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Abstract. We present here a full calculation of the noise free response of a laser
interferometric gravitational wave detector which is subjected to gravitational
radiation from a continuous source. The observation time is taken to be of the
order of a few months. The long observation time implies that the motion of the
detector is important and must be included in the response as a modulation
effect. For simplicity we consider only two motions of the Earth, namely, the
rotation of the Earth about its axis and the orbital motion about the Sun. The
orbit is assumed to be circular. We consider the detector to be situated and
oriented arbitrarily on the Earth, except that we assume the arms of the detector
must lie in the tangent plane to the Earth at the point where the detector is
situated. The gravitational wave incident on the detector is assumed to be a plane
wave having arbitrary direction and polarization. We also present here the com-
putation of the quadrupole wave form of a typical continuous source—a pulsar—
which is modelled as an almost spherical object of uniform density, spinning
about an arbitrary axis with uniform angular velocity. We use techniques of
spherical tensors and Gel’fand functions developed in the literature to compute
the wave form.
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1. Introduction

Direct detection of gravitational radiation (GR) from astrophysical sources is currently one
of the most challenging problems in science. It is important, therefore, that different radiative
processes in astrophysics be explored and, at least, conservative estimates be obtained for
the radiated power and the dimensionless amplitude of GR from such processes. This is
more so for the purposes of the current highly sensitive, laser interferometric detectors like
LIGO, VIRGO, AIGO etc. However, what is equally important for the analysis of data
obtainable from these detectors is an analytical treatment of the problem in question. This
is crucial because the GR signal will be buried deep within the noise of the detector system.
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Therefore, even for the detection of a GR signal, there is a special need of problem-oriented
algorithms which make maximum use of the analytical treatment of the problem under
consideration.

We can broadly classify astrophysical sources of GR as continuous, burst type and
stochastic. An archetypal example of continuous source of GR is a pulsar while an asymmetric
supernova explosion is that of the burst type of source. Beside these, many other astrophysical
sources of both kinds have been considered in the literature (Thorne 1987; Schutz 1989) and
pulsars are one continuous kind. In a simple but plausible model, we imagine an asymmetric
pulsar being deformed into a slightly non-axisymmetric shape as a result of some astrophysical
process. Provided that the axis of rotation does not coincide with the direction of the angular
momentum of the pulsar, the pulsar will execute torque-free precession and the resultant
time-varying mass-quadrupole then becomes the sources of GR from such a pulsar (if the
wobble angle 0 between the angular momentum direction and the rotation axis is small then
the radiation will be emitted primarily at @ and 2@ where ® = Q. — Q,., Q. being the
electromagnetic frequency and €, the precession rate. The electromagnetic observations of
pulsars have shown no evidence for precession) (Zimmermann & Szedenits Jr. 1979;
Zimmermann 1980; Shapiro & Teukolsky 1985). Needless to say, it is of much current interest
to see how non-axisymmetric structures may form in pulsars (However, it is worth noting
here that there is to this date no observational evidence for substantially large asymmetric
structures as borne out by the low spin-down rates of known milli-second pulsars. This suggest
that the amplitude of GR from these pulsars are probably < 10726 — 107%). Of particular interest
are the glitches in the rotation periods of pulsars interpreted as the release of crustal distortion,
a dynamical process responsible for as, an example, an earthquake. It has also been argued
that observed gamma ray burst are also a result of neutron starquakes (Hurding 1991).

In constructing the prototypes of laser interferometric detectors, and studying the noise
and system characteristic, GR signals of the above nature were looked for. Noteworthy here
is the work by J. C. Livas who used the 1.5 meters MIT laser interferometer to conduct low
sensitivity, all sky, all frequency search for periodic signals and also for narrowband single
direction sky search towards the galactic centre. For this purpose he developed a formalism
that takes into account frequency modulation of the monochromatic GR signal from the
rotation and orbital motion of the Earth in the Solar System Barycentre (SSB) frame. This
consideration of only frequency modulation restricts the analysis for observation times < 30
minutes (However, the same motion also amplitude modulates any GR signal since the
detector has an anisotropic antenna pattern). The conclusion by Livas is that within the
experimental uncertainties, there is no conclusive evidence for GR emitting pulsars towards
the galactic centre (Livas 1987). Recently pulsar search was made using continuous 100
hours data from Garching prototype gravitational wave detector in the direction of 1987A
supernova. This analysis puts a constraint on the dimensionless amplitude h, of gravitational
wave ~ 9 x 1072! possibly produced by a periodic source in the SN 1987A (Niebauer et al.
1993). Since the typical GR signal from a pulsar is expected to be weak, for getting an
appreciable signal-to-noise ratio one needs long integration times (observation may last for
a few days to a few months) (Schutz 1991). This implies that both frequency modulation
(FM) as well as amplitude modulation (AM) of the signal are going to be the important
effects in the detection of the pulsar signal. Therefore it is very important and necessary to
compute the response of the detector. This work will be a precursor to later work where the
question of pulsar search will be addressed.
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In this paper, we first consider the case of an almost spherical object of uniform
density spinning about some arbitrary axis—a model for a pulsar. We then specialise in
the case of spheroid. Although the GR from spinning object was calculated by Zimmermann
(Zimmermann & Szedenits Jr. 1979; Zimmermann 1980) using the principal moments of
inertia of the object, we present here a calculation which use the elegant properties of the
Gel’fand functions (Gel’fand, Minlos & Shapiro 1963). We use the formalism of symmetric
trace free (STF) tensors to actually compute the moment of inertia of an object having
small deviation from sphericity but with uniform density. The plan of the paper is as
follows : In section 2 the quadrupole formula is applied to compute the GR from an almost
spherically spinning object. We use the formalism developed by Dhurandhar & Tinto (1989)
to calculate the response of the detector. In this formalism which is based on the Newmann-
Penrose (NP) formalism (Newmann & Penrose 1962), the wave and the detector are represented
by STF tensors of second rank and the response of the detector is the scalar product of
these two tensors. In this situation the computation of the response involves several reference
frames and transformations between them. Since the second rank STF tensors in a 3
dimensions span a five dimensional space as compared with the nine dimensional space
spanned by general second rank tensors, considerable economy and elegance is achieved
by using the Gel’fand functions which form an irreducible unitary representation of the
rotation group. We make use of STF tensors and the Gel’fand functions in calculating the
full noise free response of the detector. In section 3, we specialise to the case of a spheroid
whose semi-major axis is inclined at an angle 04 to the rotation axis. In section 4, we
first describe the formalism developed by Dhurandhar and Tinto, and calculate the wave
and detector tensors in the SSB frame. We also give the transformation to galactic
coordinates where the source direction is given in terms of the galactic longitude and
latitude. Finally, in section 5 the response of the detector is obtained by taking the scalar
product between the wave and detector tensors in the SSB frame. The response function
incorporates both frequency modulation (FM) and amplitude modulation (AM). Further,
we discuss quantitatively the consequences of the FM and AM of the signal in the context

“of signal detection.

2. Gravitational radiation from a spinning almost spherical object

We consider an object which is almost a sphere and which is spinning about some axis with
uniform angular velocity ®. We also assume that it has uniform density py. This object is
supposed to be a simple model for a pulsar and the aim is to compute first, the GR in the
transverse traceless (TT) gauge (Misner, Thorne & Wheeler 1973) and finally compute
response of a detector situated on the Earth. The entire problem involves several parameters
consisting of orientations, rotations etc. But in this part of the discussion we will only be
concerned with the derivation of the perturbed metric tensor in the TT gauge, denoted by
k1T in the wave frame which we shall define later in the text. The quadrupole formula will
be used to compute the wave form.

In this discussion we will consider three frames :

(1) The body frame (x’, y’, z’) in which the object is static.

(2) The pulsar frame (x,, yp, zp) in which the object is spinning about the z, axis.

(3) The wave frame (X, Y, Z) in which the wave travels in the positive Z direction, so
that the transverse gravitational wave field has components only in the (X, Y) plane.
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The quadrupole formula states that the gravitational wave amplitudes are given by
(Thorne 1980)

hy(t, x) = 2%I}k(t - L% .. 2D
c'r Cc

where the source coordinates are primed and the field coordinates are unprimed, 7 = Ix — x'l
and the dots represent derivatives with respect to time. The TT components of the metric are
obtained by taking the TT components of the right-hand side. We carry out the computation
in the following steps :

(A) Compute the inertia tensor in the body frame,

(B) Transform the inertia tensor to the pulsar frame,

(C) Further transform only the time dependent part of the inertia tensor to wave frame,

(D) Finally project out the TT components.

This procedure will obtain for us the required metric perturbation hLT.

A. Inertia tensor in the body frame

Consider an almost spherical body denoted by the equation
r=all + &0, )], ... (2.2)

where (r, 0, ¢) are the polar coordinates in the body frame, a is the approximate radius and
€(0, ¢) is the deviation in the direction (0, ¢) from the spherical shape. We assume that
€(6, ¢) << 1 and in our computations we only retain the first order term in €. Assuming an
uniform density py, we have

L = Po I r’nnedv, .. (2.3)

where n, = (sin 6 cos ¢, sin 6 sin ¢, cos 0) is the unit vector in the direction (0, ¢) and
dV = r*drdQ is the volume element. Therefore,

a[l+e(0,9)]
ik = pq J- n, e dQ ridr ... (2.4a)
0

pOa5 5
== J. [1 + €6, ¢)I’n,ny dQ. ... (2.4b)

Retaining only up to the first order terms in €(6, ¢), we have,

Poa5

5

Iy = J. n,nedQ + poa’ J £(0, O)n, n, dQ. ... (2.5)

Using the identity [ nmdQ = 47“6&, the first term yields the inertia tensor for a sphere is
equal to %Maz&k, where M = 4T“p0a3 is the unperturbed mass of the sphere.
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Hence we may write,
Iy = $Ma*8 + pa’Jy ... (2.62)
where

Ty = j £(0, d)n, ny dQ. ... (2.6b)

We will express Jy in terms of spherical tensors. In what follows we will make use of the
formalism found in Thorne’s work on multiple expansions of GR (Thorne 1980). The spherical
tensors or STF tensors and Gel’fand functions have elegant properties which can be used to
our advantage, since several rotations are involved in the computation of the response of the
detector. This formalism was found to be very useful in studying the response of detectors
as functions of orientation i.e. in obtaining the antenna pattern and solving the inverse problem
in its simplest form for five, four and three detectors situated in the same place (Dhurandhar
& Tinto 1989; Tinto & Dhurandhar 1989).
We begin by expanding €(6, ¢) in terms of spherical harmonics :

€@, ¢) = 2 E1m Y ™(6, ), .. (272)

1,m

where €, are constants which are related to the €(0, ¢) by the inverse formulae :

€m = J &8, $)Y*™(8, $)dQ, . ... (2.7b)

where the integration is over a unit sphere. We note that
€ -m = (D)7 .. (2.7¢)

Here we will only need to invoke second rank STF tensors since the inertia tensor is of the
second rank. The STF tensors of rank two span a five dimensional vector space and a
convenient basis with useful orthogonality properties is given by the following definition,

My = Y2™(6, ¢). ... (2.82)

Here repeated indices imply summation, i,k = 1, 2, 3 and m = -2, -1, 0, 1, 2. The inverse
formulae are given by

J- Y25, 1y dQY = ?—TD_‘ 2m ... (2.8b)

};‘i‘“ satisfy the orthogonality condition,
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m g2n¥ __ ﬁ
L .. (2.9

The five tensors have been listed in appendix A.
For computing J,, we need to expand n;, on the basis of ¥™. We have the relation

2
m = L8, ¥+ %0 4 b Z i .. (2.10)

m=-2

Using equations (2.7a), (2.10) and the orthogonality properties of Y™ s, we have from equation
(2.6b),

2
<4 m
Jk = ____3n dx€qo + % Eom AL e (2.11)

m=-2

The full inertia tensor expressed in therms of the g, is,

2
ka = %Mazli(l + '\/Z—TEEOO) Slk +2 z Szm%km:'. (212)

m=-2

We note that the gy, term corresponds to the extra mass which has entered through the
perturbation. Howeuver, this is of little consequence to further computations as this term
remains invariant under rotations and so is time independent and will not contribute to the
gravitational radiation. With this in mind one needs to focus only on the second term of
(2.12) namely,

2

81, = %Maz 2 Eom T, .. (2.13)

m=~2

which will contribute to the GR.

B. Calculation of the GR

Let the object rotate about the z; axis with uniform angular velocity  in the positive direction,
i.e. the vector @ is along the positive z, axis. Then the inertia tensor /, in the pulsar frame
is related to the inertia tensor [ in the body frame by the matrix formula

I, = R'IyR, .. (2.14)

where the matrix R is given by

cos Wt sin ot l 0
R(wt) = | —sin ot cos mt 0]. ... (2.15)
0 0 1
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We need to only consider 8/ and hence in the pulsar frame,

2

81, = 2Ma® Z &2 RT(@1)Z™ R(@)]. .. (2.16)

m=-2

For going over to the wave frame we need another rotation matrix. But if we choose the x
axis in the pulsar frame to be the X axis in the wave frame, then only a single rotation
through an angle i about the common x axis is needed to transform the pulsar frame to the
wave frame (see figure 1). Actually the z, axis and Z axis will be fixed, since they correspond
to the rotation axis of the pulsar and the direction to the pulsar respectively. We choose the
xp axis and X axis perpendicular to the (zp, Z) plane. The y, and Y axes are chosen so that
(xps Yp» 2p) @and (X, Y, Z) form right handed triads. The matrix for rotation through an angle
i about the x axis is given by

1 0 0
R(i)=10 coS i sini |, .. (217
0 —sin i cos I

and hence the inertia tencar in the wave frame is

Figure 1. The figure shows the orientation of the pulsar frame (x,, yp, z,) With respect to wave frame (X, Y, 2)
The angle 1 denotes the inclination of pulsar’s spin axis with respect to the sky plane. The axis of symmetry of the
pulsar makes an angle o, with the spin axis.
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2

51, = %Mal Z €2mRI(0) RI(008) % 2™ R (01 R,(i). .. (2.18)
m=-2

We now follow Goldstein’s convention for Euler angles 0, ¢, y where ¢ is the rotation about
z axis, then 0 is the rotation about the new x axis, and finally y is the rotation about the still
newer z axis. All the rotations are in the positive sense. The above equations show that final
rotation R, (wf)R, (i) has ¢ = wt and 6 = i. We now need to know how yz"‘ transform under
a rotation R (8, ¢, ¥). We merely state the formula,

2
RY(8, 0, W) Z*"R(B, ¢, ) = Z Tan(, 0, W) 22" .. (2.19)

n=-2

The functions T;2,(6, ¢, ) appearing in equation (2.19) are just the Gel’fand functions and
are related to spin weighted spherical harmonics, Jacobi polynomials etc. (Gel’fand, Minlos
& Shapiro 1963; Goldberg et al. 1967). These functions again provide a representation of
the rotation group which is unitary and irreducible. They are given by

T1.(6, 6, W) = e ™ P} (cos B)e™™Y, ... (2.20)

where

_ l-m:n-m _
Pl = cos )= 21'(()1) T \Eﬁ T Z;: (1= ™2 4 e

d = n[(l —wma WM, - I<mn<l .. (221
We will only need the functions for I = 2. The relevant 5 X 5 matrix P2.(cos ©) has been
listed in appendix B.

In terms of these functions we may rewrite equation (2.18). Thus,

81, = 2Ma? 2 €9 Tom(i, 1, 0)Z27 . (2.22a)
m,n

= Zua? Z Eme ™ Po(cos )22, 2<mn<2. .. (2.22b)
m,n

Here, we have dropped the superscript 2 of T2, since it never changes. To get the wave
tensor, we have to carry out further operations of taking the second derivative with respect

to time and projecting out the TT part. The TT part of a tensor for a direction z, is given
by

M= 1. %9@(%1“), . (2.23)

where 9%, = (0, — nny), n, being the direction of the propagation of the wave.
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In our case ny = (0, 0, 1), (we use capital indices for the wave frame) and we need to
project out }/ in (2.22). It is easy to see that

()T = 9222 ... (2.24a)

and

@*™T=0, m=-1,0,1 ... (2.24b)

These relations simplify our formulae to

i = g

2
-2Ma*w? Z M2 €| Taliy 0, 0) 2% + Ty (i, 01, 0) 227 (225)
4

We have used here the relations,
Tio(i, ©t, 0) = -im®T(—i, ot, 0).

At a distance r along the Z axis from the origin the perturbed metric amplitude in the TT
gauge can be written as

hﬁ?(t——?): -%CQM‘J Ok B+ +B 7 ... (2.26)

where

- Z m*€ s Tnusali, O, 0). . @27)

We observe that B. x (—i g M“ w? ~2—) are just the amplitudes of the positive and negative

handed circularly polarlzatlons. Therefore, the above equation expresses the wave as a linear
combination of left and right handed circularly polarized waves. The linear polarizations are
obtained by taking the XX and XY components of equation (2.26)

T _ 1 G Md*w? 15 29
hxx = R By +B) P ... (2.282)
T _ 1 G M,

hyy = — s (B+ B4 ,m ... (2.28b)

We need only to simplify the expressions for B.. Using the fact that €,, —m = (-1)™e3,,,
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2
B. B = 2 mEom(Tma = T 2) + (-D"3m(Tmz £ Ty 5)]. ... (2.29)
m=1

We observe that m = 2 term gives the 2t contribution, while the m = 1 term gives the wt
dependence. m = 0 term is absent corresponding to €, since this is just the ‘dipole’ term
which is independent of time. Explicitly,

B. + B_ = sin 2i Im (g7 + 4(1 + cos® i) Re (gype 2™, ... (2.305)
i(By — B_) = —8 cos i Im (€567 + 2 sin i Re (gy¢7™). ... (2.30b)

In the next section, we apply these results to a spheroid rotating about an axis inclined at
an angle oy with respect to the rotation axis.

3. Gravitational radiation from a spinning spheroid

We consider a spheroid whose two semi-minor axes are equal of length a and a semi-major
axis of length a(1 + 8). The quantity 0 is called the ellipticity of the spheroid. We assume
that it’s semi-major axis is inclined to the spin axis by an angle 0.

From the results of the previous section it is sufficient to compute the two quantities &;;
and €, for this object in the body frame in order to obtain the hLl. We do the calculation
in two steps :

(1) We first compute the €,,, for the principal axes of the spheroid.

(i) Then we transform €,,, to the body frame in which the z axis is the spin axis.
The equation of the spheroid in the principal axes is

2
24y £ =42 ... (3.1
Y T aeez 7 @-1)

Transforming to polar coordinates and retaining up to the first order terms in 8, we have
r=a(l + & cos? 0). .. 3.2

The quantity £(8, ¢) is then just equal to & cos® 6.
From equation (2.7b), we compute €,,,. The result is as follows :

820=\/% 5 em=0 mz0 . (33)

At t = 0, we take the semi-major axis of the spheroid to lie in the (x, z) plane inclined at
an angle oy with the z, axis and (n/2) — oy with the x;, axis (see figure 2). That is to obtain
the inertia tensor in the body axes from the principal axes, we apply the rotation

Iy = R} (0up) [P"mePA xR (1), ... (3.9
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~ a0

Yp

*p

Figure 2. The figure shows orientation of an spheroid in pulsar coordmate system (X, ¥, z,) The angle o is the
angle between the axis of symmetry of the spheroid and the z, axis.

where
cos 0(0 0 —-sin O
Ry(0tp) = 0 1 0 . ... 3.5
sin 0 0 cos Ol

A rotation of 0y about y axis is equivalent to a rotation through Euler angles ¢ = n/2,
8 = 0, ¥ = —1/2. Hence the tensor % >™ transforms as,

sz_) Ton (%, oo, —%ijn,

under this rotation. This provides the transformation law for €,

body Z T ( L OLg, — > ) Sglglncipal axes, o (363)
= 2 i"™ P, (COs Og)ehmneipal axes, ... (3.6b)
m
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Using the expression for P, from appendix B and equation (3.3) we therefore have in the
body frame,

€ = 1/%—2 & sin 20, . ... (3.7a)
€0y = % 8 sin? o, ... (3.7b)

where we have dropped the superscript ‘body’, from the €,’s.
Using (2.28), (2.29) and (3.7a, b) we obtain the wave amplitudes as given below :

2.2 2 .
BT = _8 G Ml 500 (w) cos 201
5¢ r 2
)
+ % G Ma”® §in 20, sin 2i sin o, ... (3.82)
C s
2 02
hyy = —% % Mar(n & sin? oy cos i sin 20
c
22
- % % Mar(D d sin 20t sin i cos ot. ... (3.8b)
c

We note that the 20¢ term is dominant in the expression. Further point to note is that the
mass entering into these formulae is the mass of the sphere of the radius a. The actual mass
of the spheroid is greater by the factor 8. However, this correction will only introduce a term
of O(8?) in the formulae. Therefore, the mass M appearing in the formulae can be taken as
the mass of the object, since our aim is to obtain results to the first order in 9.

4. Wave and detector tensor in the solar system barycentric frame

A. The Dhurandhar-Tinto farmalism

In this section, we first briefly review the formalism set up by Dhurandhar and Tinto and
then in the later subsections apply it to the problem at hand.

Consider a plane gravitational wave travelling along the Z axis. In the TT gauge the
metric perturbations hfl has components lying only in the (X, Y) plane. In the wave axes
we have two amplitudes which characterise the wave as follows :

h, = hikx = —hyv, and h, = hyy = hix.
In this formalism the wave tensor denoted by W is defined by

W= %h+(ex ® ex — ey ®ey) + %hx(ex ® ey + ey ® ey), CR)

where e, and e, are unit vectors in the X and Y direction respectively. We observe that W
is a STF tensor.

bl
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The detector too can be represented by a STF tensor D, the form of which differs for
the types of detectors; the interferometer and the bar. For an interferometer with its arms in
the directions of the unit vector n; and n, the detector tensor D™ is defined as

DINT = ny ®ny—ny @ ny. ... 4.2)

The detector axes (x, y, z) are chosen so that the arms of the interferometer lie in the (x, y)
plane and the x axis bisects the arms. For an interferometer with its arms at right angles, we
have,

m = %(ex + ey), ... (4.32)
ny = —\/17(6,( ~e). ... (4.3b)

where e, and ey are unit vectors in the x and y directions.
Therefore, the detector tensor for the interferometer can be written as

DINT = ex @ ey + ey @ e ... (4.4

For a bar detector whose longitudinal axis is the direction n, the detector tensor DBAR g given
by

DBAR = ;1 ® n.

The response of the interferometric detector 8/l where 8! is the change in the arm length,
[ the length of the arm, is then simply given by the scalar product between the wave and
detector tensors. For the bar the response is proportional to the scalar product. Here we limit
ourselves to the case of the interferometer. The response R(f) is given by

R(H) = W'D, .. (4.5)
where the superscript ‘INT’ has been dropped from D.

B. The wave tensor in the SSB frame

We choose the Solar System Barycentre frame (xy, Yy, 2p) such that orbital plane of the Earth
lies in the (x,, yp) plane. Therefore the orbital angular velocity vector @y, points towards
the positive z, direction. We assume a circular orbit for the Earth around the Sun with the
Sun at its centre. The SSB frame is obtained by rotating the wave frame by the Euler angles
6, ¢, ¥ (see figure 3). The wave tensor in the SSB frame is obtained as follows :

Wssp = Risg(6, ¢, W)WRssg(8, ¢, W), .. (4.6)

where Rgsp(0, ¢, ) is the orthogonal transformation matrix connecting (X, Y, Z) to
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Zp

Figure 3. The figure shows the orientation of the wave frame (X, Y, Z) with respect to the Solar System Barycentre
(SSB) frame (xy, yy, 2,)- The orientation of the wave frame is specified by the three Euler angles 6, ¢, y, which are
needed to rotate the wave frame to SSB frame. The Angles (6, ¢) give the direction of mncoming wave in the SSB
frame, while y represents the polarization angle.

(xp> Yb> 2p) axes. We give below the matrix Rggg and also list the components of the wave
tensor in the SSB frame.

cosyYcosd—cosOsindsiny —sinycosd—cosOsinPpcosy sinBsind
Rgsp = | cosysind +cosBcospsiny —sinysind +cosOcosdpcosy —sinBcosd |,
sin O sin Y sin O cos y cos6

%))

Wy, x, =3 [(cos y cos ¢ — cos B sin ¢ sin W)?
— (cos y sin ¢ + cos O cos ¢ sin Y)?] A,
+ [(cos y cos ¢ — cos O sin ¢ sin W)
X (cos Y sin ¢ + cos O cos ¢ sin )] Ay, ... (4.8)

WYh Yb

=1 [(~sin y cos ¢ - cos @ sin ¢ cos y)*
— (-sin y sin ¢ + cos O cos ¢ cos \|!)2] h,
+ [(-sin ¥ cos ¢ — cos O sin ¢ cos )

X (—sin ¥ sin ¢ + cos O cos ¢ cos y)] Ay, ... (4.9
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Wiz, = 3 [—sin? O cos 20}, + % [—sin? O sin 20)hy, ... (4.10)

Weoyw =3 [(cos y cos ¢ — cos 6 sin ¢ sin y)
X (—sin y cos ¢ — cos O sin ¢ cos V)
— (cos y sin ¢ + cos O cos ¢ sin y)
X (—sin y sin ¢ + cos O cos ¢ cos y)] A,
+ 7 [(cos y cos ¢ — cos O sin ¢ sin )
X (—sin ¥ sin ¢ + cos 6 cos ¢ cos y)
+ (—sin Y cos ¢ — cos 6 sin ¢ cos )
X (cos Wy sin ¢ + cos 6 cos ¢ sin Y)] Ay, .. (4.11)

Wy 2, = 3 [(cos y cos ¢ — cos O sin ¢ sin ) (sin O sin )
+ (cos Y sin ¢ + cos O cos ¢ sin ) (sin O cos ¢)] A,
+ 4 [(cos ¥ sin ¢ + cos 6 cos ¢ sin y) (sin O sin ¢)
— (cos y cos ¢-— cos O sin ¢ sin y) (sin O cos ¢)] A, ... (4.12)

Wy, z, = 3 [(—sin W cos ¢ — cos O sin ¢ cos ) (sin O sin ¢)
+ (—sin y sin ¢ + cos 6 cos ¢ cos W) (sin O cos ¢)] A,
+1 [(—sin y sin ¢ + cos O cos ¢ cos W) (sin 6 sin §)
— (—sin y cos ¢ — cos O sin ¢ cos ) (sin O cos ¢)] A, ... (4.13)

The angles 0, ¢ give the direction of incoming wave in the SSB frame. This SSB frame is
nothing but astronomer’s ecliptic coordinate system. The angle 6 is the ecliptic colatitude
(B = /2 — 8) and ¢ is the ecliptic longitude (A). We give below the relations between galactic
longitude I, galactic latitude b, the equatorial coordinates, right ascension o, declination &
and ecliptic coordinates A and B (Green 1985) :

8 = sin™' {sin 8 sin b + cos 8¢ cos b cos (6, - D}, .. (4.14)
o cos bcos (8, - )
o= tan {sin 8¢ sinb — sin 8 cos beos (8, — 1) |’ - @15)

The (0, 6g) are the galactic North pole coordinates and 6, is the position of the galactic
centre in the equatorial coordinates given at epoch 1950.0. Their values are given below as,

og = 192°25, 8 =27°4, 6, =123°.

The ecliptic coordinates of the pulsar are related to the o and 6 by

A = tan"! {sinoccosx + tan § sin K} (4.16)
cos o ’ o
B = sin! {cos & cos k — cos & sin k sin a}. ... (4.17)
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The obliquity of ecliptic is k = 23°.441. The source direction if given in terms of [ and b
can be connected to the SSB coordinates 6 and ¢ by using the above relations.

C. The detector tensor in the SSB frame

We assume that the arms of the detector lie in the tangent plane to the Earth at the site of
the detector. Otherwise the orientation as well as the position of the detector is allowed to
be arbitrary. Two angles are needed to specify the position of the detector. This fixes the
tangent plane in which the detector’s arm must lie, leaving only one degree of the freedom
of rotation in the plane. The orientation is then fully specified if we specify one angle with
respect to some direction fixed in the tangent plane. In order to do this systematically we
define two set of axes, one connected with detector and the other with the Earth.

1. DETECTOR AXES (X, y, 2)

With respect to the detector, the axes are chosen so that the detector arms lie in the (x, y)
plane with the x axis bisecting the two arms of the interferometer (Schutz & Tinto 1987).

In relation to the Earth the z axis points to the zenith with the (x, y) plane tangent to
the Earth at the site of the detector. The x, y axes are chosen so that the x axis makes an
angle y with the local meridian.

2. EARTH AXES (Xg, Vg, Zg)

The zg axis is chosen as the axis of the rotation of the Earth. The xg axis coincides with that
of the x axis of the SSB frame, i.e. the x;, axis. The SSB and the Earth axes are connected
by a single rotation angle ¥ about their common x axis (see figure 4).

In order to describe the detector orientation completely we need two more angles related
to its position on the Earth. Let o be the angle the line joining the centre of the Earth to the
detector makes with the spin-axis of the Earth, measured from the North pole. Hence o is
just the co-latitude. Let B be the angle between the plane containing the detector position,
the centre of the Earth and the zg, axis, and the (xg, zg) plane. The angle B is just the azimuthal
angle which keeps changing as the Earth rotates. Thus = By + @y, where m,, is the angular
velocity of the rotation of the Earth, and [, the value of B at t = 0. We now write the detector
tensor in the Earth frame. It is given by the equation

T
DEarth =C Ddetectorc, .- (4 1 8)
where C is the orthogonal matrix of transformation given by
cosoicosfcosy —sinPsiny —cosocosfsiny —sinfcosy sinocosf
C =|cosasinfcosy +cosPsiny —cosasinBsiny +cosBcosy sinasin 3

—sinoLcosy sinosin’y Cos O

... (4.19)

The components of the detector tensor in the Earth frame are as given below :
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Figure 4. The figure shows orentation of the detector on the Earth. The detector orientation is specified by the
angles (a, P, ¥) with respect to the Earth frame (xg, yg, zg) With zg as spin axis of the Earth. Here o is the colatitude,
B is the current longitude (B = B, + ®,,¢) and 7 is the angle the x axis of the detector makes with the local meridian.
The Eaith’s spin axis has eclipticity x (the equatorial plane of the Earth is inchined by an angle x with respect to
orbital plane of the Earth). These angles specify the orientation of detector in SSB frame The SSB frame and the
Earth frame have a common x axis. The x axis of the SSB frame is taken to lie along the line joining the Sun to
the Earth on 21 March (Vemal equinox). The z axis of the SSB frame is normal to the orbital plane of the Earth.

Dy xg = 2(cos a.cos B cosy — sin B siny) (—cos o.cos 3 siny — sin B cos v),

... (4.20)
Dy y. = 2(cos ousin f cos ¥ + cos B siny) (—cos o sin B siny + cos f cos y),
... (4.21)
D,y = (-sin® o sin 27), .. (4.22)
Dy .y = [(cos a.cos B cosy — sin B sin y) (—cos o sin B siny + cos B cos y)
+ (—cos o cos f3 sin Y- sin B cos ) (cos a sin B cos Yy + cos B sin Y)],
... (4.23)
Dy, = [(cos ocos B cosy — sin B siny) (sin o sin )
+ (—cos o cos B sin y — sin B cos y) (=sin o cos V)], ... (4.24)
Dy, = [(cos asin B cosy + cos P sin y) (sin o sin y)
+ (—cos o sin B sin ¥ + cos B cos y) (-sin o cos Y)]. ... (4.25)
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The spin axis of the Earth makes an angle ¥ with z;, axis of the SSB frame (i.e. equatorial
plane of the Earth is inclined by an angle k with respect to the orbital plane). So in order
to get the detector tensor in the SSB frame one more rotation namely, k rotation is needed.
The rotation matrix is

1 0 0
Rx)=|0 cosx -sink|. ... (4.26)

0 sink cos K

The detector tensor components in the SSB frame are listed below :

Dy, x, = 2(cos o cos B cos y — sin P sin ¥) (—cos o cos B sin y — sin B cos ),
Dy, = cos® k[2(cos o sin B cos y + cos P sin )

X (—cos o sin P sin y + cos P cos V)]

+ sin® xk[-sin® o sin 27]

+ (sin 2x) [(cos o sin B cos ¥ + cos B sin ¥) (sin a sin )

+ (—cos o sin P sin y + cos P cos ¥) (-sin o cos Y)], ... (4.27)

D,,., = sin® k[2(cos o sin B cos y + cos B sin )
X (—cos o sin B sin y + cos B cos V)]
+ cos? k[-sin’ o sin 2y] — (sin 2K) [(cos o sin B cos y + cos B sin )
X (sin o sin Y) + (—cos o sin P sin y + cos B cos 7)
X (—sin o cos Y)], ... (4.28)

Dy, = cos K[(cos o cos B cos y - sin P sin 7)
X (—cos o sin B sin y + cos B cos )
+ (cos o sin B cos Y + cos P sin )
X (—cos o cos B sin ¥ — sin B cos V)]
+ sin K[(cos o cos B cos y — sin P sin ¥) (sin o sin 7)
+ (—cos o cos B sin Y — sin B cos Y) (=sin o cos V)], ... (4.29)

Dy, ,, = -sin x[(cos a cos f cos Y - sin B sin )
X (—cos o sin B sin y + cos B cos Y)
+ (cos o sin B cos y + cos P sin vy)
X (—cos o cos B sin Y — sin B cos )]
+ cos K[(cos o cos § cos Y — sin P sin y) (sin o sin ¥Y)
+ (—cos o cos P sin ¥ — sin B cos ¥) (=sin o cos V)], ... (4.30)

Dy, ,, =~ (cos K sin K) [2(cos o sin B cos v + cos B sin ¥y)
X (—cos o sin P sin y + cos B cos )] + (cos ¥ sin X) [-sin® o sin 2v]
+ (cos 2%) [(cos o sin B cos ¥ + cos P sin y) (sin & sin Y)
+ (—cos o sin B sin y + cos P cos y) (-sin o cos Y)]. ... (4.31)
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All these calculations were performed with the help of the symbolic manipulation package .
‘Mathematica’. This completes the discussion about the wave and detector tensors. In the
next section we discuss the response of the detector.

5. Response of the detector in the SSB frame

Since the wave and detector tensors are known in the SSB frame, the response of the
detector is just a scalar product of these two STF tensors. From equation (4.5),

R(t) = Wysg Dssp i/, .. (5.1)

where ¢ is the time when the signal is detected at the detector. We define the barycentric time
t, as the time measured by a clock situated at the centre of SSB frame. For a given phase
of the wave the SSB frame will register a time #,. Since the detector is not at the origin of
the SSB frame the same phase of the wave will be registered at different time ¢, at the detector.
The time ¢ appearing in the response below is the time measured at the detector site. We
have,

t=1ty — A’C'” - ’“"(2)'”, .. (5.2

where Ar is the change in radius vector from initial position to the current position at time
t, To(0) the radius vector from the centre of SSB frame to the initial detector position and 7
the unit vector in the direction of the source. The relation between barycentric time and
detector time is given in appendix C. The response can be expressed as linear combination
of the two polarizations,

R = F.h(5) + Fh (D), ... (5.32)

where F, and F, are fairly complicated functions of 0, ¢, vy, o, B, v, X and are given as
below:

F, =L [{(cos y cos ¢ — cos 8 sin ¢ sin y)*

— (cos ¥ sin ¢ + cos 8 cos ¢ sin y)?}
X {2(cos o cos B cos Y — sin P sin ¥)
X (—cos o cos P sin y — sin B cos )}]

+1 [{(~sin y cos ¢ — cos 8 sin ¢ cos y)*

— (-sin y sin ¢ + cos 6 cos ¢ cos \|I)2}

x [cos? k{2(cos o sin B cos v + cos P sin ¥)
X (—cos o sin P sin y + cos P cos Y)}
+ sin® k{-sin® o sin 2y}
+ (sin 2K) {(cos o sin P cos ¥ + cos P sin y) (sin a sin 7y)
+ (—cos o sin B sin y + cos B cos ) (-sin o cos Y)}]] +

Continued
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++ [[~sin? 8 cos 2¢] [sin? k[2(cos o sin B cos Y + cos B sin )
X (—cos o sin B sin y + cos B cos V)] + cos? 1([—sin2 o sin 27y]
— (sin 2x) [(cos o sin B cos ¥ + cos P sin y) (sin @ sin v)
+ (—cos o sin B sin y + cos B cos ) (-sin o cos Y)]]]
+ [[(cos Y cos ¢ — cos O sin ¢ sin y)
X (—sin Wy cos ¢ — cos B cos ¢ cos )]
— (cos y sin ¢ + cos O cos ¢ sin )
X (=sin ¥ sin ¢ + cos 6 cos ¢ cos )]
X [cos k[(cos o cos B cos ¥ — sin B sin ¥y)
X (—cos o sin B sin Y + cos B cos )
+ (cos o sin B cos ¥y + cos B sin )
X (—cos o cos B sin y — sin P cos y)]
+ sin k[(cos o cos B cos y — sin B sin ¥) (sin o sin Y)
+ (—cos o cos B sin Y — sin B cos §) (-sin o cos Y)1]]
+ [[(cos Y cos ¢ — cos O sin ¢ sin W) (sin O sin ¢)
+ (cos y sin ¢ + cos O cos ¢ sin y) (sin 6 cos 0)]
X [-sin k[(cos o cos B cos y — sin B sin )
X (-cos B sin B sin y + cos B cos )
+ (cos o sin  cos Y + cos P sin )
X (—cos o cos B sin y ~ sin B cos ¥)]
+ cos K[cos o cos B cos y— sin B sin ¥) (sin o sin )
+ (—cos o cos B sin ¥ — sin B cos }) (-sin o cos 7)1]]
+ [[(—sin Y cos ¢ — cos O sin ¢ cos y) (sin O sin ¢)
+ (=sin Y sin ¢ + cos 6 cos ¢ cos ) (sin O cos ¢)]
X [~(cos x sin k) [2(cos o sin B cos ¥ + cos P sin 7)
X (—cos a sin B sin y + cos B cos V)]
+ (cos K sin x) [~sin® o sin 2¥]
+ (cos 2K) [(cos a sin B cos ¥ + cos B sin v) (sin o sin 7)
+ (—cos o sin B sin y + cos B cos ) (-sin o cos Y)]1], ... (56.3b)

and F, = [[(cos Y cos ¢ — cos O sin ¢ sin ) (cos ¥ sin ¢ + cos O cos ¢ sin )]
X [2(cos o cos B cos ¥ — sin B sin vy)
X (—cos a cos P sin ¥ — sin B cos y)]]
+ [[(—sin Y cos ¢ — cos O sin ¢ cos V)
X (=sin Y sin ¢ + cos O cos ¢ cos Y)]
X [cos? k[2(cos o sin B cos ¥ + cos B sin 7)
X (—cos o sin B sin y + cos B cos V)] +

Continued
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+ sin? k(-sin’ o sin 2y] + (sin 2K)

X [(cos a sin P cos y + cos P sin ¥) (sin o sin ¥)

+ (—cos o sin B sin ¥ + cos B cos y) (-sin o cos 7)]1]]
+1 [[-sin® 6 sin 2¢]

x [sin? ¥[2(cos o sin B cos ¥ + cos P sin 7)

X (—cos o sin P sin y + cos B cos Y)]

"+ cos? k[-sin® o sin 2y] — (sin 2K)

X [(cos o sin B cos ¥ + cos P sin y) (sin o sin ¥y)

+ (—cos o sin P sin ¥ + cos P cos ) (-sin o cos il
+ [[(cos Y cos ¢ — cos O sin ¢ sin W)

X (—sin ¥ sin ¢ + cos O cos ¢ cos V)

+ (—sin y cos ¢ — cos O sin ¢ cos )

X (cos Wy sin ¢ + cos 0 cos ¢ sin Y)]

X [cos k[cos o cos B cos y — sin B sin )

X (—cos o sin B sin Y + cos B cos Y)

+ (cos o sin B cos Y — cos B sin ) (—cos o cos P sin v — sin B cos V)]
+ sin k[(cos o cos B cos y — sin B sin ¥) (sin o sin )
+ (~cos 0. cos P sin y — sin B cos ¥) (=sin o cos 7)1]]
+ [[—(cos Y cos ¢ — cos O sin ¢ sin ) (sin 6 cos ¢)
+ (cos ¥ sin ¢ + cos O cos ¢ sin YY) (sin O sin ¢]

X [-sin K[(cos o cos B cos ¥ — sin B sin )

X (—cos o sin P sin 7 + cos B cos )

+ (cos a sin B cos Y + cos P sin ¥) (—cos o cos B sin y — sin B cos )]
+ cos K[(cos o cos B cos y — sin B sin Y) (sin o sin )
+ (—os o cos P sin ¥ — sin B cos ¥) (=sin o cos )1]]
+ [[(=sin Y sin ¢ + cos 6 cos ¢ cos ) (sin O sin )
— (-sin Y cos ¢ — cos O sin ¢ cos Y) (sin O cos )]

x [(—cos K sin x) [2(cos o sin B cos Y + cos P sin )
X (—cos a sin P sin y + cos B cos V)]

+ (cos K sin ¥) [-sin®

o sin 2y] + (cos 2x)
X [(cos o sin B cos y + cos P sin ) (sin o sin ¥)

+ (—cos o sin P sin y + cos B cos 7) (=sin o cos 1)1]]. ... (5.3¢)

We note that the total response is a function of several angles arising from the various
orientations comprising the motion of the detector relative to the source. It is a function of
the position of the source, and the orientation of the detector on Earth, orientation of the spin
axis of the Earth and the orientation of the orbital plane. If we assume that the source emits
a wave of constant amplitude and frequency, the response gets modulated due to the motion
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of the detector. If we assume that the source is fixed in the sky, then the response is both
frequency and amplitude modulated. The response will show a constant Doppler shift, if the
source is in uniform motion, or when the motion can be considered to be approximately
uniform over the period of observation, usually ~107 sec. We discuss now two modulations
appearing in the response, namely, (a) Frequency modulation (FM), and (b) Amplitude
modulation (AM).

(a) Frequency modulation : It arises due to translatory motion of the detector acquired
from the motion of the Earth. We have only considered two motions of the Earth namely,
its rotation about the spin axis and the orbital motion about the Sun. Hence the response is
doubly frequency modulated with one period corresponding to 1 day and the other period
corresponding to a year. The FM smears out a monochromatic signal into a small bandwidth
around the signal frequency of the monochromatic waves. It also redistributes the power in
a small bandwidth. The study of FM due to rotation of the Earth about its spin axis, for one
day’s observation shows that the Doppler spread in the bandwidth for 1 kHz signal will be
0.029 Hz. The Doppler spread in the bandwidth due to orbital motion for one day observation
will be 1.74 x 107 Hz (Schutz 1991). The consequence of the Doppler spread in signal
detection will be discussed elsewhere separately. Since any observation is likely to last
longer than a day it will be very important to incorporate this effect in the data analysis
algorithms.

(b) Amplitude modulation : The amplitude modulation arises due to the anisotropic
response of the detector, i.e. the detector possesses a quadrupole antenna pattern. For a given
incident wave, a detector in different orientation will record different amplitudes in the
response. The functions F, and F, appearing in the expression of the response completely
characterise AM for the two polarizations. Since the expressions for F, and F, are quite
complicated, we will consider some special cases to get some idea of AM. For the ideal case
when the wave is optimally incident on the detector F, and F can individually have maximum
value of unity.

We consider the following special cases : For cases I to III the wave is taken to travel
in the positive y, direction of the SSB frame.

For case I, the detector is situated on the equator with one arm pointing along it and
another along the North-South direction.

(a)a:%, Bo=0 v=L and e=-"2£, $=0, y=0.

47
This gives,
F, = £ [(1 + sin® x) sin® (1) + cos 2K], ... (5.4)
F, = —% sin K sin (20,4,7). ... (5.4b)

T T T T
b) a ==, B =0, y=*, nde___’q)__,],_o.
( ) 2 0 4 a 2 4
The p()larizati(m of the wave is rotated l)y 45° from that of case (a) We get,

F, = £ sin x sin Qwy10), ... (5.5a)
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E. = L[(1 + sin? ) sin? (0, 1) + cos 2k]. ... (5.5b)

For case I, the detector is situated on the equator with the arms symmetrically placed
about the North-South direction.

=2 By=07y=0ad 0=2 ¢=0, y=0.

For this case,

F, = —% sin 2K cos (0, ?), ... (5.6a)

Fy = —cos K sin (0y?). ... (5.6b)
For all the above cases the AM results in about 40% drop in the amplitude of the signal as

compared to optimal incidence (i.e. F, or F, = 1).
For case III, the detector is situated at the North pole.

a=0, Bp=0, y=0, and ezg, 6=0, y=0.

And we have,

F, = -1 (1 + sin? «) sin Q1) ... (5.72)

Fy

sin ¥ cos (2m1). ... (5.7b)

There is approximately 57% drop in the amplitude of the signal as compared to optimal
incidence.

For case IV, the wave is incident along the spin axis of the Earth, with the detector at
the North pole. The wave is therefore incident normally on the detector.

=0, PBp=0, y=0, and 6 =%, ¢ =0, y=0.
F, = —sin (20,1), 7 ... (5.8a)
Fy = cos (20d). .. (5.8b)

This case corresponds to the maximum possible response of the detector.

In the context of signal detection the FM and AM play a very important role. This can
be seen as follows. Suppose we take a monochromatic signal recorded in the data strcam
without any FM or AM, a straight forward Fourier transform of the data would result in a
peak in the Fourier domain of height 7/2, where T 1s the total observation time. The effect
of both modulations is to ‘spread out’ the peak thus reducing the height of the peak. The
effect of FM is however much more severe. As our computations show [this will be published
elsewhere] just taking account of the rotational motion of the Earth, the peak gets dispersed
over a frequency band Af given by (Aflf;) = 2nfyR/c, where f; is the frequency of the signal,
R the radius of the Earth and ¢ the velocity of light.
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6. Concluding remarks

We have considered an almost spherical object, spinning about an arbitrary axis emitting
gravitational waves. We have then calculated the quadrupole wave form, and specialised to
the case of a spheroid whose axis of symmetry makes a non-zero angle with the axis of
rotation. The elegant formalism of Gel’fand functions, STF tensors is applied in obtaining
the results.

Further, we have computed the response of a gravitational wave detector situated on
Earth. Since the observation times for obtaining an appreciable signal-to-noise ratio are of
the order of a few months, the response is calculated by taking into account the rotational
and orbital motion of the Earth. Since these are not the only motions the Earth indulges in,
other motions such as the Earth-moon motion may have to be included in computing the
response; in fact those motions which have bearing on signal detection should be taken into
account in computing the response. We have here analysed the response under a fairly
general setting in which the wave direction and polarization, and the detector position and
orientation are arbitrary. In this computation we have availed of the formalism based on
expressing the detector and the wave as STF tensors and the response as their scalar product.
Since the response of the detector is not isotropic, in fact quadrupole, the recorded response
varies in amplitude as the detector changes the orientation with the motion of the Earth.
Further, the response is Doppler shifted, the Doppler shift depends on the detector, wave
parameters and the parameters governing the motion of the Earth. The data analysis problem
is therefore quite complex and efforts are on way (Schutz, Kanti & Dhurandhar) for making
inroads towards the solution to this very important problem. One way is to study the Fourier
transform of the signal and see how this can be used in developing good algorithms. The
‘stepping-around the sky’ method developed by Schutz is another way to tackie the problem

of the all-sky, all-frequency search for pulsars. Work in this direction is in progress (Jones’
Ph.D. thesis).
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APPENDIX A

Spherical tensors

1 i 0 1 - 0
n.1 (15|, _ 221 15\ ;1 o
=g | b0 Z 4\2m |
0 0 0 0 0 0
0 0 1 0 0 -l
a_ 1 [15 2-1_ 1 |15 0
Ym0 7 iV | ° l
1 i 0 -1 g 0
-1 0 0
yo=L |3 1o -1 o0
7 2 V4n
0 0 2

%12111’11,,’1 — Ylm(e’ ¢)

where 7 = (sin 0 cos ¢, sin 0 sin ¢, cos 0)-
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APPENDIX C

Frequency modulation

In order to study frequency modulation of a monochromatic plane wave, one needs to
calculate Doppler shift due to rotation and orbital motion of the Earth in the SSB frame. For
this, we need to know relative velocity between the source and detector. The angles 6, ¢ give
the detection of the incoming wave in the SSB frame. The radial vector r,, in the SSB frame
is given by

Tiot = [A cOS Wyt + R Sin 0L cOS @,y

A sin @ty + R sin o sin @, cos K — R cos o sin ¥,

R sin o sin O, Sin K + R cos o cos K], ... (CD

where A is distance from the centre of the SSB frame to the centre of the Earth, R the radius
of the Earth, and unit vector in the direction of source 7 = (sin 6 cos ¢, sin 8 sin ¢, cos 0).
Therefore, total Doppler shift due to rotation and orbital motion of the Earth in the SSB
frame will be :

Tot - 11

Aw . .
= { o sin O sin (O — Worpty)
c c

Rw . . . .
+ Lo sin o [sin B (COS Wyoif, COS K Sin ¢ — cOS O Sin W, 2p)
c
—+ COS W}, SiN K COS G]}, ... (C2)

where #, is the time measured by a clock located at centre of the SSB frame. The time ¢
registered by the detector for the same phase of the wave is given by

th = = - =
t=t, —J. o g Tod©)n ... (C3a)
0 c c

_Afgen  ha(0)n

C C

=1, ... (C3b)

where AF = F(fp) — hi(0) is the change in the radial vector from initial to current position
at time #,. The last term, which is a constant, can be eliminated by choosing the zero of the
detector time appropriately.
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