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Phase separation in a two species Bose mixture
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We study the ground state quantum phase diagram for a two species Bose mixture in a one-
dimensional optical lattice using the finite size density matrix renormalization group(FSDMRG)
method. We discuss our results for different combinations of inter and intra species interaction
strengths with commensurate and incommensurate fillings of the bosons. The phases we have
obtained are superfluid, Mott insulator and a novel phase separation, where different species reside
in spatially separate regions. The spatially separated phase is further classified into phase separated
superfluid(PS-SF) and Mott insulator(PS-MI). The phase separation appears for all the fillings
we have considered, whenever the inter-species interaction is slightly larger than the intra-species
interactions.
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Studies of quantum phase transitions are currently of
great interest as they provide important insights into a
wide variety of many-body systems [1, 2]. The pioneer-
ing observation of the superfluid (SF) to Mott insulator
(MI) transition in an optical lattice using cold bosonic
atoms [3], which had been predicted by Jaksch et. al.
[4], highlights the exquisite control of the inter atomic
interactions that is possible in such systems. In that ex-
periment, performed using 87Rb atoms, the tunneling of
the atoms to neighboring sites and also the strength of
the on-site interactions was controlled by tuning and/or
detuning the laser intensity in order to achieve the tran-
sition from the SF phase(random distribution of atoms)
to MI phase where there are a fixed number of atoms per
site [3]. Recent developments involving the manipulation
of ultracold atoms have led to the realization of genuine
one dimensional systems such as the Tonks-Girardeau
gas [5]. Several interesting phenomena including the SF-
MI transition have been observed in a one-dimensional
optical lattices [6].

In the past few years, on the theoretical side, many in-
vestigations have been carried out using a single species
of bosonic atoms in optical lattices [7, 8]. Recently cold
bosonic mixtures [9], fermions [10] and Bose-Fermi mix-
tures [11, 12] in optical lattices have attracted much at-
tention. Mixtures of different species are very interesting
since additional phases could appear due to the inter-
species interactions [13, 14].

In this Letter, we consider a system with two species
of bosonic atoms or equivalently, bosonic atoms with two
relevant internal states. The two species shall be called a
and b type respectively. The low-energy Hamiltonian is
then given by the Bose-Hubbard model for the two boson
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species:
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Here ai (bi) is bosonic annihilation operator for bosonic

atoms of a (b) type localized on site i. na
i = a†iai and

nb
i = b†ibi are the number operators. ta (tb) and Ua (U b)

are the hopping amplitudes between adjacent sites 〈ij〉
and the on-site repulsive energies, respectively for a (b)
type of atom. The inter-species interaction is given by
Uab. In this work we consider inter-exchange symmetry
a ←→ b, implying ta = tb = t and Ua = U b = U and
study the effect of inter-species interaction using finite
size density matrix renormalization group(FSDMRG)
method[15]. We set our energy scale by t = 1.

The model (1) has been studied earlier using the
Monte-Carlo [13] and the Bosonization methods [14] and
this has resulted in the prediction of the basic struc-
ture of its ground state phase diagram. The Bosoniza-
tion study predicts phase separation (PS) for large val-
ues of the inter-species interaction Uab by considering
one species of bosons to be hard core and the other to
be in the intermediate to hard core regime [14]. Phase
separation is also seen using a variational method based
on the multi orbital best mean field ansatz [16]. How-
ever, a clear picture of the transitions pertaining to the
SF, MI and PS phases has not emerged so far. In order
to achieve this, we consider the influence of the inter-
species interaction Uab on these phases, by carrying out
a systematic study of its effect on the ground state of
model (1) in one-dimension using the finite size density
matrix renormalization method [8, 15]. This method is
very well suited for performing studies in one-dimensional
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lattice systems [17]. It involves the iterative diagonaliza-
tion of a Hamiltonian in a restricted Hilbert Space to
obtain the wavefunction and the energy of a particular
state (target state) of a many-body system. The size of
this space is determined by an appropriate number of
eigenvalues and eigenvectors of the density matrix.

Before proceeding further we give a brief summary of
our results. The various parameters that we calculate to
study the ground state properties of model (1) are the
energy gap GL, which is the difference between the ener-
gies needed to add and remove one atom from a system
of atoms,i.e.,

GL = EL(Na + 1, Nb) + EL(Na − 1, Nb)− 2EL(Na, Nb)
(2)

and the on-site density correlation function

〈nα
i 〉 = 〈ψ0LNaNb

|nα
i |ψ0LNaNb

〉. (3)

Here α, is an index representing type a or b bosons,
EL(Na, Nb) is the ground-state energy for a system of
size L with Na (Nb) number of a (b) type bosons and
|ψ0LNaNb

〉 is the corresponding ground-state wavefunc-
tion, which are obtained from the FSDMRG method [18].
Defining the ratio of inter and intra species interaction
∆ = Uab/U , we study the ground state of model (1) for
∆ < 1 and ∆ > 1. The ground state exhibits some sim-
ilarities as well as differences when ∆ < 1 and ∆ > 1.
When the kinetic energy is the dominant term in the
model, the ground state is in 2SF (both a and b species
are in the SF phase) state for all ∆. This similarity
is, however, lost when the interactions dominates. For
∆ < 1, i.e., Uab < U , the large U phase is Mott insulator
with non-zero energy gap in the ground state. This state
has an uniform local density of bosons for each species,
i.e., 〈na

i 〉 = 〈nb
i 〉 for all i. The 2SF to MI transition is pos-

sible only when the total density ρ = ρa+ρb is an integer.
Since we have chosen Uab ∼ U in this work (∆ = 0.95
and 1.05), the 2SF-MI transition for model (1) is sim-
ilar to SF-MI transition for single species bosons with
the same density of bosons. For ∆ > 1 and for small
values of U , the ground state is a 2SF state. However,
when U increases, the ground state first goes into super-
fluid phase with a and b bosons spatially separated into
different regions of the lattice. This is the case when
ρa = ρb = 1/2. This phase may be called the phase sep-
arated superfluid(PS-SF). There is no gap in the ground
state energy spectrum and the phase separation order
parameter defined as

OPS =
1

L

∑

i

〈ψ0LNaNb
|(|na

i − n
b
i |)|ψ0LNaNb

〉. (4)

is non-zero. A further increase in U results in opening up
of the gap in the energy spectrum. This Mott insulator
has a non-zero phase separation order parameter and it
may be called the phase separated Mott-Insulator(PS-
MI). The total local density 〈ni〉(= 〈(n

a
i + nb

i)〉) = ρ

remain uniform across the lattice. When the densities
are different, for example ρa = 1, ρb = 1/2, no PS-MI
is found and the ground state has only 2SF and PS-SF
phases. When ρa = 1, ρb = 1 we find, for the ∆ = 1.05,
no PS-SF phase and the transition is directly from 2SF to
PS-MI. We now discuss the details of the present work.

In d = 1, the appearance of the MI phase is signaled by
the opening up of the gap GL→∞. However, GL is finite
for finite systems and we must extrapolate to the L→∞
limit, which is best done by using finite-size scaling [8].
In the critical region, i.e., SF region, the gap

GL ≈ L
−1f(L/ξ), (5)

where the scaling function f(x) ∼ x, x → 0 and ξ is
the correlation length. ξ → ∞ in the SF region. Thus
plots of LGL versus U , for different system sizes L, con-
sist of curves that intersect at the critical point at which
the correlation length for L = ∞ diverges and gap G∞

vanishes.
In the absence of the inter-species interaction Uab, the

ground state of model (1) is a simple independent mix-
ture of the individual species of bosons. In order to in-
vestigate the influence of Uab on its ground state, we
consider two cases ∆ = 0.95 and 1.05. In each of these
two cases, we consider three different ranges of densities.

(i)ρa = ρb = 1/2:
It should be noted that in the single species model with
only the on-site interaction, the MI phase is possible only
for integer densities. Thus when ρa = ρb = 1/2, the MI
phase is absent when Uab = 0 and the model (1) will
have only SF phase. Figure (1) shows a plot of scaling
of gap LGL versus U for ∆ = 0.95. Curves for differ-
ent values of L coalesce for U ≤ Uc ≃ 3.4 indicates a MI
phase for U > Uc. The emergence of MI phase here is due
to the combined interactions of both species of bosons,
i.e., U and Uab. The fact that Uc ≃ 3.4, indicates that
the model (1) when ∆ ≈ 1 behaves like a single species
Bose-Hubbard model at density 1. These results are in
the expected lines because, when Uab ≈ U , every boson
in the system interact with all the other bosons, irrespec-
tive of whether they are of a or b types, with the same
strength and therefore species index become irrelevant.
However, the situation changes when the inter-species
interaction Uab > U . The on-site densities 〈na

i 〉 and 〈nb
i 〉

are plotted in Fig. (2) for ∆ = 1.05 clearly demonstrates
a spatial separation between a and b species of bosons
for U = 4 and no spatial separation for U = 1. This
reveals a Phase Separation (PS) transition as a function
of U . The question then arises whether this spatially
separated phase is superfluid or Mott Insulator. In or-
der to sort this out, we plot both the scaling of the gap
LGL and the order parameter OPS for phase separation
in Fig. (3). It is evident that the phase transition to MI
happens at around Uc ≃ 3.4 while that to spatially sep-
arated phase is around Uc ≃ 1.3. The gap remains zero
for 1.3 < U < 3.4. Thus for the case ρa = ρb = 1/2 and
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∆ = 1.05, there are three phases: the superfluid phase
(2SF) for U < 1.3, superfluid, but phase separated (PS-
SF) for 1.3 < U < 3.4 and finally Mott Insulator, but
again phase separated (PS-MI) for U > 3.4. The range
of U for each phase, however, will depend on the value of
∆. The detailed phase diagram in the ∆− U plane and
the nature of different phase transitions will be reported
elsewhere.
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FIG. 1: Scaling of gap LGL is plotted as a function of U
for different system sizes for ∆ = 0.95. The coalescence of
different curve for U ≃ 3.4 shows a Kosterlitz-Thouless-type
2SF-MI transition.

(ii)ρa = 1, ρb = 1/2:
In this case, when Uab = 0 the species a has a superfluid
to Mott insulator transition at Uc ≃ 3.4 by virtue of hav-
ing density one, while the b species, having density 1/2,
remain in the superfluid phase. However, when Uab ∼ U ,
no transition from SF to MI was found for either of the
two species. In the Fig. (4(a)), we plot the length depen-
dence of gap GL for different U , which clearly indicates
that the gap vanishes at L → ∞. This emphasizes the
fact that as far as transition to the Mott insulator is
concerned, when Uab ∼ U , it is the total density that
matters, which has to be an integer irrespective of the
densities of the individual species of bosons.

The phase separation, however, happens when Uab >
U . The local density distribution of different species of
bosons are given in Fig. (4(b)) for U = 1, 4 and ∆ = 1.05.
For U = 1, we find no phase separation. However, for
U = 4, the a and b species bosons are phase separated.
They rearrange in such a manner that the average total
density remains a constant. For example, when ρa = 1
and ρb = 1/2, one-third of the region is occupied by
the b species and two-third by the a species. The total
density being 3/2, the distribution of the a and b species
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FIG. 2: Plots of 〈na

i 〉 and 〈nb

i 〉 versus i for U = 1 and U =
4. These plots are for ρa = ρb = 1/2, ∆ = 0.95 and for
system size L = 50. The deviation in 〈na

i 〉 and 〈nb
i〉 near the

boundaries for U = 1 is due to the open boundary condition
used in our FSDMRG
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FIG. 3: Plots of LGL (a) and OPS (b) versus U demonstrate
various phases in the case ρa = ρb = 1/2 and ∆ = 1.05.
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of bosons follow the ratio of their densities.
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FIG. 4: (a)Plots of gap GL versus 1/L for different values of
U . The gap goes to zero linearly when L → ∞ for all the
values of U considered. Here ρa = 1, ρb = 1/2 and ∆ = 1.05.
(b) Local density distribution 〈na

i 〉 and 〈nb
i 〉 for the same case

but for two different U = 1, 4.

(iii)ρa = 1, ρb = 1:
We now consider a double commensurate case where both
the species of bosons undergo SF to MI phase transition
in the absence of Uab ( for ρa = ρb = 1, Uc ∼ 3.4).
In Fig. (5(a)), we plot the scaling of the gap LGL for
∆ = 1.05. It is clear from these figures and from a similar
one for ∆ = 0.95 that for Uab ∼ U , the transition from
SF to MI occurs at a much higher value of U ∼ 5.7,
which corresponds to the SF-MI transition in single Bose-
Hubbard model for ρ = 2. This is consistent to what we
had observed in the earlier cases also. For Uab ∼ U ,
the superfluid to Mott Insulator transition is due to the
collective intra and inter species interactions. The phase
separation transition, however, occurs for ∆ > 1 as given
in the Fig. (5(b)). In this case the transitions to phase
separation and to the Mott insulator occur around same
Uc ∼ 5.7. In other words we did not find a PS-SF phase
sandwiched between 2SF and PS-MI for this case.

Finally from these three cases discussed here, the fol-
lowing conclusions can be drawn. For the values of the
interaction strengths and the densities considered here,
we obtain several phases: 2SF, MI, PS-SF and PS-MI.
For Uab ≤ U , the Mott Insulator phase is possible only
when the total density is an integer. The superfluid to

Mott Insulator transition in model (1) is then similar to
the single species Bose-Hubbard model with the same to-
tal density. The deviation from this behavior, however,
occurs for Uab > U , where we observe a phase separation.
The Mott insulator phase is then phase separated. In
the case of ρa = ρb = 1/2, we observe a phase separated
superfluid PS-SF sandwiched between 2SF and PS-MI.
However, for ρa = ρb = 1, no SF-PS was found and the
transition is directly from 2SF to MI-PS. It would indeed
be worthwhile to devise experiments to test our findings.
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a part of this work was done, DST-FIST for financial
assistance and R. Pandit and K. Sheshadri for useful dis-
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FIG. 5: Plots of LGL (a) and OPS (b) versus U demonstrate
various phases in the case of ρa = ρb = 1, ∆ = 1.05.
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