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Magnetohydrostatic equilibrium in solar coronal arcades

Suresh Chandra and Lalan Prasad
Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007

Received 1993 January 6; accepted 1993 September 14

Abstract. We present a solution of magnetohydrostatic equations after including
the effect of gravity. For low values of the parameter B, there exist two solutions
for the common boundary condition at the base of the corona. These two solutions
correspond to two different magnetic configurations with different energies. The
high-energy configuration may become unstable due to physical conditions and
relax to the low-energy configuration, releasing an amount of the energy that
may be observed in the form of a solar activity, such as two-ribbon flares. When
the value of P exceeds the critical limit, the magnetohydrostatic equations have
no solution. If the system is forced to exceed beyond the critical limit, the
magnetic field may show a violent behaviour.
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1. Introduction

Observations of the Sun from orbiting satellites established that the solar corona is highly
structured by magnetic fields. These fields originate from eruption through the photosphere
(Parker 1977; Vaiana & Rosner 1978) and play an important role in solar activities (see e.g.,
Pallavicini 1989, and references therein). Some magnetized plasma structures in the solar
atmosphere (corona) appear to remain in a stable state on the time scales for days, weeks
or more until the equilibrium becomes unstable due to the change in the plasma and/or
magnetic pressures, and would initiate a flare. Therefore, the solution of magnetohydrostatic
(MHS) equations is of considerable interest. When the magnetic pressure is much larger than
the plasma pressure, the magnetic field can be assumed to be force-free. In order to explain
the phenomena such as solar flares, scientists tried to find out two solutions of a set of basic
equations under a common boundary condition at the base of the solar corona. For example,
Low & Nakagawa (1975), Low (1977) and Jockers (1978) solved analytically the case of
force-free magnetic fields, but could not succeed to get two solutions. Bim ez al. (1978) included
the plasma pressure and could succeed to get two solutions for the set of basic equations
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under a common boundary condition at the base of the corona. However, the effect of
gravity was not taken into account. Melville er al. (1983) extended the work of Bimn et al.
(1978) and included the effect of gravity. In another paper, Melville et al. (1987) used the
same idea to include the effect of gravity.in the work of Low (1977). However, their
expressions can only be applicable for the state of ideal gas. In the present investigation, we
present a solution of MHS equations after including the effect of gravity where the plasma
is not necessarily to be considered as an ideal gas. For low values of the parameter B, the
MHS equations are found to have two solutions for the given common boundary condition
at the base of the solar corona. These two solutions correspond to two different magnetic
configurations with different energies. The high-energy configuration may become unstable
and relax to the low-energy configuration releasing an amount of energy that may be observed
in the form of a solar activity, such as two-ribbon flares. A large two-ribbon flare is a much
more complex event and usually follows the eruption of active region filament (or prominence).
When B exceeds the critical limit, the MHS equations have no solution and magnetic field
may show a violent behaviour.

2. Approach of Melville, Hood and Priest

The basic MHS equations governing the equilibrium in solar atmosphere are

(VxB)xB/p-Vp-pgé, =0 (D
(V-B)=0 . ()
p = pRT/m . (3)

where B, p, P, T, |, R and m are the magnetic field, plasma pressure, mass density, kinetic
temperature, permeability of the medium, gas constant and molecular weight of plasma,
respectively. The acceleration due to gravity is directed opposite to the unit vector e,. In the
earlier work, for example, by Birn et al. (1978), Low (1977), Low & Nakagawa (1975),
Priest & Milne (1980), the effect of gravity was neglected and therefore, the term pge, was
not considered in the basic MHS equations. Melville, Hood and Priest (MHP) included the
effect of gravity by considering the term pge, in their basic equations.

Consider that the plane z = O represents the base of the solar corona and all physical
parameters vary in a two-dimensional plane (x, z). (Since the length of two-ribbon flare
configuration is much larger than its width, it is reasonable to consider two-dimensional
solution.) The magnetic field can be expressed in terms of the generating function A(x, z)
(Low 1977; Birn et al. 1978, MHP)

5 _ _ OA 4 5 0A
B = -3, ex +By(A) e, + aez. o @

The magnetic field (4) satisfies the condition (2). Putting (4) into (1) we get a set of
equations

1(y2404 .5 9By| 9 _
u[VAastzyax]+ax_o .. (5)
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aBy 04 9By 9a
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Since By is a function of A only, equation (6) is obviously satisfied. MHP expressed the
plasma pressure p as

p = f(A) e—Z/H ... (8

where H is the pressure scale height (= RT/mg). Using equation (8) in equations (5) and (7),
both equations reduces to the form

dB I (A)
1 2 y -z/H
_Ll l:VA+By BA] A =0 ... 9

where the ideal gas equation (3) is used. In the following section 3 we have discussed
another approach to include the effect of gravity.

3. Present approach

In order to include the effect of gravity, we considered (Prasad & Chandra 1992) the pressure
p in the form

p=f()+G@® .. (10)

where f is a function of A only, and G is a function of z only. It separates the effects of the
magnetic field and gravity which are independent of each other and it is not necessary to
express the plasma as an ideal gas. Using (10) in (5), we get

B,
. [VZA B, aA] + gﬁ 0 .. (1)
and using (10) in (7), we get
2, 0A 9By oA o 9A , 9G(2) _
m [V A== o + B, Y 34 az] +p(2) g(2) + %A 5, + 5 - 0. .. (12)
If we choose G(z) such that
aca;gz) - —p(2)g() .. (13)
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then (12) reduces to (11). The function G is given by
G(2) = —I p(z’) g(2’) dz’. .. (14)
0

Then the pressure at the base of the corona is given by

po = flA) . ... (15)

Now we express the variables in terms of the dimensionless variables (denoted by putting
bars on them)

Z=x/l, z=z/l, B=BIB,, A=AllBy, f(A)=Ff(A)po

where By and pg are characteristic values of field strength and pressure, respectively, at the
origin (z = 0) and / is the characteristic length associated with the variations on the photospheric
boundary. In terms of these, equation (11) reduces to

V24 + % —aj B,(A) + BF(A)] = ... (16)
5V 9% | 92
where Vi= 52 gf
_ 2up
and B= Bgo

where B is a parameter representing the ratio of the characteristic plasma and magnetic
pressures. For the sake of convenience, in the further discussion we would drop the bars
from all dimensionless variables. For example, equation (16) would be written as

v2a+ 1 — [B (A) + Bf(A)] = .. (17

In the present investigation, we considered

By(A) = constant ... (18a)
and fA) = e 1A ... (18b)
where 7y is another free parameter. Using (18) in (17) we find that

V2A - Be ™ = 0. ... (19)
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In order to transform it into a form that can be solved analytically, let us apply the
transformation

F=vA ... (20)
so that equation (19) reduces to

V2F - By?e® = 0. .. 2D
For the boundary condition at the base of the corona

F(x,0) =Inlx]|
a pair of analytical solutions of equation (21) is (Birn et al. 1978)

Fy52 = In [r cosh (2b,, ¢/n)/cosh (b ;)] ... 22)

where r = (3 + z%)!2, ¢ = arctan (x/z) and by, by(b, > b;) are two solutions of the equation

by  _ ny\B
cosh (by2) 2

.. (23)

The parameter B should always be a positive number. This situation can be understood
on the basis of the physical grounds that both the plasma pressure as well as magnetic
pressure are always positive quantities and therefore, B would always be a positive quantity.
For a positive value of ¥y, both the roots of (23) are positive numbers, if they exist. When
the value of 7y is changed to —y, both the roots of (23) would also change by their signs. For
v = 0.1, the variation of two solutions of (23) are shown in figure 1 as a function of (8. Here,
for B = 17.0 no solution of (23) exists. For other values of v, say ¥, the upper limit of B,

say B, beyond which no solution of (23) exists, is given by Ycy/Bc = +/17 = 0.41. Similar

figure can be obtained for the variation of the solution of (23).
Putting the reverse transformation, we get

R

Mz = =2 = % In [r cosh (2B 5 ¢/T)/cosh (b 2)]. .. (24)

The value of the generating function A remains constant along a magnetic line of force.
Therefore, for the given constant values of A and Y, the lines of force are the plots of the
equation

r cosh (2b;, ¢/n)/cosh (b, ;) = constant = C;. ... (25)
Figure 2 shows the lines of force corresponding to the solution by, Y= 0.1 and B = 10.0. The

lines of force obviously end at the corona. In order to present the evolution of a line of force
with B, we have plotted a line of force in figure 3 for y = 0.1, A = 10 and different values
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Figure 1. The variations of two results (b;, b,) as a function of B for y = 0.1 are shown. Here, beyond B = 17.0,
no solutions of equation (23) exists. When the value of y is changed to —, the values of the roots of equation (23)
would also change by their signs. For a given value of ¥, say ¥., the upper limut of B, say B, up to which the solution
of equation (23) exists, 1s given by Yc4/Be = 0.41. i
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Figure 2. The magnetic field configurations corresponding to the solution b, of equation (23b, v=0.1and B =100
are shown. The values of A are written near the field lines. (The parameters in the figure are dimensionless quantities).

of B. Figure 3 shows that the foot-points of the line of force are stationary and at the base
of the corona, and the height of the line of force increases with f. The lines of force corresponding
to the solution b5, Y= 0.1 and B = 10.0 are shown in figure 4. In this configuration also, the
lines of force end at the base of the corona. We found that in this case also, the foot-points
of a line of force are stationary and at the base of the corona. The height of the line of force
however, decreases with the increase of 8. Using (10), (13), (18b) and (24) the plasma pressure
is given by the equation
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Figure 3. The magnetic field configurations corresponding to the solution b, of equation (23), Yy=0.1 and A = 10
are shown. It can be noticed that with the increase of B, the foot-points of the line of force are stationary and at
the base of the corona, and the height of the line of force increases. (The parameters in the figure are dimensionless
quantities).
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Figure 4. The magnetic field configurations corresponding to the solution b, of equation (23), ¥y = 0.1 and B = 10.0
are shown. The values of A are written near the field lines. (The parameters in the figure are dimensionless quantities).

P12 = [r cosh (2b, 5 ¢/m)/cosh (b; ;)] — J. p(z’) g(@) d’ ... (26)
0
Thus, the pressure isobars given by the equation
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[r cosh (2b;, ¢/m)/cosh (bl,z)]‘2 - J p(z’) g(z') dZ = constant = C, ... (27)
0

are no longer along the magnetic lines of force. If the gravitational effect is neglected, the
pressure isobars become a long magnetic lines of force.

4. Discussion

Figure 1 shows that for the given value of ¥, and the common boundary condition at the base
of the corona, there are two possible magnetic configurations. The total energy of these
configurations defined by

B?.
Wiz = I (f - G(2) + 71)'%1} dv .. (28)

would be different. Here ¥’ is the adiabatic index. It can be easily shown that W, # W,. Therefore,
the configuration corresponding to larger energy may become unstable due to physical
reasons and relax to the low energy configuration, releasing an amount of energy that may
be observed in the form of a solar activity. The amount of energy released would depend
on the values of the parameters § and y. When this energy is small, the solar activity may
not be noticeable, but when the energy is large, the activity such as a two-ribbon flare may
be observable.

The increase in the value of parameter § means to increase the value of plasma pressure
and/or to decrease the value of magnetic pressure. For a given value of)y, when the value
of B is increased slowly, it reaches to a critical value beyond which no magnetic configuration
exists. At this critical point the magnetic field may erupt violently.

For isothermal case, soft x-rays observations would show up the structures of constant
density (Melville et al. 1983). For constant temperature and density, the pressure becomes
constant. Since the pressure isobars are no longer along the magnetic lines of force, therefore,
one should be cautious to interpret X-ray structures as magnetic loops.

5. Conclusions

We found that the MHS equations have a pair of solutions, if they exist, for the common
boundary condition at the base of the corona. After including the effect of gravity, the
pressure isobars are no longer along the magnetic lines of force, as it was the case when the
effect of gravity was neglected. The two solutions correspond to two different magnetic
configurations with different energies. The magnetic configuration with larger energy may
become unstable and relax to the low energy configuration releasing an amount of energy
that may cause solar activity, such as two ribbon-flares. For a given value of y, when P is
increased slowly a critical limit arrives beyond which no solutions of MHS equations exist
and the magnetic field may show a violent behaviour.
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