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Abstract. The non-linear oscillations of a satellite in an elliptic orbit around the
earth under the influence of the solar radiation pressure have been studied in a
series of papers I and II. In paper I, by using Melnikov’s method the equations
of motions have been shown to be non-integrable. The radiation pressure has
been taken of the order of eccentricity e (e << 1) and therefore the solution is
obtained by using BKM method in non-resonance case. It is observed that the
amplitude of the oscillation remains constant up to second approximation. In
paper II, we have studied the resonance case and the chaotic nature of the given
dynamical system.
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1. Introduction

Planar oscillations of a satellite in an elliptic orbit have been studied by Beletskii (1965),
Cheruousko, Zlatanstov et al. (1964) and by Singh (1973, 1983). In this problem we have
studied the non-linear oscillation of a satellite in an elliptic orbit around the earth under the
influence of the solar radiation pressure. We have determined-hyperbolic equilibrium solution
and double asymptotic solutions corresponding to unperturbed Hamiltonian H,. The non-
integrability of the system has been shown through Melnikov’s integral (1.2). Finally we
have found out the solution in the non-resonance case by BKM method taking the solar
radiation pressure parameter e of the order of the eccentricity e (e << 1).

Before proceeding further we would like to discuss the theorems on non-integrability
and Melnikov’s integral. Poincare (1972) found that transversal crossing of asymptotic surfaces
of unstable periodic solutions leads to complex structure of phase curves. Melnikov (1963)
paved the way of Bolotin (1986), Ziglin (1980, 1987) to construct theorems about the non-
integrability of the non-linear dynamical systems with transversal homoclinic (heteroclinic)
orbits. Kozlov (1983), Maciejewski (1992) have discussed the non-inegrability by using the
method of separatrices splitting. Because of the facts given in Theorems 1.1 and 1.2 this
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method gives us more information about the chaotic nature of the dynamical system which
we propose to study in paper IL

Theorem 1.1—If ¥ is a phase space and ¢ is a shift map, then ¢ has (i) a countable
infinity of periodic orbits of all possible periods, (ii) an uncountable infinity of non-periodic
orbits, and (iii) a dense set.

Theorem 1.2—Suppose f: TR® — TR" is a ¢" (r 2 2) diffeomorphism having a hyperbolic
periodic point p. Furthermore, suppose that two asymptotic surfaces W*(p) and W'(p) have
a point of transversal intersection. Then there exists some integer n = 1 such that f" has an
invariant cantor set A. Moreover, there exists a homeomorphism ¢ : A — Z such that

pofi=0c00

when the condition ¢ o f* = ¢ o ¢ holds, with ¢ : A = Z, the dynamical systems f" : A >
A and 6 : £ — X are said to be topologically conjugate (see Smale (1963) or Wiggins
(1988a, 1990a) for the proofs and details of the above theorem).

Our Hamiltonian function is 2n-periodic and is analytic with respect to its arguments
and depends upon small parameter €.

H=H(x, t, &) = Hyx) + eH;(x, ) + ..., x =(q, p). ... (1.D

As in Maciejewski (1993) the unperturbed Hamiltonian system (€ = 0) possesses hyperbolic
equilibrium solution xy = 0. Suppose x(¢) be double asymptotic solution to xp, i.e. Lt X(z)
= X as t — oo, In the extended phase space (x, ¢) there are two asymptotic surfaces W and W
formed by solutions tending asymptotically to xo as 1 — teo respectively. In the unperturbed
system these are double (coincide). For the small perturbation € there exists hyperbolic 2r-
periodic solution x.(f). The asymptotic surfaces of this solution do not coincide and cross
transversely. The points common to both surfaces are called homoclinic points. In terms of
Melnikov’s integral the condition for the transversal crossing is given as, if a function

M(to) = I (Ho, Hy) (X(t — tg), 1))dt ... (1.2)

has a simple zero then perturbed asymptotic surfaces cross transversely and the Hamiltonian
function given by (1.1) is non-integrable.

2. Perturbed planar oscillations of a rigid satellite

2.1. Equation of motion

Let us consider a rigid satellite moving in an elliptic orbit (semi-major axis a, eccentricity
e) around the earth under the influence of the solar radiation pressure F, = F (1 — q), F,
being solar gravitational attraction force. In general ¢ = 1 and so 0 < 1 — g << 1. The satellite
is assumed to be a triaxial ellipsoid with principal moments of inertia A < B < C, and C is
the moment of inertia about the spin axis which is regarded as one of the principal axes. The
torque caused by solar radiation pressure is assumed to be perpendicular to the orbital plane
(centre of resultant radiation pressure lies on x’-axis as assumed by Maciejewski and is taken
parallel to the major axis of the orbit) (figure 1).
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Figure 1. Motion of a satellite around the earth.

Let the instantaneous radius be r, the true anomaly @, the orientation of the satellite’s
long axis ¢. Then ¢ — oo = 0, measures the orientation of the satellite’s long axis relative to
the satellite’s radius vector. The equation of motion of satellite’s planar oscillation is

d*e . df : z .
(1+ecosa)m—2esma—2esma+%sm29
+€e(l +ecos 0 sin (o +6) =0 ‘ .. 2.1.1)
where
2 _3(B-4)
TETTC

and € is proportional to solar radiation torque.
Taking 20 = g, (2.1.1) can be written as

2
(1+ecosa)%—2esinoc%i—+n2 sin ¢ + 2e(1 + e cos o)™

xsin(%+a)—4esin(x=0. .. (2.1.2)

Equation (2.1.2) is equivalent to the Hamilton’s equations

49 _oH 4 _ _oH
e~ =% .. (2.1.3)

where

H = Hy + eH; + O(e?)

2
H0=—2p+%—nzcosq
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2

H, = p? cos o + n? cos g cos & + 4g, cos(%+a)

dq .
= —— = generalised ta.
p To g ed momen

Here, € has been taken of the order €, i.e.

eE=¢ge (0<g << 1)

-

2.2. Equilibrium and double asymptotic solution
Equilibrium solution corresponding to Hj is given by

4 _o4 9 _g

do da
So, by (2.1.3) the hyperbolic equilibrium solution is
ga) =n, pla)=2.

Now, we determine the unperturbed double asymptotic solutions. Again from equations
(2.1.3), we have

dp _ -n’sing
dq 2+p

On integration we obtain

2

£2——2p=n2cosq+n2—2.
But p= -3%= +2n cos%.

Hence, the unperturbed double asymptotic solutions are given by

pra) =2+ 21—

cosh na
) 2 sinh no
sin (g¥ (@) = +———
(g%(@) cosh? na.
cos (g*0)) = —2— — L.
cosh” no
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2.3. (a) Evaluation of Melnikov’s integral

Melnikov’s integral is defined as :

M@0 = | (Ho Hg*@ - 001 p*(@ - ag). a)da.
Its integrand is

(Ho, H ) (g™ (ax - 09)), pr(a — o), o)

/
_ oH, oH, B oH, oH;
dg* (o — ap) Ip*(o —otg)  IpT(o — p) IgT(aL — Op) ’

= 782 smhzn(a - Og) cos o F 1213 smh3n(a - 0p)
cosh” n(a — o) cosh” n(a — o)

Cos O

sinh n(a — ag)
cosh? n(a — o)

sin n

¥ 4¢e1n 3 .
cosh” n(a — o)

cos O + 4g1n

So, the Melnikov’s integral becomes

M*(ag) = F 8n? J- Sinh 2@ = @) ¢ o dax

.. cosh? n(a — o)

12,3 [” sinh n(o. — otg)

3 cosada
J_.. cosh’ n(a — oLp)
_ sinh n(ot — o
F 4e;n > ( 0 cos o da
J_.. cosh® n(o — o)
F 4g4n Sna do.
J_.. cosh® n(a — o)

Integrals in (2.3.2) are evaluated by using the residual theorem. Thus

7 8)12 J. sinh f’l(a - (10)

5 cos o do. = + 81 sech 2% sin o,
« Ccosh” n(a — op) 2n

_ “ sinhn(o — :
F12n° J. 3 ( o cos o do. = + 6m cosech - sin o,
—e COSh” n(a — 0ug) 2n

- “ sinh n(a — o dem .
¥ 4€1n‘[ ( o) cos o da = + —— sech 2L sin L,
_ n

- cosh? n(a — ag) n

— = ' _ 4gm .

F 4e4n J ne do = T —= cosech - sin 0.
- COSh” n(a — ag) n 2n

51

. (23.1)

. (232)

... (233)
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-
From (2.3.3) Melnikov’s integral can be written as

M*(op) = sin o [iSn sech 7’;— + 6m cosech 2“—”

41T . 4
+ 12 gech -~ F ==L~ cosech & |
n 2n n 2n

It is easy to observe that for any values of mass parameter n > 0 and solar radiation pressure
parameter €, (0 < g; < 1) the above function has a simple zero. Thus both pairs of asymptotic
surfaces cross transversely and equations (2.1.3) are non-integrable.

2.3. (b) Graphical representation of Melnikov’s function

(1) Figure 2 illustrates the graph of M*(0y, €;, n) for a fixed value n = .8, €, = .3. These
are simple sine curves, one corresponding to M*(c) and the other M~ (o). It has a simple
Zero.
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Figure 2. Melnikov's function g, = 0.3, n = 0.8.

(2) Figure 3 illustrates the graph of M*(o, €, n) for a fixed value of & = .2 and
0o = .1. It has been observed that the Melnikov’s function M*(ct, €;, n) is monotonically
decreasing and M (0, €;, n) is monotonically increasing as » varies from .1 to .9.
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Figure 3. Melnikov’s function €; = 0.2, o = 0.1.

(3) Figure 4 illustrates the graph of M*(0y, €;, n) for a fixed value of n = .2, o = .1.
It has been observed that the functions remain almost constant as € varies.

3. Non-resonant planar oscillations of a satellite

Taking 6 = n/2, ® = n, & = v and € = order of e, i.e. € = €;e (0 < € << 1) in equation (2.1.2),

we get

an . . dn d*n
2o M =4esinv + 2esinv 3y €SV

— 2g,esin (v + %) + ®*(M - sinm).

... 3.1)

In equation (3.1) the non-linearity (n — sin M) is taken sufficiently weak and therefore it can
also be taken of the order of e. So, by taking w? = o, equation (3.1) becomes

2 2
iTg+a)2n=e[4sinv+25inn%—cosv%

— 2¢; sin (v + g) + (1 - sin Tl)]-

... (3.2)
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Figure 4. Melnikov’s function oy = 0.1, M = 0.2.

The dynamical system described by equation (3.2) moves under forced vibrations due
to the presence of the periodic sine forces on the right-hand side of the equation. We are
benefited by the smallness of the eccentricity ‘e’ in equation (3.2) and hence the solution

may be obtained by exploiting the BKM method.
For e = 0, the generating solutions of the zeroeth order are

M=acosy, VY =Qv+y*

where, amplitude a and phase y* are constants which can be determined by the initial conditions.
The solution of equation (3.2) is obtained in the form

N =acos ¥ + eu(a, V, v) + e’uy(a, v, v) + ... ... (3.3)

where the amplitude @ and phase W are determined by the differential equations

da _ eA(a) + e2Axa) + ... ... (3.4
dv
‘2—‘5 — o+ eBya) + e*Bya) + ... . (3S5)
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From (3.2) we find an and g—zn and then substitute the values of n an and ﬁ in equation
dv dv? " dv dv?

(3.3). In the final equation equating the coefficients of like powers of e, we get

2 2
9% M — 20A; siny — 2waB; cos Y + 02

a\yav ov?

2 0%u
— +20
o? 3y +

=4 sin v — 2a® sin v sin ¥ + O a cos Y — o sin (a cos V)

+ ®%a cos y cos v — 2g; sin (v + % cos \y) ... (3.6)
? ?;;‘22 +20 g:fgi + a;vuzz - (aBl — A %‘%) cos
(Ala aaBl + 2A1B1) sin y + 2B, 32 + 24 aa:av
- 2B 5\42/8 + 2m4; Ef:_au\ly + 2awB, cos ¥

— 204, sin y + ©%u,
—2smv[%—v + Aj cos Y — Blasm\y+cog$i]

+ o[l —cos (acosy)] y

2 2,
—cosv (;)2M+2(:oau1 s 24 — 204 siny
oy? dyov  ov?
— 2m0Bja cos y] — € cos (v + % cos q/) U . ... 37
Using Fourier expansions given by
sin (a cos W) = 2 Z (=) Jypu1(a) cos (2k + Dy
k=0
cos (acos ) =Jg(a) + 2 Z (=¥ J,(a) cos 2ky
k=1
where Jy, k£ = 0, 1, ... stands for Bessel’s function; in equation (3.6) and then comparing

the coefficients of cos Wy on the both sides of the resultant equations in such a way that
u,(a, vy, v) should not contain the resonance terms, we get
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Ai@ =0
Bi(a) = a [2]:(a) — a)/2aw.
Substituting the values of A;(a) and By(a) in equation (3.6), and then on solving, we get

4siny aw
= — + —
w? -1 2m+1cos(v v)
am?

T2 Qo+

an
2w -1
aw?

2 20 - 1)

)

cos (v — )

cos (Vv+Vy) + cos (v — )

~ oo

o (—1)* Jaoxs1(a) cos 2k + Dy
T 202 Z k(k + 1)

k=1

oo

2e.J 2) .
_ c&Jold/<) O(a/l ) sin v + 2g; z (-Dk Jzk('g')

w? -
k=1

1 .
" [<m(2k DD @@k 2

1 :
+ (WRk+1 -1 (w2k-1) - 1) sin (v — 2/(\,;)]

\ K a 1 _
* 28 Zo‘ =D J“‘“(z) [(21@ D QG+ Do D ¢TI

1 _
+ (2k(,0 - 1) (2(k + 1)0) _ 1) Cos (v -2k + ]‘\'V):I

Substituting the values of A;, By, a—ul- and %
oy ov

of cos y and sin y to zero, to avoid resonant terms, we may have

in equation (3.7) and then equating the coefficients

2 = ’
D Jz“*}c((‘;c)fl“)“(a) -G @@ - ay

3% - 1) gJa/2) (@ - 1)
+ + .
4 (40% - 1) aw(40? - 1)

Therefore, in the second approximation the solution is
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n=acosw+e|i4—2£1j0(£):|—sm—v

2)] 0 -1
[ g
[ R e (4] e
+ %5 i (-1« L 2k+l(‘12(0;:i (12)k + Dy

k=1

K Jax(a/2) sin (v + 2ky)
+ 28 ; =D [(m R+ D+ D (@QRE-1) +1)

Jok(a/2) sin (v — 2ky)
(@ Qk+1) - 1) (0 (k—-1) - 1)

[ Jara1(a/2) cos (v + 2k + 1)
Cko — 1) Qo + 1) - 1)

Joxa(al/2) cos (v + 2k + 1y)

Qko +1) Co(k+1) +1) - 3.8)
In the first approximation the solution is
N =acosy ... 3.9
da _
dv
d—"’=m+£[211(a)—a]. ... (3.10)
dv 2a
In the second approximation M is given in (3.8) and
da
2% -0
dv .. (3.11)
d \ :
Yo+ L op@-a+2 [; ia(@J3cn(@ - = @h@) - a7
. eX(w? — 1) [3_(0_ N elJl(a/Z):l (3.12)
4p? -1 | 4 an | e
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Thus from equations (3.11) we observe that the amplitude of the oscillation remains constant
even up to the second approximation and equation (3.8) gives us the main resonance at
=1, 0 =2x1/k (k € I - {0}) and parametric resonance at ® = +1/2.

4. Conclusions

We conclude that the non-linear rotational equations of motion of the planar oscillation of
a satellite in an elliptic orbit around the earth are non-integrable. By assuming the solar
radiation pressure parameter € of the order of the eccentricity e (e << 1), we have found out
the solutions by BK4 method and have observed that amplitude remains constant even up
to the second order of approximation. The main resonance occurs at ® = *1, w = *1/k (k
€ I — {0}) and the parametric at @ = *1/2.

Acknowledgement

We are thankful to the Department of Science and Technology, Govt. of India, for providing
financial support for this research work. ’

References

Beltsku V. V., 1965, Nauka, Moskow (in Russian).
Bolotin S. V., 1986, Vestik Moskov Univ. Ser. Mat. Mech., No. 5, 58.

Bogoliubov N. N., Mitropolsky Y. A., 1961, Progress in Mathematical Physics, Hindustan Publishing Corporation,
Delhi.

Cheruousko F. L., Applied Mathematics and Mechanics, Vol 27, No. 3, pp. 474 (Russian).
Kozolov V. V., 1983, Uspekh1 Mat. Nauk, 38, No. 1, 3.

Maciejewsk: A.J., 1993, in : Instability, Chaos and Predictablity in Celestial Mechanics and Stellar Dynamics, ed.
K. B. Bhatnagar, Nova Science, New York:

Melnikov V. K., 1963, Trudy Moskov. Mat. Obshch, 12, 3-52 (Translation in Trans. Moscow Math. Soc., 1983,
12, 1-57).

Paincore H., 1972, Vol. I, II, Nauka, Moscow (in Russian).
Singh R. B., 1973, Cosmic Research, Vol. 11, No. 2.
Singh R. B., 1983, Space Dynamics and Celestial Mechanics, ed. K. B. Bhatnagar, D. Reidel, Dordrecht.

Smale S., 1963, in : Diffeomorphisms with Many Periodic Points. 1n Differential and Combinatorial Topology, ed.
S. S. Caims, Princeton Univ. Press, Princeton.

Wiggins S., 1988a, Global Bifurcations and Chaos—Analytical Methods, Springer-Verlag, New York, Heidelberg,
Berlin.

Wiggins S., 1990a, 1n : Introduction to Applied Non-linear Dynamical Systems and Chaos, Springer-Verlag, New
York.

Zlaanstov V. A., Okhotsimsky D. N, Sarichev V. A, Torghevsky A. F., 1964, Cosmi Research, Vol. 2, No. 5.

Zighn S. L., 1980, Trudy Moskov. Mat. Ofshch., 41, 287-303 (English translation in Trans. Moscow Math. Soc.
1983, 41, 83-298).

Ziglhn S. L., 1987, Izv. Akad. Nauk, SSSR. Ser. Mat., 51, 1098-1103.

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994BASI...22...47B

