bosonic atoms with
two relevant internal states. The two species will be called a
and b type respectively. The low-energy Hamiltonian is then
given by the Bose-Hubbard model for the two boson species:

H = − ta�
�i,j�

�ai
†aj + H.c.� − tb�

�i,j�
�bi

†bj + H.c.�

+
U

2
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i

ni
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Here ai �bi� is the bosonic annihilation operator for bosonic
atoms of a �b� type localized on site i. ni

a=ai
†ai and ni

b

=bi
†bi are the number operators. ta �tb� and Ua �Ub� are the

hopping amplitudes between adjacent sites �ij� and the on-
site intraspecies repulsive energies, respectively, for the a �b�
type of atom. The interspecies interaction is given by Uab.
The hopping amplitudes �ta , tb� and interaction parameters
�Ua ,Ub ,Uab� are related to the depth of the optical potential,
the recoil energy, and the scattering lengths of the atoms. The
ratio Uab /Ua,b can be controlled to a wide range of values
�15� experimentally. In this work we consider interspecies
exchange symmetry a↔b, implying ta= tb= t and Ua=Ub

=U and study the effect of interspecies interaction on the
ground state of model �1� in one dimension. We set our en-
ergy scale by t=1.

The model �1� is not exactly solvable even in one dimen-
sion, and one must therefore use a numerical or an approxi-
mate method to obtain its ground-state wave function and
energy, which are needed for studies on quantum phase tran-
sitions. The model �1� has been studied earlier using Monte
Carlo simulations �13�, bosonization methods �14�, and the
mean-field theory �15�. These studies have resulted in the
prediction of the basic structure of the ground-state phase
diagram, which consist of 2SF �both a and b type bosons in
the SF phase�, SF+MI �a boson in the SF and b in the MI
phase, or vice versa� and 2MI �both a and b bosons in the MI
phase�. In addition to these phases Kuklov et al. �13� predict
a superfluid counterflow �SCF� phase for Uab�0. The
bosonization study predicts phase separation for large values
of the interspecies interaction Uab by considering one species
of bosons to be hard core and the other to be in the
intermediate- to hard-core regime �14�. Phase separation has
also been found using a variational method based on the

*Email address: tapan@iiap.res.in
†Email address: rvpai@unigoa.ac.in
‡Email address: das@iiap.res.in

PHYSICAL REVIEW A 76, 013604 �2007�

1050-2947/2007/76�1�/013604�6� ©2007 The American Physical Society013604-1

http://dx.doi.org/10.1103/PhysRevA.76.013604


multiorbital best mean-field ansatz �16�. Unlike in the case of
fermions, phase-separated bosons can form a superfluid or
Mott insulator. The exact nature of the ground state of the
phase-separated phase has not been discussed before to our
knowledge. In order to obtain a clear picture of the transi-
tions pertaining to the SF, MI, and PS phases, we consider
the influence of the interspecies interaction Uab on these
phases, by carrying out a systematic study of its effect on the
ground state of model �1� in one dimension using the finite-
size density-matrix renormalization group �FSDMRG�
method �8,17�. This method is arguably the best method for
the numerical study of one-dimensional lattice systems. The
numerical solutions provided by this method will give impor-
tant insights into the ground state of the model, which can
then be used to understand its general features in higher di-
mensions. The possibility of making a genuine one-
dimensional system in an optical lattice makes this problem
interesting on its own merits.

The rest of the paper is organized as follows. Section II
contains the details of our finite-size density matrix renor-
malization method. Section III contains our results. We end
with concluding remarks in Sec. IV.

II. FSDMRG CALCULATIONS

The finite-size density-matrix renormalization group
�FSDMRG� method has proven to be very useful in studies
of one-dimensional quantum systems �8,17�. The details of
this method are given in a recent review by Schollwöck �18�.
The open boundary condition is preferred over the periodic
boundary condition for this method because the loss of ac-
curacy, which increases with the size of the system, is much
less in the former than the latter. In the conventional FSD-
MRG method, the lattice is first built to the desired length
�L� using the infinite-system density-matrix renormalization
method. The finite-size sweeping is done only for this de-
sired lattice size L. We use a slightly modified form of the
FSDMRG, where we sweep at every step of the procedure
and not just for the case that corresponds to the largest value
of L. This enables one to obtain accurate correlation func-
tions. Furthermore, since the superfluid phase in models such
as Eq. �1�, in d=1 and at T=0, is critical and has a correla-
tion length that diverges with the system size L, finite-size
effects must be eliminated by using finite-size scaling, as we
show later. For this purpose, the energies and the correlation
functions, obtained from a DMRG calculation, should con-
verge satisfactorily for each system size L. It is important,
therefore, that we use the FSDMRG method as opposed to
the infinite-system DMRG method, especially in the vicini-
ties of continuous phase transitions.

In the FSDMRG method, the bases used for left- and
right-block Hamiltonians are truncated by neglecting the
eigenstates of the density matrix corresponding to small ei-
genvalues, which leads to truncation errors. If we retain M
states, the density-matrix weight of the discarded states is
PM =��=1

M �1−���, where �� are the eigenvalues of density
matrix. PM provides a convenient measure of the truncation
errors. We find that these errors depend on the order param-
eter and correlation length for a given phase. For a fixed M,

we find very small truncation errors in the gapped phase and
the truncation errors are largest for the SF phase. In our
calculations we choose M such that the truncation error is
always less than 5�10−5 and we find that M =128 suffices.

The number of possible states per site in the model �1� is
infinite, since there can be any number of a and b species
bosons on a site. In a practical FSDMRG calculation we
must truncate the number of states nmax allowed per site. The
value of nmax, of course, will depend on the on-site interac-
tion U. The smaller the value of U the larger must be nmax.
From our earlier calculation �8� on related models, we find
that nmax=4 is sufficient for the value of U considered here.
This implies, for model �1�, four states each per site for a and
b species bosons and a total of 16 states per site. This corre-
sponds to a truncation of bases of the left �right� block from
16M to M in each FSDMRG iteration.

Before proceeding further we give a brief summary of our
results. The various parameters that we calculate to study the
ground-state properties of model �1� are the energy gap GL,
which is the difference between the energies needed to add
and remove one atom from a system of atoms, i.e.,

GL = EL�Na + 1,Nb� + EL�Na − 1,Nb� − 2EL�Na,Nb� , �2�

and the on-site density correlation function

�ni
�� = ��0LNaNb

�ni
���0LNaNb

� . �3�

Here � is an index representing type a or b bosons,
EL�Na ,Nb� is the ground-state energy for a system of size L
with Na �Nb� a �b� type bosons, and ��0LNaNb

� is the corre-
sponding ground-state wave function, obtained by the FSD-
MRG method. In d=1, the appearance of the MI phase is
signaled by the opening up of the gap GL→�. However, GL is
finite for finite systems and we must extrapolate to the L
→� limit, which is best done by using finite-size scaling �8�.
In the critical region, i.e., the SF region, the gap

GL 	 L−1f�L/�� , �4�

where the scaling function f�x�
x, x→0, and � is the cor-
relation length. �→� in the SF region. Thus plots of LGL
versus U, for different system sizes L, consist of curves that
intersect at the critical point at which the correlation length
for L=� diverges and gap G� vanishes.

Defining the ratio of inter- and intraspecies interactions
�=Uab /U, we study the ground state of model �1� for �
	1, �=1, and ��1. The ground state exhibits some simi-
larities as well as differences in each of the cases. When the
kinetic energy is the dominant term in the model, the ground
state is in the 2SF �both a and b species are in the SF phase�
state for all �. This similarity is, however, lost when the
interactions dominate. For �
1, i.e., Uab
U, the large-U
phase is the Mott insulator with nonzero energy gap in the
ground state. This state has a uniform local density of bosons
for each species, i.e., �ni

a�= �ni
b� for all i. The 2SF to MI

transition is possible only when the total density �=�a+�b is
an integer. For Uab
U, the 2SF-MI transition for model �1�
is similar to the SF-MI transition for single-species bosons
with the same density of bosons. For ��1 and for small
values of U, the ground state is a 2SF state. However, when
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U increases, the ground state first goes into the superfluid
phase with a and b bosons spatially separated into different
regions of the lattice. This is the case when �a=�b=1/2. This
phase may be called the phase-separated superfluid �PSSF�.
There is no gap in the ground-state energy spectrum and the
phase separation order parameter defined as

OPS =
1

L
�

i

��0LNaNb
���ni

a − ni
b����0LNaNb

� �5�

is nonzero. A further increase in U results in opening up of
the gap in the energy spectrum. This Mott insulator has a
nonzero phase separation order parameter and it may be
called the phase-separated Mott insulator �PSMI�. The total
local density �ni� �=��ni

a+ni
b���=� remains uniform across

the lattice. When the densities are different, for example,
�a=1, �b=1/2, no PSMI is found and the ground state has
only 2SF and PSSF phases. When �a=1, �b=1 we find, for
�=1.05, no PSSF phase and the transition is directly from
2SF to PSMI. We now present the details of our results.

III. RESULTS AND DISCUSSION

In the absence of the interspecies interaction Uab, model
�1� is an independent mixture of the individual species of
bosons. So the nature of the ground state of model �1� de-
pends only on the densities of the individual species of
bosons: �a, �b, and U �=Ua=Ub�, the on-site interactions. For
example, if �a�n, �b�n, where n is an integer, the ground
state is always in the superfluid phase irrespective of the
strength of the on-site interaction U. The Mott insulator is
possible only when either �a=n or �b=n. Based on the val-
ues of �a, �b, and U, the ground state is categorized as 2SF
�both a and b type bosons in the SF phase�, SF+MI �a boson
in the SF and b in the MI phase, or vice versa�, or 2MI �both
a and b bosons in the MI phase�. For �a�n, �b�n, or for
any values of �a, �b with U	Uc, where Uc is the critical
on-site interaction for the SF to MI transition, the ground
state is always in the 2SF phase. The SF+MI phase is pos-
sible for �a�n, �b=n �or vice versa�, and U�Uc. If both
�a=�b=n and U�UC, we have the 2MI phase. In order to
investigate the influence of Uab on these ground states, we
consider three cases: �	1, �=1, and ��1, where �
=Uab /U. In each of these three cases, we consider three dif-
ferent ranges of densities: �i� �a=�b=1/2, �ii� �a=1,�b
=1/2, and �iii� �a=�b=1. The choices of these three cases
are made to understand the effect of the interspecies interac-
tion on the 2SF, SF+MI, and 2MI phases. We now discuss
each case below.

A. �a=�b=1/2

As discussed in the previous paragraph, for this case,
there is no MI phase if Uab=0 and the model �1� has only the
2SF phase. However, with the introduction of interspecies
interaction, the 2SF phase is destroyed. For example, Fig. 1
shows a plot of the scaling of the gap LGL versus U for �
=1. Curves for different values of L coalesce for U
Uc
�3.4, indicating a gapped MI phase for U�Uc. The emer-
gence of this phase is due to the intraspecies as well as in-

terspecies interaction strengths. The fact that Uc�3.4 indi-
cates that the model �1� when �=1 behaves like a single
species of bosons at unit density �8�. These results are along
the expected lines because, when Uab=U, every boson in the
system interacts with the rest of the bosons, irrespective of
whether they are of type a or b, with the same strength, and
therefore the species index becomes irrelevant. However, the
situation changes when the interspecies interaction Uab�U.

For �	1, i.e., Uab	U, the system still undergoes the
2SF-MI transition when the on-site repulsion increases, but
with a higher Uc. For example Fig. 2 shows a plot of scaling
of the gap LGL versus U for �=0.5. The critical Uc��
=0.5�
5.4 is substantially greater than Uc��=1�
3.4. The
ground state of the model �1� for �a=�b=1/2, �	1 consists
only of 2SF and MI phases. The transition from 2SF to MI is
of Kosterlitz-Thouless type.

Kuklov et al. �13� predict the possibility of a superfluid
counterflow phase in addition to 2SF, SF+MI, and MI+MI
phases for Uab�0. The superfluid order parameters ��a� and
��b� are zero in the SCF ground state but ��a�b

†��0. This
suggests a finite gap for a and b bosons in their energy spec-
trum, but no gap when flipping an a boson into a b boson.
The MI phase that we predict has this property, and would

FIG. 1. Scaling of gap LGL is plotted as a function of U for
different system sizes for �a=�b=1/2, �=1. The coalescence of the
different curves for U
3.4 shows a Kosterlitz-Thouless-type
2SF-MI transition. This transition is similar to the SF-MI transition
for the single-species Bose-Hubbard model for �=1 �8�.

FIG. 2. Scaling of gap LGL is plotted as a function of U for
different system sizes for �a=�b=1/2, �=0.5. The coalescence of
different curves for U�5.4 shows a Kosterlitz-Thouless-type
2SF-MI transition.
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correspond to a SCF. However, we would prefer calling it a
MI for the following reason. The two-boson mixture model
can be generalized to multiboson mixtures and the Mott in-
sulator phase is possible whenever the total density of bosons
equals an integer. Consider a three-boson mixture, where the
3SF to MI transition is possible when the density of indi-
vidual bosons equals 1 /3 and the on-site interaction U
�Uc
3.4. Cancellation of the superfluidity by the counter-
flow as discussed in Ref. �13� is not clearly explained in this
case. So we prefer to call this phase a Mott insulator. More-
over we extend this study to understand the possibility of
phase separation as discussed below.

When ��1, the scenario is drastically different from the
one seen above. The on-site densities �ni

a� and �ni
b� are plot-

ted in Fig. 3 for �=1.05. It is clear from this figure that there
is a spatial separation between the two different species of
bosons for U=4 and no spatial separation for U=1. This
highlights a phase separation transition as a function of U.
The question then arises whether this spatially separated
phase is a superfluid or a Mott insulator. In order to sort this
out, we plot both the scaling of the gap LGL and the order
parameter OPS for phase separation in Fig. 4. It is evident
from these figures that the transition to the MI phase happens

at around Uc�3.4 and to the spatially separated phase
around Uc�1.3. The gap remains zero for 1.3	U	3.4.
Thus for the case �a=�b=1/2 and �=1.05, there are three
phases: the superfluid phase �2SF� for U	1.3, superfluid,
but phase separated for 1.3	U	3.4, and finally Mott insu-
lator, but again phase separated for U�3.4. It should be
noted that the total density of bosons �=�a+�b remain con-
stant through out the lattice, though bosons are space sepa-
rated. The critical values of the 2SF to PSSF and PSSF to
PSMI transitions depend on the value of �. The detailed
phase diagram in the �-U plane and the nature of the differ-
ent phase transitions will be reported elsewhere.

The bosonization method �14� has predicted phase sepa-
ration for model �1�. The authors have considered the hard-
core limit for both species of bosons, or one of them in the
hard-core limit while the other is in the intermediate- to
hard-core limit, and predicted phase separation. In this work
we have considered soft-core bosons where U is finite. It
should be noted that phase separation is possible only when
Uab�U. So no phase separation should be seen for the hard-
core bosons because in this limit Uab	U.

B. �a=1,�b=1/2

In this case, when Uab=0 species a bosons undergo a
superfluid to Mott insulator transition at Uc�3.4 by virtue of
having density �a=1, while the b bosons, which have density
�b=1/2, remains in the superfluid phase. However, when
Uab
U, no transition from the SF to MI phase was found
for either of the two species of bosons. The Mott insulator
phase of the a bosons is completely lost. In the Fig. 5�a�, we
plot the length dependence of the gap GL for different U,

FIG. 3. �ni
a� and �ni

b� versus i for U=1 and 4. These plots are for
�a=�b=1/2, �=1.05, and for system size L=50. The deviation in
�ni

a� and �ni
b� near the boundaries for U=1 is due to the open bound-

ary condition used in our FSDMRG calculations.

FIG. 4. Scaling of gap LGL �a� and order parameter for phase
separation OPS �b� versus U demonstrating various phases for the
case �a=�b=1/2 and �=1.05.

FIG. 5. �a� Gap GL versus 1/L for different values of U. The gap
goes to zero linearly when L→� for all the values of U considered.
Here �a=1, �b=1/2, and �=0.95. �b� Local density distribution
�ni

a� and �ni
b� for �a=1, �b=1/2, and �=1.05 for two different U

=1,4.
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which clearly indicates that the gap vanishes at L→� for all
values of U considered. This emphasizes the fact that, as far
as the transition to the Mott insulator is concerned, when
Uab
U, the total density must be an integer irrespective of
the densities of the individual species of bosons; and it is this
condition that really matters. This condition remains the
same for Uab�U. Thus, when the interspecies interaction is
nonzero as in the present case and the total density ��n, no
Mott insulator phase is observed.

The phase separation, however, happens when Uab�U.
The local density distributions of different species of bosons
are given in Fig. 5�b� for U=1,4 and �=1.05. For U=1, we
find no phase separation; however, for U=4, the a and b
species bosons are phase separated. They rearrange in such a
manner that the total density �=�a+�b remains a constant.
For example, when �a=1 and �b=1/2, one-third of the re-
gion is occupied by the species b and two-thirds by the spe-
cies a. The total density � being 3/2, the distributions of the
a and b types of bosons follow the ratio of their densities.

C. �a=1,�b=1

Finally, we consider the doubly commensurate case where
both the species of bosons undergo the SF to MI phase tran-
sition in the absence of Uab. It may be noted that for �a
=�b=1, Uc
3.4 for Uab=0. In Fig. 6, we plot the scaling of
the gap LGL for �=1.0. From this figure and from similar
ones for �
1, i.e., Uab
U, we find that the transition from
2SF to MI occurs at a much higher value of U=Uc
5.7. No
SF-MI transition observed at U
3.4. Due to the collective
intra- and interspecies interactions in model �1�, the species
index become irrelevant for the phase transition. For Uab


U, the phase transition from 2SF to MI is similar to the
SF-MI transition in single-species bosons with density �=2.
This is consistent with the similar observations made for the
case of �a=�b=1/2.

The phase separation transition, however, occurs for �
�1 as given in Fig. 7. In this case the transitions to phase

separation and to the Mott insulator occur around the same
Uc
5.7. In other words we did not find a PSSF phase sand-
wiched between the 2SF and PSMI phases for this case.

IV. CONCLUSIONS

We have studied the ground state of a two-species Bose
mixture in one dimension using the finite-size density-matrix
renormalization group method. We have considered three
sets of densities ��a ,�b
= �1/2 ,1 /2
 , �1,1 /2
 , �1,1
. Analyz-
ing the scaling of the gap in the energy spectrum and the
order parameter for phase separation we have obtained sev-
eral phases: 2SF, MI, PSSF, and PSMI. For Uab
U, the
Mott insulator phase is possible only when the total density
�=�a+�b=n is an integer. The superfluid to Mott insulator
transition in model �1� is then similar to that in the single-
species Bose-Hubbard model with the same total density �.
The critical on-site interaction for the 2SF-MI transition,
however, depends on the value of �. The lower the value of
�, the larger the value of Uc. For ��n, the Mott insulator
phase is not found. Phase separation occurs for Uab�U irre-
spective of the value of density. For �=n and for all the
values of � that we have considered, we found a phase-
separated Mott insulator phase. In the case of �a=�b=1/2,
we observe a phase-separated superfluid phase sandwiched
between the 2SF and PSMI phases. However, for �a=�b=1,
no PSSF was found and the transition is directly from 2SF to
PSMI. For �a=1,�b=1/2 we found a transition from 2SF to
PSSF for ��1 and only the 2SF phase for �
1. It would
indeed be worthwhile to devise experiments to test our
findings.
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FIG. 6. Scaling of gap LGL as a function of U for different
system sizes for �a=�b=1 and �=1.0. The coalescence of different
curves for U�5.7 shows a Kosterlitz-Thouless-type 2SF-MI
transition.

FIG. 7. LGL �a� and OPS �b� versus U demonstrating various
phases in the case of �a=�b=1, �=1.05.
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