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Abstract. Stellar chromospheres and coronae may be heated by waves of various
types. Magnetoacoustic waves are one of them. Subphotospheric turbulence generates
various types of waves. Here the basic theory of generation, propagation and
dissipation of waves is briefly described. Heating of stellar atmosphere by
magnetoacoustic waves is reviewed. Because of our poor knowledge of sub-
photospheric turbulent motions the estimated wave fluxes seem to be erroneous
consequently the estimates of heating are also in error. The fast mode waves
suffer total internal reflection during propagation in the chromosphere. Unless
mode conversion to other waves occurs they cannot heat stellar atmosphere.
Thus mode conversion could play an important role in understanding the heating
of stellar chromospheres and coronae.
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i. Introduction

It is now well known that the solar chromosphere and corona lie in between two cooler
regions, namely photosphere and the interplanetary space (see, e.g. figure 1). Probably all
stars with the possible exception of A-stars exhibit such a behaviour. Chromospheres lose
energy predominantly by radiation and coronae by conduction, radiation and stellar winds.
To replenish these losses some source of energy must be present. The source cannot be
thermal because the thermal conductivity of the medium is very high and so within no time
(1-10° s; see e.g. Krieger 1978) the chromosphere and corona would attain photospheric
temperature. The source cannot be radiative because the matter density of the solar atmosphere
is too low to be opaque to solar radiations. The source could be either mechanical or
electrical or magnetic or their combination.

Various mechanisms have been put forward to explain this phenomena (see, e.g. Hollweg
1990; Narain & Ulmschneider 1990; Ulmschneider et al. 1991 and references therein). Since
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Figure 1. Temperature distribution in solar photosphere, chromosphere and corona.

the publication of these works many new developments have taken place. Our aim is two
fold : to exhibit the latest developments in this field in a single article and to concentrate
on a single mechanism of heating so that more details could be given. In an earlier work we
reviewed the LCR circuit approach of coronal heating (Narain & Kumar 1993) and highlighted
its potential. In this article we concentrate on heating by magnetoacoustic waves. Section 2
describes magnetoacoustic waves and their generation. Section 3 deals with propagation
aspects and characteristics of wave modes. In section 4 we exhibit dissipation mechanisms.
Section 5 is devoted to literature survey. Section 6 contains our conclusions. A comprehensive
list of references is given in the end.

2. Magnetohydrodynamic waves and their generation

In the absence of gravity, and for a perfectly conducting, compressible, uniform gas, in a
homogeneous magnetic field, there exist three types of waves : (1) Alfvén mode waves, (2)
Fast mode waves and (3) Slow mode waves. The types (2) and (3) taken together, are often
called magnetoacoustic or magnetosonic waves, and they show gas pressure fluctuations.
Alfvén mode waves, to first order, do not show gas pressure variations.

Subphotospheric turbulent motions act as a source of waves. Turbulence can be pictured
as a group of eddies of different size and velocity. A turbulent eddy has kinetic energy as
well as magnetic energy, which it releases when it mixes with its surroundings at the end
of its life. Most of this energy is returned to the ambient medium, but a small fraction gets
transformed into propagating waves (Kulsrud 1955). The radiative power is roughly the
energy density, €, in the turbulent motions divided by the decay time scale, 7, for the turbulent
motions, multiplied by an efficiency factor. For a emission of multipole order n, following
Stein (1981), the radiated power is

P= % (k1)1 n=01,2, .. e (1)

where [ is the size of the eddy and k = 2nt/A is the wave vector of the wave. n = 0 corresponds
to monopole, n = 1 to dipole and n = 2 to quadrupole emission. The energy density of the
turbulent motions is
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€= % pu? + 85B2/8n ()

where p is density of turbulent medium, u the velocity of the eddy and 6B ‘the change in
magnetic field strength. Obviously, the first term in equation (2) represents kinetic energy
density and the second term the magnetic energy density of the eddy. For a magnetic field
weaker than or equal to equipartition strength,

€ = pu? )
whereas if the magnetic field dominates the motions, we have

€ = BY/8x. .. (@)
The turbulence decay time scale is given by

T =llu .. (5)
and the angular frequency of the generated wave, to a good approximation, is

o=1"=ul .. (6)
Therefore

kil = 2n/\) u/o = u/C, .. (D

where C is the phase velocity of the wave. For an acoustic wave (or the fast mode in a weak
magnetic field or the slow mode in a strong one) C equals sound speed cs whereas for Alfvén
waves (or the slow mode in a weak magnetic field or the fast mode in a strong one) C equals
the Alfvén speed, v, [see equation (18)]. '

The dominant multipole order depends on the background magnetic field strength and
the wave type. Monopole emission corresponds to a mass source. In the absence of a magnetic
field there are no mass source in the convection zone. When a magnetic field is present, it
channels the Alfvén waves, and a strong field channels the slow mode acoustic waves, so
that the waves move in one-dimension along the magnetic field. The dipole emission
corresponds to a momentum source (i.e., an external force). In a uniform medium there is
no external force and hence no dipole emission. In stars, due to gravitational field, some
dipole emission occurs. Quadrupole emission corresponds to the action of the turbulent
Reynolds stresses. This is the dominant process in stellar atmospheres in the absence of
magnetic fields.

In the absence of magnetic fields, turbulent convection produces acoustic waves by
quadrupole emission (n = 2) and the acoustic power is given by

5
P = (pu/]) [-CLL) : .. (8)

s
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If there is turbulent magnetic field and it is less than or equal to equipartition magnetic field
strength (gas pressure = magnetic pressure) with the turbulent motions the Alfvén and slow
mode waves are produced by monopole emission. Using equations (1), (3) and (5) the
radiated power is given by

P, = (pu’/l) [vi) ... 9)
A
5
and P = (pu’/) (vi) .. (11)
A

P,, P, and P; are the powers radiated in form of Alfvén, slow mode and fast mode waves,
respectively. In case the turbulent magnetic field dominates the convective motions the
corresponding expressions, using equations (1), (4) and (5), are as follows :

P, = (B*u/l) VL)= (putvall), .. (12)
A
P, = (B*u/l) Cl) =~ (puva/l) (VC—A} ... (13)
S 5
P = (B*u/l) ﬁj = (puvi/l (ﬁ) ... (14)

The wave energy flux so produced is obtained by multiplying emitted power by the eddy
size. Thus

F = PI, ... (15)

This is valid if the largest velocities occur within one eddy of the top of the convection
zone, because the waves emitted deeper are scattered by overlying eddies. The total rate of
wave energy emission is the flux, F, multiplied by the area, A, of the emitted region. That
is,

L = PIA, ... (16)

These relations are applicable to individual flux tubes and the area of the emitted region is
the area of cross section of the magnetic flux tube at the emitted region.
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3. Propagation of MHD waves

A. General introduction

We are well familiar with propagation of sound in an ideal gas. Compressions and rarefactions
in the atmosphere propagate isotropically with the adiabatic sound speed c;, defined in terms
of the undisturbed gas pressure p and density py by

¢s = (Yp/po)'" ..3an

where ¥ (= 5/3 for solar atmosphere) is the ratio of specific heats.

But in the case of compressible, conducting fluid immersed in a magnetic field some
other types of waves are possible. We find that in the presence of uniform magnetic field
(By) variation in gas pressure will disturb the magnetic field lines, which behave effectively
as elastic strings under a tension of BZ/4n. In a perfect conductor, the magnetic field lines
and the fluid motions are frozen together, so any attempt to initiate a sound wave will result
in variation in the magnetic field as it is locally compressed or rarefied. Therefore sound is
no longer able to propagate with the sound speed c; and the directionality of the applied
magnetic field renders wave propagations anisotropic.

The characteristic speed of such magnetic disturbances is known as Alfvén speed v,, and
is given as

va = (magnetic tension/density)'? = By/(4npg)'”? ... (18)

The values of ¢, and v, calculated on the basis of Bilderberg-Continuum-Atmosphere (BCA)
are shown in figure 2 (Bray & Loughhead 1974).

Longitudinal vibrations are also possible to occur in a compressible, conducting fluid in
a magnetic field. For the wave propagation along the magnetic field there will be no field
perturbation, since the waves are free to move in this direction. Therefore, in this case the
waves will be ordinary longitudinal sound waves, which propagate with the sound speed c;.
In this case

pp~Y = constant, ... (19)
or Vp = (w/p) Vp = ¢ Vp. ... (20)

On the other hand, for wave propagation normal to the magnetic field direction, a new type
of longitudinal wave motion is possible. In addition to the fluid pressure p, there is a magnetic
pressure B/8x, in the plane normal to By so that the total pressure is p + B?/87, and the
velocity of propagation is v,. These waves are magnetoacoustic or magnetosonic waves and
are described by the following equation :

V(p + B?/8n) = v% Vp. .. (21

Therefore
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Figure 2. Variation of sound and Alfvén speeds with height and magnetic induction in the solar atmosphere.

2 _d 2 2. dm
Vm = Fp'(p +B /8n)(p=po) =cg + dp (B?/8T0) (p=py)

... (22)

where suffix zero refers to undisturbed state. Since the lines of force in the conducting fluid,
are frozen, therefore, B/p = By/py (see, e.g. Bittencourt 1988, p. 393). Hence

v =c? + d_dp- (B} p2/8np§)(p=po) =c2 +13. ... (23)

This is the expression for propagation velocity of magnetoacoustic waves in a homogeneous

plasma.
In the case of inhomogeneous plasma, magnetic field is not uniform throughout the

medium. As an example, consider the tube waves having uniform magnetic field inside the
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tube and embedded in an infinite non-magnetic plasma. As pointed out earlier, following
three modes are possible.

(a) LONGITUDINAL OR SAUSAGE MODE

Longitudinal mode involves compressions and rarefactions of the gas within the tube which
in turn leads to contractions and expansions of the tube’s cross-section. Such area changes
imply compressions and rarefactions of the magnetic pressure, so the longitudinal mode
involves changes in both the gas pressure and magnetic pressure. Gas compressions are
associated with sound speed c; in the tube, and magnetic compressions with the Alfvén
speed v,. Longitudinal tube waves are essentially acoustic waves, which propagate along the
magnetic flux tubes, with the tube speed cy given by (Roberts 1990),

1
—_ = + —
ct ¢ Vi
CsVa
or cr = PR IN TR (24)
(Cs + VA) /

These waves are shown in figure 3a.

(b) TRANSVERSE OR KINK MODE

Another mode of wave motion, made possible by the coupling of the magnetic field to the
coronal gas, is the compression free, transversal Alfvén wave. In this case the field lines are
laterally displaced from their straight equilibrium position, like a string of a string instrument,
as shown in figure 3b. They vibrate around their equilibrium position due to the inertia of
the materal tied to them. So we expect that Alfvén waves travel along the magnetic field
with Alfvén speed v,. But it must be remembered that the vibrating tube displaces some of
the surrounding gas of density p. and lowers the speed of propagation. It turns out that the
transverse mode wave has a characteristic speed c,, given by

0 12
Cp = | —2—1| v ... (25
k (Po +Pe) A (25)

which gets reduced below the Alfvén speed by the inertia of tube’s surroundings.

(c) TORSIONAL MODE

For simplicity let us consider a tube without stratification. Let the transverse direction be
horizontal, and without compression, so that magnetic force is the only restoring force, then
the wave motions are the torsional Alfvén waves. The main tube field is distorted in azimuthal
direction only. Therefore the torsional Alfvén waves propagate along the tube. These waves
are modified by stratification, in which case the tube widens in the z direction. Figure 3c
shows a torsional wave.
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Figure 3. Magnetohydrodynamic wave modes in a flux tube : (a) longitudinal or sausage mode, (b) transverse or
kink mode, (c) torsional mode.

It is found that the motion of the material in the longitudinal tube waves is along the
magnetic field, whereas for transverse and torsional waves it is perpendicular to the magnetic
field. Due to horizontal pressure balance the magnetic flux tubes spread rapidly with height,
and at the so called canopy height (somewhere in the middle chromosphere) fill out the
entire available space.

It appears that the longitudinal, transverse and torsional waves which propagate along
the magnetic flux tubes at photospheric and chromospheric heights go over into the slow,
fast and Alfvén wave modes in the locally homogeneous fields above the middle chromosphere.
Considerable nonlinear coupling (mode conversion) between the various modes of the wave
is expected to occur at these canopy heights.

A medium with a sharp change in physical properties across an interface has the ability
to support surface waves, which propagate along the interface. The phase speed of surface
waves lies between the Alfvén speeds v, and v,,, of two media. In fact, in general, there
are two surface waves, which we may refer to as slow and fast surface waves. These waves
are compressive and so are magnetoacoustic surface waves.

The body waves correspond to slow modes. The slow body mode waves may be viewed
as waves that are constrained within the tube, bouncing from side to side of the tube as they
propagate along its interior.

B. Basic equations

[. HOMOGENEOUS MEDIUM

The basic equations governing the behaviour of MHD waves in a compressible, non-viscous
and perfectly conducting fluid in a uniform magnetic field are (Bittencourt 1988)
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9p _
§+V-(pv)—0 ... (26)
p%+p(v-V)v=—Vp+(VxB)x-‘%t— . 2D
Vp =c*Vp ... (28)
and
Vx(va):aa—?. .. (29)

Under equilibrium conditions, the fluid is assumed to be uniform with constant density po,
the equilibrium velocity is zero, and throughout the fluid the magnetic induction B is uniform
and constant.

In order to develop a dispersion relation for small amplitude waves, let us apply a small
amplitude perturbation from the equilibrium values, so that

B(r, t) = By + By(r, 1) ... (30
p(r, 1) = po + pi(r, 1) ... 31
v(r, t) = vy(r, o). ... 32)

On substituting equations (30) to (32) and (28) into (26), (27) and (29), and neglecting
second order terms, we obtain the following linearized equations

3

P V=0 .3
M, 2 By _

Po35, *6 VoL + - X (VxB)=0 ... (34)

BV x (v x By =0. .. (35)

To get an equation for vy, first we differentiate equation (34) with respect to time ¢, to obtain

oB
p0?+c§V(§] #Box(an—tl)=0 ... (36)

and with the help of equations (33), (35) and (36), we obtain

azvl
or?

—C2V(V-v) + VA X VX[V X (v XVl =0 ... (37
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where
va = Bo/(4npp)'?,

is the vector Alfvén velocity.
Let the plane wave solutions be of the form

vi(r, 1) = vy exp ((kk - 1 — iw?) ... (38)

where v; is the velocity amplitude.
In equation (37) we can replace the operator V by ik and the time derivatives by —im,
so that equation (37) becomes

—0?vy + ¢2(k - v)) k = va x (k x [k X (v; x va)]} = 0. ... (39)
Since for any three vectors, we have the vector identity
AxBxC)=A-CO)B-(A-B)C ... (40)

so equation (39) takes the form

—0?v; + (2 + v k-vDk + (k-vpa) [(k-va) v,
—(va - vpD Kk —(k -v) vyl =0. ... (4D

This is the general equation of wave motion in a uniform magnetic field.
Case I : Propagation parallel to the magnetic field—For wave propagation along the
magnetic field (k Il By), we have k - v, = kv,, so equation (41) becomes

(2 —@)v +(£sz—‘—"*2£]k2(v V) VA =0 (42)
AT 1 v%‘ 1 A A= U

In this case two types of wave motion are possible.
When v, is parallel to By and k, equation (42) exhibits a longitudinal mode, with the
phase speed

w/k = c,. ... (43)

This is an ordinary longitudinal sound wave, in which the velocity of mass flow is in the
direction of propagation.

The other possibility is that v, be perpendicular to By and k, i.e., the wave is a transverse
wave. In this case v; - v4 =0, and equation (42) gives the phase velocity of this transverse
wave, as below

a/k = vy ... (49)

This wave mode is known as shear Alfvén wave or slow Alfvén wave:
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Case Il : Propagation perpendicular to magnetic field—When the wave propagation is
perpendicular to the magnetic field (i.e., k L By), then k - v4 = 0, and equation (41) becomes

—0%v; + (2 +v) k-v)k =0

or,
vi = (2 +v3) (k- v)) k/w?, ... (45)

which implies that v, is parallel to k, so that k - v; = kv;, and we have a longitudinal wave
whose phase velocity is given by

w/k = (c2 + v (46)

This represents a magnetoacoustic wave, also known as compressional Alfvén wave or fast
Alfvén wave.

Case Il : Propagation in an arbitrary direction—Let us choose a cartesian coordinate
system such that y-axis is normal to the plane formed by the direction of propagation k and
the magnetic induction B,. Suppose that By is along z-axis and let 8 be the angle between
k and By,. Now we have

k = k(xsin © + Z cos 0), .. (4D

VA = Va3, ... (48)

and Vi = VX + v + v,z ... (49)
Hence

kv, =kvy cos 0, ... (50)

kv, = k(v{ sin 6 + v cos 0), ... (81)

and VA V] = VAV, ... (52)

Substituting the above values in equation (41) and rearranging the terms, we get the following
equations :

vi(—0? + k2vZ + k2c? sin? 0) + vi(k*c? sin O cos 8) = 0 ... (53)
vi(—@? + k%3 cos? 0) = 0 . (59)
and v,"(kzcs2 sin @ cos 0) + vi(-w? + k%c? cos? 0) = 0 ... (55)
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corresponding to x-, y-, and z-components, respectively. It is obvious from equation (54) that
there is a linearly polarized wave, involving vibrations in the direction perpendicular to k
and By (v," # 0), which propagates with the phase speed,

w/k = vy, cos 6. ... (56)

This mode is known as oblique Alfvén wave. Clearly for propagation along the magnetostatic
field (8 = 0) w/k = v5 while for propagation across the field w/k = 0 (i.e., the wave disappears).

Equations (53) and (55) constitute a system of two simultaneous equations for vy and v;.
To obtain a solution for which v, and v, are nonzero, the determinant of the coefficients of
this system must vanish. Hence

(~o? + k%v + k%c? sin? 0)  (k%c? sin O cos 0)

=0 .. (57)
(k*c? sin 0 cos 0) (-w? + k%c? cos? 0)
which gives following dispersion relation,
@* — (¢ +v3) 0*k? + k*c2v} cos? 6 = 0. ... (58)
On solving this equation, we get following two real solutions,
(0)] 2 1 2 2 2 2
(7) = 1{(c2 +vR) £ [(cF + vR)? — 4chV] cos? O] .. (59)

The higher frequency mode with positive sign is known as fast magnetoacoustic wave
while the other with negative sign is slow magnetoacoustic wave. Thus,

v = -;— (€ +v3) +[(c? + v3)? - 4c2vi cos? 8]/3) ... (60)
and
v: = % {(c2 +v3) - [(c? +v3)? — 4c2v% cos? 0]/} ... (61)

are the phase speeds of fast and slow mode MHD waves, respectively.

The fast-mode waves can propagate in any direction. For weak magnetic fields (say, 2
Gauss), the fast mode wavés move with the velocity of sound wave (v = ¢) whereas for
strong fields (say, 50 Gauss or more), they move with the velocity of Alfvén waves (v¢ =
va). In both cases the propagation velocity is independent of the direction of motion. At
intermediate fields, the velocity depends weakly on the direction (Osterbrock 1961).

In weak magnetic fields, the direction of motion of the material is longitudinal to the
direction of the field and the waves are essentially acoustic waves. But, in strong fields, the
direction of motion is perpendicular to the direction of the field, and the waves are essentially
magnetoacoustic.
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The slow-mode waves can propagate only in direction close to the direction of the
magnetic field. For a very weak field (say, 2 Gauss) as well as for a strong field (say, 50
Gauss or more), the only allowed direction of propagation is exactly along the field, but for
an intermediate field (say, 20 Gauss), the allowed direction of propagation lies within a cone
with half angle = 27°.

For weak magnetic fields, the slow-mode waves move with the velocity of Alfvén
waves (v = v,), whereas for strong magnetic fields, they move with the velocity of sound
waves (v; = ¢¢). The direction of the motion of the material is perpendicular to the direction
of propagation of the wave, in case of the weak magnetic fields. But for the strong magnetic
fields, the direction of the motion of the matenal is along the field.

II. INHOMOGENEOUS MEDIUM (CYLINDRICAL FLUX-TUBE)

Consider a cylindrical flux tube of radius ry with a uniform magnetic field By in z direction.
Inside the tube the gas density is py, and pressure is p. Let the plasma outside the flux tube
has density p., pressure p., and sound speed c.. The density varies in the transverse direction
being uniform inside the duct and having discrete jump at duct’s boundary. Neglecting
electrical resistivity, gravity, and background flow velocity (i.e., setting these quantities to
zero) static equilibrium is defined by

B}
+ — = 2
P™gn =P (62)
which may also be written as

Po(c? +W3i/2) = p.c2. ... (63)

Considering, small velocity perturbation v(r, 0, z, f) within the tube and v;(r, 0, z, 1) outside
the tube, with corresponding perturbation in pressure 8p, 8p., in magnetic field 8B and density
dpo, Op.. The tube perturbation equation reduces to (Wilson, 1980 and references contained
therein)

9 (& :
?(?—(csl+v§\)V2)A+v§c3%V2A=O .. (64)

where A = V - v, and the perturbation is of the form of (Wilson 1980),
A = R(r) exp (in® + ikz — iwx) ... (65)

where n is azimuthal wave number and & the longitudinal wavenumber. Hence equation (65)
becomes,

2,2, .2 22,210 (,0R) n?
[(D (Cs + VA) - VACsk ]l:r ar (r ar) r2 R]
+[o* — 0k? (c? +v3) + c2vikY IR =0 ... (66)
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provided w*(vi +¢2) — c2vik? # 0. Above equation may be written as
.1._3_( QK) 2_n_2)R=0 67
r o 4 or {10 rz ( )

2 212 (o2 _ o232
with o=@ VA (O - k) ... (68)
(cs +va) ®° — csVRk

The solutions of equation (67) are linear combination of the modified Bessel functions
Jo(Ingrl) and K, (Ingrl).

In case of discontinuity at the position r = rg, which separates the two regions, the equilibrium
quantities take constant but different values. After some detailed calculations, it may be
shown that the modes of vibration satisfy the dispersion relation (Wilson 1980; Edwin &
Roberts 1983; Edwin & Zhelyazkov 1992).

2.2 2 Ki(men) 2, Ja(non) _ 69
Potk“vy — @) m, K (mero) + PO Ny T or0) 0 ... (69)
where me =k — =5

The above dispersion relation is obtained with the assumption that m2 > 0 or w? < k*c2.
This implies that motions outside the tube are radially evanescent, declining in r as we move
away the tube. In other words, the environment of the tube is slightly disturbed by the wave
motions. Indeed, there is no indication of the basic speeds of ¢t and c,, the characteristic
speeds of tube’s vibrations in the longitudinal (n = 0) and kink (n = 1) modes, and fluting
mode (n 2 2). But there are solutions with phase speeds close to ¢t and ¢y provided the tube
is thin (i.e., k%r¢ < 1).

We have assumed m?2 > 0, but there is no restriction upon nd. Waves with n% <0 are
termed as surface mode waves and those with n8 > 0 are termed as body mode waves (Roberts
1990).

4. Damping of MHD waves

When the fluid is not perfectly conducting, but has a finite conductivity, or if viscous effects
are present the MHD oscillations will be damped. Denoting the kinematic viscosity (viscosity
divided by mass density) of the fluid by 1y, and the magnetic viscosity by N, the linearized
set of equations are (Bittencourt 1988)

0

%J,po(v.vl):o .. (70)
t

Po % +c2Vp, + By x (V x By)/4n — pon V2v; =0 .. (71)

% -V x (v; xBg) -1, V?B; = 0. .. (72)
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Although for a compressible fluid the use of simplé viscous force term pgn, Vv, is not really
allowed but it is expected to give the correct order of magnitude behaviour.

For plane wave solutions, the differential operators d/df and V may be replaced, respectively
by —iw and ik so that the set of differential equations (70) to (72) become a set of algebraic
equations. Thus, we have

P1 = pok - v1)/o, ... (713)
@vy = (P1/Po) c2k + Bg x (k x By)/(4mpo) — inyk?v, ... (14)
B; = k x (v; X Bp)/(® + ingk?). ... (715

Equation (74), together with equations (73) and (75), gives
(1 + inkHw) (1 + MpkHo) vi + (1 + iNpkHo) cX(k-vy) k
—vp X [k x {k x (vi xvpy)}l=0 ... (76)
where equation (18) for v, has been used. Comparing equation (76) with the corresponding
non-viscous equation we find similar result except that w? must be multiplied by the factor
(1 + ingk¥w) (1 + inpk%w) and c? must be multiplied by the factor (1 + inyk%/w).

Case A : Alfvén waves—The dispersion relation (relation between @ and k) for the
propagating transverse Alfvén waves in the viscous medium may be written as

k*vi = 0?1 + ik /o) (1 + ing k% o)
= 01 + i(My + Ny k20 — MM, k40?4, .. (17)

Let us assume that the convection terms corresponding to the kinematic and magnetic viscosity
are small so that the last term in equation (77) may be neglected. Therefore

k2vi = 0%l + i (Mg + M) /@]

= @21 + i (M + M) ©/vi] ... (78)

where k has been replaced by ®/v, in the right-hand side, to a first approximation. Equation
(78) now gives

k= L1 +im + My 0/vi]"
Va

L o (M + M) 02
Va 2vi '

... (19)
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The positive imaginary part in the expression for k(w) implies wave damping which may be
seen from what follows. Writing k = k; + ik, (with k; and k, as real numbers) a plane wave
propagating along z-axis may be represented by

exp (ikz) = exp (—k,2) - exp (ik,2). ... (80)

The right-hand side of equation (80) represents a damped wave propagating along z-axis
with wave number k; with its amplitude decreasing exponentially. The amplitude falls to
1/e of its initial value in a distance of 1/k;, called damping length for the wave. The damping
of Alfvén waves increases rapidly with frequency or wave number (k = ®?), but decreases
rapidly with increasing magnetic field intensity [c.f., equation (79)]. Further the damping
increases with the fluid (kinematic) and magnetic viscosities.

Case B : Acoustic waves—The propagation of sound waves in a viscous medium takes
place according to the following dispersion relation

k%c? = 0% + in k3 w). ... (81)

_ Assuming the resistive and viscous correction terms to be small, we have

. 2
k=9+mk0J

Cs 2¢3

... (82)

which shows that damping (attenuation) of sound waves also increases rapidly with frequency
but decreasing with increasing sound velocity. As expected, the attenuation increases with
increasing fluid viscosity.

Case C : Magnetoacoustic waves—For longitudinal magnetoacoustic waves propagating
across By, the dispersion relation is of the form

k221 + ing ko) + k2vE = 0¥ (1 + ingk?/0) (1 + ingk?/®) ... (83)

which is much more complicated than that of the non-viscous case, namely w/k = (c? + v3)!2.
Assuming, as usual, the kinematic, and magnetic viscosities to be small the term involving
the product (M, Nnk*/@?% may be neglected. Now equation (83) gives

kxc2 +v3) = o? 1+E M + M |1 - c .. (84)
: o " Csz+v% '

Replacing k* by w?/(c? + v3) in the right-hand side of equation (84), finally we get

k= @ + i” My + —m (85)
T@ R 2@ LT T+ R

which shows that the attenuation of magnetoacoustic waves also increases with frequency,

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994BASI...22..111N

2BAS T T.oZ2 CITIND

rt

On heating of stellar (solar) chromospheres and coronae 127

kinematic and magnetic viscosities. It decreases with increasing magnetic field strength
(va =< Bo).

5. Survey of literature

Recently Narain & Ulmschneider (1990) reviewed entire literature including heating by
magnetoacoustic waves up to the year 1989. To avoid repetition we review the work done
in this field afterwards.

Musielak (1991) reviews theories of acoustic and MHD wave generation in subphotospheric
convection zones and points out that more realistic theories should take into account the
magnetic flux tubes of finite width with a non-uniform horizontal structure and the interaction
of the magnetic flux tubes with the external medium. He concludes that it is still not clear
how much energy is generated in the stellar convection zones and what is its role in the
heating of stellar chromospheres and coronae.

Subphotospheric convection consists of a nearly uniform, warm diverging up flow in
which cool, converging, filamentary down drafts is embedded. This convective flow generates
acoustic waves in the non-magnetic regions and torsional, kink and sausage magnetic flux
tube waves in regions where magnetic fields are present. As acoustic waves propagate
upward, they reach a height (in the middle chromosphere) where the photospheric magnetic
flux tubes cover the entire surface and gas pressure equals the magnetic pressure. At this
height, about one-third of the acoustic flux is converted to a fast magnetoacoustic wave flux
and the rest is reflected. These fast mode waves are severely reflected as they propagate
upwards. They may suffer total internal reflection because of the increase in Alfvén speed
with height. The difficulty in getting enough energy to the upper chromosphere and corona
may be overcome by waves ducted along the magnetic flux tubes. Such waves are produced
directly by the convective flow and may also be produced by coupling to the acoustic wave
flux incident on the chromospheric magnetic canopy (Stein & Nordlund 1991). Dissipation
of organized wave energy into thermal energy by viscosity, resistivity, and conductivity
requires the development of small scale structure. The slow and fast modes dissipate by
forming shocks. In a collisionless regime fast modes may dissipate by Landau damping. The
nonlinear transfer of energy from one mode to another seems to play quite crucial role in
the heating of chromosphere and corona.

Califano et al. (1990) study the general problem of wave propagation and absorption in
non-uniform, magnetized plasmas, within the framework of normal mode analysis and
incompressible MHD. Electrical resistivity is the sole dissipation mechanism considered by
them. The aim has been to investigate the formation of small spatial scales that are prerequisite
for an efficient dissipation and heating. They show the existence of a new class of resistive
(non-resonant) solutions which are characterized by the explicit appearance of resistivity in
their asymptotic form and by the formation of small scales over the entire inhomogeneous
(non-uniform) region. This feature distinguishes them from the more familiar resonant solutions,
that obey ideal asymptotic boundary conditions and develop large gradients only at particular
spatial locations. The smallest damping length in resonant and non-resonant cases is comparable.
Its lowest value could be as low as a fraction of the scale of non-uniformity. The damping
length is found to decrease with increasing degree of Gegenbauer polynomials which represent
various normal modes. The authors conclude that the non-resonant modes seem to be good
candidates for heating the stellar plasma.
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Since the incompressible case is not suitable for stellar chromospheres and coronae
Califano et al. (1992) attempted the compressible case which is closer to conditions existing
in the stellar atmosphere. For simplicity, the normal mode analysis has been restricted to 1-
dimensional case (i.e., slab geometry where the relevant physical quantities depend on a
single coordinate normal to the magnetic field direction). As a consequence of the interaction
of the propagating wave with the background plasma (a non-uniform medium) small spatial
scales arise in a natural way. The non-uniform medium supports slow magnetosonic and
shear Alfvén waves in presence of electrical resistivity as the dissipative mechanism. -The
fast mode waves are not found to exist in this case. Under isothermal conditions the slow
modes propagate with very little damping and hence do not appear to be likely candidate for
the resistive heating of the stellar atmosphere.

To provide additional support to the existence of small spatial scales numerical simulation
has been attempted by Malara et al. (1992), within the framework of incompressible MHD.
For shear Alfvén waves with phase mixing as the damping mechanism the existence of small
spatial scales is confirmed. Numerical simulation for the more physical compressible case
might confirm the conclusions arrived at by these authors, more convincingly.

Due to density discontinuity on the loop surface, there can be a magnetosonic svrface
mode with evanescent radial vector. This feature makes a surface wave a good candidate for
coronal loop heating. Since the frequency of the magnetosonic wave falls within the shear
Alfvén continuum, energy dissipation by phase mixing can take place. Following Assis &
Tsui (1991 a, b) the dispersion relation of the fast surface wave is

o} = k2(BE + B)/[4An(p; + po)] ... (86)

where the subscripts 1, 2 represent physical quantities in the region x < 0 and x > 0. The
surface waves frequency wy falls away between two Alfvén frequencies wa; = By/(4npy)'?
and Wy, = B,/(4np,)"2. For reasonable coronal parameters they find a heating rate of order
10~ erg cm™ s™! which is about 10% of the required heating rate. Therefore these waves
are not principal source for loop heating.

Davila & Chitre (1991) and Chitre & Davila (1991) propose that the resonant absorption
and subsequent dissipation of acoustic waves impinging on the chromospheric magnetic
canopy could be a viable process for heating the solar chromospheric layers. They examine
this idea by assuming the chromospheric layers to be adiabatic, inviscid, behaving as perfectly
conducting ideal fluid that is stratified under a constant gravitational field in the vertical
z direction and is pervaded by a non-uniform magnetic field By = [Bq,(2), Byy(2), 0]. With
Alfvén speed va, = 10° cm 57 = ¢, k2/k? = 0.5, the angular frequency @ = 107 s, initial
mass density po = 1072 g cm™ and rms-velocity amplitude = 2 x_ 10° cm s7! they get a
heating flux of 1 x 10° erg cm™ s, The scale height of the canopy is taken to be about 1000
km. This heating flux is sufficient to account for the observed radiation losses in the upper
chromosphere. The field configuration of low-lying loops in the chromospheric magnetic
canopy is shown in figure 4. In order to account for the enhanced heating seen in vertical
magnetic flux tubes in the solar network the proposed model needs modification.

Davila (1991) tries to explain convincingly some of the misconceptions in the field of
resonant absorption. For example, incompressible models implicitly assume a plasma with
thermal pressure of the order of the magnetic pressure. Because of this the incompressible
limit is incompatible with the magnetic pressure dominated state of the solar corona. This
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Figure 4. Typical magnetic field geometry for low-lying loops in the chromospheric network.

can lead to incorrect conclusions regarding the relationship between the heating rate and
observable parameters like plasma velocity near the resonance layer. EUV observations of
the turbulent power spectrum at the base of the corona are not available but they are urgently
required. Although the heating rate is independent of the dissipation mechanism for reasonable
values of the coefficients, the amplitude of the velocity inside the resonance layer and the
width of the layer, both depend on the magnitude of the dissipation coefficient. He concludes
that, in spite of some unresolved issues, the observations of the heating rate and non-thermal
line broadening in the solar corona are consistent with heating by resonance absorption
mechanism.

Erdélyi & Marik (1991) calculate semi-theoretically the temperature as a function of
height (above temperature minimum in chromosphere) for weak magnetoacoustic shock
waves of various periods (50s-300s). They find that the temperature increases with height,
in agreement with observations.

Hasan (1991) studies heating in intense magnetic flux tubes using numerical techniques.
His results show that overstable oscillations set up in the tube, are probably unimportant in
heating the chromosphere and corona.

The propagation and damping of slow mode MHD shock waves in a cylindrical magnetic
flux tubes embedded in a field-free homogeneous fluid has been studied by Mas & Insertis
(1991) in the thin flux tube approximation, analytically. An expression for the energy losses
in the weak shock case has been derived. Numerical results are not exhibited.

Ruderman (1991) has investigated the propagation of a MHD surface wave on a single
magnetic surface in a cold plasma in presence of ion viscosity. For typical coronal conditions
the ion collision interval is of the order of 2s therefore for MHD description to be valid the
disturbances are assumed to have periods greater than 2s. It is further assumed that the
wavelength of the disturbances is much smaller than the scale height over which the medium
can be considered homogeneous. This assumption restricts the characteristic disturbance
periods to values smaller or of the order of one minute.

In the framework of linear theory the damping length (the distance in which the wave
amplitude decreases e-fold) is given by

Ly =5x 10773, T* Tl cm ... (87)

where vy, is the Alfvén speed in the region z > 0 and I's =T'pg + (v4,/R) is the dimensionless
damping decrement, with p as viscosity coefficient. T is the wave period in seconds. With
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B = 10G, T = 30s and I'« = 0.1, Ly = 1.5 x 10® km. This implies that the damping of the
wave in the corona is not significant.

In case of nonlinear wave damping the distance, L,, in which the wave energy flux decreases
e? fold is, given by

L, = 0.115 T?2A7'W! cm ... (88)

where A is the amplitude of velocity oscillations and W is some function of plasma parameters.
With T = 60s, one gets L, =~ 5 x 10°> km. Thus the nonlinearity is a very effective mechanism
for enhancing the wave damping.

Edwin & Zhelyazkov (1992) re-examine the dissipation of ducted, fast magnetoacoustic
waves by ion viscosity and electron heat conduction in a radiating, optically thin atmosphere.
They show that damping lengths do not become unacceptably large if the magnetic field
strength B 2 10G, as stated by Gordon & Hollweg (1983). Their table II shows that it should
be possible to heat strong magnetic regions such as coronal active region loops as well as
quiet and weak field regions. In agreement with Gordon & Hollweg they find that most of
the wave energy loss occurs inside the duct, that is in the denser region. Further there is
significant dissipation of energy, in the duct’s exterior, of wave travelling along and near to
the surface of the duct. Reasonable dissipation lengths (i.e., about 2-3 wavelengths) were
found for periods 5-15s and wavenumbers of 2-5 x 1078 cm™ for 10G magnetic fields and
particle densities of 5 x 10° cm™. For the coronal data of Sahyouni er al. (1987) the lower
bound should be 74s instead of reported 11.8s. A few more errors of the paper of Sahyouni
et al. (1987) are also pointed out.

6. Conclusions

Our study leads us to the following conclusions :

1. The estimation of MHD flux generation suffers from significant uncertainties because
of our poor knowledge of turbulence occurring in stellar convective zones and also because
of the neglect of the interaction of the generated waves with the turbulence. Correspondingly
the estimation of heating in stellar chromospheres and coronae is uncertain. Realistic numerical
modeling seems quite promising for this purpose.

2. The interaction and mode coupling, in which other wave modes are converted to slow
and fast (magnetosonic) modes which can dissipate by forming shocks, is expected to play
an important role in the stellar atmosphere because some of the modes are totally reflected
before reaching chromospheric and coronal heights.

3. Formation of small spatial scales in inhomogeneous stellar plasmas, which is necessary
for the efficient dissipation of waves, now appears to be an established fact.
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