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Abstract. This paper is the continuation of our paper (I) (non-resonance case).
In the present paper, parametric and main resonance have been studied by BKM
method; and also the half width of the chaotic separatrix has been estimated by
Chirikov’s criterion. Through surface of section method, it has been observed
that the solar radiation pressures, the eccentricity of the orbit and mass-distribution
of the satellite play an important role to change the regular motion ipto the
chaotic one. Interestingly, the phenomenon of period-3 which implies chaos, has
been witnessed in this mathematical model.
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1. Introduction

Goldreich & Peale (1966) obtained a pendulum-like equation for each spin-orbit state by
writing the equation of motion of the planar oscillation of a satellite in terms of resonance
variables and eliminating the higher frequency non-resonant terms through averaging. They
found that (B — A)/C << 1, (A, B, C are the principal moments of inertia of the satellite at
its centre of mass) and eccentricity of the orbit (e) determine the strength of each resonance.
Wisdom, Peale & Mignard (1984) have studied the same spin-orbit coupling in the motion
of Hyperion for those cases where averaging fails. Chirikov (1979) predlcts the presence of
large chaotic zone through the resonance overlap criterion.

Recently Bhatnagar ef al. (1992 1) have studied the planar oscﬂlatlon of a satellite under
the influence of the solar radiation pressure; and have obtained the perturbed pendulum-like
equation. Through Melnikov’s method they have shown the non-integrability of the non-
linear rotational equation of motion. Also by taking the solar radiation pressure parameter
(¢) of the order of eccentricity of the orbit (¢), by BKM method they have observed that the
amplitude of the oscillation remains constant up to the second order of approximation.
Finally they have also observed that the parametric and main resonance occur at @ = *1,

= *1/2 and w = I/K; K € I - {0}.
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Here, in sequel to that we have studied the parametric and main resonances at ® ~ %1,
® ~ *1/2 and ® = +1/K by BKM method. Through Chirikov’s criterion we have estimated
the half width of the chaotic separatrix. Through surface of section method we have observed
that by varying the solar radiation pressure parameter some of the regular trajectories are
captured into the chaotic zone. Eccentricity of the orbit and mass-distribution of the satellite
also seem to be effective to change the regular motion into irregular one. In this mathematical
model we have observed the phenomenon of the period-3 which implies chaos.

2. Equations of motion

Let us consider a rigid satellite moving in an elliptic orbit (semi-major axis a, eccentricity
e) around the Earth under the influence of the solar Yadiation pressure F,, = (1 - q), F,
being solar gravitational attraction force. In general g = 1 and so 0 < 1 — g << 1. The satellite
is assumed to be triaxial ellipsoid with principal moments of inertia about the spin axis
which is regarded as one of the principal axes. The torque caused by the solar radiation
pressure is assumed to be perpendicular to the orbital plane (centre of resultant pressure lies
on x’-axis, figure 1 of paper I).

Let the instantaneous radius be r, the true anomaly o, the orientation of the satellite’s
long axis ¢. Then ¢ — o0 = 0, measures the orientation of the satellite’s long axis relative to
the satellite’s radius vector. The equation of motion of the planar oscillation of the satellite
is

ﬂ+”—2sin2(¢—a)+esm¢—o 2.1
de* 2193 N
where
n2=3(u); L=1+ecosa
C r

and € is proportional to solar radiation pressure torque. The above equation reduces to
equation (2.1.1) of our paper (I) if we take the true anomaly o as the independent
variable.

3. Resonant planar oscillations of a satellite

Taking 20 = m, ® = n, oL = v, € = €;¢, equation (2.1) can be written as in Bhatnagar et al.
(1994)

2

2
% + o2n = 4esinv + 2esin0% —ecosU—ZTg
—2¢,e sin (u + gj + @* (N - sinn). .. (3.1

In equation (3.1) the non-linearity (n — sin 1) is sufficiently weak and therefore it can also
be taken of the order of e. So, by taking & = o, equation (3.1) becomes
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d’n . . dn d’n
Y + n:e[4smu+2smn%—cosnﬁ
—2¢, sin (u + g) +a (n - sin n)] ... (3.2)

In paper (I), while studying the non-resonance case, we observed that the system experiences
resonances at ® = *1, = 1/K, K € I — {0} and the parametric resonance at @ = *1/2.

Now, we propose to study the asymptotic solution near the resonances w = %1,
o = *1/K and ® = +1/2 making use of the BKM method. The resonances ® = +1, w = £1/2
are being studied separately as the study cannot be deduced from w = 1/K. For e = 0, the
generating solutions are

M = acos y, \y:%+6 .. (3.3)

where, amplitude a and phase 6 are determined by the following equations :

da

%_: eAl(a, 6)

do _ 1

o ® z + eBy(a, 0)

dy _ 1,49 _

To =%t oo =0+ eB(a6) ... 3.4

where A (a, 0), Bi(a, 0) are particular solutions periodic with respect to 0. Using (3.3) and
(3.4), we find dn/dv and d*n/dv? and then substituting the values of 1, dn/dv, d*n/dv? in
(3.2) and equating the coefficients of e, we get

1) 94, ( 1)831 .
_ = | = _ _ - — | =2 A
{(m K) % 2aBl(n} cos Y {a ® % ) 30 + 204, ; sin y
: =4sinD—Zamsinnsinq!+am2,cosucosw+ocacosw

— o sin (a cos ) —2¢; sin (n + %cos \u) ' ... (3.5)

¢

using Fourier expansions given by

hll

sin (@ cos y) = 2 Z (=% Tyi(a) cos (2k + 1)
k=0

cos (a cos W) = Jo(al2) + 2 Z (=1)% Tp(a) cos 2k y
k=1
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where, Ji, k = 0, 1, 2, ... stand for Bessel’s functions; in (3.5) and then comparing the
coefficients of cos ¥ and sin y, we get the following cases :

Case a : When K =1

@-1) 2 _ 2008 = ofa - 21(@) - [4 + 26 1) - Jo(%)j] sin 6,

a(w - 1) 2B aBl + 204 = [4 - 251[10[%) +Jz(§m cos 0. ... (3.6)

Solving equations (3.6), we get

_|__4 2g; g) 251-’0( )
Al‘[ (o+1+30)—1J2(2 torilz)es®

s 4 281 a)_ 2E1 a
31—2 ((a-2J(a) + [a(w+1) a(3w — 1) 12(2) a(@+1) 0( )} sin®

Case b : When K = -1

(0 + 1) —2amB; = of(a - 2Jy(a)] +[4 + 231{12(-;1)— JO(%)H sin O,

a(o + 1) %’;—1 + 204, = [4 + 231{12(%) - JO(%)H cos 0. .. (3.7

Solving equations (3.7), we get

A [ _2eb@)  2ed@)] o
ow-1 3w+ 1 w-1
o 4 2ed)al2)  2edy(al2)] .
= _ — 20(@)] - - 0
Bi=-3,5 18- 2] [a(m D T aGe+rD)  aw-1 |

Case ¢ : When K =2

(o) - —;—)% - 2a0B; = afa - 2Jl(é)) + [am(% - 1)
+ 2¢g (J{%) - JI(%D] cos 26,
a ((o ) 88163)1 + 204 = [281{.]1(%) + J_;(%)}

—a(ﬂ(% - 1)} sin 2. ... (3.8)
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Solving equation (3.8), we have

A = [—am(% - 1) + %3(_61/12—) + 281.]1(%)] sin 20,

2e1J5(al2) 2e
B = --% ~2J —(9—1)—#— =1 (E) .
) 740 [a 1(a)] +|: ® 5 (40 - 1) + p Ji 5 )| €08 20

Case d : When K = =2

((n + %)% - 2a0B, = o (a - 2J(a))
+ [aw (—(29 + 1) + 2¢g; (13(%) - J{%Djl cos 26,
a ((o + %) % + 204, = [281 (Jg(%) + JI(%D

- aw, (% + 1)} sin 28. ... (3.9)

Solving (3.9), we get

[ rolg)e ol ]
Al_|:4co+lj3(2 2€1J12 +am > + 2 || sin 26,

281 (a) 281 ((1) (0] o
bed SE Ly == “ oA 2 — — i
B1 |: ( 1) J3 J] + (0 + ) cos 20 [a 2]1(61)]

Case e : When K =2m+1, m#0, or -1

dA _ :
(0- %) 58 - 2008 = o la— 270 + (DD 2605, (£)sinke,

0B _
a ((n - %) 39—1 + 204 = 2g(-1)* D2 cos k@ Jk_l(%). ... (3.10)

Solving equations (3.10), we get

_ 2g(-1)* D2 _(al2) cos k©
- Qo-Ko+1) ’

2g,(-D)* D2 1 _(al2)sink® g
B = - ~ 2J(a)).
1 220 - Ko + 1) o (@ 20(a)
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Case f: When K=2m, m#1, or-1

(m 1 )% — 2a0B, = afa - 2Jy(a)] - 2&(-D)¥/? Jk+1(%)cos k8,

" KJ 08
oB _ :
a((o - —}E) 8_91 + 2041 = F2g;(-1)*? ]k+l(%) sink®.

... (3.11)

Solving equations (3.11), we obtain

_261(=1)*'% sin k6 Ji,1(al2)

QoFKoxl) ’
_281(-D*? Jy,(al2) cosk® o
b= aQo*Kw-1) Tag (@~ 2i(a).

Substituting the values of A, B, for different cases in equations (3.4), we obtain two non-
integrable differential equations. However, one can visualize the shape of the resonant curves
for different cases by numerical integration of these equations.

4. Estimation of resonance width

In (2.1) if the units are so chosen that the orbital period of the satellite is 2 and its semi-
major axis is 1, then the dimensionless time is equal to mean longitude. As r and o are 2n-
periodic in time, second term in (2.1) can be written as Fourier-like Poisson series, Wisdom
et al. (1984).

2 2~
% + % H(% ejsin (2v —mt) + €esinv = 0.

m=—oo

Here we have changed the symbols as
o=, n = .

The coefficients H[(m/2), e] are proportional to exp [2(I(m/2)l — 1)] and tabulated by Caley
(1859) and Goldriech & Peales (1966); when e is small H{(m/2), e] = (1/2)e, 1, (7/2)e for
m/2 = 1/2, 1, 3/2 respectively. The half integer m/2 is denoted by p. The resonance is witnessed
for I(dv/dt) — pl << 1/2. In such a situation it is advantageous to rewrite the equation of
motion in terms of slowly varying resonance variable r, = v — pt

& o} o
—3 + SLH(p, ) sin 2, + L 2 H(p +2 e)sin 2y, - nt)

n#0

+€sin (r, + pt) = 0.
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Non-linear planar oscillation of a satellite in elliptical orbit 281

When @y is sufficiently small, the above equation is approximately

2 2
drp+%

=zt H(p, e) sin 2r, + €sin (r, + pt) = 0. ... 4.1

Equation (4.1) can be studied under the cases € = 0 and € # 0. The case € = 0 has been
studied by Wisdom et al. (1984). When ¢ # 0, equation (4.1) represents the motion of a
disturbed pendulum given by

2
4%+ 1) = mg'(x, 1)
t .. (4.2)
where
f'(x) = K sinx,
K! = 0jH(p, e) <<, m=-2e<< 1, X =2y,

and
g’(x, 1) = sin (—% + pt).
The unpertufbed part of (4.2) is
d’ ) —
d_l';:- +f ()C) =0.

For this equation we have

dx Y
(Ej =C + 2K? cosx

where C is a constant of integration. There are three categories of motion depending upon
C >=< 2K{

Category (i) : C > 2K}

In this case unperturbed solution is
x=1+ C sinl+ OCP

where

K2
l=l’lt+El, C1=—;'
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and

1 1 2n dx

n 2m ), (C+2KZcosx)?

C, and g, are arbitrary constants and / is an argument. Here we may observe that dx/dr #
0 and the motion is said to be of revolution.

In case of the perturbed equation by the theory of variation of parameters (Brown &
Shook 1964), we have

4G _m ox

dt v alg(x’t)’

a_ . _mox

dt_n » aC,lg(x,t), ... (4.3)
where

-0 [, _ox]ox % dx . __n

Y736 [” BZ:I ol “ "oz ag T T2¢
So, we get

dc, _ 2mK{ . (x )~
Frialia— sin 2+pt =0.

Since both m and K; are small quantities, the term mK? is of the third order and therefore
rejected.

dg
Thus —=0
dt
or C, = const. up to second order of approximation.

and

In the first approximation taking n = ng, and rejecting K;€; being a term of the second
order, the above equation can be written as

2
-‘i—lsmsinl{l+5}
dt 2 no
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If we take I[(1/2) + (Ki/ng)] = x, then the above equation becomes

2
%+esinx:0 . (4.9
' _ 2

or i =C, + 2Kj5 cos x.

Equation (4.4) describes the motion of a pendulum. We get again three types of motions.
Type (i) is that in which dx/dt is never zero. Type (ii) is that in which dx/dt = 0 at X = 0
or 1. For type (i) our solution is

K2
x=Nt+az+N—22+sin(Nt+ez)

where K2 = ¢,

_1- 1 2n dx

N 21 ), (G, + 2K, cos )

C, and €, are arbitrary constants.
In the first approximation N = Ny and the solution is

2
X=X, +%sinXo,

where
Xy = Not + ¢&5.

This is the case of revolution.
For type (ii) the solution is

X =Asin (p't + Ay)
where
p=Ae

A and A being arbitrary constants. This is the case of libration.
Type (iii) occurs when C, = 2K3 = 2¢, the solution is

x+7=4tan" exp (WE t + 0)

where 0 is an arbitrary constant and the other have a particular value.
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When t - * oo, x = £ and at both places dx/dt = 0 and all higher derivatives of x
approach to zero. Near this point x one of the limits tends to £ m, ¢ tends to become an
indeterminate function of x. This is the case of infinite period separatrix which is asymptotic
backward and forward to unstable equilibrium. Thus the results of type (i), type (ii), and type
(iii) enable us to conclude that the Solar radiation pressure plays a significant role. It may
change a revolution to libration (type ii) or to infinite period separatrix (type iii).

Category (ii) : C < 2K}
In this case unperturbed solution is

x = C sinl + O(CY),

where

l=nt+£1,n=K1[l - %012 + O(C?)]’

C, and €, are arbitrary constants.
In case of the perturbed equation, again using the theory of variation of parameters, we
get

% = %coslsin(% +pt)
dl

o = Iglnél sin [ sin (% +pt)

d*l _ —-mp l-¢&
F:{qqsmlcos( - )

in the first approximation, if n = ng and C; = Cy, then

Lo 2P G I cos (l — 81). ... (4.5

As a special case, let us assume that (I — €)/ng = mm, ny € 1. When n; is odd then (4.5)
becomes

2 ) -m
%—g— +K32 sinl = 0, WhereK32= FCI:) > 0,

which is again the equation of disturbed pendulum. As in previous case this equation also
gives us revolution, libration and infinite period separatrix motion.
On the other hand if n; is even then,

2
%ﬁlzl(%sinl
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Non-linear planar oscillation of a satellite in elliptical orbit 285

when [ is small, the solution of the above equation is

l=e

Category (iii) : C = 2K}
The unperturbed solution is

X+ 7 =4tan"!

Kat

eK1t+€10

where 0y is arbitrary constant and other having a specific value. This is the case of infinite
period separatrix which is asymptotic forward and backward to unstable equilibrium. We are
mainly concerned in this category of motion. In this category the nature of the unperturbed
solution does not change by taking into account the solar radiation pressure.

Near the infinite period separatrix broadened by the high frequency term into narrow
chaotic band (Chirikov 1979), for small ®,, the half width of the chaotic separatrix is given

by :

160

140 -

.00}

he)
n
aja

080 |

0.60 S

"0.20

-

- 1,52
o -.(‘505

. 136

—_ 1.23

Lavrt. =122

- 1,15

- =095

7

Tt eieni o 0,60

-« === 0,50

< =040

0.0

Figure 1. Surface of section for €, =0, ® =02, e =01.
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L -1 3 -mho/2

= = 4meghp e 0
P Ik 00
P

where g is the ratio of the coefficients of the nearest high frequency perturbing term to the
coefficients of the perturbed term and Ay = Q/® is the ratio of the frequency difference
between the resonant term (€2) to the frequency of the small amplitude libration (®).

For the synchronous spin orbit state perturbed by the solar radiation pressure term, Aq
= 1/wy, & = 2e/0g*H(1, e)

L-L _ dmeghd ™02 = _ 8RE
b
Ils CI)(S) eT:/Z(n()

wy =

w1, increases both with € and ®g. An estimate of @g at which the wide spread chaotic behaviour
can be observed is given by using the Chirikov’s overlap criterion. This criterion states that
when the sum of two unperturbed half widths equals the separation of resonance centres,

30 e —
2.0 :
p=3 |
D : C
L
ool y L 1 L L
0 10 2.0 3.0 4.0

Figure 2. Surface of section for €, = 00, 0, = 0.89, e = 0.1.
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.50
€20, P21
100 - i :
050 o S .
0.00F
dv .
P31 _
=0.501 .
-1.00 -
-1.50
-2 1 1 ! L |
-6.0 -40 - -2,0 0.0 2:0 4,0
' v

Figure 3. Surface of section for g, = 0.0, 01, 0.2, 0.3, 04, 05; ©, =0.2; e = 0.1

large scale chaos occurs. In the spin orbit problem the two resonances with the largest
widths are p = 1 and p = 3/2 states. Criterion becomes

wROJHT, €) + oROHGI2, &) = %
or
oo 1 __
O T 2 4+ Jide

For e = 0.3 large scale chaotic behaviour is expected when wy > 0.25. This is confirmed in
(Fig. 5). This figure is studied in detail in section 5.

5. The spin orbit phase space

It is known that most of the Hamiltonian systems give regular and irregular trajectories.
Henon & Heiles (1964) have shown that the phase space is divided into two regions in which
trajectories behave chaotically or quasi-periodically. One of the best methods to show whether
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a trajectory is chaotic or quasi-periodic is through the surface of section method. In our spin
orbit problem which is 2x periodic in dimensionless time, we have drawn surface of section
by looking at the trajectories stroboscopically with period 2n. The section has been drawn
with dv/dt versus v at every periapse passage. In the case of quasi-periodic trajectory the
points are contained in smooth curves while for the chaotic trajectories they appear to fill
up the area in the phase space in random manner. Since the orientation denoted by v is equivalent
to the orientation denoted by © + v. We have therefore restricted the interval from O to m.
The spin orbit states that are determined in the previous section are states where a resonance
variable Y, = v — pt librates. For each of these states dv/dt has an average value precisely
equal to p and v rotates through all values. If we take to the times of periapse passage, i.e.
t = 2mn, then each 7, taken modulo m will be simply v. This implies that a libration in 7,
will be a libration in v on the surface of section. Consequently quasi-periodic successive
points will trace a simple curve on the section near dv/dt = p. This will cover only a fraction
of interval from 0 to 7. In the case of non-resonant quasi-periodic trajectories all v, rotates
and successive points on the surface of section will trace a simple curve which cover all
values of v. For small values of ®y resonance states will be separated from non-resonant
states by a narrow chaotic zone. All these possibilities are shown in figure 1 to figure 5 for
various values of @y, e and €.

1.55

1.50 |- °

145

‘ 1.40 -

dv
dt

135

130

1,25

1 | [ |

1. 20
00E+000 2,0E+000 4,0E+000
v

Figure 1. Surface of section for €, = 0.2, @y = 0.2, e=0.1,p = 1.5.
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Figure 1 illustrates surface of section for €; = 0.0, @y = 0. ), e = 0.1, Equation (2.1) has
been numerically integrated for ten separate trajectories corresponding to p = dv/dt = 0.40,
0.50, 0.60, 0.95, 1.15, 1.22, 1.23, 1.36, 1.505, 1.52 and dv/dt has been plotted versus v at
every periapse passage. Trajectories illustrate the chaotic separatrices surrounding each of
these resonance states and some trajectories show that each of these chaotic zones is separated
from the other by resonance quasi-periodic rotation trajectories. We have plotted 500 successive
points for each quasi-periodic trajectory and 1000 points for each chaotic tra]ectory This
figure confirms results of Wisdom et al. (1984).

As @y is increased both the resonance widths and the widths of the chaotic separatrices
also increase. In figure 2 we have drawn surface of section for & = 0.0, ®y = 0.89 and
e = 0.1. It may be observed that chaotic region is very large surrounding all states from
p = 1/2 to p = 2. This confirms the findings of Wisdom et al. (1984). Please, note the change
in scale of figure 2 from figure 1. A total of ten trajectories of equation (2.1) are used to
draw this figure. In both figure 1 and figure 2 we have ignored the effect of solar radiation
pressure.

In figure 3 we have studied the effect of solar radiation pressure. Figure 3 illustrates 6
trajectories corresponding to € = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, in each case we have taken

3.00r

250

2.00t

p=d_1 1_50 pro==r.n o e . . . <% -,

wof. -

050_ 3 .

00 1 1 1 ]
0.0E. 000 2.0E.000 4.0E.000

I

Figure 5. Surface of section for €, = 0.0, wp = 0.4, ¢ = 0.3, p = 1.65, 1.60, 1.50, 1.45, 1.20, 1.0, 0.80, 0.60, 0.50,
0.30
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®p =0.2 and e = 0.1. It is observed that as we increase the value of € (solar radiation pressure
parameter) the regular trajectory corresponding to €; = 0.0 and p = 1.0 breaks up into chaotic
zones. This indicates that solar radiation pressure plays an important role in changing a
regular trajectory into chaotic one. ‘

Figure 4 illustrates the surface of section corresponding to p = 1.5, &; = 0.3, 0y = 0.2,
e = 0.1. This figure remarkably and explicitly indicates the period -3 which implies chaos.

As we increase the eccentricity both the resonance width and the widths of the chaotic
separatrices grow. In figure 5 surface of section for €, = 0.0, @y = 0.4, e = 0.3 has been
drawn for ten trajectories similar to trajectories shown in figure 1. It shows that change in
eccentricity may change the regular trajectory into a chaotic one.

6. Conclusions

From these studies we conclude that the solar radiation pressure plays a very significant role
in changing the motion of revolution into the motion of libration and infinite period separatrix.
We also observe that the regular motion changes into a chaotic one for some values of the
radiation parameter €; mass-distribution parameter wy, and the eccentricity e. Both the resonance
width and the widths of the chaotic separatrices grow with the increase in the values of y,
e and €;. This means that regular mass distribution, elongated orbit and the solar radiation
pressure on the satellite have significant effect on resonance overlap criterion which is in
excellent agreement with the numerical results.
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