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Preface

“The study of stellar atmospheres is in many ways one of the most interesting and
rewarding areas of modern astrophysics. It is not an ezaggeration to state that most of
what we know about stars, and systems of stars, is derived from an analysis of their
radiation, and that this knowledge will be secure only as long as the analytical technique
is physically reliable. It is therefore important to have sound theoretical framework upon

which our inferences can be based with confidence.”
— Dimitri Mihalas in Stellar Atmospheres (1978).

Resonance line polarization is sensitive to the magnetic field (Hanle effect), the collisional
rates, interference between atomic sublevels, the frequency redistribution, the degree of
angular anisotropy of the incident radiation and the geometry of the line forming region.
The collisional rates are determined by various physical causes. The above mentioned
processes are greatly affected by the radial expansion of the atmosphere. On the other
hand it is well-known from observations that early type stars, giant and supergiant
stars, symbiotic stars, luminous late type stars possess differential velocities along the
radial direction in their outer layers with high velocities of tens of mean thermal units
and sometimes even hundreds of mean thermal units. These objects show degree of
polarization ranging from 0.1 % to 5 % in the optical band. Therefore in modelling the
atmospheres of these objects it is essential to include velocity fields which may play

crucial role in the formation of polarization profile.

The present study was undertaken with the goal of understanding the behavior of line

polarization in an extended and radially expanding stellar atmosphere. In this thesis a

i
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detail study of the effect of differential radial velocity on the distribution of line intensities
and line polarization of an extended stellar atmosphere has been made with the two level

atom approximation. They are described in the following chapters of this thesis. The

contents of these chapters are briefly presented here.

The first chapter contains a brief survey of the investigations on the problem of
transfer of polarized radiation in stellar atmospheres that has already been done by
various authors. In the second chapter the relevant equation for the transfer of polarized
radiation in an extended and expanding stellar atmosphere has been fomulated. In general
a linearly polarized beam is represented by the three Stoke’s parameters I, Q and U. In
a plape parallel or spherically symmetric medium, because of the axial symmetry of the
radiation field, only two parameters are required to define the polarization state of the
radiation field: the specific intensity of the radiation field I (= I; + I,.) and the polarized
intensity Q (= I; — I.) where I; and I, are the components which are perpendicular and
parallel to the surface respectively. The degree of line;n polarization p = Q/I gives the

measure of the angular anisotropy of the diffuse radiation field.

In the rest frame calculations one can use velocities upto one to two mean thermal
units only. Beyond two mean thermal units it is very difficult to get correct solution. The
difficulties arise because of the fact that absorption co-efficient changes continuously due
to Doppler shifts and therefore the angle frequency mesh required to solve the equation
becomes enormously large and one has to take a mesh of infinite size. The calculation
becomes quite involved simply because photons can be redistributed from any given
point to any other point in the interval v,(1 — Vinsz/c) to v,(1 + Vinaz/c) where v, is the
central frequency of line and V..., is gas velocity. Hence the transfer of radiation has
been considered in the comoving frame. In comoving frame it is easy to handle such large
velocities. The absorption co-efficient in the comoving frame is constant as the Doppler
shifts do not create problems of frequency changes in the line absorption. Therefore one
can reduce the size of the angle frequency mesh considerably and the number of angles and

the number of frequency points are considerably reduced in the case of comoving frame
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and this can easily give exact solution for the atmosphere of stars in which the velocities
are as large as 100 mean thermal units and even more. Further the phase function for
the static case which gives the angular distribution of the polarized radiation can well be
applied in the comoving frame calculations. The transfer equation for polarized radiation

in comoving frame is presented in this chapter.

In the third chapter the methodology for the numerical solutions of the transfer
equation for polarized radiation is described in detail. For solving the plane parallel and
the spherical radiative transfer problems in co-moving frame the method due to Peraiah
has been employed. In general the following steps are taken in obtaining the solution.
(i) The medium is devided into a number of ‘cells’ whose thickness are less than or equal
to the critical thickness that is determined on the basis of the physical characteristics
of the medium. The critical thickness ensures stability and uniqueness of the solution.
(i) The integration of the transfer equation is performed on the ‘cell’ which is a two
dimensional grid bounded by radial and angular points. (iii) The discrete equations are
compared with the canonical equation of the interaction principle and the transmission
and the reflection operators of the ‘cell’ which contains all the physical informations in
the problem under consideration are obtained. (iv) Lastly, all the cells are combined by
internal field algorithm and the diffuse radiation field is obtained. For a thick layer, the
so called star product is used. The generalization of all the steps of this finite difference
method to include the polarization state of radiation is presented in this chapter. Since
a two dimensional vector (I;I,)T has been employed to represent the specific intensity
vector, the matrices appearing in the computational algorithm get dimensions twice as

much for the corresponding scalar line transfer problem.

The method can handle the problem arising out of the coupling of the comoving points
across the line profile and the local velocity gradients. The stability of the solution is
achieved by controlling the step size which arises in the discretization in radial, angle
and frequency integrations. Choosing a proper step size, stable solution can be found.

Thus the stability and the uniqueness are maintained.
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Finally, the frequency-independent 1- and r- components of the source vectors that
have been computed in the comoving frame are used to obtain the corresponding line

profiles and the polarization line profiles along the line of sight of an observer at infinity.

In the fourth chapter the effect of differential radial velocity on the distribution of
line intensities and line polarization in a stellar atmosphere stratified in parallel planes
has been presented in detail. The medium is assumed to be homogeneous and isothermal.
Two different types of velocity rules have been adopted in this case. The velocity at the
outermost layer is taken to be 5, 10 and 20 mean thermal units with zero velocity at
the innermost layer. The results have been compared with that of the static case. The
line intensity profile and the polarization profile in the comoving frame as well as in
the observer’s frame are discussed in detail. Two types of media have been considered:

(i) purely scattering medium and (ii) partially scattering medium through which the role

of the thermalization parameters is investigated.

As the stellar radius increases the curvature effect plays a dominant role and a spher-
ica,]_])"r symmetric geometry becomes more relevant in that case. In the fifth chapter the
effect of differential radial velocity in the distribution of line intensities and line polariza-
tion for a spherically symmetric, inhomogeneous and isothermal medium is presented in
detail. The atmospheric models could represent the outer layers of early type stars, giant
and supergiant stars as well as luminous late type stars. In the fourth chapter the role of
non-zero thermalization parameter has been discussed. In the case of a spherically sym-
metric stellar atmosphere, a fixed value of the thermalization parameter is taken in all
models and the effect of differential radial expansion to line polarization under different

optical depth as well as sphericity of the medium has been discussed in detail.

Although the models employed are highly idealized, they can provide a reasonably

good physical insight into the polarized line formation problem in a radially expanding

and extended spherical stellar atmosphere.

Finally, in the sixth chapter the results of the investigation described in the thesis

are summarized with specific conclusions.
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Chapter 1

Introduction

The study of the outer layers of stars is one of the most important branches of Astro-
physics. A quantitative study of the nature of radiation emanating from the outer layers
of stars leads to an understanding of the physical conditions, viz., the densities, temper-
atures, pressures, gas motions and chemical composition of the matter present in their
atmospheres. The study also provides information on various stages of ionizations and
excitations of different atomns and molecules constituting the atmospheres. Therefore the
basic goal of radiative transfer calculation is to describe quantitatively, the flow of energy
through the outermost layers of stars and to explain and predict the observational char-
acteristics of the emergent radiation. Hence one needs to develop the relations between
microscopic phenomena such as the interaction of radiation with matter and the macro-
scopic phenomena like the transfer of radiation, the radiative heat conduction and the
mass motion in order to understand the physical nature of stars with different spectral
features. Unless such a link is established, a correct theoretical modelling of the regions
emitting the radiation becomes difficult. Though in the past few decades important ad-
vances have been done in this field, the exact theoretical modelling involving realistic

physical processes is yet to be considered in detail.

Since on scattering (viz., by atoms or electrons) light in general, gets polarized, in

order to specify the nature of the radiation field, one must allow for polarization in any
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exact treatment of the scattering problems. One of the fundamental aspects of polarized
radiation is “Resonance line polarization”. In the absence of any external magnetic
field, the absorption of an anisotropic radiation field by an atom leads to a non-uniform
population of the Zeeman sublevels of the excited state of the atom and the coherences
among such levels. As a consequence, the re-emitted radiation field is linearly polarized.

Such a two-level atom model is a quantum analogue of the Rayleigh scattering of the

continuum radiation.

The basic theory of resonance line polarization has been studied extensively by many
authors. Zanstra (1941) developed a theory to calculate resonance line polarization in the
solar atmosphere. Chandrasekhar (1960) introduced the Stroke’s parameters to represent
the polarized radiation in the equations of radiative transfer. Since then the theory of
resonance line polarization has been extensively studied by Voigt (1951), Warwick &
Hyder (1965), Lamb (1970), House (1971) and Stenflo (1976, 1978, 1980). Detailed

theoretical discussions can also be found in Mitchell & Zemanski (1934), Hamilton (1947)
and Landi degl’Innocenti (1984).

The diagnostic potential of resonance line polarization in solar observations has been
studied extensively by Stenflo (1980), Stenflo & Stenholm (1976), Stenflo, Baur & El-
more (1980). Rees & Saliba (1982) have extended the formalism developed by Stenflo
and co-workers to a more complicated but realistic problem of resonance line polariza-
tion with partial frequency redistribution in a static plane parallel medium. Faurobert
(1987, 1988) has discussed the validity and usefulness of some approximate forms of the
partial frequency redistribution functions in the polarized line transfer computations, in
relation to the exact angle-dependent version of these functions. The effect of external
magnetic field on resonance line polarization (Hanle effect) has also been investigated by
the same author (Faurobert 1991). Detailed studies on similar lines have been carried
out by McKenna (1984, 1985). Peraiah (1976) investigated the effect of rotation and tidal
forces in the components of close binary stars on linear polarization with an aim to ex-

plain the observational findings of Kruszewski, Gekrels & Serkowski (1968) and Dyck &
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Sandort (1971). The observations made by Brukner (1963), Stenflo (1974), Wiehr (1975,
1981) on the linear polarization in resonance lines of Ca, Na and Mg have been quite
successfully explained by the theoretical calculations. The transfer of polarized radiation

in spherically symmetric geometry has been studied in detail by Nagendra (1988).

So far all the theoretical investigations have been carried on by assuming static me-
dium. But it is well-known from observations that early type stars, giant and supergiant
stars, symbiotic stars and luminous late-type stars possess differential velocities in the
radial direction in their outer layers with speeds ranging from 2 mean thermal units to
100 mean thermal units. These objects show degree of polarization ranging from 0.1 to

5 per cent in the optical band (Coyne et al. 1988).

Resonance line polarization is sensitive to the magnetic field, the collisional rates,
transitions between atomic sublevels, the frequency redistribution, the degree of angu-
lar anisotropy of the incident radiation and the geometry of the medium. Except the
geometry of the medium, all the above mentioned processes are greatly affected by the
inclusion of radial expansion of the atmosphere. Collisional rates are determined by the
density of the medium which in turn governed by the velocity field. The velocity field
alters the frequency of the line photons due to Doppler shift. It is therefore necessary to

include the velocity field in the study of line polarization in astrophysical context.

The present work is a continuation of the work done earlier by other authors with the
consideration of the radial motion of the atmosphere. In this thesis the effect of differ-
ential radial velocity to the distribution of line intensities and line polarization along the
line of sight of an extended stellar atmosphere is presented. For this purpose, the radi-
ative transfer equation in the comoving frame (Castor 1972) is considered. The choice of
comoving frame fomalism is to reduce the frequency-angle mesh which becomes enorm-
ously large in rest frame calculation due to the velocity field. Further one can use the
frequency redistribution function used for the static case which is significantly altered
with the velocity gradient in a rest frame calculation. The scalar line formation in the co-

moving frame has been well studied by Mihalas, Kunasz & Hummer (1975) and Peraiah
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(1984). In the present work, the scalar radiative transfer equation in comoving frame
has been generalized into vector form in order to include line polarization. Considering
plane parallel and spherically symmetric geometries the transfer equation for polarized
radiation in comoving frame has been solved by using the method due to Peraiah (1984).
Complete frequency redistribution is assumed with different velocity gradients and velo-
city rules. A large number of results have been presented along with the results for the
static case for comparison. The results will be useful for obtaining a general idea about

the resonance line polarization in an extended and radially expanding stellar atmosphere.
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Equations for the transfer of polarized

radiation

2.1 Resonance line polarization

The quantum theory of resonance fluorescence leads to a law of scattering which is

formally of the same type as the classical law of scattering by anisotropic particles.

In the context of resonance line scattering one is concerned with transitions from
an initial ground state to an excited intermediate state and back to the ground state.
However, in the study of these transitions the different substates of each level as specified
by the magnetic quantum number m which are the eigenvalues of the z-component of the

total angular momentum in units of 4, must be taken into consideration.

Let the relevant states of the radiating atom be designated by Xx, Y, and X, where
X and Y refer to the ground state and the intermediate excited state respectively. The

subscripts refer to the m-values of the different substates under consideration.

The probability of a transition from Xy to Y, between a single pair of m-states can be
calculated for any given stream of incident radiation. Similarly, the angular distribution
and the state of polarization of the quantum emitted in a transition from Y, to X,

between a single pair of m-states are also known. But in resonance fluorescence, the
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different sequences of transitions which are possible starting from the same state Xj
are correlated, because, when transitions from a given state Xi to different substates
Y, are possible, the wave functions belonging to these substates have phases which are
related in a definite manner to the phase of the wave function belonging to Xi. The
resulting transitions to X, from the different substates Y, cannot therefore be regarded

as independent of each other. As a consequence, the reemitted radiation is polarized and

is called resonance line polarization.

For a transition with j = 0 and Aj = 1, resonance line polarization becomes similar
to the Rayleigh scattering. Hence, resonance line polarization can be regarded as a

quantum analogue of the Rayleigh scattering of the continuum radiation.

2.2 Representation of polarized radiation by Stokes

parameters

In order to formulate the equations of transfer in a gaseous medium the most convenient
representation of polarized radiation is by a set of four parameters called Stokes para-
meters. Chandrasekhar (1960) first introduced the Stokes parameters in the equation of

radiative transfer with a slight modification of Stoke’s representation.

In an elliptically polarized beam the vibrations of the electric and the magnetic vectors
in the plane transverse to the direction of propagation are such that the ratio of the
amplitudes and difference in phases of the components in any two directions at right

angles to each other are absolute constants. A regular vibration of this character can be

represented by

£ = f,(O) sin(wt — ), & = £ sin(wt — ¢,) (2.1)

where £ and £, are the components of the vibration along two directions / and r at right

angles to each other (see Fig. 2.1), w the circular frequency of the vibration, and rf,(o),

(9, ¢ and ¢, are constants. If the principal axes of the ellipse described by (¢, ¢,) are
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in directions making angles x and x + -,1;11' to the direction [/, the equations representing

the vibration take the simplified forms :
€& = f(o) cos B sin wt, Ex+%1r = f(o) sin 3 cos wt (2.2)

where [ denotes an angle whose tangent is the ratio of the axes of the ellipse traced
by the end point of the electric (or magnetic) vector, and the numerical values of it lies
between 0 and i7. The sign of § is positive or negative according as the polarization is

right-handed or left-handed.

“V
X+ 1=

2

Figure 2.1: Schematic diagram representing elliptical polarization

In equation (2.2), £ denotes a quantity proportional to the mean amplitude of the
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electric vector and whose square is equal to the intensity of the beam:

I=[6OP = [P 4 [(OP = [+1,. (2.3)

Following the representation given in equation (2.2) one obtains for the vibrations in the

l and r directions
& = £ (cos B cos x sinwt — sin Bsin X coswt) (2.4)
and
& = £(cos Bsin x-sinwt — sin 3 cos X coswt). (2.5)
The intensities I; and I, in the directions ! and r can be written as
L=[e9p = I(cos” B cos® x + sin? Fsin? x) (2.6)
and
I = []? = I(cos® Bsin® x + sin? B cos? ). (2.7)

It follows from the foregoing equations that whenever the regular vibrations repres-

enting an elliptically polarized beam can be expressed in the form given in equation (2.1)

we can write the relations

=7+ [OF = h+ 1, (2.8)
Q=16 — (O] = Icos2Bcos 2y = I, - I, (2.9)
U= 2{,(0)5,(0) cos(e; — €.) = [ cos 2@ sin 2x = (I — I.)tan 2x (2.10)

and

V= 2§f°)§$°) sin(ej — ¢.) = I'sin 28 = (I = I,) tan 20 sec 2. (2.11)
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These are the Stokes parameters representing an elliptically polarized beam. It follows

from equation (2.8) to equation (2.11) that

P=Q +U*+ V2

Further,
U
tan2y = —
X=Q
and
. |
W= Y

which give the plane of polarization and the ellipticity respectively.

In the above formalism the amplitudes and the phase have been considered to be
constants. But in practice this is not attainable. So one has to consider the mean
intensity in any direction in the transverse plane. Hence, the apparent intensities I; and

I, in the directions [ and r are given by the values of all amplitudes:

Ii= g
and
I = [¢O).
Accordingly, one writes
Q = [£(9)2 cos B cos 2 = I cos 28 cos 2x, (2.12)
U = [€©)]? cos 28sin2x = I cos 28 sin 2, (2.13)
V = [£©]%sin28 = Isin 28. (2.14)

It can be shown that the character of an arbitrary polarized light, in so far as exper-
imental tests can reveal, is completely determined by the intensities in two directions at

right angles to each other (or equivalently, the total intensity I and Q@ = I; — I;) and
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the parameters U and V. The intensities I, @, U and V are the general Stokes para-
meters representing light. When several independent streams of light are combined, the
Stokes parameters for the mixture is the sum of the respective Stokes parameters of the
seperate streams. For a beam resulting from a mixture of several independent streams

of elliptically polarized light the Stokes parameters are therefore given by
I= 10,0 =Y 1M1, =31
Q=Y QM = 3 1™ cos 20, cos 2xn

U= Z U™ = Z 1™ cos 208y sin 2x,
V=Y v =5 1"sin2g,

where I, £, and 8, denote the intensity, the plane of polarization and the ellipticity of

the component streams.

The necessary and sufficient condition that light be natural is

Q=U=V=0.

2.3 Rayleigh scattering

One of the most important physical law of light scattering is Rayleigh’s law of scattering.
Rayleigh’s law states that when a pencil of natural light of wavelength A, intensity

I and solid angle dw is incident on a particle of polarizability a, energy at the rate

(Chandrasekhar 1960)

12875 3 2 oy i
3/\4 o Idw % Z(l + cos @)E— (215)

is scattered in a direction making an angle @ with the direction of incidence and in a
solid angle dw’; that the scattered light is partially plane-polarized; that the plane of
polarization is at right angles to the plane of scattering and that the intensities of the

scattered light in the directions (in the transverse plane containing the electric and the
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magnetic vectors) parallel and perpendicular respectively to the plane of scattering are

in the ratio cos?® : 1.

According to equation (2.15) the scattering co-efficient o per particle is

128x°
= 3,\:’ . (2.16)
For electrons, the Thomson scattering co-efficient
8ret

can be obtained by setting

e2

)2

in equation (2.16). Here c denotes the velocity of light, e the charge of the electron and

a=(

¢’ 4m*m,

m,. the mass of electron.

In order to incorporate Rayleigh’s scattering into the radiative transfer equation,
Chandrasekhar (1960) modified it which can be stated as the vibrations representing the

light scattered in a direction making an angle © with the direction of incidence is

3 .
gl(lo) = (50)1/251(]0) cos O sin(wt — €;) (2.18)
and
(f) = (%a)l/sz) sin(wt — €;), (2.19)

where the pbase (€1,€;) and the amplitude (fﬁo),fﬂ?)), relations in the incident beam
are maintained, unaltered, in the scattered beam. Here || and L refer to directions in
the transverse planes (of the incident and scattered light) parallel and perpendicular
respectively to the plane of scattering. Accordingly, the parameters representing the

scattered light are proportional to

-g—a[—él(‘T)]z cos’ @ = -g-a'I“ cos’ O, (2.20)

3 T2 3
-2-0'[55?)]2 = —2-0"1_1_, (221)
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132—0'[251(10)6_(,?) cos(e; — €3)] cos @ = —g—aU cos @ (2.22)
and
—2-0[2560)65?) sin(e; — €3)] cos @ = g—aV cos . (2.23)

Therefore, denoting the incident light by the vector
I=(I),1.,U,V)

we can express the scattering intensity in the direction © by
/

(aiw—W)RIdw (2.24)

where
cos?® 0 0 0

0 1 0 0
0 0 cos® 0

0 0 0 cos©
R is called the phase matrix for Rayleigh scattering.

2.3.1 The explicit form of the phase matrix for Rayleigh scat-

tering

In the formulation of the equation of radiative transfer, the radiation field at each point
is characterized by the four intensities [;(6, ¢), I.(6, ¢), U(8,#) and V(8, ¢) where § and
¢ are the polar angles referred to an appropriately chosen coordinate system through the
point under consideration and ! and r refer to the directions in the meridian plane and

at right angles to it respectively.

Therefore one writes

1(8) ¢) = [II(93 ¢)1 Ir(gs ¢)1 U(ga ¢)a V(Ga ¢)]



hapter 2 13

he explicit form of the phase function for Rayleigh scattering in terms of 6 and ¢
hich is used in the transfer equation and which describes the angular distribution of

1e radiation field is given by (Chandrasekhar 1960):

P(p, ;s d) = QIPO(u, 1) + A — p®) (1 = w1 V2PW (u, ¢ 1, ¢))

+ P (u, 651", 4), (2.25)
rhere
20 = p )1 —p?) +u?u p* 0 0
2
PO =3 g S0
0 0 0 O
0 0 0 pu
4pp’ cos( ¢>’ #) 0 2usin(¢’ — @) 0
0 0 0
PO (u, ;4" ¢') = -Z-
—2u'sin(¢' — @) 0  cos(¢' — @) 0
0 0 cos(@' — @)
piu? cos2(¢’ — —p2cos2(¢ — @) piu'sin2(¢'—¢) 0
PO g, 8) = 3| T —@ ol =9)  muemd=0) 0
—pp?sin2(¢’ — ¢) psin2(¢' — @)  pp'cos2(¢'—¢) 0
0 0 0 0
xnd
1000
0100
Q=
0020
0 00 2

Jere p = cosf, y' = cos ',  and 6 denote the direction of the photon before and after

icattering. Similarly for ¢ and ¢'.
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2.4 The phase matrix for resonance line scattering

In resonance fluorescence, the Stokes parameters I, I, and U are scattered in accordance

with a phase matrix of the form

cos?2® 0 0 100
3 1
5B 0 1 0 [+5Ef110 (2.26)
0 0 cos® 000

where E; and E; are certain constants depending on the initial j-value and the Aj( = %1
or 0) involved in the transition. As in Rayleigh scattering the parameter V' is scattered

independently of the rest and according to a phase function of the form
3
~-E e
5Eacos©,

where Ej is another constant depending also on 7 and Aj. From the condition of con-

servative scattering
Ey+E,=1

and for j =0 and Aj =1, E; =1,E, = 0 and E; = 1 which implies that in this case,

resonance line scattering is the same as Rayleigh scattering.

2.4.1 The explicit form of the phase matrix for resonance scat-

tering

In the present work, plane parallel and spherically symmetric atmospheres have been
considered. For both the cases the axial symmetry of the radiation field clearly requires
that the plane of polarization be along the meridian plane (or, at right angle to it).

Consequently, U = V = 0 and the two intensities I; and I, are sufficient to characterize
the radiation field.

With this consideration the phase matrix used to describe the angular distribution of
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photons that undergo resonance scattering can be written as

(#,#)=_E1(2(1— )(1_,20)+p pz)+(_1__2£12(1 1)' 2
7 1 11

2.5 Equations for the transfer of polarized radiation

in rest frame

2.5.1 In plane parallel geometry

The two-level atom line transfer equation governing the intensities I; and I, in rest frame

with the medium stratified into plane parallel can be written as (Chandrasekhar 1960)

0 Il(ziyaz) S](:E,p,z) Il(z,f"z)
— = k[ + ¢(z)] - 228
Kz ( L(z,p,2) ) e K CHEN) ) ( I(z,4,2) )] (229

where p = cos8(u € [0,1]) and 4 is the angle between the Stokes specific intensity vector
and the axis of symmetry z; £ = (v — 1,)/Avp, v being the frequency at any point in
the line, v, is the line center frequency and Avp is the Doppler width. The quantity 3 is
the ratio %: of the opacity due to continuum absorption per unit interval = to that in the
line (kz, is the frequency integrated line opacity). ¢(z) is normalized absorption profile,

generally represented by a Doppler profile or Lorentz profile or a Voigt function.

The total source function in its vector form is given by

S(z, p4,2) = ( o ) - s (2.29)

1
Se(z,4,2) A+ ¢(z)
SL and S°¢ refer to the source vectors in the line and the continuum respectively,

S°(z) = B(2)1,1 = (1,1)T. (2.30)

The line source vector is given by

1 (1 _ 6) Il(ma/‘a Z) ’
S (o) = 35003 [* 4 [ R )(1,@,#,.2))‘1” +eB(2)1, (231)
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where ¢ is the probability per scattering that a photon is destroyed by collisional de-
excitation. The redistribution matrix R(z,y;z’,4') is usually defined according to a

hybrid model prescription by Rees & Saliba (1982) and is given by
R(z,p;2', ') = Py, ') R(z, 2')

which retains the angular correlation in the phase matrix P(u, u') that is essential for
scattering polarization and mimics the frequency correlation via the angle-averaged scalax
redistribution function R(z, z') for isotropic scattering. Clearly the transfer equation for
polarized radiation is a vector analogue of the non-LTE two-level atom line transfer

equation.

2.5.2 In spherically symmetric geometry

Similar to the plane parallel case, the transfer equation for polarized radiation in a
spherically symmetric atmosphere is a vector analogue of the non-LTE two-level atom

line transfer equation in spherically symmetric geometry for the isotropic case. The

equation of transfer in this case is written as

0 U[(I,/J, 7') (1-/12)_2 U[(I,/J,T)

Ao + =
or Ur(z,/l, 1‘) r Bu Ur(zal‘ﬂ')
S
kol + o) || 047 ) [ Ular) (2.32)
S,-(Z,/J,T) Ur(z,y,r)

where 1 = cos 8(u € [0,1]) and 8 is the angle between the Stokes specific intensity vector

and the symmetry axis (radius) at the radial point r in the atmosphere.
The components of the specific intensity in spherical symmetry are defined by
U(z,p,r) = dnr?I(z, p,r)
and

U,-(:z:,,u, r)= 47”'21r($> ByT).
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The total source vector, the continuum source vector and the line source vector are given

_ S}(I,y,r) _ ¢(z)SL($,y,r)+ﬂSc(T)
S ( $u(@, 57 ) EEECCH (233)
S¢(r) = B(r)1,1 = (1, 1)T (2.34)
and
— 1(1'—6) % ! + A U’(z’/“’r) ’
Sz pmr) =3 52 oo dz /_1 R(z, p; ', 4') ( Urter o) du' + eB(r)1 (2.35)
respectively.

2.6 The comoving frame formalism

The existence of macroscopic motions (i.e., non-thermal velocities that are coherent over
distances much larger than a particle mean-free path) in stellar atmospheres is well-
documented by a wealth of observational evidence. These motions appear to be present
on all scales, from ‘eddies’ whose sizes are small compared to a photon mean-free path,
upto expansion of the whole atmosphere. Although, velocity fields have but little effect on
radiative transfer in the continuum, they strongly influence line formation because even
2 small (Doppler) frequency shift of a line produces a major change in its absorpitivity

as seen by a stationary observer.

In the present work I focus on the kinemetics of radiative transfer for polarized light
in moving media, i.e., given the velocity field and the model atmosphere, we compute the

emergent polarized spectrum.

2.6.1 The need for comoving frame formalism

A variety of techniques exist to attack the problem. Rest frame or observer’s frame

methods can handle complicated velocity fields but are generally restricted to velocities
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of the order of a few Doppler widths and hence are not well suited to handle rapid atmo-
spheric expansion. The difficulties arise because of the fact that absorption co-efficient
changes continuousely due to the Doppler shifts and therefore the angle-frequency mesh
becomes enormously large and one has to take a mesh of infinite size. The calculations
become quite involved simply because photons can be redistributed from any given point
to any other point in the interval vo(1 — Vinaz/c) to vo(1 4+ Vinaz/c) where v, is the central
frequency of the line and V... is gas velocity. If one intends to compute profiles formed
in a medium expanding with 2000 - 3000 km/s one has to consider a band width as large
as 200 thermal units. This kind of size of angle-frequency mesh is impossible to handle

in the case of rest frame.

When the material in the atmosphere moves with velocity V(r) relative to an external
observer at rest, there is a Doppler shift of photon frequencies between the observer’s
frame and the frame of the atoms of which the material is composed. If the frequency
in the observer’s frame is v, then in the atom’s frame the frequency at which a photon

travelling in direction n was emitted or can be absorbed is
Vi =v—uv,(n.V/e).

Thus the opacity and emissivity of the material as seen by a stationary observer, become

angle dependent.

To line source function that contains a scattering term depends on the radiation field
and hence it can be strongly affected by material motions. For example, an expansion
at the upper surface of an atmosphere can displace a line away from a dark absorption

feature, at the rest position, into a bright nearby cotinuum, thus raising the line source

function dramatically.

Accurate calculation of the scattering integral in the expression for line source function
with a quadrature sum poses a fundamental difficulty in a rest-frame solution for two
reasons : (1) The line profile is shifted by an amount 2V in frequency as u varies from
-1 to +1. Thus in the frequency quadrature, an amount equal to twice the maximum

flow velocity must be added to the bandwidth required to describe the static line profile.
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(2) The angle quadrature scheme must employ a large number of angles. Because the
argument of the profile function is (z — xV'), there is an inextricable coupling between
the angular and frequency variations of the intensity. These two difficulties often leads
to unstable solution in the rest frame calculation. In rest frame calculation the intensity
can no longer be assumed to be symmetric around the line center, hence the full profile

must be taken into account.

The approximation of complete frequency redistribution becomes invalid for moving
media as the conditions that help validate it in static media no longer occur. Much work
has been devoted to the problem of partial redistribution in moving atmospheres (see for
example Mihalas 1976, Peraiah 1980a), it has been shown that to treat the problem in the

rest frame the full angle-frequency dependent redistribution function must be employed.

On the other hand all the above mentioned difficulties are ameliorated by adopting
comoving-frame method. The absorption co-eflicient in the comoving frame is constant
as the Doppler shifts do not create problems of frequency changes in the line absorption.
Therefore one can reduce the size of angle-frequency mesh considerably and the number of
angles and number of frequency points are considerably reduced in the case of comoving
fraine and this can easily give exact solution for the atmosphere of stars in which the
velocities are as large as 100 mean thermal units. Further in a comoving-frame method
one can employ static frequency redistribution functions for scattering in the fluid frame.
That is because in the calculation of scattering integrals one needs only a frequency
bandwidth enough to contain fully the line profile; this bandwidth is independent of
the fluid velocity and the angle quadrature may be chosen on the basis of the angular
distribution of the radiation alone. Also, the dynamical calculations in spherical flows
such as expansion can be handled accurately in a Lagrangian co-ordinate system, i.e., in
the comoving frame. The Lagrangian equations of gas dynamics are easy to formulate

and offer many physical and computational advantages.
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2.6.2 The transfer equation for polarized radiation in comoving

frame

To obtain expression describing how the relevant physical variables change between the
rest frame and the comoving frame, Lorentz transformations are applied. But a Lorentz
transformation applies only when velocity V' of one frame relative to the other is uniform
and constant. But in stellar atmospheres we are concerned with situations where the
velocity changes with the radial distance. Hence the fluid frame is not an inertial frame.
One must therefore consider transformation taking place from uniformly moving frames
that instantaneously coincide with the moving fluid. It is easy to show that the transfer
equation is covarient under the transformation of two uniformly moving frames provided
one accounts for the effects of Doppler shifts and aberration of photons when one calcu-
lates atomic properties. But for unsteady or steady differential flows, new terms appear

in the equations that account, in effect, for changes in the Lorentz transformation from

one point in the medium to another,

A velocity field produces a Doppler shift and aberration of photons, and give rise to

advection terms describing the “sweeping up” of radiation by the moving fluid. Formally,

these terms are all of the order Y. However, in the case of line profiles, the effect of

a frequency shift Av becomes important not when —A;‘i = % is significant, but when

Av _ v [ .
Asg = u., 18 significant. As a consequence, Doppler effects are amplified a factor of ;f:

by the swift variation of the line profile with frequency.

In the present study, for simplicity, only Doppler shifts have been considered ignoring

aberration and advection. This is sufficient to a first approximation of the problem under

consideration.

The full transformation of the equation of transfer for a nonuniform velocity field
has been derived by Castor (1972). The formulation uses the radiation quantities which
would be seen by an observer moving with the fluid. The equation of transfer satisfied by
the intensity I, and the moment equations satisfied by the radiation moments J,, H, and

K, or by J, H and K has been obtained. It has been shown that the lowest frequency
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integrated moment equation has the significance of being the first law of thermodynamics
as applied to the radiation and its use ensures that due account is taken of the internal
energy and pressure of radiation in overall energy conservation. The formulations are
based on the work by Lindquist (1966) who derived the general relativistic radiative

transfer equations.

Mihalas (1978) derived the same equations by using a simple first-order expansion
method that yields results correct to O(%). One dimensional flows have been considered
in this derivation with the application of a local Lorentz transformation to a frame that
instantaneously coincides with the moving fluid. The terms of O(“—’__;) are ignored and
v=(1-%)"?is set as 1.

The non-LTE two-level atom line transfer equation in comoving frame for plane par-

allel medium can be written as (Mihalas, Shine, Kunasz & Hummer 1976)

WL = b0+ S ) o) + (eSS g

where p = cosf(u € [0,1]) and @ is the angle between the ray direction and the axis of
symmetry z; z = (v — v,,)/Avp, v being the frequency, v, is the line center frequency,
Avp is the Doppler width and V(z) is the flow velocity. Other quantities are described

in section 2.5.1.

The same equations in spherically symmetric atmosphere can be written as (Peraiah

1984)
{_f"__+£}_:£2_€’_}y = kB + $@)[S(espr) - Ulzpyr)] +

Hor r Oy
fio-m D4 e 2 e

Here r is the radius and U(z,p,r) = 4nr*I(z,u,r). Other quantities are described in
section 2.5.2. Clearly the terms within the curly bracket in the right hand side of both

the equations incorporate the comoving conditions.

The solutions of the above equations have been obtained numerically and discussed
extensively by Mihalas (1978), Mihalas, Shine, Kunasz & Hummer (1976), Mihalas,
Kunasz & Hummer (1975, 1976) as well as Peraiah (1984).
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In the present work, equation (2.37) has been generalized into its vector form in order

to include linear polarization. It can be written as

e rizg) | PO s gy || T ) _ ( Uiz, 1)

Ue(z, uy7) Se(z, 1, 7) Uz, 1)
T T U Z,u,r
+{(1 —,uz)Vf. ) +/,L2d1;£ )}% ( U:((:C,':r)) ) (2.38)

Equation (2.38) is for spherically symmetric atmosphere. The transfer equation for the
plane parallel geometry is a special case of spherical geometry and can be recovered in
the limit of zero curvature. Clearly equation (2.38) is vector analogue of the non-LTE

two-level atom line transfer equation in comoving frame given by equation (2.37).

The normalized absorption profile is represented either by a Doppler profile

$(z) = ﬁe‘z : (2.39)

or by a Voigt function

¢(z) = , (2.40)

where

H a [ e:cp(——y2)
= —/ _—
(a,2) TJocoa?+ (z — y)2dy’

a represents a constant ratio of the damping width to the Doppler width.

The expression within the curly bracket in the right hand side of equation (2.38) is due
to the comoving term where V(z) or V(r) is the velocity along the axis of symmetry of
the medium. Obviousely, if V(z) or V(r) is zero, the equation reduces to the well known
radiative transfer equation in its vector form for a static case as given by equation (2.32).

Similar to the case for a static medium, the line source vector for the spherically

symmetric case is given by

1(
S(3P3 _2 d:l:

T, ;2 ) ( Uila ) ) du' + eB(r)1. (2.41)
Ur(z, )
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To maximize the polarization, we always assume a j = 0 — 7 = 1 transition, so that
the quantity E| in the phase matrix for resonance line scattering given in section 2.4.1

is equal to 1 and P(u, p’) takes the form of the well-known Rayleigh phase matrix given
by

Py, p') = g

/112 1

: ( 2(1 = p®)(1 = p?) + 20 4P )

For the sake of simplicity, the complete frequency redistribution function has been

considered which is given by

Now equation (2.38) can be rewritten as

{“—a% + (1- /ﬂ)f_} ( Uz, p,r) ) = $(2)k1SY (2, 1) + k.SS(r) —

ro Op Ulz,p,r)
wwn+m(““*”)+¢u~ﬁﬁ“ﬂw”?ﬂh?(M@“”)(uw
U (z,,7) r T LI Uz, p,r)

and for the oppositely directed beam

— 2 U[I,—- , T
{w§+9wﬁli}( ( #))=ﬂﬂh§@rmﬂ+h§m—

ro Op Uz, —p,r)
U] X,—MU, T T r U[ T, —Hu,T
Ulz,—p,r) r r T\ U (z,—p,7)

The above equations are mixed initial-plus-boundary-value problem for coupled partial
integro-differential equations.

In the next chapter the necessary boundary conditions and the method of numerical

solutions of equations (2.42) and (2.43) are described in detail.
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The numerical method for solving the

transfer equations

3.1 Introduction

The solution of transfer equation depends on the type of physics used. If any change
in physics is contemplated, the whole systemn of solution will have to be modified. This
requires new approach and may creat new problems due to instability and non-uniqueness

of the solution in any numerical treatment.

Several techniques have been developed for solving the transfer equation in the co-
moving frame. Chandrasekhar (1945a, 1945b) obtained solutions of the equations for
plane-parallel geometry with a linear velocity law. Lucy (1971) solved the equations in
planar geometry, with coherent scattering, in the high-velocity limit, by ignoring the spa-
tial derivative and treating the equation as an ordinary differential equation in frequency
alone. An integral-equation method for planar geometry has been devised by Simonncau
(1973) which can incorporate linear velocity laws only. Noerdlinger and Rybicki (1974)
solved the equations in planar geometry by using a Feautrier-type elimination scheme

(1968). Assuming complete frequency redistribution Mihalas (1978) solved the equation

24
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by considering Rybicki-type solution.

Among the most notable methods of solving the equation of radiative transfer in
comoving frame is the one based on a physical principle called interaction principle. The
interaction principle permits one to set up exact difference equations for both reflection

and transmission co-efficients for radiation field. These co-efficients are exact and can

be used in the calculation of radiation field.

The work of Redheffer (1962) and Preisendorfer (1965) on the interaction principle
have been formalized by Grant and Hunt (1969a, 1969b) with the introduction of the
internal sources which is crucial for the stellar atmospheres. Following this work, Grant
and Peraiah (1972) and Peraiah and Grant (1973) developed a method to obtain direct
solution of line transfer problem. This method is called the discrete space theory of
Radiative Transfer. In the frame-work of discrete space theory method, Peraiah {1984)

developed a method which solves the line transfer equations in comoving frame.

In the present work the method due to Peraiah has been employed to solve the line

transfer equations in comoving frame in their vector form as given in by adding polariz-

ation terms.

3.2 The basic theory of the numerical method

3.2.1 Interaction principle

The interaction principle relates the incident and the emergent radiation field from a
medium of given optical thickness. In Figure 3.1, a shell of given optical thickness with
incident and emergent intensities is shown. It is assumed that the specific intensities U
and Ugy, are incident at the boundaries n and n 4 1 respectively of the shell with optical
thickness 7. The symbols with signs + and - represent specific intensities of the rays
travelling in opposite directions. If u represents the cosine of the angle made by a ray

with the normal to the plane parallel layers (in the spherical case, u is the angle made by
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the ray direction with the radius vector) in the direction in which the gecometrical depth

decreases.
+
U il |
n U n
/ \
Transmitted and Radiation field due to Radiation field from
n reflected + internal sources = the shell
input radiation
n+1
u- u?t
n+1 n+1 |
Figure 3.1: Schematic diagram showing the interaction principle.
That is,
UslUn(p) : 0 < pp < 1]
and

UgUn(=p): 0< p <1],

n

U} represents the specific intensity of the ray travelling in the direction g and U

represents the specific intensity of the ray travelling in the opposite direction. We select
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a finite set of values of p(p; : 1 < j <m0 < py <pg < fize - pm < 1)

Un(/‘l)
Un(/‘?)

Ur =

n

and

Un(“l‘m)

are m-dimentional vectors on Euclidean space.

The incident intensity vectors are UF and U7, . The emergent intensity vectors are
Uy and U, ,. The emergent radiation field will have the contributions from the internal

sources, say, L¥(n+1,n) and L7 (n,n+1) corresponding to the output intensity vectors

U, and Uy respectively.

We assume certain linear operators which reflect and transmit the incident radiation
e.g., t(n,n+1), t(n + 1,n), r(n,n + 1) and r(n + 1,n). These operators are calculated
based on the physics of the medium. Then we can write the output intensities in terms

of the transmitted and reflected input intensities together with the internal sources as

Ur, =t(n+ Ln)UY 4+ r(n,n + DU, +Z%(n+ 1,n) (3.1)

U- =r(n+l,n)U:+t(n,n+1)UJ+1+2_(n,n+ 1). (3-2)

The relationship given by equation (3.1) and equation (3.2) is called the Interaction

Principle. Equation (3.1) and equation (3.2) can be written concisely as

Ut = S(n . Ur
U- sn+ 1) - +Z(n,n +1) (3.3)

n n+1
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where

S(n,n+1) = ( tn+1n) ’(”’”H))

r(n+1,n) t(n,n+1)
3.2.2 Star Product

If there is another shell with boundaries (n + 1,n + 2) adjacent to (n,n+1), interaction
principle for this shell can be written as (Grant and Hunt 1969a)

Ut Ut
n+2 n+1l
: =S(n+1,n+2) i +3(n+1,n+2) (3.5)
n+l n42

where S(n + 1,n + 2) is similarly defined as in equation (3.4). If we combine the two

shells (n,n + 1) and (n + 1,n + 2) then the interaction principle for the combined shell

is written as (for the thickness is arbitrarily defined):

Ulpa vs
( ) = S(n,n +2) ( ) + Z(n,n +2). (3.6)

Uy nt2

n

S(n,n+2) is called the star product of the two S-matrices S(n,n+1) and S(n+1,n+2);

and S(n,n 4+ 2) can be written as
S(n,n+2)=S(n,n+1)*xS(n+1,n+2). (3.7)

Equation (3.6) is obtained by eliminating U;}, | and U, from equation (3.3) and equation

(3.5). We can write r and t operators for the composite cell as

tn+2,n)=tn+2,n+ 1[I —r(n+2,n+1)r(n,n+1)]""t(n+1,n), (3.8)
tn,n+2) =tln,n+ ) —r(n,n+ Dr(n +2,n+ 1) t(n +1,n + 2), (3.9

r(n+2,n) = r(n+1,n)+tnn+ 1) —r(n+2,n+1)r(n,n+ D] x

r(n+2,n +1), (3.10)
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r(n,n+2) = r(n+1,n+2)+tn+2,n+ DI ~r(n,n+r(n+2,n+1)]7" x
r(n,n+ 1) (3.11)
and
E(n,n+2)=An,n+1;n+2)S(n,n+ 1)+ A(n;n+1,n+2)E(n + 1,n + 2) (3.12)

where [ is the identity matrix and

tn+2,n+ DI -r(n+2,n+r(n,n+ 1)]* 0
Mo tman o [ AU )r(n,n+ )
tnyn+ Dr(n+2n+ D[l ~r(n+2,n+ Dr(n,n+ )] T

AN(njn+1,n+2) = ( I t(n+2,n+1r(n,n+ 1[I —r(n,n+ Dr(n +2,n+ 1)]7 )
0 r(n,n+ DI —r(n,n + Dr(n +2,n + 1)]7*
and

S(n,n+1) = (

Similarly, £(n + 1,n + 2) is defined.

Zt(n+1,n+2)
X7 (n,n+1) ‘

In order to obtain physical interpretation of the equations (3.8) - (3.11) we expand
the operator inverse in a power series. For example,

o0

t(n+2,n) = E (n+2,n),

ti(n+2,n) =t(n+2,n+1)[r(n,n + Vr(n + 2,n + 1)]*t(n + 1, n).

This operator acts on intensities to the right and gives the contribution to U}, , from U} .
The term ti(n 4 2,n) may be recognized as diffuse transmission from n to n+1, diffuse
reflection from the layer (n,n + 1), k times in succession and finally diffuse transmission
through (n + 1,7 4+ 2). Thus #(n + 2, n) is the sum of contributions involving scattering
of all orders k =0,1,2

y--+,00. A similar interpretation can be given for other operators.

If we write S(a) (« to designate the cell) then

S(ax ) = S(a) * S(3) (3.13)
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where ax 3 denotes the region obtained by putting the two cells a and 8 together. If the

cells are homogeneous and plane parallel then
a*xf=Lfxa. (3.14)

In general star multiplication is non-commutative. However, star multiplication is asso-

ciative. If we have to add several layers o, 3,7, ... then,

(ax(Bxv)x...)] =S[(axB)xvy*...]. (3.15)

If the medium is homogeneous and very thick then we can use what is known as ‘doubling

method’. For example,
S(2°d) = s(2P"'d) » S(2°1d), (P = 1,2,3,...) (3.16)

which means that we can generate the S-matrix for a layer of thickness 27d in P cycles
starting with S(d) rather than in 27 cycles of adding the S(d)s one by one. For example
if P = 10, then only a fraction 10/2'° ~ 1072 of the computational work is needed to
add 2!° layers of thickness d.

3.2.3 Calculation of radiation field at internal points

We expect the reflection and the transmission operators to be non-negative on the physical
grounds that intensities are always non-negative. This condition will be satisfied only
when the optical thickness of the shell is less than certain value called the ‘critical size’
oT T.i:. If the optical thickness 7 of the shell in question is larger than 7..;; then we can
divide the shell into several subshells whose thickness 7 is less than .. and then use
star algorithm to calculate combined response from the subshells whose total thickness
is T. If, for example, we need the radiation field at internal points in the atmosphere,
we shall have to divide the entire medium into as many shells as we need and calculate
the radiation field at the N points in the medium. One can write down the interaction

principle for each shell and solve the whole system of equations.



Chapter 3 31

Figure 3.2 shows the atmosphere in which the internal radiation field is calculated.
The atmosphere is divided into N shells (homogeneous or inhomogeneous) with A and B

as the inner and outer radii.

+
u(y

n=1

Diffuse radiation field

a
u'(Nn)
+
U(n)
U-(nﬂ)
n=N+1

Ui

Figure 3.2: Schematic diagram showing the diffuse radiation.

The solution Uf;; and Uy (for any shell between shell 1 (at b) and shell N (at a) are

obtained from the relations
Ugip =r(Ln+ DU, + VR ), (3.17)
and

U, =tn,n+ 1)U, + Vi /2 (3.18)
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with the boundary conditions Uy, = U~ (a).

The quantities r(1,n + 1), Vi, and V2, are calculated by employing the initial
conditions r(1,1) = 0 and V;}, = U*(b). The computation is done by the following

recursive relations :

r(l,n+1) =r(n,n+1)+t(n+1,n)r(l,n)I —r(n+1,n)r(1,n)]  t(n,n +1),
an:q/z =t(n + 1;”)V,,+_1/2 + X% (n + 1,n) + Roj122 7 (n,n + 1),

n:Ll/z = r(n + 11 n)vntl/Z + Tn+l/2z—(n’n + 1)7 (3'19)
where

tin+1,n) =t(n+1,n)[J - r(l,n)r(n +1,n)]7},
rin+1,n)=r(n+1,n)[J - r(1,n)r(n +1,n)]7},
Rps12 = t(n + 1,n)r(1,n),
Toy1p = [T = r(n+1,n)r(1,n)] 7",

t(n,n+1) = Tpp1at(n,n +1). (3.20)

To calculate the radiation field at the internal points we proceed as follows :

(1) Divide the medium into a number of shells (say N) with N+1 boundaries as mentioned
earlier.

(2) Start calculating the two pairs of reflection and transmission operators r(n + 1,n),
r(n,n +1), ¢(n + 1,n) and ¢(n,n + 1) in each shell. If the optical thickness of any shell
is larger than 7., then apply star algorithm to use doubling procedure if the medium is
homogeneous.

(3) With the boundary condition that r(1,1) = 0 and V172 = U*(b) and the r and ¢t
operators mentioned in (2) compute recursively 7(1,n + 1), 1’;2 and t(n,n+ 1) given in
equation (3.18) to equation (3.20) from shell 1 to shell N i.e., from b to a in Figure 3.2.
(4) Next sweep back from a to b calculating the radiation field given in equation (3.17)
with the boundary condition U, = U™ (a).
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3.3 Application of Discrete Space Theory

Since all the equations in spherically symmetric case reduce to the special case of plane
parallel medium when the curvature term is taken to be zero and the boundary conditions
remain the same for both the geometries. we describe, for the sake of convenience and
brevity, the application of discrete space theory for solving the transfer equations of

polarized radiation in comoving frame for spherically symmetric atmospheres only.

3.3.1 Boundary conditions

In the present work, two types of media have been considered. (1) € = 8 = 0, which
corresponds to a purely scattering medium. (2) € # 0, 8 # 0, which corresponds to
a partially scattering medium with both line and continuum emission. We solve the
problem subject to two kinds of boundary conditions : (1) the radiation incident on
either side of the atmosphere and (2) the frequency derivative 9U/Jz appearing in the

comoving term. Accordingly the boundary conditions adopted are

Usoy(zi, 7= Tyu;) = 05 |
N+l 1) e=f=0 (3.21)
Uf (zi,7=0,15) =0
Uny(zi,7 =T, ~_—-01
vl ) . 8> 0. (3.22)
UT(.’E,‘,T = O,pj) = 0

In the second case, we assume U /dz = 0.

With the above boundary conditions we solve the transfer equations by using discrete
space theory described in the previous section.
3.3.2 Method of solution for spherically symmetric medium

To start with, we discretize equation (2.42) and equation (2.43). For frequency discret-

ization we choose discrete frequency points z; and weights a; so that
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+7

> +7
-/-oo ¢(-T)f($) ~ z a,'f(x‘-), z a; = 1’

=1 1=—1

and for angular discretization, we choose angular points u; and weights ¢; such that

'/01 f([l)d/.t ~ g:bjf(#j),f:bj =1.

=1
We integrate the equation over an interval [r, rny1] X [gj_1/2, #j41/2] defined on a
two dimensional grid. By choosing the roots p; and the weights ¢; of Gauss-Legendre

quadrature formula of order J over (0,1) we calculate the sets p;11/2 and pj_1/2 as given

by

J
Hiti/2 = Z Ck
k=1

and
71

Hj-1/2 = ch;j =1,2,3---J

k=1

We define the boundary of the angular interval as p,/, = 0.

Integrating equation (2.42) and equation (2.43) over the angular interval

[t45-1/2, 145+1/2) and over the spatial cell [r,,r,11] we obtain (Peraiah 1980b)

M[U:+1 s MES Pc[A+U,T+1/2 + A'U;H/z] + Tn+l/2¢:’+l/2U:’+l/2 =
1—¢

Tn+l/25:+1/2 + —2——7'n+1/2[RH’VV%LU+ +RYWH U0+ M/dU:H/Q (3.23)

M[ ;1_+1 - U;] - PC[A+U;+1/2 + A—U:+1/2] + Tﬂ+1/2q);+1/2 ;+1/2 =
1—e¢

Tn41/25,41/2 + Trn+,/2[R—+w—+ UF+RTW U e + MAU,  (3.24)

M = [ubiw], U = [UlE Unn = U(zi, 2p55m03 p)
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wherek=j+(i—-1)J +(p— 1)1J;1 <k < plJ, p= number of polarization states (in
our case p = 2).
‘I’n+1/2 (8+ 4’1: Jnt1/20kk13 451: /2 T = ¢(zi, T U, Tas1/25P)s

Sn+1/2 [08 + €% ]n+1/2Bn+1/20kk', p being an unspecified parameter.

W:Il/z are the weight matrices defined as W:j_‘l/z = [W)::Hﬂdkk,] with
¢tn+1/2W1::+1/2 = aI:+1/zCi-

Here the subscripts n,n+1,n+1/2 refer to quantities at rn, 71, T041/2 where n+1/2

refers to a suitable average over the cell, i.e.,

Tnt1/2 = §(Tn+1 + Tn)7A7“n+1/2 = T4l — Tn,

Tnt1/2 = kL(Tn+1/2)AT‘n+1/2,
1
U?:n+1/2 = -2—(U;{-ﬂ+1 + U?:n)7
- | -
U2 = §(Uf,n+1 +UrL)-

The renormalized weights of integration are defined by :

o+t Pk n+1/2
4y n+l/2 = =2ld 21J ++ )
k=1 QG L=y By K172

R,],l n R( :,UJ»:E:P'J: ﬂ)'

The redistribution matrices

R++ ++
Rtj(z — [RY n(lll) R (l 2)

TN

RiIA(2,1) REE.(2,2)

N

where the block matrices corresponding to the components of the phase matrix are

defined as

t 1 t’ 1 n(a ﬂ) U R;‘{:]-.*:i',.],n(a7ﬁ)
Rj-f,n( 7ﬁ) = :

R?j,.i’,l,n(a’la) Rl Ji'Jn(ailB)
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R+

— TP
et = Bitt s 2 ra).

p. is the curvature factor given by p. = Ar/ru;1/2, A% is the curvature matrix given

by :

AT 0
0 A3

where the (J x J) matrices A¥ are given by :

(1- /‘?+1/2)(Fj+1/2 — {;)

c; At =
7k (Bi+1 — 1)

k=j+1,7=1,2...,J-1

_ (1- l‘?+1/2)(ﬂj+l/2 —~ Hi+1) _ (1- .“?+1/2)(/‘j—1/2 — pi-1)
(H541 — 15) (15 = pi1)
=j55=12,...,J
(1= 21215 = pioy2)

— Jk=3-1,7=2,3,...,J
(#J"“#J‘—l)

I

and

_ 1
Cy ik = —EJJ-,,J;:J.

The quantities At and A~ are called the curvature matrices. These matrices are the

representation of curvature term given by

10 [ Uflr,p)
e\ U(r,p)
For J=3 we have
0.106 1.42 0
At =] —119 -0.426 0.62
0 —0.734 -—0.988
and

AT = '—1.85]"(6]:'1.
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The curvature matrices satisfy the relationship

S (A —A5) =05 =1,2,...,J
i=1

which is a necessary and sufficient condition for flux conservation in the spherically

symmetric case.

The co-moving terms

[(1 _ u2)v( ) +p d‘;( )]aa Uz(z,:i:,u,r)
r T Uz, £u,r)

are discretized and put in the term M'd.

d o
0 d

d =

where the matrix d’ is determined from the condition of the flux conservation, d; =

(Tigs — Tig)Hfori=1,2,3,--- I —land &, = d} = 0.

M° O
0 M°

M' =

Mo = [MIAVn+1/2 + szcvn+l/2]

2 . :
M* and M? are two diagonal matrices whose nonzero elements are [M}] and [M2]

where
My, = (365, Mo, = (1= )83 ,0 = 1,2, J.

AVatiyz is the radial velocity difference Vat1 — V, where V,,; and V, represent the

velocities at r,;1 and r, respectively, while Vat1/2 is the average velocity over the cell
bounded by the radii rn4; and r,,. The normalization of the curvature matrices is given

by :

J
YclAf - AR) =0k=1,2,...J

=1
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The average intensities Uni+1/2 are approximated by the diagonal scheme given by :

(1- Xn+1/2)Ui + Xn+1/2Uj:+1 = U:+1/2’ (3.25)

(1 - Xn+l/2)U;+1 + Xn+1/2U—— U—

1 (3.26)

with

1] X 0 1 1 0
Xn+l/2:'2' 7Xz§111: )
0 X

1 being the unit matrix.

Introducing equation (3.25) and equation (3.26) into equation (3.23) and equation

(3.24) we write the resulling equations in the form of interaction principle

M + ir[@+ — SR W] — IM'd + £A* ~ZRPWH 4 £A”
~ZRTYWF - BA M+ 3[®" — R™TW™7] — IM'd - £A*
U:+1
x frncd
us
M — ir[®@* — SR WH] + IM'd — &A* RTW*T — EA”
ZRTTW T 4+ £A- M- Z[® —ZRTW 7]+ M'd+ £A*

’ [ }
U§+1
)i

where 0 = (1 — €) and the subscript (n + 1/2) is left out for convenience.



Chapter 3 39

Comparing that with the interaction principle we obtain the ‘cell’ reflection and trans-

mission matrices and the source vectors.

The transmission and reflection matices are

t(n+1,n) = GT[ATA + gt g Y]

t(n,n+1) =G F[ATD+g " g"]

r(n+1,n) =G Tg HI - AtA]

r(n,n+1) =Gt gt [I - AD]

The source vectors are

Ttn+1,n)= GV [AYST + gt~ A"STr

Y (n,n+1)=G YA S™ + g TA*St|r

where

G =[I-gr g

G =[l-g g™

+= IA+Y
g 5 -
gt =TATY,
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D=M--Z_
T

A=M--Z
9 +

AY =M+ 2Z,]"

A~ =M+ gz_]-1

7, =&+ - %R++W++ — %M’d 4 Eept
T

7 =@ —IR-W- — 2M'd - PoA+
2 2 T

(o4

Y+:2

RHW+ 4 227
T

Y_ = 2RTWH - £ep-
2 T

3.4 Stability condition and correctness check

The method discussed in the previous sections can handle the problem arising out of the
coupling of the co-moving points across the line profile and the local velocity gradients.
The stability of the solution is achieved by controlling the step-size, which arises in the
discretization in radial, angle and frequency integrations. For this purpose the optical
and the geometrical depths in each shell should be chosen such that unique and non-

negative solution is obtained. This can be achieved by obtaining non-negative r and
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t matrices. Therefore the diagonal elements (A%)~* should be dominant and positive.

This condition leads to the inequality

2pr £ PcAtk - dk,k{#%‘kAVn+l/2 +(1- #ik)PcVnH/z}
(B + ¢i) — 50 ($@TW )ik

Further, the off-diagonal elements of [A*]~! should be negative and consequently

Tkt <

QPCA-I:,I:-H - 2dk,k+1{AVn+1/2,Uz,k+1 + Pcvn+1/2(1 - p'lzc,k+l)}

<
TRkt o(PdTW )k k41

for the upper diagonal elements and

20 AT,k + 2dig e {AVar1 2k 416 T+ peVur12(1 — 1)}

<
ThELE S (@DTW Jes1n

for the lower diagonal elements.

Therefore, we have to select 74 such that

Terit = mm{'rk,k, Thkk+15 Tk+1,k}

Hence the ‘cell’ optical depth 7..;: depends on the number of cosines selected for the angle
integration, the frequency differencing, the radial mesh, the differential velocity, the local
velocity of the gas and the profile function.

It is worth mentioning that along with the step-size criteria, the normalization condi-

tions on the polarized redistribution matrix, the profile function and the curvature matrix

for spherical medium must be satisfied.

The inclusion of differential velocity gradient makes the control of critical step-size
quite difficult as the optical depth changes significantly with the increase in velocity.
However, we have obtained stable solutions for various situations upto 20 mean thermal

unit of velocity of the atmosphere by taking 7. < 0.1
The correctness checking of the method has been performed in two different ways.
3.4.1 Global flux conservation

A convenient test of the efficacy of the numerical method is to study the case of con-

servative scattering. In a purely scattering medium, the physical system must neither
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create nor destroy energy. For this purpose we apply unpolarized incident radiation at
the boundary of the inner radius of the shell and no radiation is incident at the outer
shell. For a conservatively scattering medium, the total flux that is introduced at the
inner boundary should be the sum of the flux that comes out of the outer boundary and

the backscattered flux at the inner boundary.

If F; (A) is the incident total flux (t.e., F;"+ F;7) at the innermost shell at point r = A
(see Figure 3.2), F7 (B) is emerging flux at r = R and Fj"(A) is the flux backscattered
into the inner region at r = A with the additional condition that no incident flux is given

at B, then we must have the identity for conservatively scattering medium as
Fr(A) = Ff (A) + F{ (B).

We have considered several optical depths, geometrical thickness and velocity gradi-
ents of the medium and calculated the global encrgy conservation. In a plane-parallel
and homogencous medium the numbers are satisfied to one part in 107'%. In spherically

symmetric case the numbers are satisfied to onc part in 107,

For an example, in a spherically symmetric atmosphere with inner radius 10'! cm
and outer radius 3 x 10" cm, total optical depth 7° = 10°, velocity at the innermost
shell V4 = 0 and that at the outermost shell Vg = 20 mtuy, incident intensity for each

component (I and r) at A equal to 0.5, we obtain
Fr(A)=2.00

Fy(B) = 0.027992526
FF(A) =1.9720075
Hence, Fy (A) — Fy (B) — Fi (A) = 8.32 x 1071°

In the above calculation a 3 point Gauss-Legendre quadrature formula and 17 points

trapezoidal rule have been applied.
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3.4.2 Specular reflection at the inner boundary

The second set of problems we have used to test the method are those in which the outer
boundary is illuminated isotropically and specular reflection at the inner boundary. In

such a case the positive and negatively directed fluxes at every interface must be equal

(Peraiah 1973).

If the surface at a is reflecting, one can write
ur ur
U- Ur

r

N+1 N+1

where rg is the reflection operator. For a totally reflecting surface

1
1

rg =

Therefore, we have

Uty iyt
0+ = {I—I‘(l,N—{- 1)1‘@] VN+1/2
"/ N1
from which one can calculate - Rest of the calculations follow equation (3.17).
u-

N+1
The results have been presented in Table 3.1, Table 3.2 and in Table 3.3. In the calcula-

tions we have taken the total optical depth T equal to 10%, the velocity at the innermost
shell is set as V4 = 0 and the velocity at the outermost shell is denoted by Vg. We have
employed a linear velocity rule. In the plane parallel case the medium is considered to
be homogeneous whereas in the spherically symmetric case the medium is considered to
be inhomogeneous with the optical depth varies as the inverse square of the geometrical
depth. The quantity B/A which denotes the ratio between the inner radius and the outer
radius of the atmosphere is set to 3 for spherically symmetric medium whereas it is kept

1 for plane-parallel case. The input intensity at the outermost shell is taken to be 0.5 for

each components. The equality of inward and outward net fluxes at each shell boundary

confirms the correctness of the numerical method.
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Table 3.1: Net fluxes (F; ). = (F} ). at nth shell interface with B/A =1 and Vg = 20.

n ()= (F1+)n

100 5.000
80 5.038
80 5.033
70 5.030
50 5.028
30 5.039
20 5.049
15 5.053
10 5.056
d 5.057

1 6.000
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Table 3.2: Net fluxes (F} ), = (F})» at nth shell interface with B/A = 3 and Vg = 0.

o (FI_)"1 = (Ff)n

100 0.728
90 1.0424
80 1.409
70 1.826
60 2.292
50 2.805
40 3.36

30 3.959
20 4.6

15 4.933
10 5.275
3 3.63

1 6.000
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Table 3.3: Net fluxes (F7 ), = (Fi'). at nth shell interface with B/A = 3 and Vp = 20.

n (F7)n = (Ff)n

100 0.900
90 1.194
80 1.501
70 1.836
60 2.164
30 2.526
40 2.975
30 3.544
20 4.245
15 4.636
10 5.038
) 5.475

1 6.000
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3.5 Calculation of the flux at the observer’s frame
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Figure 3.3: Diagram showing how fluxes are calculated at infinity.

The radiation field obtained in the comoving frame should be translated into either (i)
the rest frame of the star which describes the solution of radiative transfer in spherical
symmetry or (ii) onto the frame of reference of the observer at infinity. In the present
work we have performed the latter type of calculations as these could be useful for direct

comparison with observations. In Figure 3.3 we have described how the radiation field in
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the comoving frame has been translated into the frame of reference of the observer at the
earth. The procedure is briefly as follows (Mihalas 1978): we solve the transfer equations
for polarized radiation in comoving frame by assuming a certain velocity distribution
V(r) and density distribution p(r). When the solution is obtained, one can calculate
the | and the r components of the frequency-independent but angle dependent source

functions Si(r) and S.(r) at every radial point along a certain angle by the relations

(Peraiah 1980b):

I
(S)n = Z a; 3 Si(zi, Ta)c; (3.27)

and

1 J
(Si)n = Z a; Y So(zi, Tn)cj (3.28)

The optical depth is calculated along the parallel rays as shown in Figure 3.3 and not
along the radial direction in the atrmosphere. With the help of equation (3.27) and
equation (3.28) along with prescribed velocity and density distribution one can find out
the [ and the r components of the fluxes received at infinity and hence the degree of

polarization.
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Resonance line polarization in
expanding stellar atmosphere stratified

into plane-parallel!

4.1 Introduction

Having described the numerical procedure to solve the transfer equation for polarized
radiation in comoving frame we now present the detail results under various physical
conditions. There arc several processes which can be affected by the inclusion of a
velocity field. In order to obtain a clear picture of how the polarized profile gets aflected
by the velocity field, we divide the discussions into two separate parts according to the
geometry of the medium which depends on the size of the star and does not depend on the
velocity field. For stars with comparatively small size, one can assume the geometry of
of the medium to be stratified into plane-parallel layers. Physically this type of situation
is ideal for white dwarf and solar type stars. However, in the whole discussion we

neglect the effect of any external magnetic field and therefore the axial symmetry of the

Also see : Sengupta, S., MNRAS 265 (1993) 513.

49
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radiation field is always restored. In the present discussion we consider a homogeneous
and isothermal medium for simplicity as the basic aim of the investigation is to find out

the effect of radial expansion of the atmosphere to line intensity and polarization.

One of the essential parameters of the two-level atom model is ¢, the probability that a
photon is destroyed by collisional de-excitation during scattering which is also called the
thermalization parameter. The range of variation of this probability factor is [0,1]. the
case € = 1 refers to the pure LTE case. Other values of ¢ refer to the non-LTE situation.
The extreme case of ¢ = 0 means the atmosphere is a purely scattering medium. As €
increases starting from zero, the thermalization of photons also increases, i.e., the thermal
coupling with continuum radiation field increases due to an increase in the number of
collisions instead of scatterings. Therefore, one expects maximum polarization in the
case € = 0, i.e., in a purely scattering medium. In the present investigation, we consider

first a purely scattering medium and then a partially scattering medium with non-zero e.

In the calculations we have always taken a 13 frequency point Trapezoidal rule with
equal spacing. Since with the inclusion of velocity, the profile becomes asymmetric with
respect to the line center, we have presented the full frequency grid. For angle integration,
we have taken a three point Gauss-Legendre quadrature formula with y; = 0.11, g = 0.5,
and p3 = 0.88. the radiation field has always been calculated along ; = 0.11. The results

are presented graphically for the sake of convenience.

4.2 Model parameters

In order to make the geometry compatible with the expansion of the medium, we have
taken the inner radius of the star equal to 1 x 10'® while the outer radius being equal
to 1.1 x 10%° so that the geometrical depth is as small as 10°. However, we have always
kept the ratio of the outer radius to the inner radius denoted by B/A as 1. Off course,
while transforming all the physical quantities from the comoving frame to the observer’s

frame again the actual ratio, i.e., 1.1 has been restored. The purpose is to exclude the
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curvature effect in calculating various physical quantities in comoving frame, specially
the source functions. The total optical depth is considered as T' = 50 and the medium is

divided into 50 homogeneous layers.

In all the earlier investigations (Rees & Saliba 1982, Faurobert 1987), it was found
that the effect of complete frequency redistribution does not differ much compared to
that of partial frequency redistribution at the line. This is because of the fact that in
both the cases the redistribution probability is much higher at the line (maximum at
the line center) compared to that at the wing or at the continuum. So the photons in
the line retain a high degree of coherence in the scattering process (Rees & Saliba 1982).
Mihalas et al. (1976) found that both in the static and the moving atmospheres, the profile
obtained using complete redistribution function and partial redistribution function are
virtually identical. Hence, we always consider complete frequency redistribution which

is easier to handle in the numerical calculation.

Regarding the thermalization paramecter we consider two situations, (i) e = 8 = 0,
i.e., a purely scattering medium with unpolarized radiation at the innermost layer and
no emission in the medium; (ii) e = § = 107°, i.e., a partially scattering medium with no
incident radiation at the boundaries but constant emission of radiation in the medium.
For both the cases we have provided the amount of radiant energy emitted at each layer
as B = 0.5 in the unit of Planck function for each component. For the plane-parallel
case we have assumed a Doppler profile given as:

¢(z) = ST

In the calculation of the total flux as well as the degree of polarization along the line

of sight of an observer at infinity, a inverse square law for the matter density distribution

has been adopted with the damping parameter set to be 1072.

Finally, we have to select a velocity distribution law. For the isotropic case, Mihalas
and co-workers (Mihalas, Kunasz & Hummer 1975, Mihalas, Shine, Kunasz & Hummer
1976, Mihalas, Kunasz & Hummer 1976) considered a linear as well as a tangential

velocity rules whereas Peraiah (1980a, 1980b, 1991) considered a linear velocity rule as
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well as a velocity rule prescribed by Lucy (1971) and Castor & Lamers (1979). Peraiah
& Varghees (1993) presented the relevant mass momentum equations and calculated the
expected velocity profile in the context of stellar winds in O and B type stars. Since, in
the isotropic case it is found that the velocity rule plays an important role in determining
the radiation field, we therefore would like to investigate the effect of velocity field by
considering more than one velocity rule. For this purpose, we adopt the velocity rule

given by Lucy (1971) and Castor & Lamers (1979) which can be written as

V(T) =Vg[1-(1- a)(_}_?’.) - 0(5)2]1/2

s r

(4.1)

where V/(r) is the velocity at the radial point r, Vg is the velocity at the outermost
boundary, R is the photospheric radius or the inner radius of the star and « is an arbitrary
constant whose value is set as +0.9 and -1.0. It is worth mentioning at this point that
for a plane-prallel atmosphere the velocity distribution V(r) does not play any role in
determining various physical quantities in comoving frame as can be seen from equations
(2.36). Rather it is the quantity AV/Az = (Vg — V4)/z that is used in the calculations.
However, when we calculate the flux and the degree of polarization in the observer’s
frame, V(r) plays important role. In the present work we have taken the velocity at the
outermost layer to be 5, 10 and 20 mean thermal units in order to investigate the effect
of small, medium and large velocity gradient. The velocity at the innermost layer V4 is

always kept 0. The results have been compared with that of the static case by taking
Ve = 0 as well.

4.3 Results and discussions

As mentioned earlier, in a purely scattering medium one usually expects maximum po-

larization and so we first discuss this situation. In Figure 4.1 we show how the intensity

of a photon with the line-center frequency X = 0 changes from the innermost to the

outermost layer. In the absence of a velocity field the emergent intensity of a photon

remains the same throughout the atmosphere as depicted in Figure 4.1. This implies that
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the photon essentially does not loss its energy while traversing through the atmosphere.
Since € = 0, there is no collisional de-excitation and the photon is not destroyed but
merely changes its direction after scattering. The intensity of the backscattered photon
also remains constant throughout the atmosphere as can be seen from Figure 4.2. This
clearly indicates that in a purely scattering, homogeneous and plane-parallel atmosphere,
the amount of emergent and backscattered intensities of the radiation field is the same at
each point along the geometrical depth, i.e., there is no loss in photon energy at any layer
of the atmosphere. However the intensity of the backscattered radiation is much smaller
than that of the emergent radiation at each layer. Because of the low optical depth the
backscattered radiation is small and most of the radiation is capable of emerging out

from the boundary of each layer.

This situation is altered significantly with the inclusion of a non-zero velocity field.
With the inclusion of a velocity field as small as 5 mtu at the outermost layer, the
intensity of the emergent radiation falls slowly from the innermost layer to the outermost
layer. As the velocity gradient increases, the fall in the intensity towards the outer
region is more rapid. On the other hand, the intensity of the backscattered radiation
remains almost the same upto the middle of the atmosphere and then it starts decreasing
rapidly. This result indicates that with the inclusion of velocity field, the matter in the
atmosphere is driven outwards creating a blockade to the emergent radiation. Since the
number of scatterer increases in the outward dircction the line photon cannot escape to
the outer layer and hence the intensity falls. From Figure 4.2 it is clear that the photon
after scattering moves in different direction and not in exactly the opposite direction as
the intensity of the backscattered radiation also drops outwards. Owing to the adopted

boundary conditions given as:

II_V-H(x!"T = T7/"'j) =0.5

e=08=0 (4.2)
If(zi,7=0,u;) =0

the emergent intensity at the innermost layer is the same for all the velocity gradient

while the backscattered intensity is the same at the outermost layer.
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Figure 4.1: ! and r components of the emergent intensity along the direction p = 0.11
in comoving frame with frequency X = 0. ¢ = B =0, B/A=1 and total optical depth
T = 50. In all figures V represents the velocity at the outermost layer, i.e., V in the

figure means Vj in the text.
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The small difference in the numerical values of the [ and the r components of the
emergent and the backscattered intensity cannot be resolved graphically but a small
difference between them gives rise to non-zero polarization. It is found that this difference
increases as the photon traverses outwards. This means the degree of polarization is

essentially zero at the innermost layer and it increases with the increase in geometrical

depth.

Figure 4.3 presents the total emergent intensity and the degree of polarization in the
comoving frame along the direction z = 0.11. Since the medium under consideration is
purely scattering, absorption profile at the line is formed. Although the total intensity
decreases as the velocity increases, the profile remains symmetric at the line. But at
the wing, there are significant asymmetry in the intensity profile when velocity field is
taken into consideration. This asymmetry increases as the velocity gradient increases

from 5 mtu to 20 mtu. The total emergent intensity for all the cases becomes zero at the

continuum due to the adopted boundary condition.

The polarized profile in comoving frame is almost symmetric for all the cases. There
is slight asymmetry observed at the wing. The degree of polarization is maximum at the

line center and decreases towards the wing. At the continuum the degree of polarization

is zero due to the boundary condition.

From Figure 4.3 it can be seen that except for large velocity gradient the degree of
polarization in comoving frame remains almost the same for any velocity gradient. With
large velocity gradient, it is larger than that without any velocity field. Therefore, in

comoving frame the basic feature of the polarized profile remains the same.

Figure 4.4 shows the [ and the » components of the frequency independent source
function along the direction 4 = 0.11. From Figure 4.4 we observe that the source

function for a static medium remains constant through out the atmosphere which reflects

the adopted homogeneous and isothermal conditions in a purely scattering plane-parallel

medium. With the inclusion of velocity field this behaviour of the source function gets

altered dramatically. For a small velocity gradient both the { and the r components of the
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source function increases slowly with the decrease in optical depth while for a medium
velocity gradient e.g., 10 mtu the source function increases with the increase in optical
depth. For a large velocity gradient, the source function first decreases in the outward
direction upto three fourth of the atmospheric height and then again increases. This
behaviour of the source function can be attributed to the mass motion of the atmosphere.
The value of the source function is maximum for the static case and minimum when
the velocity gradient is maximum. This is becausc of the fact that with the increase in
velocity the escape probability of the line photons enhances significantly which in the
absence of velocity field would have remained trapped. From Figure 4.4 it can be seen
that the significant change in the source function occurs when a velocity gradient of 10
mtu or more is taken into consideration. Since, the ! and the r components of the source
function are used to calculate the total flux and the degree of polarization along the line
of sight of an observer at infinity, the difference in the magnitude of the [ and the r
components of the source function determines the amount of polarization along the line
of sight. For the static case, Figurc 4.4 shows insignificant difference between the two
components of the source function and hence there must be less polarization in this case

as depicted in Figure 4.5 and Figure 4.6.

As mentioned earlier, in the calculation -f the physical quantities in comoving frame
for plane-parallel medium the velocity law does not play any role. But, while trans-
forming the quantities from the comoving frame to the observer’s frame the form of the
velocity rule carries an important role. Therefore, we have used the same source funciion
in calculating the flux and the degree of polarization along the line of sight of an observer
at infinity with two different velocity rules. Figure 4.5 shows the flux and the degree of
polarization in the observer’s frame by using the velocity laws given by equation (4.1)
with o = +0.9 and Figure 4.6 shows that with & = —1.0. In order to include all the
results in a single figure we have taken the ratio of frequency to the maximum frequency.
The total flux is presented in the unit of the flux at the continuum. The significant role
played by the forr of the velocity rule can be visualized from the polarized profile while

the nature of the flux profile remains almost the same. From Figure 4.5 and Figure
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4.6 it can be seen that the flux profile remains symmetric upto 5 mtu velocity of the
medium. With the inclusion of higher velocity gradient the profile becomes more and
more asymmetric with absorption feature. With small velocity gradient the amount of
flux is higher than that of the static case, whereas it decreases with the increase in the

velocity gradient.

For the static case, the degree of polarization is independent of frequency. But for the
non-static case the degree of polarization is independent of frequency at the wing only
and it increases towards the line center except for the case of small velocity gradient
wherein it decreases towards the line center. For both the velocity rules, the degree of
polarization is maximum for small velocity gradient and decreases with the increase in
velocity. However, the degree of polarization is always larger than that for the static
case, i.e., the effect of a velocity field is to enhance the anisotropy of the medium. With
the increase in the velocity gradient the matter in the atmosphere is driven outwards
decreasing the number of scattering in most of the atmosphere and hence the more is the

velocity gradient the less is the degree of polarization.

Now we shall discuss how the results are affected if we consider non-zero thermaliz-
ation parameter with continuum background. As mentioned earlier, due to the inclusion
of non-zero thermalization parameter the photons suffer not only scattering but also col-
lisional de-excitation which must help the medium to be less anisotropic than that of a
purely scattering medium. In this case we consider small values of ¢ and 8 in order to
obtain sufficient amount of polarization. No radiation is incident at the boundaries but

each layer is illuminated by a constant thermal source. The other parameters remaining

the same as considered for the purely scattering case.

Unlike the case for a purely scattering medium, in a partially scattering medium
the emergent intensity first increases rapidly in the deep interior due to the boundary
condition and then remains almost constant upto the outer region where the continuum
is formed. Since § is non-zero there is a sudden increase in the intensity at the outer

region. The overall nature of the intensity profile in the comoving frame remains the
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same with any velocity gradient, although there is slight decrease in the magnitude of
the intensity with the increase in the velocity gradient. This variation takes place from
the middle of the atmosphere. The result is presented in Figure 4.7. Figure 4.8 shows
the backscattered intensity which is the same at the outermost layer irrespective of the
velocity gradient, remains constant for the static case but decreases towards the deeper
region when velocity field is included. With small and medium velocity gradient, the
intensity of the backscattered radiation falls slowly towards the inner region whereas it
falls rapidly when larger velocity gradient is considered. This shows that the number of
backscattering increases as the photon traverses towards the outer region. This result
can be attributed to the mass motion of the atmosphere towards the outer region due to

the velocity field and hence the accumulation of more matter in the outer region.

Figure 4.9 shows the intensity and the polarized profile in the comoving frame. In
a partially scattering medium the intensity and the polarized profile in comoving frame
are unaflected by the inclusion of velocity field as seen in Figure 4.9. The degree of
polarization is substantially less in this case compared to that in the purely scattering
medium. This reveals the fact that a non-zero thermalization parameter decreases the

anisotropy of the atmosphere.

Figure 4.10 prescuts the ! and the r components of the frequency independent source
function along the direction g = 0.11 in the comoving frame. The inclusion of non-
zero thermalization parameter increases the source function substantially compared to
that in a purely scattering medium. For a static medium the source function slowly
decreases towards the deep of the atmosphere while for an expanding medium with small
velocity gradient it increases slowly. As the velocity gradient increases, the behaviour
of the source function no longer remains smooth. For medium velocity gradient it is
maximum at the middle of the atmosphere but for large velocity gradient the source
function first increases towards the inner region, then decreases and achieves its minimum
value at the middle of the atmosphere and then again increases with the increase in optical

depth. However, unlike the case for a purely scattering medium, the numerical values of
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the source function for partially scattering medium differs only a few percent with the
inclusion of any velocity gradient, i.e., the effect of velocity gradient is almost diluted by

the inclusion of the thermalization parameter in the determination of the source function.

Finally Figure 4.11 and Figure 4.12 present the flux and the polarized profile along
the line of sight of an observer at infinity with @ = 40.9 and @ = —1.0 respectively.
Unlike the case for a purely scattering medium, here we obtain symmetric flux profile
even with the inclusion of large velocity gradient. This implies that the inclusion of
thermalization parameter supresses the role of Doppler shift of the photon frequency. In
other words, the gain in energy by the line photons at each layer dilutes the change in
energy of the emerging photons due to the Doppler shift caused by the velocity field. The

total flux decreases as the velocity gradient increases.

In a partially scattering medium, the degree of polarization in the observer’s frame is
almost frequency independent for any velocity gradient. Also it decreases substantially
compared to that in purely scattering medium. This clearly indicates that the thermaliz-
ation parameter plays an important role in decreasing the anisotropy of the atmosphere.
Although we have considered ¢ = 3 = 107%, significant amount of polarization has not
been obtained. Therefore further increase in the thermalization parameter would make
the medium completely isotropic. However, it can be seen from the polarized profile
presented in Figure 4.11 and 4.12 that the degree of polarization is positive for the static

case whereas it becomes negative with the inclusion of velocity field.

4.4 Summary

We summarize the main features of the results as follows: In a purely scattering medium
the total flux profile becomes more and more asymmetric as the velocity gradient in-
creases. The degree of polarization in this case is maximum with small velocity gradient

and it decreases with the increase in velocity gradient. The degree of polarization is
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minimum for the static case. The role of thermalization parameter is to decrease the
anisotropy of the atmosphere substantially and hence decreases the degree of polariza-
tion. Also it suppresses the effect of Doppler shift of the frequency of photons caused by
the velocity field. In a partially scattering medium the degree of polarization is almost
frequency independent and the sign of the polarization changes with the inclusion of ve-
locity field. Although the models employed in the present work are highly simplified,
they can provide reasonably good insight on how the expansion of a stellar atmosphere

stratified into plane-parallel affects the anisotropy of the medium.
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Resonance line polarization in

extended and expanding spherical

stellar atmosphere?

5.1 Introduction

In the previous chapter we have discussed the eflect of differential radial expansion to
line polarization by considering stellar almosphere in plane parallel geometry. But early
type stars, giant and supergiant stars, late type hot stars wherein the expansion of
the atmosphere is a crucial physical phenomenon, contain atmospheres whose radii are

several times larger than their photospheric radii.

As the stellar radius increases, the effect of sphericity plays a dominant role and
hence a spherically symmetric geometry becomes more relevant. On the other hand the
efects of sphericity are not manifested in full unless the opacity decreases outwards in

the atmosphere. Therefore one has to corsider an inhomogeneous medium.

In the previous chapter we have discussed the role of a non-zero thermalization para-

ZAls0 see : Sengupta, S., MNRAS 269 (1994) 265.
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meter and have shown how it helps in reducing the anisotropy of the atmosphere. In the
case of a spherically symmetric stellar atmosphere, we therefore consider a fixed value
of € and f# in all models and present the discussions on the effect of differential radial

expansion to line polarization under different optical depth as well as sphericity of the

medium.

5.2 Model parameters

Since we would like to consider the effect of different velocity rules to the emergent

intensity and polarization profiles, in the present investigation we adopt the same velocity

rule as considered for the plane-parallel case, i.e.,

R R

V(r) = Vall - (1 - (=) = a( =],

r
where R is the inner redius of the star, V5 is the velocity at the outermost layer and a is

a constant. The value of a is set at +0.9 and -1.0. The velocity profiles for two different

values of o are shown in Figure 5.1. The velocity profile for a linear velocity law given
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Figure 5.1: The velocity profiles for different velocity laws.
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of the outer radius to the inner radius and denoted by B/A in each figure.

In all the models the thermalization parameters are taken as ¢ = 3 = 10~ which
makes the medium partially scattering with continuum background. In all cases, no
incident radiation is provided at the boundaries but constant emission of radiation in

term of the Planck function B(r) = 0.5 for each component is considered.

For the frequency redistribution, a Voigt profile with constant damping parameter
a = 1073 is taken for all models. The small value of the parameter a is considered because

of the fact that with the inclusion of velocity field, Doppler broadenning dominates over

collisional broadenning.

We consider complete frequency redistribution function in all the calculations. The

justification of adopting complete frequency redistribution function has been discussed

in the previous section.

All the physical quantities in comoving frame are calculated along the direction p =
- 0.11. A few results corresponding to u = 0.88 have also investigated. In order to present
the asymmetry in the profiles caused by the velocity field, the profiles are graphically
presented along full frequency grid. The emergent flux along the line of sight is presented

in term of the flux at the continuum.

5.3 Results and discussions

Since the optical depth in the present case varies as 1 (see Figure 5.2), therefore the
medium becomes more and more opaque towards the interior of the atmosphere. As a
consequence, the intensity of radiation increases as it moves outwards. Figure 5.3 and
Figure 5.4 show the | and the r components of the emergent intensity of a photon with
line center frequency for @ = +0.9 and a = —1.0 respectively. Firstly, we observe that
the basic feature of the intensity remains the same in comoving frame with different
velocity rules with a slight difference at the innermost region where the optical depth

18 maximum. The lines are formed in this region. The intensity of the photon for any
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Figure 5.3: [ and r components of the emergent intensity of radiation with the line center
frequency at each shell along the direction g = 0.11 in the comoving frame. € = § = 1073,
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shell, i.e., V' in figures means Vj in the text.
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velocity gradient increases in the outward direction but it drops at the outermost region
where the continuum is formed. The emergent intensity increases significantly with
the inclusion of velocity field. However at the innermost region the emergent intensity
remains the same for all velocity gradients due to the adopted boundary condition. With
large velocity gradient the emergent intensity in the comoving frame of the photon with
X = 0 increases rapidly at the deeper region wherein its value is maximum. It should
be noted from Figure 5.3 and Figure 5.4 that the change in the emergent intensity in

comoving frame is maximum when a small velocity gradient is included.

Figure 5.5 and Figure 5.6 present the [ and the r components of the backscattered
intensity of a photon with line center frequency in the comoving frame for @ = +0.9 and
a = —1.0 respectively. Here we observe that the intensity of the backscattered radiation
increases slowly to the outward direction but at the outer region it falls rapidly. This is
just the opposite way of the variation of the emergent intensity. This means more energy
is backscatterd within the outer region. The backscattered intensity increases with the
increase in velocity gradient. This picture is quite consistent with the behaviour of the
emergent intensity. As the velocity increases more matter is driven outwards rising the

backscttering phenomenon.

Figure 5.7 and Figure 5.8 show the emergent intensity and polarization profiles in the
comoving frame along the direction u = 0.11 for « = +0.9 and & = —1.0 respectively.
The emergent intensity profile in the comoving frame for both the velocity rules remains
almost symmetric at the line but significant asymmtery in the profile is found at the
wing. The asymmetry increases as the velocity gradient increases. Multi-emission and
absorption features are found with the inclusion of velocity field. For a = —~1.0 the
absorption is more at the near wing when large velocity gradient is considered. At the
far wing emission peak is formed which rises with the increase in velocity field. The
asymmetric nature of the profile at the wing is the manifestation of complete frequency

redistribution.

The polarization profile in comoving franie also becomes asymmetric at the wing.
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The degree of polarization in comoving frame decreases with the increase in velocity
gradient. However, at the far wing the unpolarized continuum radiation makes the degree
of polarization negligible. On the other hand, the degree of polarization at the near
wing increases with the change in its sign when large velocity gradient is taken into

consideration.

Figure 5.9 shows the emergent intensity and polarization profiles in the comoving
frame along the direction 4 = 0.88 for the velocity law with & = +0.9. A comparison
of the intensity profile presented in Figure 5.7 shows an almost mirror image of the
profile when one considers p = 0.88. Here we sce emission peak at the right wing for all
velocity gradients. When the velocity gradient is the maximum, an absorption feature is
also found at the right wing. At the left wing absorption features are observed when the
velocity field is included. As the velocity increases, the amount of absorption increases.

However, at the line center, the intensity are the same for all velocity gradients.

Significant change in the polarization profile (in comoving frame) occurs when the
angular direction is altered. The important point is to be noted that with the increase
in the value of y, the degree of polarization reduces substaintially. It is found that at the
near wings the degree of polarization is positive whereas at the line center it is negative
for all the velocity gradients including the static case. This behaviour is produced by an
enhancement of the parallel component of the radiation field with optical thickness and
has been reported earlier by Faurobert (1987). The degree of polarization is maximum in
absolute value at line center whereas it becomes zero at the far wing due to the dominance

of the unpolarized continuum.

Figure 5.10 and Figure 5.11 present the variation of the [ and the r components of
the frequency independent source function along the direction z = 0.11 in the comoving
frame with the variation of the optical depth for & = 40.9 and ~1.0 respectively. The
exact role played by the form of the velocity rule cannot be visualized properly. However,
the difference in the value of the source functions with different velocity gradient becomes

clearer as the optical depth decreases. At high optical depth the difference is negligible.
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This is because of the fact that at deep interior the line photons are trapped and cannot
escape the region whereas with the decrease in optical depth the line photons are able
to escape due to the velocity field. Figure 5.12 presents the [ and the r components of
the frequency independent source function along the direction ¢ = 0.88 in the comoving
frame for o = +0.9. With the change in the value of y, any effect in the behaviour of the
source function is not noticed. For all the cases the source function increases towards
the inner region since more photons are trapped in the region with high optical depth
but it falls rapidly at the innermost shell due to the adopted boundary condition. It
should be worth mentioning that unlike the case for isotropic radiation field, here the
source function is angle dependent. Although the [ and the r components of the source

function look similar in the figure but an unresolvable difference gives rise to non-zero

polarization measured along the line of sight.

Figure 5.13, Figure 5.14 and Figure 5.15 show the total flux profile in the unit of
continuum flux as well as the polarization profile along the line of sight corresponding
to Figure 5.10, Figure 5.11 and Figure 5.12 respectively. Ior the static case a double
emission feature is found with absorption at the center, i.c., absorption occurs at the
line and emission at the near wing. The profile is symmetric. With the inclusion of
velocity field the flux profile becomes highly asymmetric with the greatest change in the
profile when small velocity gradient is considered. As the velocity gradient increases,
the amount of emergent flux decreases at the line. This is beacause of the fact that the
line is formed at the deep of the atmosphere and as the velocity increases the escape
probability of the trapped photon increases causing a decrease in the amont of flux at
the line. Multi-emission feature at the line is observed with the inclusion of large velocity
gradient for a = +0.9. But for & = ~1.0 this feature is absent. This implies that the
mass motion of the atmosphere which is governed by the velocity field affect the flux
profile significantly. With o = —1.0, the increase in the amount of flux is much greater
for large velocity gradient than that when @ = +0.9. For both the values of « the amount

of flux is the same at the far wing irrespective of the velocity gradient.
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Figure 5.10: [ and r components of the frequency independent source function along
the direction g = 0.11 in the comoving frame. € = # = 1073, T = 10°, B/A =3 and
o= +0.9.
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The basic nature of the polarization profile in the observer’s frame remains the same
irrespective of the inclusion of velocity field, however, asymmetry in the profile caused by
the velocity field is significant even with the introduction of small velocity gradient. The
degree of polarization is negligible at the line but it increases rapidly towards the wings
and takes a constant value at the continuum for any velocity gradient. The difference
in degree of polarization is almost negligible at the line where the degree of polarization
is almost zero for any velocity gradient but the difference increases at the wing when
a = +0.9 and decreases when a = —1.0. Therefore, the eflect of different velocity rules
is more important than the velocity gradient in the formation of the polarization profile

along the line of sight.

From Figure 5.15 we notice that the total flux profile remains unaltered with the
change in the value of u. However, the degree of polarization along the line of sight
reduces substaintially with the increase in the value of . The other features of the

polarization profile remains almost the same.

Figure 5.16 to Figure 5.20 show how the above results are altered when the total
optical depth is increased. In this case, we consider the total optical depth to be 100
times larger than that considered in the previous model. Since the effect of velocity rule
would remain the same, we investigate the effect of optical depth by considering just one
velocity rule, e.g., that with « = +0.9. All the other parameters remain the same as

given in Figure 5.3 so that the effect of optical depth can be understood clearly.

In the models with T = 10% it has been found that the amount of emergent intensity
at each shell remain almost the same to the amount of backscattered intensity for a
given velocity gradient. But the variation in the amount of both the emergent and
the backscatterd intensities differs significantly with the inclusion of different velocity
gradient. With the increase in optical depth this difference reduces significantly from the
outer region to the inner region making the emergent and the backscattered intensities
almost independent of the velocity field as can be seen from Figure 5.16 and Figure 5.17.
This implies that with the increase in optical depth the line photons are trapped and



Chapter 5 93

Log (1))

0.8 1 < I 1 t 1 . I L
5 10 15 20 25 30 35 40 45 50
Na. of layers
1.8 T T T T T T T T L

Log ()

L
}_

0.8 . 1 1 L 1 1

5 10 15 20 25 30 35 40 45 50
No. of layers
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T =10%, BJA=3 and a = +0.9.
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unable to escape even with the help of large velocity field. As the optical depth decreases
the escape probability of the photons become higher. The larger is the velocity gradient
the higher is the escape probability and hence increase in the intensity with the increase
in velocity gradient towards the outer region. With the increase in the optical depth, the
amount of emergent intensity at each shell becomes equal to the amount of backscatter
intensity. Further, a comparison with the results presented in Figure 5.3 and Figure 5.5
shows that both the emergent and the backscattered intensities in the comoving frame

increase more rapidly towards the outer region with the increase in the total optical

depth.

Figure 5.18 presents the emergent total intensity and the polarization profiles in
comoving frame with 7' = 10°. Significant changes in both the profiles are observed
when the total optical depth is increased. With T' = 10° the emergent total intensity and

the degree of polarization in comoving frame are not at all affected by the inclusion of

velocity field.

Figure 5.19 shows the { and the r components of the frequency independent source
function which too remains the same for any velocity gradient. This implies that the
increase in total optical depth reduces the effect of velocity field in great extent. As the
optical depth increases towards the interior of the medium the source function increases
and it falls rapidly at the innermost region due to the adopted boundary condition. A
comparision of the results with 7' = 10 shows that at the outer region the source function

becomes higher when the total optical depth is incraesed.

Finally from Figure 5.20 we can conclude that the emergent total flux and the degree

of polarization along the line of sight are not affected significantly with the increase in

total optical depth.

Now we discuss how a change in the sphericity or the curvature affects the whole
scenario. For this purpose the outer radius of the atmosphere is increased to 5 x 10!}
so that the ratio of the inner radius to the outer radius which determines the curvature

becomes 5. the other parameters are kept the same as given in Figure 5.3.
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Figure 5.21 shows the [ and the r components of the emergent intensity of radiation
with line center frequency at each shell. A comparison with Figure 5.3 indicates that
for all the cases the emergent intensity increases significantly towards the outer region
as B/A, the sphericity increases. This is because of the fact that with the increase in
sphericity the medium gets diluted in great extent. Since we have considered the variation
of the optical depth as %, therefore with the increase in the extension of the medium the
optical depth decreases in larger extent with the increase in geometrical depth. Hence
more energy 1s transfered as the photon traverses outwards. However the difference in
the emergent intensity at each shell with different velocity gradient remains the same

with the increase in sphericity. Therefore, the role of velocity ficld is unaltered with the

increase in curvature.

Figure 5.22 shows the [ and the r components of the backscattered radiation in comov-
ing frame with B/A = 5. Just like the situation for emergent intensity, the backscattered
intensity also increases for all velocity gradients with the increase in sphericity, making
a balance between the emergent and backscatterd intensity in comoving frame at each

layer. The role of velocity field remains unaltered with the increase in B/A.

Figure 5.23 presents the emergent total intensity and the polarization profile in co-
moving frame with B/A = 5. As can be observed in Figure 5.21, the emergent intensity
increases with the increase in sphericity owing to the dilution of the medium, here we
observe that the result is true for any frequency point. The emergent intensity increases
in the same extent for all velocity gradients. The asymmetry at the wing however re-
mains the same indicating that the role of velocity field is not affected by the increase
in curvature. The polarization profile in comoving frame remains the same as can be

seen from Figure 5.3 and Figure 5.23. That means the anisotropy of the medium is not

changed with the increase in curvature.

The [ and the r components of the frequency independent source function in comoving
frame are affected significantly with the increase in sphericity as can be seen from Fig-

ure 5.24. Towards the interior, the source function first increases slowly upto one third
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of the geometrical depth, then rises rapidly until it reaches the deepest region where it
suddenly falls due to the adopted boundary condition. From the middle to the innermost
region the source function is almost unaffected by the increase in B/A but due to the
increase in the extension of the medium the outer region becomes more transparent and
hence significant change in the source function takes place within this region. However

the effect of velocity field remains the same with the increase in sphericity.

The dilutaion of the medium caused by the extension is clearly revealed in the emer-
gent total flux profile along the line of sight as shown in Figure 5.25 wherein we observe a
large increase in the amount of flux due to the increase in curvature. The profile becomes
more oblate with large velocity gradient. With the increase in sphericity the emergent
flux in observer’s frame decreases significantly with the increase in velocity gradient and
the decrease is maximum for large velocity gradient. Also the profiles for all velocity
gradients tend to become more symmetric as the sphericity increases. With the increase
in the extension of the medium, more energy {rom the opposite side of the core of the star
where the expansion of the atmosphere is away from the observer, adds up to the net flux.
Hence the net flux is contributed from both the blue-shifted and the red-shifted photons.
In other words, as the extension increases the blockade to the radiation caused by the
opaque core of the star becomes negligible and radiation from both the regions, moving
away and moving towards the observer, contribute to the total flux in almost same ex-
tent. Hence, the asymmetry in the flux profile reduces significantly with the increase in
the extension of the medium. The polarization profile in the observer’s frame however
shows no significant change implying that the degree of anisotropy of the atmosphere

remains unaffected by the increase in sphericity.

9.4 Summary

The main features of the results are summarized as follows: With the introduction of

sphericity and inhomogenity, the polarization profile along the line of sight gets altered
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significantly. The degree of polarization i1s almost negligible at the line but it increases

rapidly towards the wings and take a constant value at the continuum for all the velocity
gradients. The form of the velocity rule plays crucial role in the determination of t

tte
degree of polarization in observer’s frame. When the value of the parameter a iz tze
velocity rule is -1.0, the rapid increase in the degree of polarization takes place from
the near wing whereas this occurs from the far wing when o is set as +0.9. Thre sigz
of the degree of polarization (Fg/F) is always negative in a spherically symmetric
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Conclusions

The problem of constructing mathematical models of stellar atmospheres that provide
a description of the physical structure of the atmosphere and of its emergent spectrum
1s one of enormous complexity, and presents both physical and mathematical difficulties
even in its simplest form. The problem of obtaining solution of radiative transfer is
basically a mathematical one. According to Synge “... the use of applied mathematics in
its relation to a physical problem involves three steps :

(1) a dive from the world of reality into the world of mathematics,

(2) 2 swim in the world of mathematics and

(3) a climb from the world of mathematics back into the world of reality, carrying the

prediction in our teeth.”

In the present work all these three steps have been followed to investigate the effect of
differential radial expansion of stellar atmospheres on the formation of line polarization.
Due to the formidable mathematical difficulties it has been necessary to make a number of
simplifications, and to deal with idealized models that are rather high-order abstraction
from reality. Nevertheless, such abstraction are useful inasmuch as they enhance our

insight without overwhelming us with detail.

In the introductory chapter (the first chapter) I have presented a survey of the work

done by various researchers that are relavant to the present investigation. When one re-

107
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views the work on radiative transfer, one encounters an inexhaustable amount of literature
because of the fact that each group of workers develope a distinctive set of techniques
of varying generalities to suit its own needs. There is, however, hardly any cross fertil-
isation among these groups. As a consequence, it is not possible to mention each and
every work although they are not less important than the work mentioned in the present
survey. Only those work which are the most relevant and have been extremely useful for

the present study have been mentioned.

In the second chapter, the basic concept of polarization of light and in particular
the atomic processes that leads to resonance line polarization have been discussed. The
special condition under which resonance line polarization becomes similar to the Rayleigh
scattering has also been discussed in this context. The mathematical formulations of
polarized radiation and the representation of it by Stokes parameters have been presented
in detail. Since resonance line polarization is regarded as a quantum analogue of the well
known Rayleigh scattering, a detail discussion on Rayleigh’s law of scattering and its
modification in order to incorporate it into the radiative transfer equation have been
provided. The general and explicit form of the phase matrices that are used to describe
the angular distribution of photons that undergo Rayleigh and resonance scattering have

been presented in this chapter.

In the present work, plane parallel and spherically symmetric geometries have been
considered. For both the cases, the axial symmetry of the radiation field requires that
the plane of polarization be along the meridian plane or perpendicular to it. As a con-
sequence, only two out of the four Stokes parameters are required to characterize the
linearly polarized radiation field. The two-level atom line transfer equation governing
the intensities I; and I, in rest frame with plane parallel and spherically symmetric geo-
metries have been presented. Since accurate calculation of the scattering integral in the
expression for line source function with a quadrature sum poses fundamental difficulties
in rest frame calculation due to various reasons, the comoving-frame method has been

adopted in the present work. The need for adopting comoving frame formalism in the
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study of the transfer of radiation from expanding stellar atmospheres has been discussed
in detail. Finally, the transfer equations for polarized radiation in comoving frame for
both plane parallel and spherically symmetric stellar atmospheres have been presented
alongwith the expressions for the absorption profile and the frequency redistribution

function.

In the third chapter the numerical method for solving the transfer equations has
been discussed in detail. The numerical method due to Peraiah has been employed
to solve the plane parallel as well as the spherical radiative transfer problem in the
comoving frame. The numerical method is based on the discrete space theory. The
basic concept of the theory and its application to solve the radiative transfer equation
have been explained. The generalization of all the steps of this finite-difference method
for including the polarization state of the radiation has been described in detail. The
main purpose has been to develop reflection and transmission operators that embody
all the physical information contained in the problem. The medium under consideration
is divided into a number of spherical shells. The transmission, reflection and source
vectors are computed for all the shells. For a thick layer, the so-called star product,
which is essentially a doubling algorithm, is used. The method can handle the problem
arising out of the coupling of the comoving points across the line profile and the local
velocity gradients. The stability of the solution is achieved by controlling the step-size,
which arises in the discretization in radial, angle and frequency integrations. In the
present work, two types of media have been considered; purely scattering medium and
partially scattering medium with both line and continuum emission. The problem has
been solved subject to two kinds of boundary conditions : (1) the radiation incident on
either side of the atmosphere and (2) the frequency derivative appearing in the comoving
term. The correctness of the numerical results has been checked by considering global
flux conservation. It is found that the flux is conserved to up to nine decimal figure.
The correctness check has also been performed by considering specular reflection at the
inner boundary. The results for various velocity gradient have been provided in tabular

form. Finally, the procedure for calculating the total flux and the polarization profiles
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along the line of sight of an observer at infinity by using the components of the frequency

independent source function calculated in the comoving frame has been described.

In the fourth chapter the effect of differential radial velocity on the distribution of line
intensities and line polarization in a stellar atmosphere stratified in parallel planes has
been presented in detail. The medium is assumed to be homogeneous and isothermal.
Two different types of velocity rules have been adopted in this case with zero velocity
at the innermost layer. The results have been compared with that of the static case.
The line intensity profile and the polarization profile in the comoving frame as well as
in the observer’s frame are discussed in detail. It is found that in a purely scattering
homogeneous and isothermal atmosphere, the amount of emergent and backscattered
intensities of the radiation field is the same at each point along the geometrical depth,
i.e., there is no change in photon energy at any layer of the atmosphere. This situation is
altered significantly with the inclusion of a non-zero velocity field. With the inclusion of
even a small velocity gradient, the intensity of the emergent radiation falls slowly from the
innermost layer to the outermost layer. As the velocity gradient increases, the fall in the
intensity towards the outer region is more rapid. The emergent intensity in the comoving
frame decreases as the velocity increases with substantial asymmetry in the profile at the
wing. Except for large velocity gradient the degree of polarization in comoving frame
remains almost the same for any velocity gradient. In a purely scattering medium the flux
profile along the line of sight becomes more and more asymmetric with absorption feature
when a high velocity gradient is included. The amount of total flux in this case decreases
with the increase in velocity gradient. The degree of polarization in the observer’s frame
is maximum for small velocity gradient and it decreases with the increase in velocity.
In a partially scattering medium, the degree of polarization in comoving frame as well
as in the observer’s frame is substantially less compared to that in the purely scattering
medium implying that a non-zero thermalization parameter decreases the anisotropy of
the atmosphere. Unlike the case for a purely scattering medium, in a partially scattering
medium the flux profile in the observer’s frame is symmetric even with the inclusion of

large velocity gradient. The results could be useful in obtaining a general idea about the
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resonance line polarization in a radially expanding plane-parallel stellar atmosphere.

As the stellar radius increases the curvature effect plays a dominant role and a spher-
ically symmetric geometry becomes more relevant in that case. In the fifth chapter the
effect of differential radial velocity in the distribution of line intensities and line polar-
ization for a spherically symmetric, inhomogeneous and isothermal medium is presented
in detail. The atmospheric models could represent the photospheric layers of early type
stars, giant and supergiant stars as well as luminouse late type stars. In the case of a
spherically symmetric stellar atmosphere, a fixed value of the thermalization parameter
is taken in all models and the effect of differential radial expansion to line polarization
under different optical depth as well as sphericity of the medium has been discussed in
detail. Two different types of velocity laws have been adopted with zero velocity at
the inosermost shell. The velocity at the outermost shell has been taken 5, 10, 20 mean
thermal units to study the effect of small, medium and large velocity gradients. The res-
ults have been compared with that of the static case. The emergent intensity in comoving
frame increases significantly with the inclusion of velocity field. The change in the emer-
gent intensity in comoving frame is maximum when a small velocity gradient is included.
The emergent total intensity profile in comoving frame remains almost symmetric at the
line but significant asymmetry is found at the wing. The asymmetry increases with the
increase in the velocity gradient. The degree of polarization in comoving frame decreases
with the increase in velocity gradient. The frequency independent 1 and the r compon-
ents of the source function increases towards the inner region for all velocity gradients.
The total flux profile along the line of sight for static case is symmetric but with the
inclusion of velocity field it becomes highly asymmetric with the greatest change in the
profile when small velocity gradient is considered. As the velocity gradient increases,
the amount of emergent flux decreases at the line. The important role of velocity rule
is revealed when large velocity gradient s included. The degree of polarization in the
observer’s frame is negligible at the line where it is almost zero. It is found that the
effect of different velocity rules is more important than that of the velocity gradient in

the formation of the polarization profile along the line of sight? ‘ Significant changes in
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both the intensity profile and the polarization profile in comoving frame are found when
the total optical depth is increased. With the increase in total optical depth, the effect of
velocity field on the emergent total intensity and the degree of polarization in comoving
frame reduces. Although the increase in total optical depth reduces the effect of velocity
field on the source function, the emergent total flux and the degree of polarization along
the line of sight are not affected significantly. The emergent intensity in the comoving
frame increases with the increase in sphericity. However the polarization profile remains
unaltered. With the increase in sphericity, the total flux along the line of sight increases
in great extent and the profile becomes more symmetric. The anisotropy of the medium
remains almost unaffected and hence the degree of polarization remains the same with

the increase in sphericity.

The net polarization of light emitted by a spherical star, however, is identically zero.
Therefore a comparison with observational results are not possible at this stage. For
that purpose one has to consider a distorted medium and to calculate the disc integrated
flux and polarization profiles. This aspect is a topic which needs further study since
it represents the closest situation to the feasibility of observations. Nevertheless, the
present study can provide a reasonably good understanding of the basic features of the

polarized line formation problem in a radially expanding and extended spherical stellar

atmosphere.
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