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ABSTRACT

In this thesis, we look at both thermal Sunyaev-Zel'dovich (SZ) distortion as well kinematic
Sunyaev-Zel'dovich distortion of the Cosmic Microwave Background due to several possible astro-
physical sources, namely, clusters of galaxies, galactic winds at high redshifts and radio galaxies.

We find that presence of cooling flows can lead to over-estimation of the value of Hubble
constant by ~ 10 % using SZ and X-ray observations of clusters of galaxies. Based on comparison
of rms temperature anisotropy, obtained from simulated maps of SZ distortions of the CMB due to
galaxy clusters, with Australia Telescope Compact Array limits on arc-minute scale anisotropies,
we have constrained cosmological models. We have further used the power spectrum of SZ effect
from galaxy clusters as an additional cosmological probe and also as a probe of cluster specific
properties, like the cluster gas mass fraction.

We have calculated the SZ distortion (the mean y-distortion and the angular power spec-
trum) by galactic winds originating at high redshifts and found the kinetic SZ effect to be more
important than the thermal SZ effect. The total power spectrum of SZ distortion from galactic
winds is found to dominate over that from clusters of galaxies at 217 GHz; the frequency at which
the thermal SZ effect is zero. A possible detection of the power spectrum of SZ distortion due to
winds has been proposed as a tool to yield information on bias at high redshifts.

Finally, we have looked at the SZ effect by radio galaxies and found the resultant y ~
6 x 1077 from distortion by the non-thermal plasma inside the cocoons. We also estimated the
thermal SZ distortion from the gas heated by the work done by the cocoons to be ~ 5 x 1078, For

cocoons inside clusters, we have found the mean y distortion to be of order ~ 5 x 1075.
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Chapter 1

Prologue

The Cosmic Microwave Background (CMB) radiation is now established, without doubt, to be the
relic radiation of the early Universe (Srianand et al. 2000) and anisotropies of the CMB are tlhiought
to carry an imprint of the ‘surface of last scattering’. These are called the primary anisotropies.
The first detection of such anisotropies were reported almost a decade ago (Smoot et al. 1992), by
the Cosmic Background Explorer (COBE) satellite. Ever since then, the study of the anisotropies
of the CMB has grown by leaps and bounds to occupy a major place in our effort to understand

the Universe we live in.

The primary anisotropy of the CMB gives us one of the best handles on the cosmological
parameters that quantify any cosmological model. The amplitude of the temperature anisotropy
of the CMB are, generally, expressed in terms of their multipole expansion, i.e., ATemb/Temb =
Demaem Yo (0, ). The angular power spectrum can then be expressed as |ag|? = ﬂ-lﬁ Smlaem|?.
It is usually assumed that agm obeys Gaussian statistics, and the ensemble of the values of agm
has a zero mean with a standard deviation that depends only on £ and phase that varies from 0
to 2r. The temperature field is completely specified by the two-point correlation function given
by C(8) = (AT (ny1) AT(nz)), where 8 is the angle between the two direction given by the units
vectors n; and ny. For a Gaussian randoin field, one then has C(6) = er? T¢ (22 + 1) C¢ Py(cos 8),
where C; = (|agm|). The angular power spectruin, is then, the values of C; as a function of £'.
In general, the angular power spectrum of these anisotropies, as seen by observers in the present
epoch, is found to depend sensitively on the parameters of the background cosmology — the
Hubble constant H,, the mean matter density 2., the composition of the matter (i.e., the amount

of baryonic matter, cold dark matter, hot dark matter etc.) and any cosmological constant A —

!Note that, £ = 3 and that one generally plots £(€ + 1)C; as a function of £.

1



2 Chapter 1. Prologue

and on the magnitude and spectrum of primordial perturbations in the matter. Several authors
have shown that the characteristic features in the CMB anisotropy spectruin have marginal and
joint dependencies on the cosmological parameters. For example, at large and intermediate angular
scales (I < 500), for 3 < 1, the Doppler peaks in the CMB anisotropy spectrumn are shifted towards
larger | values w.r.t. the case for a flat Universe with 2, = 1. (see, for example, I&amionkowski &
Spergel 1994 or Lineweaver & Barbosa 1998). Tle ionization history of the Universe also modifies
the spectrum of the CMB. Primary anisotropies at small angular scales (I > 500) are expected
to be relatively damped in most models of structure formation due to the thickness of the last
scattering surface and the diffusion damping of sub-horizon scale baryon fluctuations in the pre-
recombination era; anisotropies at even larger [ may be critically dependent on the reionization
history. The major portion of all the work on CMB distortion, till now, has been the study of these

primary anisotropies.

Important modifications to CMB primary anisotropy can, however, occur even after decoupling.
These are known as secondary anisotropies and are mainly caused by non-linear feedback where the
small fraction of luminous matter injects significant energy into the intergalactic medium (or intra-
cluster medium) to cause new distortions of the CMB. Arcmin-scale anisotropies may be generated
due to coupling between density perturbations and bulk velocities (Vishniac 1987, Hu, Scott & Silk
1994, Persi et al. 1995). One can also have the so called Rees-Sciama effect (Rees & Sciama 1968),
once non-linear structures form and the conformal time derivative of the gravitational potential is
no more zero due to perturbations. Separately, decrements in the CMDB sky may be generated by
the inverse-Compton scattering of background photons as they pass through concentrations of hot
gas associated with astrophysical entities along the line of sight; this phenomenon is referred to as
the Sunyaev Zel'dovich effect (SZE) (Sunyaev & Zel'dovich, 1972). The main aim of this thesis
is to use the secondary distortion due to SZE, in different astrophysical contexts, as a probe of
our Universe. We will use it not only to study the background cosmology but also as a probe of
astrophysical sites of hot plasma. In the next couple of sections we give a very brief introduction
to SZE mainly focusing on that due to intra-cluster matter (ICM)) and keep detailed discussion of

SZE for specific cases to be given at the beginning of each chapter.

1.1 The SZE as an observational tool

It has been long argued that since clusters of galaxies are, perhaps, the largest virialized objects
containing a large chunk of observable matter (as well as dynamically estimated dark matter),

observations of clusters can be taken to be a fair representation of observation of the Universe
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around us. An added advantage of observing clusters has been the large angular radii subtended
by clusters. The major disadvantage is that clusters rarely exist beyond redshifts of z ~ 1. To
probe farther, one has to look at other objects like ordinary and active galaxies, cosmic explosions,
etc. In this introductory note, however, we will focus only on clusters of galaxies and deal with

other objects (which typically release energy to the inter-galactic matter (IGM), in later chapters.

Traditionally, optical observations have been the main probe of galaxy clusters and catalogs of
them were made (e.g., Abell 1958; Carlberg et al. 1997). Optical identification is, however, not
trivial and becomes increasingly difficult for far away objects. Especially, for galaxy clusters, it
is difficult to tell whether a galaxy at the edge of the cluster is bounded to the cluster or a field
galaxy. Optical studies also suffer from projection effects. Spectral studies are time consuming and

can only be done for the more luminous objects.

On the other hand, galaxy clusters are known to contain most of the baryonic matter in the
Universe the form of X-Ray emitting hot gas bound to the cluster by its gravitational potential.
The galaxy clusters can, thus, be observed in X-Ray. In this band, the whole of the cluster (now
defined as the region within some radius called the virial radius) appears as a luminous source.
This reduces some of the problems faced by optical observations. However, it is still difficult to
look at far away (z2 1) objects with X-Ray surveys, with the majority of the clusters detected
below z ~ 0.5. One reason for this is that since X-Ray emission is proportional to the square
of the electron density, regions having low demnsities become faint in emission. We note here, that
for optical as well as the X-Ray observations, the observed flux declines as dzz, where dr, is the

luminosity distance. This selection function limits the redshift up to which one can observe.

A third probe of galaxy clusters is offered by the Sunyaev-Zel'dovich effect . The SZE arises in
the galaxy clusters from the inverse Compton scattering of CMB photons when the photons pass
through the hot ICM. Using SZE to probe galaxy clusters will be a major theme of this thesis.
Indeed, any massive source of hot plasma (e.g., ionized bubbles around quasars before cosmological
re-ionization (Aghanim et al. 1996)) will distort the CMB through SZE. As already mentioned,
one of the mnain purpose of this thesis is to probe our Universe by studying the SZE distortion of

the CMB due to a variety of sources at different redshifts.

There are mainly two ways by which SZE can distort the CMB, namely, the thermal SZE (TSZE)
and the kinematic SZE (KSZE). The first occurs due to scattering from the random motions of the
hot gas whereas the second is due to the scattering of the CMB photons due to the bultk motion
of the gas. The physics of both TSZE & KSZE are described in detail in the next chapter. The
interesting point about TSZE is its spectrum: since scattering by the hot gas transfers some low

energy photons to higher energies while at the same time conserving the total number of photons,
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the net effect is a shift in the CMB spectrum up in energy which slightly distorts the blackbody
curve. There is a decrement of photons at low energies and a resultant increment at higher energies
with the crossover occurring at a frequency v ~ 217 GHz, at which the distortion from TSZE is
zero. The SZ distortion appears as a decrement for wavelengths > 1.44 mun and as an increment
for wavelengths < 1.44 mm. This results in a unique non-Blackbody spectrum of the CMDB and
experiments with goéd frequency coverage? will be able to distinguish it from the purely Blackbody

spectrum. The promise of using TSZE as a probe depends heavily on this unique spectral shape.

The kinematic SZ effect is a simple doppler shift in the frequency of the CMB photons due to the
bulk motion of the hot gas. Hence, it does not cause any deviation from the blackbody spectrum.
This makes it impossible to separate out the KSZE distortion from the primary distortion of the
CMB by spectral methods. It is, therefore, important to understand the expected KSZE contribution
due to various astrophysical sources to the total observed CMB anisotropy, by modeling these
sources. This is what we do in Chapter 6 of this thesis. An important point to be mentioned here
is that due to thg different spectral behaviour of TSZE and KSZE, the maximum contribution from
KSZE occurs at the frequency where the TSZE is zero. This fact can, in fact, be used to estimate
the peculiar velocity of a cluster (see e.g., Birkinshaw 1999).

The TSZE, described above, provides a rather nice and complimentary approach to the tradi-
tional probes of our Universe. This probe has advantages which are unique to itself. First, the SZE
flux is proportional to the the electron number density (and not its square as in X-Ray). Thus, low
density regions can also be probed more easily than by X-Ray. Secondly, the integrated SZE flux
declines as df, where d4 is the angular diameter distance. Thus, SZE does not suffer from the
cosmological (1 + z)~* dimming. This is because the SZE is a fractional change in the brightness
of the CMB and CMB energy density itself decreases as (1 + z)*. Also d4, in general, grows more
slowly/ha,t/d[, and even decreases after a certain redshift (z ~ 1). This means that SZE flux from
a cluster drops more slowly with distance than the X-Ray surface brightness of the cluster (and
can even increase after a particular redshift). Finally, since the flux decrement from the integrated
SZE due to an unresolved object (say, galaxy cluster at high z) is proportional to the total mass
of the hot-gas times the particle-weighted te;nperature (explained in detail in Chapter 4 & 5), it
is independent of any spatial distribution of the gas. If the observations can resolve the clusters
through SZE, particularly at lower redshifts, the observed sky CMB temperature distribution will
then be sensitive to the temperature structure within the clusters. This may be contrasted with

X-ray emission images of cluster gas distributions which are sensitive mainly to the gas density

"e.g., the future satellite mission Planck has a frequency coverage from 30-850 GHz and would be able to separate

out the TSZE contributions to the temperature anisotropies
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distribution and relatively insensitive to the temperature distribution. All these advantages make
SZE a preferable tracer of clusters and other massive hot gaseous objects at cosmological distances.
These have been the motivations behind a number of studies in the recent past (see, for example
Blanchard & Bartlett 1998, Oukbir & Blanchard, 1992, 1997, Bartlett & Silk 1994, Barbosa et
al. 1996 and Colafrancesco et al. 1997). All these studies have looked at SZE as a probe of the
background cosmology, especially the cosmological matter density parameter €, . Also, as pointed
out first by Silk and White (1978) and later discussed by numerous authors (e.g., Birkinshaw &
Hughes 1994; Silverberg et al. 1997), one can corn_t_nuiBg_wtﬂ!‘l'g_X-_fgy and radio observations for ¢lusters
to estimate the Hubble constant Ho (Birkinshaw, 1999)

The main disadvantage of using SZE as a probe is that the SZ signal is rather weak and difficult
to detect. Recently, however, high signal to noise detections of SZE have been made over a wide
range in wavelengths using single dish observations: at radio wavelengths (Herbig et al, 1995.
Hughes & Birkinshaw 1998), millimeter wavelengths (Holzapfel et al. 1997, Pointecouteau et al.
1999) and sub-millimeter wavelengths (Komatsu et al. 1999). Interferometric observations have
also been carried out to image the SZ effect (Jones et al. 1993, Saunders et al. 1999, Rees et al.
1999, Grego et al. 2000). Continuous developments in the technology of microwave background
(MB) measurements give us reasons to expect that SZE will become a major observational tool in
cosmology in the near future. Over the next few years one expects substantial improvements in the
SZE work to emerge from spectral measurements and from interferometric observations of clusters

and the CMB using optimized interferometers.

1.2 Galaxy clusters and SZ distortion : A rudimentary treatment

The basic physics behind SZ distortion by clusters of galaxies is quite simple. A fraction of the
CMBDB photons after decoupling (z ~ 1100) can be inverse Compton scattered by hot electrons in
the intracluster medium as they traverse through the cluster. This can then lead to to an appareunt
change in the temperature of the CMB in the direction of the cluster. Since, typically, only a
small percent of the background photons passing through the cluster get scattered, there is only
a fractional change in the CMB sky temperature due SZ effect from clusters. It is easy to obtain
an order of magnitude estimate for such a distortion. Let us assume that a cluster of galaxy has
a total mass M = 5 x 10""Mg and extends up to an effective virial radius Ry = 2 Mpc. Since
the ICM sits in the grzwi.tationa.l potential of the total cluster mass, its electron temperature, T, is

given by
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GMm
-+ ~ _.___.__E —_ =4
kgT SFn 6.65KeV (1.1)

where G is the gravitational constant and m,, is the proton mass. From observations, it is known
that about 10% to 20% of the total mass of the galaxy cluster is in the form of ICM (White & Fabian,
1995). The contribution by the galaxies to the total baryonic mass is negligible (White et al. 1993).
The temperature of the ICM is hot enough to ionize the gas. The ionized electrons of the ICM
inverse Compton scatter the CMDB photons. Since, the scatterings are essentially non relativistic
in nature (i.e., kpT/mec® << 1), one can take the scattering cross section to be Thompson cross

section or. The scattering optical depth, 7., for the above cluster can then be written as

Te = neoT (2 Ryir) = 5.25 x 1073 . (1.2)

In a single scattering, the frequency of the photon is slightly shifted, with up-scattering more
probable than down scattering , because of the higher temperature of the electrons relative to the

photons. The mean change in photon energy, €, due to single scattering can be written as (Rybicki
& Lightman, 1980)

Ae N kpT

~1.33 x 1072 (1.3)

~

€ mec?

where we have used Equation (1.1).

Thus, combining Equations (1.2) & (1.3), and using the fact that for small 7, (i.e., 7o << 1)
the number of scatterings is equal to 7., one can get mean change in the CMDB sky temperature due
to SZE from the galaxy cluster to be & 7 x 1075, The point to be noticed is that this distortion is
almost an order of magnitude larger than that due to primary anisotropies. At the same time one

should compare it with the COBE limit on the mean spectral distortion (< y >= 1.5 x 1079).

Similarly, an order of magnitude estiinate can be made for the kinematic SZ effect. In this
case all the photons get doppler shifted in frequency by a factor v/c, where v is the line of sight
component of the peculiar velocity of motion bf the cluster. Bulk peculiar velocities are expected

to be less than 1000 km/s. One can then multiply the temperature change due to the bulk motion
with the scattering optical depth, to get

AT, X
emb %x (5.25 x 1073) < 1.75 x 1073 | (1.4)

Tcmb
where Temy, is the CMB temperature. Typically, peculiar velocities are ~ 300 km/s. Hence, for
clusters of galaxies TSZE dominates over KSZE by at least an order of magnitude.
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Since the fractional change of CMB temperature due to SZE towards a cluster of galaxies comes
out greater than the mean fractional change of the CMB temperature due primary anisotropies.
one can look for it in pointed radio studies of clusters. This is routinely done and the number of
observations of SZE from clusters has grown tremendously in the last decade (for a comprehen-
sive list of such observations, see Birkihshaw 1999). The secondary anisotropies due to SZE are
distinguishable from the primary anisotropies by their different spatial distribution and frequency
dependence. The difference in spatial distribution is easy to uhdersta.nd: SZE anisotropies are lo-
calized and are seen towards clusters of galaxies. In contrast, primary anisotropies are non-localized
and are randomly (assumed to be Gaussian) distributed over the sky, with almost constant cor-
relation amplitude in different patches of the sky. A result of the above ‘localized’ property of
SZE anisotropies is that the resulting sky brightness fluctuations are strongly non-Gaussian and

asymmetrical (skewed).

1.3 The scope of this thesis: A synopsis

Our basic philosoply in probing our Universe with SZE is based on the concept of hierarchical
structure formation in a cold dark matter dominated Universe where larger structures grow out of
accretion of matter onto smaller structures and hence form later in time (or equivalently at lower
redshifts). Thus, one ims only to probe lower mass astrophysical structures in order to probe higher
redshifts. This is seen from Figure (4.3) which shows that abundance for lower masses peaks at
higher redshifts (although the Figure shows the abundance of objects in the mass range suitable
for clusters, the same conclusions can be drawn for smaller masses as well). We cover a large range
in redshift upto z ~ 15 (equivalently, back to a time when the Universe was ~ 1% of its present

age) by making use of the following strategy :
e We study SZE from pointed observations of X-Ray selected clusters of galaxies to estimate
H, . In this way, we probe up the Universe to z ~ 0.5.

e We then look at non-targeted present and future observations of SZE from galaxy clusters.

This can push back the maximum redshift to z ~ 1.

e To probe higher redshifts, we look at SZE distortions by cocoons of radio galaxies. This can

effectively probe redshifts up to z ~ 5.

e Finally, to go to even higher redshifts, we look at SZE distortions due to galactic winds

coming out of dwarf galaxies, which allows us to go to z < 15.
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In the next chapter, we give a primer on SZE, expanding on and going beyond the rudimentary
approach to the physics of SZE given in the present chapter. We look at the non-relativistic and
relativistic Comptonization of the CMDB by hot electrons, and derive the amnplitude and spectral
dependence of SZE (both TSZE and KSZE). We briefly discuss corrections to the simple non-
relativistic formula for the SZE, and end the chapter with some comments on the observational
aspects of SZE.

The main new work presented in this thesis begins in Chapter 3, where. we start by looking
at SZE in the nearby Universé, before looking at the more distant Universe in the later chapters.
In this chapter, we study the effects of cooling flows in galaxy clusters on the Sunyaev-Zel’dovich
distortion of the CMB and their possible cosmological implications, especially in the determination
of the Hubble constant. It is well known that SZE, along with X-ray observations of clusters,
can be used to estimate H,. It is also known that a significant fraction of clusters have cooling
flows in them, which change the pressure profile of intracluster gas. Since the SZ decrement
depends essentially on the pressure profile, it becomes important to study possible changes in the
determination of cosmological parameters in the presence of cooling flows. To do so, we build
several representative models of cooling flows and compare the results witli the corresponding case
of gas in hydrostatic equilibrium. We find that cooling flows can lead to an over-estimation of
the Hubble constant. Specifically, we find that for realistic models of cooling flows with iass
deposition, the deviation in the estimated value of the Hubble constant (as compared to that in
absence of a cooling flow) can be of order ~ 10% even after excluding ~ 80% of the cooling flow
region from the analysis. Since, expected determination of number counts of clusters based on
SZE are planned as an interesting way to constrain other cosmological parameters, like 2y, we also

discuss the implications of the presence of clusters with cooling flows for such estimates.

Using SZE from clusters of galaxies as a probe of cosmological parameters is the main aim of
Chapter 4. In the context of cold dark matter (CDM) cosmological models, we simulate iinages
of the brightness temperature fiuctuations in the cosmic microwave background (CMB) sky owing
to the Sunyaev Zel’dovich effect in a cosmological distribution of clusters. We compare the inage
statistics with recent Australia Telescope Co;npact Array (ATCA) limits on arcmin-scale CMB
anisotropy. The SZE effect produces a generically non-Gaussian temperature field and we compute
- the variance in the simulated temperature~anisbtropy images after convolution with the ATCA
beam pattern, for different cosmological models. All the models are normalized to the 4-year
COBE data. We find an increase in the simulated-sky temperature variance with increase in the
cosmological density parameter ). Finally, we compare our results with the upper limits on the
sky variance set by the ATCA, based on which we argue that closed Universe models are disfavoured
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and that instead low-{2y open-Universe models are preferred. This result follows irrespective of any

present day observations of the mass variance in regions of size 8h~!'Mpc (og).

Chapter 5 is devoted to a detailed modeling of the power spectrum of SZE from clusters and
groups of galaxies, taking both Poisson distribution as well as clustering of the clusters into account.
We show how the power spectrum shape and amplitude differ as functions of various parameters
and how one can use such information to probe the parameter space. As a specific example, we
show how the power spectrum of the secondary CMDB anisotropies due to the thermal Sunyaev-
Zel’dovich Effect by clusters of galaxies can be studied to constrain cluster-specific properties (such
as the gas mass fraction of the clusters). We show the SZE power spectrum from clusters to be a
very sensitive probe of any possible evolution (or constancy) of the gas mass fraction. The position
of the peak of the SZE power spectrum is shown to be a strong discriminatory signature of different
gas mass fraction evolution models. As an example, for a flat Universe, we show that there can be a
difference in the [ values of the peak of the SZE spectra of as much as 3000 between a constant gas
mass fraction model and an evolutionary one. Since observational determination of power spectrum
from blank sky surveys is devoid of any selection effects that can possibly affect targeted X-ray or
radio studies of gas mass fractions in galaxy clusters, the use of power spectruin as a discriminator
is argued to be especially promising. We also show how one can use the power spectrum of SZE,

in a complimentary approach to that described in Chapter 4. to constrain cosmological models.

Other than SZE from clusters of galaxies, any large reservoir of hot gas is capable of distorting
the CMB through the SZE, and we look at one such case in Chapter 6. There, we consider the
distortions in CMB due to galactic winds at high redshift. Winds flowing out from galaxies have
been hypothesized to be possible sources of metals in the intergalactic medium, which is known
to have been enriched to ~ 107%% Zg at z ~ 3, where Zg is the solar metallicity. Using the
above fact as a motivation, we model these winds as functions of mass of the parent galaxy and
redshift, assuming they initiate at a common initial redshift, z;,, and calculate the mean Compton
y distortion and the angular power spectrum of the SZE distortion in the CMB. We find the
thermal SZE due to the winds to be consistent with values estimated before. The distortion due
to the kinetic SZE is, however, found to be more important than the thermal SZE. This makes
the distortion due to galactic winds an important contributor to the power spectrum of CMB
distortions at very small angular scales (I ~ 10*). We also show that the power spectruimn due to
clustering dominates the Poisson power spectrum for I < 4-5 % 10°. Finally, we show explicitly how
the combined power spectrum from galactic winds dominates over that of galaxy clusters at 217
GHz, a frequency relevant for planned space mission Planck. We also discuss how these constraints

change when the efficiency of the winds is varied.
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In the second last chapter, i.e Chapter 7, we consider the distortion in the CMB due to nou-
thermal electrons in the cocoons of radio galaxies, and due to thermal gas shocked by the cocoons.
For the distortion from non-thermal electrons, it has been recently claimed that the integrated
distortion from the population of radio galaxies 1s of order 1075, Later it was pointed out that
this result suffers from an over-estimation of the energy input rate by the radio jets. We find
that the above result also suffers from the neglect of energy loss mechanisms in the cocoons. In
our calculation, we take into account the loss of energy of the cocoons due to the work done by
them against the surrounding medium and due to radiation, and show that the mean Compton
y-parameter of distortion is far less than it has been claimed, even when the same rate of energy
input by radio galaxies is considered. In addition, we investigate the dependence of the distortion
on the cosmological models, and find that the distortions are smaller in ACDM and OCDM 1nodels
than in the SCDM case. In the standard ACDM cosmology, we find a mean y parameter of order
6 x 10~7. We also calculate the angular power spectrum of distortion and find that the resulting
distortion peaks at similar angular scales as that due to hot gas in clusters but with much lower
amplitude. We also find that earlier calculations have over-estimated the of distortion due to the
gas heated by the work done by cocoons has been overestimated. Although the heating rate by the
cocoons is substantial, we find that the resulting distortion is ~ 5 x 108, since most of the Lieating
takes place at low redshifts where the efficiency of energy loss due to inverse Compton scattering
is small. For cocoons embedded in clusters, we found that the distortion from individual cocoons
could be as large as y ~ 10™* and estimate a mean y distortion from the population of cocoons in
clusters to be of order 5 x 107C. In view of these results, we conclude that the upper limits on the
redshift of preheating for clusters, obtained with the earlier estimate of distortion, are weaker than
previously thought.

Finally, in the last chapter (i.e., Chapter 8), we conclude by summarizing the main issues dealt

with in this thesis and pointing out the possibilities that studies of SZE liold for the future.

1.4 Post-Script

We have attempted to make the thesis as self contained as possible without being too voluminous.

Other than Chapters 4 & 5, all the other chapters can, more or less, be read independently.

The main new results presented in this thesis are partially based on the following articles:



1.4. Post-Script 11

e Cosmology with Sunyaev-Zel'dovich effect,
Subhabrata Majuindar,
Indian Journal of Physics, 73B, (1999), 835.

e On cooling flows and Sunyaev-Zel'dovich effect,
Subhabrata Majumdar and Biman B. Nath,
The Astrophysical Journal, 542, (2000), 597.

e Constraints on Structure Formation Models from Sunyaev-Zel'dovich Effect,
Subhabrata Majumdar and Ravi Subrahmanyan,
Monthly Notices of the Royal Astronomical Society, 312, (2000) 724.

e Sunyaev-Zel'dovich distortion from early galactic winds,
Subhabrata Majumdar, Biman B. Nath and Masashi Chiba,
Monthly Notices of the Royal Astronomical Society, in Press.

e Probing the evolution of gas mass fraction with Sunyaev-Zel'dovich effect,
Subhabrata Majumdar,
The Astrophysical Journal Letters, 324, (2001), in Press.

e Microwave background distortion from radio galaxy cocoons,
Biman B. Nath and Subhabrata Majuindar,
Monthly Notices of the Royal Astronomical Society, subrmitted for publication.

e Constraining cosmological parameters with Sunyaev-Zeldovich surveys,
Subhabrata Majumdar and Ravi Subralimanyan,
in Proceeding of ” Workshop on Cosmology: Observations confront Theories” in IIT-Kharagpur
Janauary, 1999
Pramana, 53, (1999) 971.

e Galactic winds at high redshifts and sinall scale CMB anisotropy,
Subhabrata Majuindar, Biman B. Nath and Masashi Chiba,
To be published in the proceedings of the international conference on ”Cosmic Evolution”,
held in IAP, Paris, November 2000.

e Non-targeted studies of Sunyaev-Zel'dovich effect,
Subhabrata Majumdar,

To be submitted for publication.
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Chapter 2

A primer on Sunyaev-Zel’dovich effect

In this chapter, we give a short review of the SZE. First, we take a cursory look at the Boltzinan
equation and also at some rudiments of radiative transfer that would be needed for a proper
treatment of SZE. We then proceed to the more mathematical aspects of of inverse Compton
scattering. Towards the end of the chapter we look at the different possible kinds of SZE, and
finally we focus on some observational issues related to the SZE. The material in this chapter
draws heavily upon the excellent reviews by Birkinshaw (1999), Bernstein & Dodelson (1990) and
Rephaeli (1995b). The emphasis is on the theoretical aspects of SZE. However, in the last section,

we also briefly look at the observational aspects.

2.1 Preliminaries

2.1.1 Basics of radiation field

In this section, we look at the basic of the CMB radiation field as an exammple of an isotropic and
thermal radiation background. The treatment closely follows that of Birkinshaw (1999), which is

based on Shu (1991). In this chapter all the vectors are denoted by bold letters.

The distribution function, fu(r,p,,t), of any radiation field is defined such that fad®rd3p, is
- the number of photons in the real space volume d3r about r and the momentum space volume d3py
about p, (v being the frequency) at time t with polarization o = 1,2. This distribution can be

related to the photon occupation number, ng(r,p,,t), by

na(r,py,t) = h* fa(r,p,,t) (2.1)

13
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The energy crossing an area element dS in time dt from within solid angle d2 about k and with
frequency in the range v to v + dv is given by I, (k.dS) dt dv dt, where I, (k,r,t), is the specific

intensity of radiation and is also related to the distribution function by

2

. a h-i 1/3
L(k,r,t) =) ( ) fa(r,pu,t) . (2.2)

2
a=l ¢

Now, for CMB radiation, the occupation number has a Planckian distribution given by

-1
Ng = (eh"/kBTcmb - 1) fora=1,2 , (2.3)
where the Ty, is the temperature of the CMB photons. So, the radiation field is given by

2h18 -1
I@) = I, = —5— (e"/wTemb _ 1) (2.4)

The number density of CMB photons in the Universe is then given by

ny = Z/fa(pu)dapu
87 © g2z
h3c3 33 _/0 (e —1)
= 167¢(3) (."’2&@)3

he
~ (4.12) x 10* photonsm™3 (2.5)

In (2.5) ¢(z) is the Riemann zeta function ({(3) = 1.202) and 8 = 1/kpTemp- In a similar way, the
energy density of CMB radiation field can be calculated as,

e
=3
]

Z/h”fo(l)u} d*p,

_ 8w < gddr
- h3c3,84/o (e* —1)
87 he [kpTemb\?
15 ( he )
= (419) x 10~ Jm™3 (2.6)

We have taken T, to be 2.725 K.

Commonly, the specific intensity is described in units of brightness temperature, Tr_j, which

is defined as the temperature of the thermal radiation field which in the Rayleigh-Jeans limit (i.e.,
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low frequency) would have the same brightness as the radiation that is being described. In the

limit of low frequency (2.4) is reduced to I, = 2kgT.mpr?/c?, so that

AT
TR—J(V) = 2kB;;2 (2'7)

Thus, the brightness temperature (of a thermal spectrum) is frequency dependent, with peak value

equal to the radiation temperature at low frequencies. Tr-y tends to zero in the Wien tail.

Finally, we need to look at the propagation of the background radiation and this can be done
with the help of the transport equation. The transport equation, for a flat space time, in the

presence of absorption, emission and scattering processes can be written as

19l . _ .
s 5 TRV =0y - vansly — avscaly + Qusen / g (k, &) I (K')d’ (2.8)

In the above equation, j, is the emissivity along the path (the energy emitted per unit time per unit
frequency per unit volume per unit solid angle), a, a1 is the absorption coefficient (the fractional
loss of intensity of the radiation per unit length of propagation because of absorption by material
in the bean), ay, gca is the scattering coefficient (the fractional loss of intensity of the radiation
per unit length of propagation because of scattering by material in the beam), and q,,(fc, k') is the
scattering redistribution function — the probability of a scattering from direction k/ to k. The
absorption coefficient is regarded as containing both true absorption and stimulated emnission. An
important property of I, that follows from its definition is that it is conserved in flat space times

in the absence of radiation sources or absorbers.

2.1.2 The Boltzman Equation

For an ensemble of particles, if the motion of one particle is completely independent of all other
particles, then to describe the state of the particles, one can specify the single particle distribution
function given by f(x, p,t) d*z d®p, which is the probability of finding a single particle in the phase
space volume d3z d3p around the point (x, p) at time t. Now, if there are no interactions between

the particles and if they are non-relativistic, then the distribution obeys the Liouville equation

@ _9f pOf of
dt ot m’ Ox “Op

where F is any force that may be present, and m is the mass of a particle assumed same to for all

+ F (x,p,t) =0, (2.9)

particles.
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In the case of interparticle interaction being random and statistical in nature, one cannot
describe the system by a mean force F, but one has to consider instantaneous collisions between
the particles (and this is the case for photon - electron interactions). These collisions will remove
particles from (or add particles to) a cell in phase-space. The total rate of removal of particles from

a phase-space cell d®z d3p is given by

/f(x, p)d’p1 27 sds IB;m—pll (2.10)

where it is assumed that collision took place between particles with momenta p and p; and produced
particles with momenta p’ and p’;. The collisions take place with an impact parameter between s
and s+ ds in time dt. The inverse process is described by removal of particles from the phase cell

d3z’d3p/, the rate for which is given by

o
[ 5669 £, ) p 2 s’ BB (2.11)

For non-relativistic elastic collisions, we have |p—p;| = |p’ - P/}, sds = §'ds',d*p; =
d3p'y, d®p = d®p/, andd®c = d®z’. Then one can combine Equations (2.9), (2.10) and (2.11) to
get the Boltzman equation:

g _ of , pof of _
% = wtoae T F(x,p,t)-g,; =0
—pyl d
[ e BZRLE 40 110 1(6) — (1) £(P) (212

The scattering solid angle d© is determined by the conservation ‘of momentum and energy and
do = 2msds. The Boltzman equation being integro-differential in nature is difficult to solve
analytically. However, it can be tackled under some approximations (as in the next section) which
can be made when p is close to p’ and p; is close to p’,. It can then be possible to expand the
right hand side of Equation (2.12) in powers of Ap = p’ — p and then carry out the integral. The
result can be expressed in terms of a Taylor series giving what is known as k the Fokker-Planck
equation. The Kompaneets equation, derived in the next section,which describes the interaction of

photons and electrons through Compton scattering is a direct example of such a case.



2.2. Non relativistic treatment of thermal SZE 17

2.2 Non relativistic treatment of thermal SZE

2.2.1 Building the Kompaneets Equation

This subsection is devoted to the derivation of the Kompaneets equation. In the next subsection,
we solve the Kompaneets Equation to get the spectral distortion of CMB characterized by the non

relativistic SZE. We begin this section with a brief overview of Comptonization.

“Comptonization is the name given to the process by which electron scattering brings a photon
gas to equilibrium” (Katz (1987)). The terin Comptonization is used if the electrons are in thermal

2 and hv << mec?, where v is the

equilibrium at some temperature 7', and if both kT << meC
frequency of the photon. This is what defines the non-relativistic nature of the problem. In the
non-relativistic limit, a differential Fokker-Planck equation can be written to describe the time
evolution of the photon occupation number n(v), which is assumed to be isotropic. This equation
is known as the Komnpaneets Equation (Kompaneets (1956)). In the fully relativistic case, which
we treat in the next section, a Fokker-Planck type equation cannot be written because the change
in the photon frequency Av due to scattering is not negligible compared to its incident frequency
v. Due to scattering, the photon spectrum is changed and there is net energy transfer from the
electrons to the photons (or vice versa). However, the total photon number is conserved. It is worth
noting that in the case of the electron being infinitely massive (i.e.,mec? >> hv), there would have
been no net gain in the photon energy and Comptonization would only have resulted in making

the photon angular distribution isotropic.

Comptonization becomes important when the temperature of a low density electron gas be-
comes higher than the temperature of a Planck function with the same energy density, and the
absorption optical depth is low enough that the photon spectrumn falls below a Planck function at
the same electron temperature. This is typically the situation in ionized regions (like ICM, accre-
tion flows around compact objects, ionized bubbles around high redshift quasars, etc). This makes
the absorption process, which is proportional to the square of the density, negligible compared to
Compton scattering. Since, low energy photons are available, there can be energy transfer from
the electrons to the photons. This is what is seen in the SZE observed for clusters of galaxies and

predicted for other astrophysical sources of hot plasina.

To derive Kompaneets equation, one has to start witl the elementary scattering process between
an electron and a photon. We follow closely the treatment given in Rybicki & Lightman (1980)
and Katz (1987). Let us label the electron by its momentum p and energy E. The incident photon

is labeled by its frequency » along the unit vector fi and the scattered photon by corresponding
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frequency v’ along unit vector #'. The electron is scattered to p’ and E’. The frequency change is
given by Av =v' —v. The equations for the conservation of energy and momentum are then given
by

2 12
p~ _,,, P
ho 4 g = b/ o (2.13)
} R -
'ch‘ tp= ;“‘/ n'+p' (2.14)

Now, p’ can be eliminated from the last two equations and ignoring higher order terms of Av,

one gets ’2 \
hvep (i — &) + R%0%(1 - A.1)
hAy = — 2.15
v mec? + hv(l — A.A') ~ cp.it (2.15)
Considering the leading term only, one gets
hvp.(f - §/
how ~ — V-8 — ) (2.16)

Mel

This can be understood as follows: In Equation (2.15) If we take hv ~ kpT ~ O(m¢v?), then in
the numerator, the second term is an O(v/¢) correction to the first term. In the denominator, the
second term is an O(v?/c?) correction to the first term and the third term in the denominator is
also an O(v/c) to the first term. Inclusion of higher orders in hAv, would have resulted in O(v®/c?)
corrections. These corrections are negligible in most cases that we consider. In a later section, we

show how these corrections (and others) will modify thie current non-relativistic treatment of SZE.

We start by writing down the Boltzman equation describing the evolution of the photon occu-
pation number n(v), where the primed quantities are after scattering whereas the un-primed ones

are before scattering. For an infinite homogeneous volume (9/8x) = 0 and F = 0 and therefore we

get ) = 7).

Q_"}é(t_”_)_ = - /dapcg-g—dﬂ (n(v) (1 +n()) N(E) - n(/) 1 +n(v)) N(E")] , (2.17)
and (2.18)
E = E+hv—h (2.19)

In (2.17), N(E) is the electron distribution in unit phase-space and depends only on energy since
the electrons are in thermal equilibrium. The differential scattering cross section is given by g{i.
The first term in the square bracket represents the scattering of the photons from frequency »
to frequency v/ by the electrons of energy E. The second term represents the reverse process.

The factors (1+ n(v) and (1 4 n(') are due to the bosonic character of photons, whereas, the
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corresponding fermionic factor (1 — N(E)) and (1 — N(E')) are ignored, since the electrons are
assumed to be non-degenerate. Note that for a given v and fi, the electron momentum p and the
scattering angle decide the scattered v/ and ft’. Thus finally we have an integro-differential equation

for n(v), which can in general be solved numerically.

Now, for a Bose gas at temperature T, the distribution of occupation number is given by

1
" exp (a + hv/kpT) - 1

n(v) (2.20)

where a is the chemical potential. When (2.20) is substituted in (2.17) and N(E) is taken to be
Maxwellian at the same temperature! T, then the right hand side of (2.17) goes to zero. Since
Compton scattering conserves numbers of photons, one has to introduce the chemical potential

—akpT in the B.E. distribution, so that equilibrium can be achieved.

To solve (2.17), we Taylor expand the energy gain in powers of Av. This leads to:

no_ hAvon 1 (hAu)2 &*n
n(v) = n(v) + T 0z + s\TmT ) 322 (2.21)
hAv 1 fhAv\?
N(E"Y = —— | — . 2.22
(E") N(E) [1 + T + 5 (kBT> + ] (2.22)

In the above expansion we have redefined z = hv/kpT. One can now substitute (2.21) and (2.22)

into (2.17) and collect the terms to get

on(v) h (On 2)
= | — 2.23
ot T (Z)a: +n+n")I ( )

h \? [ &*n on 2
<+ (m) (7()2:_2 <+ 2(1+’Il)5£ +n+n Yo
+ ( h )3 i)-L-{ll--+-3(1+n)02” +3(1+n)a—n+n(1+n) Ty +
knT Ox3 9x? Oz A

where the integrals I, are given by

I, = /d3p do cN(FE) (Au)’c (2.24)

Thus the integro-differential equation (2.17) has been reduced to a differential equation, the effect

of the scattering being factored out in the integrals Zj.

Ythe reason being that for time independent solution of the Kompancets Equation, the electrons and photons are

in thermal equilibrium with cach other.
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A few comments can be made at this point. Note that to lowest order in v/c, Z; = Q.
This is because for the lowest order in v/c, for any (fi — i), the integral Z; is proportional to
J d®pp.(i — ') N(E), which is zero since N(E) is independent of direction. This term in fact
corresponds to a systematic doppler shift of O(v/c) in each scattering. To have a non-zero value
of Z;, on would need a to consider the higher order terms neglected in (2.16). However, the lowest
order approximation of Equation (2.16) gives a finite contribution to the integral Z,, containing

the Av? term. If one substitutes (2.16) in (2.24), then one gets

12=( v )2 /cda &Bp N(E) (p.(A - i"))? (2.25)

mMeC

One can now replace p.(fi — &'} by p|fi — fi’|cosy, where 1 is the angle between the incident and the
scattered directions. Note, that the factor |fi — fi'| does not depend on p and so can be taken out
of the integral over electron momentum space. Since N(E) is isotropic the integral of the angular

part gives the factor 47 /3. Thus the above equation can be written as

2
I = %( v ) / odo | - 72 / dnpdp N(E)p? (2-26)

Mel

The second integral in (2.26) is simply nex < p? >, where n, is the number density of electrons
and < p? > is the average value of p, which is 3kgT'men, for a Maxwellian distribution of N(E).
Thus we have |

v \? do ,.
T, = (mec> kpTmenec / dss |- i) (2.27)

In the non-relativistic limit, the differential cross section is the Thomson cross section given by

do/dQl = -;-rg (1 + (A8’ )2), where 7, = e?/(mec?) is the classical electron radius. Then, we have

v \?2 1 A an2) s an2
Iy = (mec) kBTmenec/dQ Erg (1 + (f.4) ) & — &' (2.28)
To simplify further, one has to substitute | — #'|> = 2 — 2 (f.#'). Integrating over df2 one obtains

the factor 47/3 once again. Finally, one gets

2
In=2 (;nu—=) kpTmen.cor, (2.29)

eC
where or = $xr? is the Thomson cross section. Substituting (2.29) into (2.23). one gets the term
£%(6?n/6z2%) coming from the integral .

Now, since Compton scattering conserves photons, one can use the the continuity equation for
‘photon current’ j given by

on 1 9(z%))
5" TE oz (2.30)
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Comparing Equations. (2.30) and (2.23), one sees that § must have the form

on

in,2) = wl@) (52 + ule)), (2.31)

where w(z) and u(z) are functions to be determined. We can determine these functious in the
following way: For Bose-Einstein distribution function we must % = 0. We put j = 0 since there
are no sources or sinks of photons. Thus, for Bose-Einstein distribution, one gets from Equation

(2.23) the identity

-g-g = —(n + n?). (2.32)

Since the condition j = 0 is satisfied for all n and z, hence one can write

u(n,z) = n + n? (2.33)

Moreover, comparing Equations (2.30), (2.31) and (2.23), one sees that w(z) o« z2, with the

proportionality constant found from (2.29). Hence,

w(z) = — klﬂ; neorcxzl. (2.34)
MeC

Defining a dimensionless scaled variable y given by

=thT
Y = e

Ne 0T C (2.35)
e

then one finally arrives at the Kompaneets equation by combining Equations (2.30), (2.31), (2.33)
and (2.35)

on 1 [ 4(0n 2)]
= ], - . 2.36
Oy 120;1:[1: <a$+n+n ( )

One can actually determine Z; explicitly, now, by comparing the coefficients of n or n? from
(2.36) and (2.29) to give

kT
C'Z

I, = neorz (4 — ). (2.37)

Me
2.2.2 Solving the Kompaneets Equation

The Kompaneets equation describes the change in the photon occupation number, n(v), by a

diffusion process. The dimensionless parameter y (defined in (2.35)) is generally known as the
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‘Comptonization parameter’ or the ‘Compton y-parameter’. One can use ¢t = [ and rewrite the

‘y-parameter’ as

kpT
y = [neora = (2.38)
MeC

€

The stationary solution of the Kompaneets equation is given by the Bose-Einstein equilibrium
distribution. In most astrophysical processes of interest (e.g., SZE), we have hv << kgT, and

hence 2 << 1. Then, we have On/dz >> n and n?. The Kompaneets equation then gets the form

on 1 0 ( 40n
— = = — .39
Oy z? Oz (z D:c) (2.39)
The homogeneity of right hand side of equation (2.39) allows us to substitute z = ;'1‘7'7—‘ by z =
hy

ko Lemb

The above equation has the formal solution

Y .13

n{z,y) = exp [;- 2% o2 n(z,0), (2.40)

where n(z,0) = (e - 1)'1, since in the absence of distortions (i.e., y = 0), the photon spectrum is

a black body. Now, if 22y < 1, then one can expand the exponential of the above equation as

=] i_a_ ‘1.8_
n(z,y) = n(z,0) + 27 52 [:c om"(x’o)]‘ (2.41)

Using the identity:

1 040 1 re’
572' EL'- [ 5:;6: —1 ] = (e-T _ 1)2 [:L‘ (.Oﬂl(Ji/Z) - 4] (242)
in Equation (2.41), we get for z2y < 1,
An  n(z,y) - n(z,0) ze®
—— — —-— 4 . 2.
- @.0) ‘y & =1 [z coth(z/2) ] (2.43)

Now, since the cha.n‘éé in radiation spectrum AI(z) at frequency z is given by AI(z) = z3An(zx)Iy,,
3
where Iy = %’} (Eﬁl;fmh) , we have

Al(z) = I —ﬁz—— oth(z/2) — 4 2.44
(@) = loy o coth(z/2) = 4 (2.44)
and
Al(z) _ An

@ - n (2.45)
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Finally, the temperature anisotropy due to inverse Compton scattering of CMB photons by hot

electrons in a plasma, known as the “thermal SZE  is given by:

ATy, _ Al{z) dinl(z)
Temb B I(z) dInTemy
= y [zcoth(z/2) — 4]

= yg(z)

(2.46)

~

AT (tSZE)

“CMB distortion

-2

-4 ~ : d

Al (ISZE)

~ _ Al (KSZE)

-6

Figure 2.1: Frequency dependence of thermal and KSZE. The thick line shows the frequency

dependence of T—AT from TSZE, whereas the thin solid line shows the same for the change in
cmb

spectral intensity AI(z). the thin dashed lines show the change in spectral intensity for KSZE, the

upper one for a receding source of distortion and lower for a approaching one. The vertical dotted

line shows the scaled frequency at which the TSZE is zero and KSZE is maximum. In the above

plot y, Ip and Temy are all scaled to unity.

In the Rayleigh-Jeans linit?, i.e.,when z — 0, we have

?Note, that our definition of g(z) is different from that normally used, where g{z) gives the spectral dependence
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Blemy = -2y. (2.47)
Temb

Thus, we see that there would an apparent decrease in the sky brightness of the CMB sky towards
any object (for example galaxy clusters)in the sky which is capable of scattering the microwave
background photons. This has been sometimes referred to in the literature as ‘holes in the sky’
(Birkinshaw & Gull (1978)). In the Wien region, the distortion goes as z? y. In most cases of interest
in astrophysics (and in all the cases looked at in this thesis), the approximation 2y < 1isa valid
assumption and we use Equations (2.46) & (2.47) in the analysis. However, when the coudition
z?y < 1 is not satisfied, then one may make use of a change in variable from (z,y) = (£,y) given

by ¢ = 3y + Inz to reduce Equation (2.39) to the canonical form of the diffusion equation given by

on  0%n

The solution to such an equation can be written as

I(z) = /_ O:OPk(s)Iods. (2.49)

In the above equation, the energy shift due to scattering is denoted by e®* = ";’ and the Kompaneets
scattering kernel is given by (Sunyaev 1980, Bernstein & Dodelson 1990)

2
Pi(s) = \/z};@exp (—(—S-L/Ly)) (2.50)

With this we come to the end of non-relativistic treatmment of the thermal SZE. Before going
over to the next section, we briefly discuss a few features of the Equations (2.43) & (2.46). The
usefulness of the form of the temperature distortion given by (2.46) is due to its simple analytic
form. However, it must be emphasized once again that this is valid in the case of small optical depth
of the scattering medium. As it stands, from Equation (2.46), we see that g(x) gives the frequency
dependence of the distortion and it is characte;ized by three distinct frequencies : g = 3.83, where
the thermal SZE vanishes; zmi;, = 2.26 which gives the minimum decrement of the microwave
background intensity and Z,,.; = 6.51 which gives the maximum distortion due to this effect.
In figure 2.1, we plot the frequeﬂcy dependence of the temperature distortion and the spectral
intensity from thermal SZE (and also KSZE, which we discuss later). For easy reference, the

crossover frequency (i.e.,zo = 3.83) is shown with a vertical dotted line. It is clearly seen from the

of the intensity and not of the temperature distortion
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thick solid line that at R-J limit, % = —2y and at frequencies below the crossover frequency there

is a dip in the temperature and the intensity for TSZ2E.

At first approximations, none of these spectral features depend on the temperature of the
scattering medium. However, for very hot gas, one can no longer do a non-relativistic treatment and
the final result would depend on the temperature of the gas. The relativistic treatinent of thermal
SZE is discussed in the next section. There can be other corrections to the simple expression given
in (2.46) and these we treat in a later section. The amplitude y of the distortion, as in (2.35) and
(2.46) depends only on the product T' 1. of the gas where 7. is the optical depth along the line of
sight through the scattering medium. This is essentially the integral of the gas pressure along the
line of sight. For relativistic treatment, the expression for the amplitude would be proportional to

Te for small 7. and would also depend on T in a complicated manner.

2.3 Relativistic treatment of thermal SZE

In this section, we relax the assumption of low optical depth for the scattering medium. We also
do not make the assumption kpTe << mec®. Thus, we try to do a more exact treatment of the
relativistic nature of thermal SZE which would be applicable if the plasina is very hot (Te2 10 keV).
We, however, still ignore the Compton shift in scattering and so require hv << mec?, and also
take the electrons to have a Maxwellian distribution. In the rest of the section we closely follow
the treatment given in Wright (1979), Taylor & Wright (1989) and Rephaeli (1995 a,b).

The distortion of the photon spectrum, due to Compton scattering by the electrons, is given by
a convolution of the input photon spectrum with the frequency shift per scattering. To proceed.

one must first look at the photon’s frequency in the electron’s rest frame which is given by
g

o= — Y (2.51)

Y(1 = Bu)
where v is the incident photon frequency , 8 = v/c, v being the elctron’s velocity, v = 1/v1— 5?
and 4 = cos 8,  being the angle between the photon direction and the electron velocity in the
electron rest frame. The probability of collision with an angle 8 is given by (Chandrasekhar (1950))

plu)du = [29'(1 - Bu)a]_ldu (2.52)

The outgoing photon frequency is given by
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Vo= vl + B)/(1 - By (2.53)

with ' = cos @', ¢ the outgoing photon angle w.r.t. the electron velocity direction in the electron
rest frame. For a given p, the probability of getting u' is given by the scattering redistribution

function:

2

Conventionally, one describes the scattering in terms of the logarithmic frequency shift, s, caused

3 1 ‘
g(p';p)dy’ = 3 [1 + 2+ (- pd - p'z)] dy’ (2.54)

by the scattering

s =l (%) =In (i J_“gz:) . (2.55)

Then the probability that a single scattering of the photon by an electron with speed (B¢ causes a
frequency shift s is given by

Peip)as = [ (%) ds] atusmiu) ds (2.56)
3 m (L= B+ p? A - (1 = p? .
= 55 L., 0~ du (2.57)

where ' is expressed in terms of ;2 and s as

W=t (- pu) ~ 1], (2:58)
and the range of the integrals is over real angles only (i.e.,—1 < pu,u’ <1).

To calculate the photon frequency spectrum on scattering by a population of electrons, one has
to average over the electron velocity distribution, pg(8) d3. One assumes the electron velocities to
follow a relativistic Maxwellian distribution (Lahav et al. 1990), then the overall distribution in

frequency shifts in a single scattering, P;(s), is given by

B2 7° =0~/ P(s, §) df
J B2 e-(0-1)/2

where £ = 5&%& and the integration is from G, = (el*l —1)/(e!* +1) (which is the minimum value of

B capable of causing a frequency shift s) to 8 = 1. The final distribution P(s), is then the weighted

sum of the probabilities for any number of scattering. If the optical depth to scattering through

Pl(s-) = !
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Figure 2.2: The scattering probability P(s,B8) as a function of s is plotted, for 8 =

0.01, 0.02, 0.05, 0.1, 0.2and 0.5 As f increases the function becomes broader and asymimnetric.

(From Birkinshaw, 1999)

the plasma is 7, then the probability that the photon traverses the medium un-scattered is e™,

the probability of one scattering is 7. e~ and the general probability of N scattering is then

Te.N e Te
PN = “"—"‘N!

Thus we have

P(s) = €™ [5(3) + 7 P (s) + %Tez (Pl(s) QP (3)) + ]

where 6(s) is the delta function and & denotes convolution.

(2.60)

(2.61)
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The multiple scattering of the photon changes the incident Planck intensity plioton spectrum

Io(z) to I(z), which is obtained by convolving Iy(z) with P(s). Here Iy(z) = %!lﬁ(e:c ~ 1)~ and

I(z) = e [Io(:c) + 7 Io(z) @ i(s) + -;-rez (Io(s)®Pl(s) ®P,(.s)) + ] . (2.62)

It has been noted by Taylor and Wright (1989), that the exact calculation of Equation (2.62)
becomes simpler by going to the Fourier space I(k) of I(x). Then, we get

I(k) = e~ Iy(k) [1 + 7o P(k) + -;-rf P(k)? + ] , (2.63)

which can be simply written as

I(k) = Io(k)e™(Pk)=1), (2.64)

This allows one to calculate the intensity change for any values of the temperature and optical
depth of the scattering medium. However, for most cases of application in astronomy, one deals

with regions of small optical depth (like in ICM) and then one can approximate P(s) by

P(s) = (1 = 1e)6(s) + 1o Pu(s). (2.65)
Integrating the product Ip(z) P(s), we obtain
A I(z)

Io(z)
Then the fractional change in the CMB temperature is given by (following Equation (2.46))

= 7 [®(z,%) — 1]. (2.66)

A &
Tcme _ | = Y e (.5) - 1. (2.67)

The function ® (z, %) comes from the integral over u, 8, s (given in Equation (2.71)). The limit on

B has been given above and the angle integrals are between u; and ps given by

-1 s<0,

H1 = { 1—e*(148) .5 ¢ (2.68)
——é—ll_e—, 1-8) <o

o = =7 (2.69)
1 s>0 ,

Using w = exp(~s), we obtain
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O(z,2) = A(Z) [®1(x, 2) + Ba(z, )], (2.70)

where

. 1 —1)dw ; 1
&i(z, 3) = /o“’e / ~(r-1)/4 dﬂ] a(w, i, B)dp
B

| T _. 1 v 2
®:ad) = [ ;”ﬁeex,w”_df’) /ﬁ 1e 02 dp [ gtw, B)au
(32 -1)(52 1) + 3 - )
(wap'aﬁ) - (1 _ 6/1)2
A@E) = 3 . (2.71)

32 f, B2yPe~(-1)/24j3
where B = (1 —w)/(1 + w) The above equations summarize the calculation of the relativistically
correct Comptonization spectrumn of the CMB in the limit of small optical depth and using the
exact angular probability distribution for scattering. However, since the photon field is isotropic
in nature and the electrons are, in general, only mildly relativistic, the scattering can be assumed
to be isotropic in the electron rest frame. Under this assumption, one can average the scattering

probability over the direction of the incident photon (Rybicki & Lightman 1980) to have

Pos.) e [(1=-Pe—1+8 {FE<e<t, -
is0(8,8) = ——= .
v (2982 |1+ 8- (1-Ble' 1l<e' <HB.
In this approximation, we then have
®iso(z,E) = DB(Z) P(z, ), (2.73)
where
&(z,z) = /l(eI - 1) [ ! + ! ((z, Z)dw (2.74)
} 0 efw _ 1 w3(ez/w _) ’
1 -
((z,3) = / Ve UDE(1+B)w- 1 +0]dB (2.75)
B(z) = -gA(:E). (2.76)

At this point, let us comment on the results of the fully relativistic calculations. The thing that

is to be noted first is that the intensity change is no longer linear in T, as was the case for the
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non-relativistic case. For the relativistic treatment, Al depends explicitly on z, Z and 7., whereas
that of Equation (2.46) depends only on zandy = 7.%. Also at a given frequency , the intensity
change can assume different values depending on different ratios of y = 7.Z. Moreover, due to the
exponential nature of the Planckian spectrum, a slight shift in scattering probability distribution
to higher frequencies can cause distinguishable change between non-relativistic and relativistic
results, near the cross-over frequency. Rephaeli (1995 a,b) has checked that the simplification of
the relativistic case to the iscStropic scattering does not lead to appreciable change in the final value
of the intensity change. For the relativistic cases, the level of deviation starts becoming important
for kpTe > 5 keV. At this temperature, the relative intensity change between the non-relativistic
case to the relativistic case is greater than 20% in the range 3.7 < z < 4.2 and at £ > 11.0. the
deviations are higher and over a wider range in z for higher temperatures and especially at higher
frequencies. However, one must note that, we have neglected the higher order terms in 7. (refer to
Equation (2.65)) which means that the above results are only approximate. This is justified in all
the cases (like ICM or inter-galactic medium ) that we study in this thesis. As has been pointed out
by Rephaeli (1995 .a.,b), the main characteristic of the relativistic solution w.r.t. to non-relativistic
case is the general decrease of the intensity change for values of z < 8 — 8.4 for T, between 1 — 15
keV, and an increase at higher values of z. The higher the gas temperature, the higher is the Wien

deviation from that in the Kompaneets case.

The non-relativistic nature is also manifest in the change in the cross-over frequency. The value
of T;¢r0 i3 pushed to higher values of z with increase in T, for the relativistic case compared to the
constant z;.ro = 3.83 one gets'from solving the Kompaneets Equation This deviation is linear in

kpT./mec? and as a first approximation can be written as

zy ~ 3.83 (1 + kpTe/mec?). (2.77)

A more precise expression for this deviation would be given in a later section. The importance
of this result cannot be over-emphasized. Recall that the cross-over frequency is the frequency
where the thermal SZE is equal to zero. A precise knowledge of the cross-over frequency becomnes
important if one would like to disenf.angle the KSZE (discussed below) from the thermal one. Also,
this becomes important if one has to separate out the secondary anisotropy due to thermal SZE

from the primary anisotropies at angular scales dominated by the primary anisotropies.

To conclude this section, let us point out once again that the degree of Comptonization predicted
by a solution of the Kompaneets equation is significantly different in the Wien side of the photon
spectrum from a relativistic calculation taking into account near -relativistic electrons and low

optical thickness. The difference between the two treatment is not significant for gas temperature
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below ~ 5 keV. Also, in the relativistic case zy becomes temperature dependent in contrast to
the constant value of 3.83 predicted in the last section. A precise knowledge of this value becomes
important if one needs to decouple the KSZE from the thermal SZE. Finally, we mention that while

the above review is sufficient for the purpose of this thesis, for more details on the the relativistic

treatment of Comptonization, see e.g., Loeb, McKee & Lahav (1991).

2.4 The Kinematic Sunyaev-Zel’dovich effect

The KSZE occurs, along with thermal Sunyaev-Zel'dovich effect, if the scattering medium (like the
ICM) has any bulk motion (e.g., peculiar motion) relative to the CMB. Due to the relative motion
the microwave background photons appear anisotropic in the reference frame of the scatterer and
kSZ tries to isotropize the radiation. This, however, makes the radiation anisotropic in the reference
frame of the observer, and there is a distortion towards the scatterer with amplitude proportional to
Te %=, where v, is the peculiar velocity of the scattering bulk (Sunyaev & Zel’dovich 1972, Repaheli
& Lahav 1991). The KSZE is found to have a different spectral nature than the thermal SZE,
and hence the two can be separated. This then brings out the interesting possibility of deducing
an object’s peculiar velocity at large distances by observation of the KSZE. Since, the peculiar
velocities of clusters arise from the gravitational attraction of the large scale distribution of matter,

observations of KSZE can be used to probe of this distribution.

To derive the expression for CMDB temperature distortion due to KSZE, one can either start
with the Boltzman equation (as done for the thermal SZE, for example, see Phillips 1995, Nozawa
et al. 1998) or use the radiative transfer equation. We follow Birkinshaw (1999) closely and use the
latter method. For the sake of simplicity, we shall assume that the kinematic and thermal effects
are both small and only single scattering is appropriate to describe the situation. In this case, the
thermal and the kinematic effects will decouple and we can derive the kinematic effect by taking
the electrons to be at rest in the frame of the scattering medium. This also means that we are
ignoring all cross terms like (%) (%). This approximation is not valid for non-thermal electron
population where the electron energies can be far greater than the rest mass and one would need

a relativistic treatmenut (see for example, Nozawa et al. 1998 ).

In the rest frame of the CMB, the radiation spectrum is given by Equation (2.4) and the
occupation number is given by Equation (2.3). In such a case, the occupation number in a frame

moving at a speed v, along the z-axis of the observer is given by
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1
exp (217:(1 = B 1)) = 1V
where z; = k%'% denoting the dimensionless photon frequency in the frame of the electrons. The

(2.78)

Mg =

radiation temperature as seen by an observer at rest in the Hubble flow near the electrons would be
Ty = Temb(1 + zg), where zp7 is the Hubble flow redshift and 8, = % is a measure of the peculiar
velocity; 7, is the corresponding Lorentz factor. The direction cosine of the photons arriving at
the scattering electron relative to the z axis and measured in the frame of the moving scattering
medium is given by p; = cos ;. One can now use the relativistic transforination of frequencies to

relate p; to p in the CMB rest frame by

pr= 7 (1 + B:)p. (2.79)

The observer at rest sees the scattered photon along the z axis and so p = cos 8 = 1.

We use the radiative transfer (Equation (2.8)) and scattering redistribution function (Equation
(2.54)), to get the specific intensity as

1
Ll [ s o) (B ) = 1)) (250)

where the optical depth i8 7o = [ o, scadz. The above equation can be simplified for small optical
depth to give

L (1e; ) — L, (0; +1
2 (Te “)T n (i) _ dura(p ) (IVI(O;M) = 1, (0 #))- (2.81)
. _

Now for p = 1, the above equation can be simplified to give the fractional change in the specific
intensity as

AL, o3 oy {11 (05 121)
— —(1 it Rt X kA . 2.82
T, Te /-1 duxs( +#1)(Iul(0;1) 1) (2.82)

Now, since the L.H.S. of Equation (2.82) is a ratio of specific intensities, it is relativistically invariant
(i.e. p is related to p through a Lorentz transformation). Then, using the occupation number

from Equation (2.78) and substituting v, by v, the frequency seen at redshift zero, we get

AL, + 3 9 (€8 —1
=T ) dur 3(1+ pi) (_—_—emz — " 1) ; (2.83)

where 73 = z92(1 + B,)(1 = Bopy) and ¢ = ﬁ—b To get the familiar expression for KSZE, we
cm
expand the integral in power of 3, for small 3, (i.e.non-relativistic) and due to the symmetry of

the integrand, only terms having even powers of 1) remain. Thus we finally have
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Al zet
I, = —Tf et — 1 (2.84)
zte®
A[u = -—Io Te ﬂz G—-_—I)—.Z and (285)
( AT ) N Uy X
Temb/ k57 c ' (286)

At this point, let us make a few remarks on KSZE, before moving on to the next section:

o The spectral form of the KSZE is the same as-that of the primary anisotropies and shows up
as a simple decrease in radiation temperature. Thus, a precision measurement of the primary

anisotropy must take into account any possible contamination from kSZ at lower redshifts.

o For clusters of galaxies, it is very difficult to measure the KSZE in presence of the thermal

SZE. The ratio of the change in brightness temperatures caused by these two effects is

ATinematic — l& (kBTe)_l
ATihermal 2 c 77’-(#32
~ 0.09(v;/1000 kms™") (kpTe/10 keV)~! (2.87)

Since typical peculiar velocities are around a few hundred kilometers per second and typical
temperature a few keV, hence the kinematic effect comes out to be at least an order of
magnitude less than the thermal effect. However, the two effects differ in their spectral shape
and so can be, in principle, separated. Infact, for non-relativistic cases, the kinematic effect
attains the maximumn distortion at the frequency where the thermal effect is zero (see Figure
2.1). However, to be precise, one has to take the exact value of the cross-over frequency which

would, in general, depend on both the plasma temperature as well as the optical depth.

e There can be cases when the kinematic distortion is more than the corresponding thermal
distortion. This is so when the plasma is either too tenuous or relatively cool or both and the
peculiar velocity is larger. In chapter 4, we consider in detail an example, where the kinematic
distortion from galactic winds at high redshifts overshadows the thermal distortion. To give
another example, consider the case of an ionized bubble around a quasar at redshifts before

cosmological reionization. (Aghanim et al. 1996).

e Tlhe distortion as given by Equation (2.86) can be used to measure the peculiar radial velocity-
However, the tangential velocity of a galaxy cluster can be measured using the distortion
caused by gravitational lensing (Birkiushaw & Gull 1983, Gurvits & Mitrofanov 1986, Pyne

& Birkinshaw 1993). For typical clusters, this distortion (the moving gravitational lense
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effect) comes out to be an order of magnitude less than the kinematic effect, and hence would

be extremely difficult to detect at present.

e A moving scétterer that gives rise to the kinematic SZE would also give rise to polarization
(Sunyaev & Zel’dovich 1980b, Itoh et al. 2000, Challinor et al. 2000) due to Thoson
scattering of the anisotropic radiation field in the reference frame of the scatterer. The two
largest contributions to the polarized intensity were found by Sunyaev & Zel’dovich (1980b) as
a intensity component of about 0.1 7 (vxy/c)? of the CMBR intensity, due to single scatterings
of the quadrupolar term in the anisotropic radiation field seen in the frame of the moving
cluster, and a component of about 0.025 72 (uxy/c) from repeated scatterings of the dipolar

term in the radiation.

2.5 A short note on corrections to SZE

In this section, we briefly discuss corrections to the simple expressions of the thermal SZE (refer to
Equation (2.46) and KSZE (refer to Equation (2.86)) derived in the previous sections and collect
a few fitting functions from the literature which becomes important (and useful) when one deals

with hotter and denser scattering systems.

The Sunyaev-Zel'dovich formula, in a previous section, was derived from the kinemnatic equation
for the photon distribution function taking the Compton scattering by the electrons into account,
i.e., the Kompaneets equation. This gives us the formula (2.46) which is sufficiently accurate for
clusters having temperatures less than 5 keV. However, observations show the presence of clusters
having temperature up to 15 keV, and hence makes extension of the Kompaneets equation to
relativistic regimes important. The SZE for relativistic cases has been discussed in the previous
section, but no analytic extension of the simple SZE formula (i.e., Equation (2.46)) was given. In
practice, it is of use if one can get an analytic expression of sufficient accuracy for distortion of the
CMB by mildly relativistic electrons. Furthermore, one would like to relax the assumption of low
optical depth and allow for multiple scattering of the photons by the electrons. These issues have
been addressed in a number of papers (Itoh et al. 1998,2000, Nozawa et al. 1998,2000, Challinor
& Lasenby, 1998,1999, Challinor.et al. 2000, Molnar & Birkinshaw, 1999). Over here we only give

a collection of three main results from the references stated above.

We start by writing the Kompaneets equation as a power series in 8, = kgT./mec?, where T,
and me are the plasma temperature and the electron mass. The convergence of the power series
in 6, is slow. We start from Equation (2.23). An integration of of the generalized Equation (2.24)
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is not possible other than doing a power series expansion of the integrand. This expansion can be
done for many choices of parameters like p/m,v = E/p etc. However, the analytic expression I
after the integration does not depend on the choice of the expansion parameters. More important
is the fact that the expansion is only an asymptotic expansion. The details of these expansions can
be found in (Challinor & Lasenby 1998, Itoh et al. 1998). In the rest of the section we use natural
units and put A/2m = ¢ = 1. Therefore, the corresponding z in Equation (2.23) for this section is

» ’— 3
given by £ = gl and Av = =2, withw = 27w,

Taking these expansions and assuming a Planck spectrum for the photons with Tepqp << T,

one gets the fractional distortion of the photon spectrum as

An(X) zYe 9
= Yi + 6%Y; .
0 (X) e\ 9 [Y0+9 1 + 2] (2.88)
with
Yo = —4+X (2.89)
Vi = —-10+ %ZX - 4—2X2 + OX3 + §? (—31 + —x) : (2.90)
15 1023, 868 o, 320 o5 44y 1, g
2= -5t SRS e
434 608 242 143 “ 187
&2 a2
+5 ( ~ 35 ) + 5t ( =+ %5 X) , (2.91)

where we have kept terms only up to O(62). Here y = or [ din, and

% = Xcoth(—;i) (2.92)
S = _—‘X— , (2.93)
smh(a)
1
ng(X) = X (2.94)
and (2.95)
w
X = . (2.96)
kBTcmb

The definitions of n and X remains unchanged for the rest of this section. Once we have the
fractional change in the photon number due to scattering, the temperature anigotropy can be
obtained following Equation (2.46).

Till date, most of the observations of SZE have been carried out in the Rayleigh-Jeans (R-J)
region of the blackbody spectrum. Hence, it is instructive to see how the corrections belhave in this

region. In the R-J limit, i.e as X — 0, we have
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Figure 2.3: The spectral deformation AI/Ij is plotted against z = hv/kpTeny for the relativistic
expression (from direct numerical integration) shown by the solid line, and that obtained froin the
corresponding Kompaneets kernel, shown by the dotted line. The left plot is for kT = SkeV and

the right plot is for kpTe = 15keV. (From Birkinshaw, 1999)

An(X) [(_17, 123,

In the R-J limit, the convergence of the above series is very fast. This is, however, not the case in
the Wien limit.

Before moving onto corrections to the KSZE, we look at the cross-over frequency in a little
more details. A good fit to the cross-over frequency due to relativistic therinal SZE calculated from
analytical expression and by direct numerical integration has been found by Itoh et al. (1998). The
numerical result is well approximated as a linear function in 6. for plasma temperatures below 20

keV and a quadratic in 6, up to 50 keV. The numerical fit is given below:

Xo = 3.830 (1+ 1.16746, — 0.85336; ) . (2.98)

Next, we come to the relativistic corrections to the KSZE. This can be done in a way sirilar
to the one above, by starting once again from a generalized Kompaneets equation and applying a

Lorentz boost to the direction of the peculiar velocity. One can assume the cluster to move with a
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peculiar velocity G(= #/c) with respect to the CMB. The directions of the velocity is chosen to be
in the £ — z plane, i.e., G = (82,0, 8;). The electron distribution functions are connected between
the cluster frame and the microwave background frame by Lorentz transformations. One can then
work out through the algebra in the same way as before by expanding the Kompaneets solution in
powers of §,. However, this timme, we will have cross terms like 5., ,803 etc. The 38, term can give
rise to a correction of the order of 10% for a typical electron-temperature of 10 keV. The other
higher order terms lead to negligible corrections for temperatures of interest. Without going into

the details, we write down the relativistic correction in the R - J limit, which is

M) aye, [1-1to+ Baz] + yora [1-Se+ 502 . (209
no(X) °

10°° 40 ¢ 5
In the above expression we have neglected all 5% and higher order terms. P 8. = %‘- = cos b,

where 6, is the angle between the cluster peculiar velocity (E) and and the photon momentuin 7.

One can now look once again to the correction to the cross over frequency. The cross-over
frequency is shifted toward higher (lower) frequency region by the kinematic Sunyaev-Zel'dovich
contribution when the cluster is moving outward (inward) with respect to the observer. The shift
is given by AXy = Xo — Xo 5, where Xy is given by Equation (2.98) and X, is the new cross-over
frequency in the presence of the kinematic Sunyaev-Zel'dovich effect. The shift can be expressed

in the form of a function, k, given by

h = AXy/ (300ﬁ PI(BZ)) . (2.100)

For temperatures 5keV < kpTe < 15keV, the function k can be well fitted by (Nozawa et al. 2000)

Q] az 2
h = + =~ + a3 + a40c + a50; , (2.101)
9e - ge,min (Oe - ge,min)z 3 € 0Ue

where 8¢ m;n is the minimum value of 6, which has a real solution for a given . @¢ min = 1.654% 10~3
and the other constants are a; = 3.857x1073, a3 = —4.631 x 1076, a3 = 1.370x107%, a4 =
1.014x1072, and a5 = 1.000x10~2. Nozawa et al. (1998) quote the errors of this fitting func-
tion to be less than 4% for 5 < kpT. < 15keV and 0.5/300 < 3 < 1.5/300.

Finally, we relax our assumption of low optical depth and look at multiple scatterings of the
incident photon spectrum. In general, maltiple scattering contribution is found out to be rather
small compared to single scattering. As an example for a 15 keV cluster, the multiple scattering
affects the final result by —0.3% in the Wein region and —0.03% in the R - J region. The basic idea

is as follows: Since y << 1 for all clusters, only first order perturbations to the photon spectruin
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is sufficient, and one can write the initial photon distribution as

n(X) no(X) + An(X), (2.102)

= no(X) [l + éﬂﬁ%l] ,

where the second term in the last equation is given by Equation {2.97) (in the R - J limit). This

then gives us the correction in R - J regime to be

An(X) ( 17 123 2) 9 2( 17 226 2)
- - = 2 - = - ; 2.103

In the Equation (2.103), we have taken terms only up to second order in y and have defined
y? = L(or [ nedl)®.

The formulae (Equations (2.97), (2.98), (2.101) and (2.103)) are important and come in handy
when one needs to get the value of temperature distortion due to SZE within an accuracy of ~ 10%.
For example, for assessing the uncertainties in the determination of the Hubble constant from
observations of galaxy clusters in radio (SZE) and X-ray, one would like to use the approximmations to
the relativistic treatment of temperature distortions by SZE. Using the non-relativistic expression
for TSZE can result in deviations of ~ § — 10% in the estimated value of H, from the actual value.

We will return to this issue in greater detail in Chapter 3.

2.6 Observational aspects of SZE

Till now, observations of SZE have mainly been carried out towards clusters of galaxies (see
Birkinshaw 1999, for details) with the exception of a singular attempt made towards a radio jet
lobe (McKinnon et al. 1990). There have also been two claims of detection of Sunyaev-Zel'dovich
distortion towards blank fields in the sky (Jones et al. 1997, Richards et al. 1997), but other
sensitive blank sky searches have only resulted in upper limits (Subrahmanyan et al. 1998,1999).
In observing the secondary CMB distortions, three distinct techniques have been utilized, namely,
1) single dish radiometer observations, 2) bolometric observations and 3) interferometric ob-
servations. Till now no concerted effort of measuring the polarization has been made. However,
with the coming up of ‘Array for Microwave Background Anisotropy’ AMiBA3 in the future, one
of the main aims will be to look at polarization signals at arc min scales. We briefly describe the

three different observational techniques below:

3http://www.asiaa sinica.edu.tw/amiba
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e Use of single dish radiometers
For clusters of galaxies at low redshifts having large angular sizes, it may be possible to
observe the SZE using small single dish radiometers. For better results one must optimize
the setup for microwave background observations. The major optimization necessity comes
from requirement to have greater sensitivity for observing the Sunyaev-Zel’dovich distortion.
Following Birkinshaw (1999) a simple estimate of the sensitivity of single observation can be
given as follows: A good system might have a noise temperature of about 40 K (including
noise from the atmosphere) and a bandwidth of 1 GHz. Then in 1 second, the radiometric
accuracy of a simple measurement will be 0.9 mK, and a difference measurement, between
the center of a cluster of galaxies and some reference region of blank sky, would have an
error of 1.3 mK. Thus if problems with variations in the atmosphere are ignored, it would
appear that a measurement with an accuracy of 10 4K could be made in 4.4 hours. However,
this estimate is highly optimistic because of emission from the Earth’s atmosphere. This

unwanted contamination can be separated out by using some differencing schemes.

The simplest scheme for removing the atmospheric signal is simply to position-switch the
beam of an antenna between the direction of interest (for example, the center of some cluster)
and a reference direction well away from the cluster and then the radiometric signals measured
in these two directions are subtracted from one another. An alternative strategy is to allow
the sky to drift through the beam of the telescope or to drive the telescope so that the beam
is moved across the position of the target. The time sequence of sky brightnesses produced
by such a drift or driven scan is then converted to a scan in position, and fitted as the sum
of a baseline signal and the Sunyaev-Zel'dovich effect signal associated with the target.Many
scans are needed to average out the atmospheric noise, and this technique is often rather
inefficient. Using this technique the first measurement of SZE was carried out towards the
Coma cluster (Parijskijs 1972). However, more often a higher order differencing scheme is
adopted. At cm wavelengths, it is common for the telescope to be equipped with inultiple
feeds so that two or more directions on the sky can be observed without moving the telescope.
The difference between the signals entering through these two feeds is measured many times
per second, to yield an “instantaneous” beam-switched sky signal. On a slower timescale
the telescope is position-switched, so that the sky patch being observed is moved between
one beam and the other. At mm wavelengths it is common for the beam switching to be
provided not by two feeds, but by moving the secondary reflector, so that a single beam is
moved rapidly between two positions on the sky. In general, most measurements have been

made using a combination of beam-switching and position-switching, because this is relatively
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efficient, with about half the observing time being spent on target. Two recent observations
with single dish radiometers are by Tsuboi et al. ( 1998) and Myers et al. (1997).

Using Bolometers

Bolometric measurements of the SZE effects are now becoming more common, as the tech-
nology needed has become more widely available. The principal advantage of a bolometric
system is the high sensitivity that is achieved, but these devices are also of interest because of
their frequency range: at present they provide the best sensitivity for observing the microwave
background outside the Rayleigh-Jeans part of the spectrum, and hence for separating the
thermal and kinematic components of the SZE effect using their different spectral shapes.

Moreover, for some systems, one can have simultaneous observations in several bands.

Although the unprocessed sensitivity of bolometer systems is high because of the large band-
passes and sensitive detector elements, a problemn with the technique is the extremely high sky
brightness against which observations must be made. Coupled with the varying opacity of the
sky, this irﬁplies that telescopes on high, dry, sites are essential for efficient observing, like in
balloon operations. The CalTech Submillimeter Observatory (CSO) on Mauna Kea ‘Sunyaev-
Zel’dovich Infrared Experiment’ (SuZIE) sucéessfully running. The other possibilities are to

have space borne missions or observations carried out in Antarctica.

Interferometric Measurements

Use of radio interferometry has, in the recent past, developed into a powerful tool for mak-
ing detailed images of SZE. Such higher angular resolution images are desirable for inaking
detailed comparisons with X-ray images, and can also measure accurate Sunyaev-Zel’dovich
effects while avoiding some of the systematic difficulties of the other techniques described
above. This has made this technique popular in recent times (Carlstrom et al. 1996, White
et al. 1999, Reese et al. 2000, Patel et al. 2000, Holder et al. 2000) The extremely low
systematics of interferometers and their two-dimensional imaging capability make them well
suited to study the weak (<1 mK) SZE signal in galaxy clusters. In this thesis, we have used
interferometric measurements/limits of the CMB sky as probe in cosmology, and hence we

look at this technique in little more details.

An interferometer samples the Fourier transform of the sky brightness rather than the direct
image of the sky. The final products from the interferometer are the amplitudes of the real
and imaginary components of the Fourier transform of the cluster SZE distribution on the sky
multiplied by the primary beam of the telescope. The SZE data files include the positions in

the Fourier domain, which depend on the arrangement of the telescopes in the array, the real
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and imaginary components of the Fourier signals, and a measure of the noise in the real and
imaginary components. The Fourier conjugate variables to right ascension and declination
are commonly called u and v (measured in wavelengths), respectively, and the Fourier domain
is commonly referred to as the u — v plane. The finite size of each telescope dish imposes
an almost Gaussian attenuation across the field of view, known as the primary beam. The
primary beams are constructed from holography data taken at each array. The main lobe
of the primary beam can be approximated as a Gaussian. The primary beam sets the field
of view. The effective resolution, called the synthesized beam, depends on the sampling of
the u — v plane of the observation and is therefore a function of the configuration of the
telescopes. The cluster SZE signal is largest on the shortest baselines (largest angular scales).
The shortest possible baseline is set by the diameter of the telescopes, D. Thus interferometers
are not sensitive to angular scales larger than about A/2D. Because of this spatial filtering
by the interferometer, it is necessary to fit models directly to the data in the u — v plane,

rather than to the deconvolved image.

For “small” sources, observed with narrow bandwidths and short time constants, the measured

source visibility is
Vo) [ de [ d¢B(E,Q) (g Q) eI (2.104)
—o0 -0

where B(£,() is the brightness distribution of the sky, G(¢,() represents the polar diagram of
the antennas of the interferometer and (¢, {) are direction cosines relative to the center of the
field of view, and the constant of proportionality depends on the detailed properties of the
interferometer An image of the sky brightness distribution, B(¢, ¢), can be recovered from the
measurements V(u,v) by a back Fourier transform and division by the polar diagram function:
alternatively, estimation techniques can be used to measure B(£,() directly from the V(u, v).
The finiteness of interferometer measurements means that not all (u, v) values are sampled: in
particular, the design for high resolution mmeans that the antennas are usually placed so that
their minimum separation is many wavelengths (and always exceeds the antenna diameter
by a significant factor). The Fourier relationship (2.104) means that the short baselines
contain information about the large angular scale structure of the source, and so there is
some maximum angular scale of structure that is sampled and imaged by interferometers.
The Sunyaev-Zel'dovich effects of clusters of galaxies have angular sizes of several arc minutes
— most interferometers lose (“resolve out”) signals on these or larger angular scales, and
hence would find extreme difficulty in detecting Sunyaev-Zel’dovich effects. However, smaller
interferometers would allow the Sunyaev-Zel'dovich effects to be measured. What is needed

is an array of antennas whose individual beam-sizes are significantly larger than the angular
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sizes of the cluster Sunyaev-Zel'dovich effects, so that many antenna-antenna baselines can

be arranged to be sensitive to the effects (see Saunders 1995).

One major advantage of using an interferometer is that the effects of structures in the at-
mosphere are significantly reduced. Emission from the atniosphere is important only in its
contribution to the total noise power entering the antennas, since this emission is uncorrelated
over baselines longer than a few metres and does not enter into the (correlated) visibility data.
Furthermore, there are no background level problems: an interférometer does not respond to
a constant background level, and so a well-designed interferometer will not respond to con-
stant atmospheric signals, the uniform component of the microwave background radiation,
large-scale gradients in galactic continuum emissio;l, or ground emission entering through the

telescope side lobes.



Chapter 3

Uncertainties in the determination of

Ho from SZE

3.1 Introduction

Having gone through the basic physics behind the SZE in the last chapter, we try to probe one
of the fundamental parameters in cosmology, the Hubble constant (H, ), using SZE as our main
tool. To do so, we look at observations of SZ distortions in clusters of galaxies, which have also
been observed in X-ray. The distance to a cluster can be estimated from the two observations and
along with a knowledge of the redshift of the cluster and plausible values for the other cosmological
parameters (like ,), one can estimate the value of the Hubble constant at the present epoch (for

specific examples see Birkinshaw & Hughes 1994; Silverberg et.al. 1997).

In the radio band, a cluster can be observed in the Rayleigh-Jeans side of the cosmic microwave
background spectrum as a dip in the brightness temperature. The SZ distortion appears as a
decrement for wavelengths > 1.44 mm (frequencies < 218 GHz) and as an increment for wavelengths
< 1.44 mm (see Figure2.1). As noted in the introductory chapter, the SZE has the advantage that
the SZ intensity, unlike that of the X-ray, does not suffer from the (1 + 2) —4 cosmological dimming.
The SZ signal is, however, weak and difficult to detect. Recent high signal-to-noise detections have
been made over a wide range in wavelengths using single dish observations: at radio wavelengths
(Herbig et al. 1995, Hughes & Birkinshaw 1998), millimeter wavelengths (Holzapfel et al. 1997,
Pointecouteau et al. 1999) and sub millimeter wavelengths (Komatsu et al. 1999). Interferometric

observations have also been carried out to image the SZ effect (Jones et al. 1993, Saunders et al.
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1999, Reese et al. 1999, Grego et al. 2000). Most of these observations have been used to get an

idea of the value of H, .

These procedures generally assume the cluster gas to be spherical, unclumped and isothermal.
Almost all clusters, however, show departures from these simplistic assumptions with some to
a large extent. Departures from these simple assumptions can lead to systematic errors in the
determination of the different cosmological parameters (Inagaki et al 1995). Observationally, the
main handicap arises from the fact that the thermal structures of clusters is hard to measure.
Similarly, the clumpiness of the ICM is hard to detect and to quantify. So, in general an isotherinal,
unclumped description of the cluster is taken (or sometimes a phenomenological temperature model
based on the Coma clﬁster; for example, see Eq 73 of Birkinshaw 1999). The asphericity of the
cluster may be easier (than temperature structure or clumpiness) to identify from observations. As
we will see below, there can be a number of other errors that can creep in in using SZE to determine
H, . This chapter is devoted to a study of these uncertainties including those already discussed
in the literature and a new and potentially major cause of error discussed here. We give a very
brief review of the different systematic and random errors present in the estimation of He using
this method, before going on to the physics of ‘cooling flows’ and its effect on the determination of
H, , which is the main topic of this chapter. We begixi by describing the basic formalism used in
estimating H, using X-Ray and SZE.

3.2 Determining Hubble constant with Sunyaev-Zel’dovich effect
The method for the determination of Hubble constant using Sunyaev-Zel'dovich effect uses two

observable quantities : 1) AT/T of the CMB due to SZ effect; 2) the X-ray surface brightness Sx
of the cluster. These can be written as

ATsz /l""”' kpT
= -2 }
T (r) L ornedl, (3.1)
1 Imaz dI x
Sx(r) = ——— / 8oX i, 3.2
X(r) 47T(1 + Z)4 lmin dV ( )

where r is the distance to the line of sight from the cluster centre, l;mqez and Lnin give the extension
of the cluster along the line of sight, %91 is the X-ray emissivity and dl the line element along the
line of sight. All other symbols have their usual meanings as defined in Chapter 2.

The X-ray emissivity in the frequency band v = v} to v, can be written as (Sarazin 1988)

dL
'd_;(' = nCQQ(T;Vl7V2vz)s (3-3)
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Figure 3.1: The SZ distortion for an infinite cluster having a #-model gas distribution is plotted

for different 3's. The normalization of the distortion is arbitrary, but constant for all the models.
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where 2 S

2 2r 1 16e
H y = | : 70 3.4
a(Ta Vlaylaz) 1+ X [37neC2J 3FLTT'LC-C2A(T. 1/1,12,2), ( )

where
ug(1+2) /2
A(T;vi,19,2) =/ 42 (kgT) e ™[ Xgrp(T,u,1) + (1 — X)gps(T,u,2)]du. (3.5)
U z

In the above equations we have assumed primordial abundance of hydrogen and helium and have
set X = 0.76, e is the electron charge, i = h/(27), u = 2rhv/kpT, and g7¢(T,u, Z) is the velocity
averaged Gaunt factor for the ion of charge Ze (Kellog et al. 1975).

Traditionally, to model the cluster gas distribution one takes the following density and temper-

ature profiles (Cavaliere & Fusco-Femiano 1978)

r 97 —38/2
ne(r) = neg [1 + ( ) ] , (3.6)
L Teore
T'(r) = Tiso = constant, (3.7)

where ngy is the central electron density and 7., the core radius of the cluster. The above
expressions are used as an empirical fitting model, and the parameter [ is regarded as the fitting
parameter. The equation holds for 0 < r < Rgyster, Where Repyster is the maximum ‘effective’
extension of the cluster. Conventionally, Ryuster = 00, and then from Equations (3.1), (3.2), (3.6)
and (3.7), we get

ATsz g _ _2VmorksTis r'(348/2—1/2) d.0 2]/
T (0) = e L YT [1 + (Tcore) } , (3.8)
VT 2 T(36-1/2) ds0 2%
SX(G) = 47|"(l + 2)4 QN eTeore I‘(3ﬂ) |:1 + (rcore) :| ) (39)

where I'(z) is the gamma function and d4 and 6 are the angular-diameter-distance and the angular
distance from from the cluster centre. Since both the central CMB decrement and the X-ray surface
brightness are observed, one can then combine equations (3.8) and (3.9) to estimate the core radius
as

r 2
279, 138 - 1/2)r(38/2)°
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Figure 3.3: The angular-diameter distance vs redshift is plotted. The upper three lines are for a
flat Universe and the lower three lines are for an open Universe. The labels are: Q, = 0.2(‘a’ &

‘e’); Qo = 0.4('L’ & ‘d’); Qo =1 (’f") and 4 = 1(‘¢’). For all cases, h = 0.7.
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Figure 3.4: The angular-diameter distance vs redshift is plotted for different values of Ho , with
Qo = 0.3 and Qy = 1 — Q6 (thick lines) or zero (thin lines). In each case, from top to bottom,

h =0.5,0.6,0.7,0.8.
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In the above equation @ x core is the angular core radius observed in X-ray, and T, 54t is the X-ray
flux averaged temperature (obtained from fitting the observed X-ray spectrum to the theoretical
spectrum expected from isothermal case). This X-ray emission weighted temperature is given by

_ Jorit T(r)ane?ridr
150 = " ;
Jo¥m ame2ridr

(3.11)

The point to be noted is that ry;, is the virial radius of the cluster and its choice depends on
the observer. If the gas temperature has a spatial structure then the Tj,, inferred from such a
procedure may have different values depending on how much of the cluster is taken in making the

above average.

The angular diameter distance d4 can be approximated for nearby (2 « 1) clusters in terns of
the deceleration parameter go = %ﬁ — Q4 as (see Peacock 1999)

c 1 +g0 o .
=—z - — . 3.12
da Ho (1 + 2) [z 2 7 (3.12)

Thus finally we have got an estimate of d4(2) as r¢es1/6x,core. Now, if from other observations we .

know the cosmological parameters {2, and A, then one can estimate the Hubble constant.

As can be seen from the above equations, the value of H, depends crucially on the assumptions
of isothermality and -model density distribution of the cluster. Cooling flow changes both these

and so it can significantly affect the value of the Hubble constant.

3.3 Some uncertainties in the determination of H,

The value of the H, obtained using SZE is found to be systematically lower (a compilation of
the estimated values of H, is given in Birkinshaw 1999)than that found from other methods (for
example, Cepheid distances). This has led to many investigations to the cause of such a decrease
and to the reliability of obtaining H, by this method. In particular, it has been found that non-
isothermality, non-sphericity, clumpiness of mtracluster medium and a host of other factors can
give rise to either over or under estimation of the Hubble constant. In this section we take a quick
160k at these uncertainties, before going into another effect that can give rise to further uncertainty
in the determination of H .

Basic error analysis: The major sources of error, till date, in the determination of H, using
SZE are observational in nature. They come from the uncertainty in determining the cluster
parameters like 3,7, and T'; the intracluster medium parameters like the central density n.o
and the metallicity [Fe]/[H] and the central values of the %.I and Sx. Errors are also introduced
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due to contamination from point sources (specially near the cluster centre). If the sources have a
flat spectra, then there can be an over estimation of H, due to overestimation of the temperature
of the cluster atmosplhere. There can also be systematic errors due to overall flux and brightness
temperature calibration uncertainties and from improper subtraction of zero level offset to SZ
data. At present, the observational uncertainties are, perhaps, the biggest source of error in the
determination of H, using SZE. With time, however, these uncertainties will decrease and one has
to look at other sources of error in greater detail. We begin by briefly summarizing a few of the

other uncertainties :

e The first uncertainty in the deterinination of H, comes from using Equations (3.8) and 3.9.
These equations were derived under the assumption of the cluster being of infinite size. This
is surely not the case, and the cluster can extend only up to some finite size given by R,
and ne = T = 0 for r > R,. Integrating analytically, the Gamma functions in Equations
(3.8) and 3.9 must then be changed to a combination of Beta and incomplete-Beta functions
(see Inagaki et al. 1995, for details). As a result, the observed values of —AT—?: and Sx would
be lower than their estimates based on the assumption of an infinite cluster. Due to the fact
that the SZ profile is inore extended than the X-Ray profile, (compare Figures 3.1 & 3.2), it
is seen that that %Z is lowered by 5 — 10 %. However, the X-Ray surface brightness is ahnost
unchanged. This gives rise to an underestimation of r¢ e, (from Equation3.11) and hence an

over estimation of H, .

e A major cause of uncertainty in the estimation of H, is the assumption of isothermality
for the intractuster medium . It has been seen (Yoshikawa et al. 1998) that this can lead
to a substantial change in SZ effect and thus to the value H,. There is some debate in
the literature as to the temperature structure of the cluster gas. (Markevitch et al. 1998).
Theoretical work shows the temperature structure in a cluster as the result of the shape of
the gravitational potential (Navarro et al. 1997, Makino et al. 1998), or it can arise due to
the fact that the initial falling gas in the cluster potential is less shock heated than the later
falling gas (Evrard 1990). Recall that in obtaining Equations (3.8) and (3.9) one has assumed
an isothermal temperature derived through Equation (3.11) applicable to the whole of the
cluster. Hence, if there is a gradient in the temperature profile, then the estimation of the
isothermal temperature would depend on the maximum radius up to which the temperature
profile has been observed (i.e., the upper limit in the integral of Equation (3.11)). Since, it
is difficult to obtain spectroscopic temperatures up to large radial distance, the evaluation of
Equation (3.11) is handicapped by our assumption of the temperature profile far away from

the centre. Another source of error is the complicated dependence of Sx on T. However,
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as has been pointed out by Inagaki et al. (1995), this dependence is rather weak (because
the Gaunt factor is roughly proportional to 7-!/2 in most of the observational bands). Note,
however, the X-Ray spectrum is dominated by photons from the outer region of the cluster.
The uncertainty, once again, comes from the effect of the temperature profile on the SZ
measurement. It is estimated that non-isothermality can lead to an under estimation of He
by ~ 20 %, if the gas temperature in outer parts of the cluster is lower than that in the inner
part (for example, in the Coma cluster; Hughes et al. 1988).

An unresolved temperature profile can also affect the measurement of H,, , in another
way, namely by affecting the determination of the gas profile and the total mass derived using
hydrostatic equilibrium. If a temperature gradient is present, then the gas mass obtained
using a polytropic model of the temperature profile can be substantially different from that
obtained using an isothermal profile. For example, in the case of A370, Grego et al. (2000)
find the temperature profile to be well described with a polytropic index v = 1.2. This can
lead to relative error ~ 30 % in the evaluation of H, (see figure 3 of Puy et al. 2000).

ASphericity of the cluster atmosphere can give rise to substantial deviation in the determi-
nation of value of the H, (Birkinshaw et al. 1991; Puy et al. 2000). If one assumes that
the atmosphere is prolate or oblate, rather than spheroidal, with the symmetry axis oriented
along the line of sight, then it would be difficult to determine the asphericity from obser-
vations of the isophotes (due to circular symmetry). In such a case, let us assume that the
core radius of the gas distribution is larger by a factor Fyspn than the core radii in the other
two directions. It can be easily shown that the value of H, will be underestimated if the
cluster is prolate (i.e.Fosph > 1), and overestimated if the cluster is oblate (Fospn < 1). Thus
the projection effect of the cluster can be a cause of systematic error in SZ effect (Cooray
1998, Sulkanen 1999). Puy et al. (2000) do a thorough study of the effect of asphericity of
galaxy clusters on the determination of H, and find errors up to 30 % for specific cases. There
remains the possibility that this effect can be averaged out in an ensemble of clusters selected
on the basis of integrated X-Ray flux.

Clumpiness of the intracluster medium can also be a source of error. The assumption that
goes into interpreting the observations is that density variations on scales that are unresolved
by the images are small. However, strong clumping can affect the X-Ray emissivity (o n2)
more than the SZ effect (c ne). If one characterizes the clumping factor by Faump =< n2 >
/ < 7ne >?, then it can be shown that d4 (true)/da(estimate) = F,jump. Hence if the ICM is
significantly clumped (Fetump > 1), then H, is overestimated. Unlike asphericity, clumping

cannot be averaged out from cluster to cluster, since all clusters do have some varying degree
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of elumpiness (Mathiesen et al. 1999, Mohr et al. 1995, 1999). From hydrodynamical
simulations of clusters, Inagaki et al. (1995) find that clumpiness can lead to overestimation
of the Hubble constant of about 10 ~ 15% in a SCDM Universe and perhaps much lower in
Universe with a low €.

A related factor that can be another source of error is the presence of large scale sub-
structures of the intracluster medium . Hydrodynamic simulations (Yoshikawa et al. 1998;
Roettiger et al. 1997) show that almost all clusters have some form of sub structure (for
example, due to mergers). This can lead to error in fitting the cluster parameters by a single
B model and also in the intensity distribution of Sx and SZ distortion, both of which are

assumed to fall smoothly with distance from the cluster centre.

¢ Another source of uncertainty in the determination of H, is the inaccurate knowledge of the
X-ray Bremsstrahlung emissivity, where mostly non-relativistic expressions are used. For ex-
ample the Raymond & Smith code normally used for X-ray emission uses the Gaunt factor
evaluated by Karzas & Latter (1961) which uses non-relativistic physics for the plasma emis-
sion. Moreover, as seen in Chapter 2, the relativistic corrections to the SZ decrement can be
important for clusters with T' > 5 keV. Hence, corrections to both Sx (Nozawa et al. 1998b)
and ATT should be incorporated for a more reliable evaluation of the H, . However, as pointed
out in Hughes & Birkinshaw (1998), the inclusion of relativistic corrections lead to a small

change in the final value of the H, of the order of ~ 1 —2% only.

¢ Measurements of thermal SZE from galaxy clusters are always contaminated by the presence of
the kinematic SZE. As long as they are not separated out using multi frequency observations,
the KSZE acts ag an additional source of temperature distortion. Typically ﬁ%‘%—;‘)ﬂ-} ~
0.05 (300;;?1) (51‘%\,) , where v, is the peculiar velocity of the cluster. The total distortion

AT = AT(kin) + AT (thermal). This can be over or underestiinated according to the relative
sign of v.. In CDM Universes, v, can have a range of values between 300 — 400 km s™}, and

hence the error due to the presence of KSZE is generally less than 5%.

e It is evident from Equation (3.12), that the derived value of the Hubble constant would
depend on our knowledge of the other cosmological parameters, ), and Q4. As long as the
redshift of the cluster is less that 0.2, d4 doesn’t change significantly with small variation
in the presently acceptable values of the the cosmological parameters (see Figure 3.3). For
example, changing qo from 0 to 0.5 for clusters A665 or A2218 (having z ~ 0.17-0.18) would
lead to a change in H, by ~ 3%. For a high redshift cluster like CL 0016416, the changes in
Ho due to different cosmology can be higher (by ~ 5 — 10%). This issue has been dealt with
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in the work by Kobayashi et al. (1996)

e An interesting effect called the Loeb-Refregier effect (Loeb & Refregier 1996) can lead to
underestimation of the H, inferred froin SZE. This occurs due to the following reason: mea-
surement of SZE takes into account the subtraction of background radio sources from the
cluster field. The gravitational lensing by the cluster can, however, lead to a systematic
deficit in the residual intensity of unresolved sources behind the cluster relative to a field
far from the cluster centre, resulting in the over estimation of the R-J temperature of the
microwave background . This gives rise to a systematic bias and can lead to under estimation
of Ho by ~ 5 — 10%. The ratio of lensing to SZ decrement depends on the relative dark
matter density to gas density profiles. This ratio increases if the decline of gas pressure with
radius is steeper than that of the dark matter density.

¢ Finally, we briefly mention two other probable sources of error. The first comes from the
possible presence of a non-thermal component of electron population (cosmic rays). Large
scale hydrodynamic simulations of clusters (Miniati et al. 2001) show that it may be possible
to have non-thermal pressure, close to the cluster centre, to be a significant fraction of the
thermal gas pressure. If this is the case, then it would affect the determination of the dynam-
ical mass and the cluster gas profile 8 and would also add a non-thermal SZE component to
the already present thermal distortion. Any estimation which neglects this new component
would lead to an error in the determination of H, . As will be seen in Chapter 7, (Figures 7.9
& 7.4), radio cocoons embedded in clusters of galaxies or as field radio galaxies can produce
substantial SZ decrement. Presence of such cocoons in the line of sight of a cluster for which
SZ decrement is measured will lead to a positive bias to the total SZ distortion and hence
can affect the estimation of H, . An example of a cluster containing such a radio source is
RX J1347 - 1145 (Pointecouteau et al. 2001)

Now that we have an idea of the many different sources of uncertainties in the determination of
the Hubble constant using the SZE, we turn to a detailed study of another important phenomenon
that can substantially change the temperature structure in the innermost regions of a cluster, viz.
a cooling flow, and thus be another source of uncertainty. Cooling flows in clusters of galaxies
(for an introduction, see Fabian et al. 1984) is claimed to be well established fact by now. The
idealized picture of a cooling flow is as follows: Initially when the cluster forms, the infalling gas is
heated due to gravitational collapse. With time this gas cools slowly and a quasi hydrostatic state
emerges. However in the central region, where energy is lost due to radiation faster than elsewhere,

an inward ‘cooling flow’ initially arises due to the pressure gradient (Fabian 1994). This can modify
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the SZ decrement and act as a systematic source of error in the determination of the cosmological

parameters.

Schlickeiser (1991) has shown that free-free emission from cold gas in the cooling flow can
actually lead to an apparent decrease of the SZ effect at the centre. Since the central cooling
flow region is generally very small, the isothermal 8-model of cluster gas can still be used for the
majority of cluster region even for cooling flow cluster, with the extra precaution of excluding the
central X-ray spike from the X-ray fit, and a corresponding change made in the fitting of the SZ

decrement. This is only possible, however, for nearby clusters with well resolved cluster cores.

3.4 Cooling flows in clusters

3.4.1 Preliminaries

The motivation for considering cooling flows come fromn X-Ray observations of galaxies and clusters
of galaxies. It is generally found that a significant number of clusters have a sharply peaked X-Ray
surface brightness distribution. This is indicative of enhanced gas density and has been explained
as due to the presence of a cooling flow. This shows that the gas density has increased near the
centre and since the luminosity goes as the square of the density, the luminosity is highly peaked
near the center. One can then calculate the cooling time near the centre to check if it is smaller
than the age of the cluster. The cooling flow can then be characterized by M, the flux of niass
flowing in. Observationally, it is seen that around 60 —90% of clusters exhibit cooling flows in their
core with & 40% of them having cooling flows of more than 100Mg yr~! (Markevitch et al. 1998,
Peres et al. 1998, Allen et al. 1999). In the largest systems, the mass deposition rate can be as
high as 1000Mg yr~! (Allen 2000). In particular, three arguments can be given in favour of cooling
flow: ‘

¢ X-Ray surface brightness profiles: are sharply peaked showing enhanced density near the
centre. However, the material seem to deposited near the very centre (few tens of kpc) as it flows
in (Fabian 1994).

¢ X-ray spectral data: Observations of emission lines from gas temperature of ~ 105K.
Excess X-Ray absorption has been found (for example, Ginga and Einstein Observatory data
of A478, see Johnstone et al. 1992) for clusters having cooling flows inferred from peaked X-Ray
surface brightness. This excess absorption is not present in non cooling flow clusters. The excess
absorption gives credence to the theory that the cooling flow material drops out from the flow to

form chunks of cooled gas (and probably lead to star forination at a later time).
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One must stress that the arguments given above in favour of cooling flows only indicate the
presence of cool gas in the cores of the clusters, but there is no direct evidence gas flowing into the
core. The motion of the gas has not yet been directly detected, since the Doppler shifts due to the

motion are too small to be resolved using X-Ray observations.

The basic physics of cooling flow is simple: The ICM, with a typical density of 10~% — 10~2cm™?
sitting in the gravitational field (which in this case is mainly provided by the total dark matter
in the cluster) has its sound speed similar to the typical velocity of a cluster galaxy. The velocity
dispersion of cluster galaxies is around 500 — 1200km/s, and this requires a gas temperature of
around Ticm ~ 107 — 108 K. The main energy loss for I'CM, for this temperature range, is that
from thermal Bremsstrahlung which is ~ 10*3 — 3 x 10% ergs/s. The intra-cluster gas is densest
in the core of the cluster and hence the cooling time, t.,0, due to X-Ray emission is the shortest
there. This can then result in a ‘cooling flow' if ¢, becomes less than the age of the system,
ta = tustie ~ Ho ~!. Also, for most of the cluster gas, the cooling timescale is larger than the

gravitational free-fall timescale, tgrqy. Thus, for the innermost regions

ty > teool > tgrav - (3.13)
Due to the cooling of the gas, the pressure in the innermost parts drops, and to support the weight
of the overlaying material above some radius, ¢, an inflow takes place to increase the density and
pressure of the innermost regions, giving rise to the cooling flow. A cooling flow is thus essentially
pressure driven. However, the underlying gravitational potential can influence the flow to a large

extent and at times even makes it gravity driven. We will come back to this point later in this
chapter.

The gas continues to cool as it flows inwards until the adiabatic compression of the inflowing
gas can counterbalance the radiative loss. Compression can even give a rise in the gas temperature.
Finally, the gas temperature can plunge in the core of the central galaxy. As a net result, the
gas within ., radiates its thermal energy as well as the pdV work done on it. This scenario
describes a gas which has an unique temperature and density at each radial distance from the
centre. Observations point out that the gas must be inhomogeneous. However, homogeneous flows
(Cowie &Binney 1977) are still a good approximation and in this chapter we stick to homogeneous
cooling flow models. This means 1) there is a single temperature and density at each r, and 2) the
gas density rises inwards and the gas temperature drops so that an approximate pressure equilibrium
exists. However, this simplistic picture cannot explain all the observations of cooling flows and one

must finally consider an inhomogeneous multi phase model (see Nulsen 1986). Finally, as the flow
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cools, cold clouds form which fall out of the flow and at some point of time the cloud drops out
of pressure and ionization equilibrium. Further collapse can be supported by the amplification of
magnetic field pressure. However, as cooling goes on, the magnetic fields can be expelled through
ambipolar diffusion and the gas temperature can drop further giving rise to molecular clumps which

can, in turn, formn low mass stars or brown dwarfs.

Before going into the physics of cooling flows in some detail, we mention here a few problems
and their possible solutions discussed in the literature. As mentioned earlier, strong evidence for
cooling flows has been found in low resolution X-ray imaging and spectra of many galaxy clusters.
However, recent high resolution X-Ray spectra from the Reflection Grating Spectrometer (RGS)
on XMM-Newton show soft X-Ray spectrum inconsistent with cooling flow (Brinkman et al. 2000).
Although, the spectra shows strorig temperature decrease towards the centre, tliere is no evidence
of emission lines (particularly Fe-XVII) from gas at 1 keV or below. Lines from the gas at 2 - 3
keV are, however, observed. This has lead to some doubt on the credibility of the simple cooling
flow models of galaxy clusters. Various explanations have been given to resolve this discrepancy
(Peterson et al. 2000; Fabian et al. 2000). These include heating, mixing, differential absorption
and inhomogeneous metallicity. Finally, recently there has been detection of the O VI doublet in
the galaxy NGC 4636, showing that the gas can indeed cool to a temperature of around 3 x 10° K,

leading support to the existence of cooling flows in astrophysical objects (Bregman et al. 2001).

3.4.2 More on cooling flows

In this subsection, we set up the equations for a cooling flow and study their solutions. The basic

equations of cooling flow are:

W _udn M _p
dr — pp dr T oy
du 1 d(pf) _ G My(r)
“ar +ﬁ ar r2
A8
L (?2) _budpy o pRE) (3.14)
dr \ 2 Oy dr (/nn_p)

where § = 2kpT/um,, v is the mean molecular weight, and m, is the proton mass, u is the fluid
velocity, pp's is the gas density, » is the radial distance from the centre and time derivatives are
indicated by a dot. For steady flows with constant mass flux, g = 0. This implies u = 77'1/47rp7'2
for steady flows. (Note that in cooling flows both u and 7it are negative. The subscripts b refers
to baryons and t refers to total i.e baryons + dark matter. However, we assume the baryonic

contribution to the total mass negligible w.r.t to the dark matter contribution.)
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M (r) describes the distribution of the total mass and depends on the details of dark matter
density profiles (see below). A(6) is the cooling function defined so that n.n,A(8) is the rate of
cooling per unit volume, n, and n, being the number densities of electrons and protons, respectively.

We use an analytical fit to the optically thin cooling function as given by Sarazin & White (1987),

A() T\
(10—22 erg cm’ s-l) = 4T x e [" (3.5 x 1051{) ]

4.4
+ 0.313 x 0% exp [— (-L—) ]

3.0 x 106K
T 4.0
—0.2 _
+ 642xT exp [ (——2.1 ” 107K) ]
+ 0.000439 x 7035, (3.15)

This fit is accurate to within 4%, for a plasma with solar metallicity and for 10° < T < 10% K.
For 10® < T < 10° K, it underestimates cooling by a factor of order unity (compared to the exact
cooling function, as in, e.g., Schmutzler & Tscharnuter 1993) , and therefore is a conservative fit

to use, as far as the effect of cooling is concerned.

For non-steady flows, we adopt the formalism of White & Sarazin (1987), where the mass
deposition rate, p, is characterized by a ‘gas-loss efficiency’ parameter q. One writes p = q(p/tcoot)
where 2.0 is the local isobaric cooling rate (teeot = 5kgTump/pA). It has been found that ¢ ~ 3
models can reproduce the observed variation of mass flux (7h « r) (Sarazin & Graney 1991). Fabian
(1994) has noted that these models of White & Sarazin (1987) yield good approximations to the
emission weighted mean temperature and density profiles for cooling flow clusters. Rizza et al.
(2000) have used the steady flow models of White & Sarazin (1987) to simulate cooling flows.

We first discuss cooling flows with rn =constant. With ¢ = 0, one can eliminate the density

from Eq. 3.14 to get two differential equations:

du u _ m A(9)
& 2 h A(6)
7 = s Yo oM -t -ap al (310

These equations have singularities at the sonic radius v, where 58, = 3u,. A necessary condition

of singularity is that the denominators of Eq. 3.16 vanish at the sonic radius. Therefore (Mathews
& Bregman 1978),

(3.17)

rs = (3/1065) [GM(r)-{- A (6) ]

1078, M2
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Figure 3.5: Plot of the cooling function used in our analysis.

We have used two different dark matter profiles for the cluster. The first model ( Model A) has
been discussed earlier in the literature in the context of cooling flows in cluster (White & Sarazin
1987, Wise & Sarazin 1993) with a density profile,

Po, :
l+(7'/L7'ocore)2 + l+(1‘/1‘gc,?7 lf r < 237 kpC 3

Tm’ if r > 237 kpc .

Pd (3.18)

Here p, = 1.8 x 10™%° gm ¢m™3 and rore = 250 kpe describe the profile of the cluster mass, and
Pog = 4.1x 10722 gm cm™3 and r. 4 = 1.69 kpc describe the profile of the galaxy in the centre of

the cluster.

Model B does not have the galaxy in the center, and so it is described simply by p = po/[1 +
(r/Teore)?)-

With these assuinptions, the solutions for steady cooling flows, (ri = constant) are fully char-
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Figure 3.6: The underlying total dark matter density profile is shown, as well as, the individual
central galaxy and the cluster dark matter density profiles. The vertical dotted line is at 237 kpc

which is the extension of the galactic density profile.

acterized by (1) the inflow rate, 7, and (2) the temperature of the gas 7 at the sonic radius r,.
Obviously, the cooling flow solutions are only valid within the cooling radius reeer Where teoor = t,.
We assume a value of t55¢ = 10 Gyr for all models. We assume that outside the cooling radius,
gas obeys quasi-hydrostatic equilibrium (Sarazin 1986). Although this means matching the cooling
flow solutions with nonzero u to u = 0 solutions outside, in reality the velocity of gas at the cooling
radius is very small; for example . = 100 Mg yr~! with p ~ 10720 gm cm™3 at r = 250 kpc
implies a velocity of 30 km s~!, which is close to the limit of turbulence in the cluster gas (Jaffe
1980}, and smaller than the sound velocity (~ 1.5 x 10 (T'/108 K')*/2 km s~1). The velocity of the
flow at the cooling radius is, therefore, for all practical purposes, sufficiently small to be matched
to the solution of hydrostatic equilibrium outside. (In this approach, we avoid the time consuming

search for the critical value of 7 for which the fiow solutions behave iso-thermally at r — ooc.
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As in the usual assumptions for the interpretation of SZ effect, we assume that the gas outside
the cooling radius is isothermal, with a constant temperature profile. The density, therefore, obeys
p o< [1+ (7 /Teore)?]7%P72, where B = pm,02/kpTis, and Tiyp is the temperature of the gas at and

outside the cooling radius.

For models with non-zero ¢, the solutions are characterized by T, and the value of mh at the
cooling radius, .. Since a fraction of mass drops out of the flow in this case, the inflow velocity

need not rise fast and so it is possible to find completely subsonic solutions.

3.4.3 Cooling flow solutions

We solved the flow equations, numerically, for the parameters listed in Table 1. The density,
temperature and pressure profiles for three cases are presented in Figures 1, 2 & 3. We mark the
position of T, in each case and we mark 7, for the cases of transonic flows (when i = constant).
Beyond 71, we match a hydrostatic solution. We also present, for comparison, the behaviour of
the solutions if the solutions outside ¢, are assuined to extend inwards (that is, if no cooling flow
is assumed). We will postpone the discussion on the effect of these profiles on the SZ decrement to

a later section, and only discuss the qualitative aspects of the solutions here.

First, let us compare our solutions to the ones already existiﬁg in the literature. The solution
Al is similar to that presented by Wise & Sarazin (1993) (their Figure 1; although they chose
to characterize the solutions by the temperature at 7., and not 7, as we have done here). It is
also similar (qualitatively) to the solution for A262 presented by Sulkanen et al. (1989). As the
latter authors have noted, the effect of having a galactic potential in the center is to have a flatter
temperature profile for r > 74, than in the case of no galactic potential. This aspect is clearly seen
while comparing our solutions with and without galactic potentials in the center. Our calculations
for the case without the central galaxy are admittedly flawed in the very inner regions where the
gas density is larger than the dark matter density, which results in an incorrect determination of
the gravitational potential in the inner region. However, this happens only inside a region ~ 25

kpc from the centre, and should not influence our final results by a large extent.

A word of explanation for the pressure profiles is in order here. Naively, it would appear that
the pressure inside the cooling radius should have lower values than the corresponding case of
hydrostatic equilibrium. The fact that it is not always so has been noted in the literature (e.g.,
Soker & Sarazin 1988, Figure 1 of Sulkanen et al. 1989 ). The reason for the pressure bump just
outside of the sonic radius is that the flow in this inner region is not pressure driven, but rather

by gravity (see also Soker & Sarazin 1988). This is why the bump in the profile depends on the
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Table 3.1: Parameters for cooling flow solutions

Solution | Mass Model m(Teoot) T, Ty T cool Tiso

Moyr )| (K) | (kpe) | (kpe) (K)
Al Model A 100 6.5 x 10° | 0.688 | 127.5 | 1.2 x 108
A2 Model A 200 6.5 x 10° | 0.462 | 96.1 | 7.7 x 108
A3 Model A 300 6.5x10% | 0.712 | 132.2 | 7.7 x 108
B1 Model B 100 4.0 x 10% | 0.688 | 85.7 | 1.14 x 10°
B2 Model B 200 6.5 x 10 | 0.462 | 89.6 | 1.9 x 10°
B3 Model B 300 6.5 x 10% | 0.712 | 110.3 | 1.9 x 10°
C1 Model A 200 111.6 | 1.1 x 108
C2 Model A 300 132.2 | 1.1 x 108

from SZE
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Figure 3.7: Cooling flow solution A2. The upper left panel shows the dark matter density profile
(dotted line), the gas density profile for the cooling flow (solid line) and the corresponding case of
gas in hydrostatic equilibrium. The lower left panel shows the temperature profiles for the same
cases. The position of rs and r., are shown. The upper right panel shows the pressure profiles

and the lower right panel plots the Mach number of the cooling flow gas as a function of the radius.
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Figure 3.8: Same as figure 3.7, for cooling flow solution B2,
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presence and absence of the galaxy in the centre. And this profile leads to the curious result that
the presence of cooling flow can lead to the over estimation of the Hubble constant as discussed in

the next section

The model with mass deposition (C1) is shown in Figure 3. The local mass flux is found to be
almost proportional to the radius, consistent with various observations (Fabian, Nulsen & Canizares
1984, Thomas et al. 1987), and, therefore, is probably a realistic model for cooling flow clusters.
In this case the temperature drops gradually all the way through, since the velocity does not rise
too fast. The deposited mass is assumed to impart negligible pressure and the pressure refers only
to that of gas taking part in the flow.

3.5 Determination of Hubble constant

Naively, the change in the central SZ decrement y(0) in the presence of cooling flows can be seen as
follows : For a non cooling flow cluster, the central decrement is given by the line of sight integral
of the electron pressure through the cluster centre along the full extent of the cluster. If the cluster
has a maximum radius r¢, then the central SZ decrement at R-J wavelengths can be written as
y(0) = —4":’—'%, Jo¢ pedl. For a cluster with a cooling flow, let us suppose that the electron pressure
pe drastically falls below a certain radius r,, which is typically well inside the core of the cluster.
The resulting central decrement is then y(0) = —4;7Z7 [T p.dl. Depending on the distance of
rs from the cluster centre {ry = (0.1 to 0.3)rcore),there will be a change in the value of y(0) by
~ 5% — 25%. However, this simplistic view may not be correct. This estimate assumes that the
pressure profile remains a 3 profile outside the radius r,. The pressure profile, however, need not
follow the 8 profile once cooling flow starts and it can deviate from it substantially even for radii
much larger than r,. As a matter of fact, there can actually be an increase in the pressure for
a large region inside the cooling flow, before a sudden drop inside r,. Since the usual procedure
for estimating the Hubble constant depends on fitting 3 profiles to the SZ and X-ray profiles, to
estimate Tcore, this change in the pressure profile due to cooling flow can distort the estimation of

Tcore a0d hence, the value of H, in a non-trivial way. We study this effect in detail in later sections.

In this section we discuss the SZ and X-ray profiles of clusters with cooling flows. We com-
pare these with profiles from cluster having gas in hydrostatic equilibrium, and comment on the
reliability of measuring Hubble constant. The effect of cooling flow and the subsequent increased
Bremsstrahlung emission is seen in the sudden increase in the X-ray flux in the innermost region
of the cluster (Figure 5). The signature of the cooling flow is seen in the form of the central spike
‘in the X-ray profile. ﬁe X-ray profile is more sensitive to the gas density profile but is affected
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slightly by the drop in temperature. The temperature dependence becomes important only near

the sonic point. Outside r¢oor, the X-ray profile is the same as that in the hydrostatic cases.

The SZ distortion is proportional to the line of sight integral of the pressure, and the sudden
increase of the gas density inside the cooling radius is moderated by the decrease of the gas tem-
perature. As a result there is a gradual increase in the gas pressure. Near the sonic point the
temperature drops drastically by orders of magnitude, and results in sudden decrease in pressure.
However, since this change in pressure becomes acute only within = 5% of the core radius, it
contributes negligibly to the line-of-sight integral of the gas pressure, and leads to an increase in
the SZ distortion inside the cooling radius for all models considered (see Figure 4). Like the X-ray

profiles, the SZ profiles outside 7., is the same as that for the ¢offesponding hydrostatic cases.

The SZ profiles have been calculated in the Rayleigh-Jeans limit. In general, however, the
profiles should be calculated using full frequency dependence. Our results below are, however,
independent of the observational frequency, since the profiles at different frequencies have similar

shapes, with the amplitude of the SZ distortion scaled either up or down.

Once both profiles are known, one can determine the deviation in the value of the Hubble
constant using Equations(14) & (16). The deviation from the idealistic case can be parainetrized

as

= r‘!‘co're,true. _ If{fo,e,st ‘ | (5‘5.19)”

core,est, fit 0,true K ok @m Aboidaovep &t oot !

where the subscripts(trug and est, fit refers to the gaﬁ;ﬁ' \;aluegf H.° and the value estimated
using model fitting to The SZE and X-Ray profiles, respectively. The above formula has been used
to determine the deviation of the estimated value of H, from the actual value, for models listed
in Table-1. The eﬁ'éct of cooling flow on the determination of the cosmological parameters are

summarized in Table-2.

To begin with, one las to get best fitted values for reore (or 6c) and 8 from different profiles.
Since the estimation of the Hubble constant depends on the determination of these parameters
from the profiles, we look at this issue in more detail. We must keep in mind that the best fitted
values of rere (or 6;) and B depend on whether one decides to fit the X-ray or the SZ profiles,
and the choice can lead to significant differences in the estimated value of H,. One of the reasons
for the strong dependence on the nature of the profile can be the non-isothermality of the cluster
gas. Recent observations indicate that intracluster gas has a temperature structure, see Markevitch
et al. 1998. This is because the y-parameter depends on the integral over T, while emissivity of

thermal Bremsstrahlung depends on vT. The dependence of the Gaunt factor on T' is indirect
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and weak. Yoshikawa et al. 1998 have shown that gas temperature drop in the central regions
(their Figure 3), should increase both rcore and S fitted to y(6), and to a lesser extent to Sx(0), as
compared to those compared to n.(r). This discrepancy increases at higher redshifts. However, in
their case, there is little change in the gas density profile. Clumpiness can also give rise to different

fits, resulting in an over estimation of the Hubble constant (Inagaki et al. 1995).

There are two other important points that have to be kept in mind while fitting the profiles.
First, we must remember that we are trying to fit a cluster having a finite profile with the formulae
”(Equations 12 & 13) for isothermal 3 profiles which is derived assuming the cluster to be of infinite
extent. This can, by itself, lead to an over estimation of H, (Inagaki et al. 1995). Thus to have
a good fit one must choose a segment of the profile such that, within that segment, the profiles
(SZ or X-ray) for a finite cluster do not differ much from those of a hypothetical cluster of infinite
extent. We found that SZ and X-ray profiles of clusters start differing fromn those of infinite size at
radii greater than 1.5 times the core radius. Hence, we have restricted our fitting to radii within

1.57core.

Next, one must also be careful to exclude the region close to the sonic point, so that the X-ray
spike is excluded from the fit. Also, the central portion in the SZ profile should be avoided as its
inclusion can give an apparent central decrement less than its neighbouring points (see Schlickeiser
1991). We have fitted the SZ and X-ray profiles varying the inner cutoff radius and the results for
a representative solution for each class of model are tabulated in Tables 3 & 4. Thus, all fittings

were done for profiles extending from r = rpin to 7 = 1.57r¢pr.

As can be seen from Table-2, cooling flows can lead to an over estimation of the Hubble constant.
However, we must emphasize, that it may not be possible to a priori estimate the amount of bias
introduced in the measurement of the Hubble constant due to cooling flows. There is no simple
correlation between the amount of cooling (i.e 7n) and the change in the estimated H, from the
actual value. The total change depends not only on 71, but also on the position of cooling radius,
sonic radius, temperature at the sonic point and the isothermal temperature characterizing the
hydrostatic cases, with which comparisons are made. Specifically, the fitted values of reore(6c)
and B for cooling flow models differ from hydrostatic models according to shape of underlying
profiles, which is marked by two important features, firstly the central excess of X-ray flux (or
excess decrement of SZ flux), and secondly the deviation from the smooth hydrostatic profile inside
Tcooly the amount of over estimation mainly depends on these factors. For models with a central

galaxy potential, there is always an over-estimation of H,, which is greater than the models without
the central galaxy.

For the realistic cases of models C1 and C2, where we have a variable 7 with r inside the cooling
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Table 3.2: The effect on central decrement and H, for rmin = 0.17¢ore

Solution Type 7];—’:5-2‘; Ayo
(% change)
Al 1.91 35
A2 1.18 11.5
A3 2.6 25
B1 1.36 12.0
B2 1.19 9.0
B3 1.13 8.5
C1 2.6 14.0
C2 2.7 11.3
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radius, the deviation of estimated Hubble constant from its actual value is almost the same. They
are also greater than that of models A and B, having similar mass fiow rates. This may be due to
the fact that the maximum deviation in pressure from the hydrostatic cases is more in non steady
cases, than in steady flows. Also non-steady cases are marked by the absence of the sonic radii and

the subsequent drop in temperature.

Table 3.3: Fitting of SZ profile and deviation of H, for h = 200mg /yr

Solution Type | Tmin = 0.27¢o0l | Tmin = 0-57¢ool | Tmin = 0.87coor
H/Hirye H/Hyrye ‘H/Htrue
A2 1.57 | 1.74 2.18
B2 1.44 1.58 2.06
C1 2.20 1.18 1.07

Table 3.4: Fitting of X-ray profile and deviation of H, for 1h = 200mg /yr

Solution Type | Tmin = 0.57co0t | Tmin = 0.87coot | Tmin = 0.97co0l | Tmin = 0.957¢o01
H/Hirye H/Hirye H/Hprye H/Hirye
A2 - 4.7 2.7 1.7
B2 - 49 2.24 1.6
C1 1.69 "1.12 1.02 ~ 1.0

We note that although the different choice of fitting may change the absolute determination
of cosmological parameters, the trend i.e deviation from the correct value remains more or less
unaffected. It is interesting to note that for model Cl1, which include mass deposition in cooling
flows, the deviations decrease as one excludes a greater part of the cooling flow region (Table 3.3

and 3.4). The other models show an increase instead. Here, we remind ourselves that models
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with mass deposition i.e C-type models are more realistic (Fabian 1994). It is possible that the
unusually high value of deviation (Table 4) and the counter-intuitive trend of increasing deviation
with decreasing portion of cooling flow region used for fitting (Table 4 & 5), arise because of the
unrealistic modeling of cooling flows. If we take the model Cl as a realistic one, then Table 4 &
5 show that to obtain a value of the Hubble constant within an accuracy of ~ 10%, one should
have rmin ~ 0.8r¢po. In most cases, reor < Teore (Fabian et al. 1984). However, as Teool CANNOL
be determined without actually detecting a cooling flow in a cluster, we suggest that a significant
portion of the profile within r o, should be excluded as a precaution. The SZ and the X-ray profiles

for the different models are shown in Figures 4 & 5.

3.6 Discussions and Conclusion

Our work on the effect of temperature structure of clusters and its effect on SZ decrement differs
from other previous work of this nature in following way: ‘this work takes into account the change
in density profile as well as the temperature profile since both become important in the central
region of the cluster. Also, previous authors have looked at the issue of non-isothermality of a
cluster at radii greater than the core radius of the cluster, whereas we look at temperature change
at regions inside the core radius. For them the density profile can still be well approximated by a
p profile, whereas for cooling flow solutions, density profile is vastly different. Further, they have
neglected radiative cooling in their work. We for the first time look at SZ effect in presence of

radiative cooling, by first solving the cooling flow equations for reasonable and physical solutions.

In summary, we find that the presence of a cooling flow in a cluster can lead to an over estimation
of the Hubble constant determined from the Sunyaev-Zel'dovich decrement. We have used different
models of cooling flows, with and without mass deposition, and found the deviation in the estimated
value of the Hubble constant in the case of a cooling flow from that of hydrostatic equilibrium.
We have used the usual procedure of fitting the SZ and X-ray profile with a 3 profile to get an
estimated value of rcore, and then compared with that for the case of gas in hydrostatic equilibrium
in order to estimate the deviation in the Hubble constant. For the more realistic models with mass
deposition (varying /7 with radius), we found that the deviation decreases with the exclusion of
greater portions of the cooling flow region. Quantitatively, we found that for the deviation to be
less than ~ 10%, one should exclude a portion of the profile up to ~ 0.87¢o0. Since reoq is difficult
to estimate without actually detecting a cooling flow, we have suggested that a significant portion

of the profile inside r.ore should be excluded, to be safe.

There can be another important implication of the effect of cooling flows. With the upcoming
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satellite missions (MAP & Planck), we have come to the point where there are efforts to constrain
Qo with surveys of blank SZ fields (Bartlett et al. 1998, Bartlett 2000), ultimately giving rise
to SZ-selected catalog of clusters (Aghanim et al. 1997). This method relies on estimating the
number of SZ sources brighter than a given threshold flux (Barbosa et al. 1996). The point to be
noted is that since these surveys are essentially flux limited in 11ature, the validity of the analysis to
determine o depends crucially on the one-to-one association of flux-limits to corresponding mass
limits of clusters. From our analysis above, it seems that it may not be possible to associate a
unique cluster mass to a given SZ distortion, given the uncertainty due to the presence of cooling
flows. This might lead to contamination in SZ cluster catalogs and the inference of §2g. Recently,
attempts have been made to constrain €2, from variance measurement of brightness temperature
in blank fields (Subrahmanyan et al. 1998) and comparing them to simulated fields (see next
Chapter, also Majumdar & Subrahmanyan 2000) of cumnulative SZ distortions from a cosmological
distribution of clusters. These results may also be systematically affected due to the presence of
clusters having cooling flows.

The estimations made in this chapter strictly apply to cases where the image of the SZ effect is
directly obtained by single dish observations. For interferometric observations, the interferometer
samples the Fourier transform of the sky brightness rather than the direct image of the sky. The
Fourier conjugate variables to the right ascension and declination form the u—v plane in the Fourier
domain. Due to spatial filtering by an interferometer, it is necessary that models be fitted directly
to the data in the u — v plane, rather than to the image after deconvolution. We do not forsee
drastic change from our inferences in such cases since the result mainly depends on the deviatiou
of the SZ and X-ray profile in case of a cooling flow from those in hydrostatic equilibrium. This,
however, should be worked out in greater detail in future. We also note that with the growing
number of high quality images of the SZ effect with interferometers, which have greater resolution
than single dish antennas, the shape parameters of the clusters can be directly determined from
the SZ data set rather than from an X-ray image (Grego et al. 2000).

Finally, we would like to add that though the calculations presented in this chapter were done
using the dark matter profile (Equation 21), which is ” commonly used” for calculating cooling flow
solutions, it is inconsistent with the dark matter profile (Navarro et al. 1997) found in nunerical
simulations. (For a comparison of mass and gas distribution in clusters having cooling flows with
different dark matter profiles, seé Waxman & Miralda-Escude, 1995). However, it has been seen
by Koch (1999) that there is little difference in cooling flow solutions by changing the underlying
cluster dark matter density profiles. The main reason is that cooling flows are confined to the

innermost parts of the clusters (r < 100kpc) where the the integrated mass of the dark matter are
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almost identical for the different profiles. We have also neglected the self gravity of the gas. Suto et
al. (1998) have calculated the effect of including the self gravity of the gas in determining the gas

density profile. To make strong conclusions about the effect of cooling flows in the determination
of the Hubble constant, one should take this into account.

Finally, let us comment on the inclusion of magnetic fields. Let the magnetic and thermal pres-
sure become equal at a radius, rg. It can be shown that rp > ry, and hence magnetic fields become
important even before sonic point is reached. The magnetic field pressure, however, influences
the cooling flow for small mass deposition rates. For the same flow velocity at the cooling radius,
v(Teoot), the sonic radius is pushed outwards due to magnetic pressure. An interesting result is that

magnetic pressure seems to keep the sound speed constant until a sudden drop at r,. These details
can be found in Koch (1999).

3.7 Summary

We have, in this chapter, looked at a novel method of estimating the Hubble constant using radio
observations of SZE fromn galaxy clusters coupled with X-ray observations of the same. It has been
found, however, that there can be a number of sources of uncertainties in the estimated value of
the H, . We have briefly reviewed the different sources of error before looking at cooling flows in
clusters of galaxies to be another additional and important source of uncertainty. To give a bird’s
eye view, we have summarized the basic uncertainties and have tried to categorize them in Table
3.5. In the Table, uncertainties leading to error in the estimation of H, greater than 10 % have

been termed ‘major’ and all others are termed ‘non-major’.

Other than estimating Ho combining SZ and X-ray data, SZ effect alone can also be used
to determine the cosmological mass density ), of the Universe (Bartlett & Silk 1994, Oukbir &
Blanchard 1992.1997, Blanchard & Bartlett 1998, Majumdar & Subrahmanyan, 2000). Althougha
precise determination of the other cosmological parameters are, perhaps, almost impossible using
only SZ studies, one can still go put constraints (limits) on such parameters and/or confirm the
more precise predictions that can be made from the study of primary anisotropies. Moreover,. once
primary anisotropies give us the cosmological parameters to a high degree of accuracy, one can invert
the role of the SZE to study the intracluster medium and other cluster specific physics. These
are the issues that we look at in the next couple of chapters. Especially, in the next chapter, we

; i ter
look at an example of using SZ distortions from clusters to constrain the matter density parame

, Qo
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Table 3.5: Uncertainties in the determination of H, using SZE.

Uncertainty Importance
Observational Major
Finite Extension can be Major
Non-isothermality Major
Non-sphericity Major
Clumpiness Not Major
Sub-structure Not Major
Proper Cosmology Not Major
Point sources Not Major

Relativistic corrections Not Major

kinematic SZE Not Major

Gravitational Lensing Not Major

Non-thermal electrons Not Major

Radio Cocoons Not Major

Cooling Flow Major




Chapter 4

Constraining the matter density

parameter using SZE

4.1 Introduction

A key problem in modern cosmology is the determination of the geometry of the universe. This
mean determining the cosmological parameters that determine this geometry. Some of the classical
methods of deriving the cosmological parameters involve measurements of the redshift dependence
of apparent luminosities of ‘standard candles’, or the angular sizes of ‘standard rulers’, or the num-
ber densities of non-evolving objects. Many of these classical approaches are limited by difficulties
in identifying objects, distributed over cosmic timescales, that are untouched by astrophysical evo-

lution.

The formation of structure is dependent on the background cosmology. Attempts have been
made to exploit this coupling by examining the parameter space allowed for the cosmological con-
stants by favoured models of structure formation. Since the COBE discovery of anisotropy in the
CMB, progress in the understanding of physical mechanisms responsible for the anisotropy spec-
trum and the influence of the background cosmology in the generation of these anisotropies have

led to attempts at deriving constraints on the cosmological parameters from the shape of the CMB

anisotropy spectrum (Bond et al. 1994) The density fluctuations that are hypothesized to have

been generated in the very early universe are believed to grow via grav1tat10nal instabilities an
i i ature
give rise to the large scale structures we see il the present day universe. The CMB temper

; i be a direct
fluctuations seen today on large angular scales exceeding about a degree are believed to

75
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consequence of matter inhomogeneities on scales exceeding &~ 100 Mpc at the recombination epoch.
The gravitational and astrophysical evolution, in the post-recombination universe, which led to the
formation of galaxies and their clustering, alter these primary radiation anisotropies and may have
given rise to the dominant CMB fluctuations on small angular scales. At angular scales where the
primary fluctuations become exponentially damped, and the secondary fluctuations take over, the
SZE from galaxy clusters happens to be the major source of anisotropy. The generation of the CMB
anisotropies (both primary and secondary) and their appearance on the sky are intimately linked
with the background cosmology and/or the physics of astrophysical objects (for the case of the
secondaries). Hence, the study of CMB anisotropies on different scales gives constraints on theories
of structure formation and also on the parameters of cosmological models. Motivated by this link
between the temperature anisotropy and the cosmological parameters, in this chapter, we focus on
using SZ distortions by galaxy clusters as a probe of the cosmological matter density parameter.
This is done by simulating the CMB anisotropy on small angular scales for specific models of struc-
ture formation. The results of simulations of sky temperature anisotropy are compared with ATCA

limits on arc min-scale anisotropy to derive constraints on the cosmological density parameter Q..

4.2 From the Cosmic Microwave Background to the Large Scale

Structure

In this section, we give a brief overview of the intimate connection between the CMB distortions and
the large scale structure seen around us. One can then pass smoothly from the very linear regimes
(the largest scales which are probed by the primary CMB anisotropies) to the non-linear regimes
(like cluster scales probed by secondary CMB anisotropies or by other traditional methods like
cluster surveys). One can combine these complimentary approaches to yield important astrophysical
and cosmological informations (e.g., the normalization of the matter density power spectrum of

large structures in hierarchical models of strueture formation).

As discussed earlier, large-angle anisotropies in the microwave background radiation may be
traced back to its generation from small-amplitude primordial density fluctuations in the early
universe. Hence, from a study of these anisotropies we hope to learn a number of things : the cause
behind the fluctuations (quantum or cosmic defects); the statistics of the fluctuation (Gaussian
or non-Gaussian); the mode (adiabatic or isocurvature); ratio of scalar to tensor component etc.
These will have their own power spectra (e.g., Paa(k), Pyrav.wave(k) as a function of the comoving

wave number k = 2ma/)\, with a as the scale factor. Analysis of the primary anisotropies can
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help in determining these power spectrum amplitudes and in identifying any probable tilt (n # 1)
of the initial primordial power spectrum. In what follows we have adopted the more popular
adiabatic power spectrum with no contribution from gravitational waves, and denote it by P,(k),
the primordial power spectrum. This then gives us Gaussian distribution of primordial fluctuations
which we chose to be of the Harrison-Zel'dovich form given by Pp(k) = Ak™. Once we know the
power spectrum, we can compute all the relevant observable quantities ( CMB & LSS), since for an

isotropic, homogeneous, Gaussian random field, the power spectrum contains all the information.

The matter perturbations grow due to gravitational instabilities into the large scale structure
we see at the present epoch. In addition, as the primeval CMB radiation propagated to us through
growing matter inhomogeneities, astrophysical couplings give rise to secondary anisotropies on pre-
dominantly small angular scales. The power spectrum P(k, 2¢) of the fractional density fluctuations,

at the redshift z = z; may be related to Pp(k,2;) by:

Dy (zi)
Dgy(zs)
where D, is the linear growth of perturbations and the matter transfer function T'(k, z5) describes

2
P(k,z;):[ ] T2(k, z5) Pp(ks ) (4.1)

the processing of the initial density perturbations during the radiation dominated era (Padmanab-
han 1993). T'(k,zf) for linear perturbations modifies the initial Fourier components of the density

F(k,z) at some very early redshift 2; to the final ones F(k, zf) at some later redshift zy by

Dy(z:) F(k,zf)
D,(z) F(k,z)

T(K,zf) = (4.2)

The modifications to the shape of the perturbations would depend on the nature of the pertur-
bations, cosmological models and the dark 1natter. During the matter-dominated era, the dominant
dark matter (DM) perturbations experience equal growth on all scales and P(k, z) grows retain-
ing its shape. The growth rate, described below by the growth function, varies with cosmic timne
and depends on the mean matter density Q.. Models of structure formation are usually charac-
terized by specific shape and normalization of P(k, z¢), the power spectrum at the redshift of
matter-radiation equality. Note, that for most cosmological models T(k, 2) is almost similar below

a redshift z ~ 100. The choice of our transfer function is given in 4.4.2.

Along with the processed power spectrum, the final result of any calculation also depends on
a large number of free parameters of the theory. These include the Hubble parameter H, , the
various mean energy densities (Qot, Qo , QA , Qepar, Qrpar, O ) and parameters characterizing
the reionization of the universe (like Zreion). The number of independent parameters can be as

large as 17 (see Bond & Jaffe 1998), and many more if one does not restrict the shape of the
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P,(k). In these zoo of parameters, the relatively more important ones are H, , 2, (defined in
Chapter 1), the cosmological constant 25 and cosmological baryon density £ . Also, since in
this thesis, we are interested in secondary anisotropies caused due to the SZ scattering of primary
radiation, we restrict ourselves to these four parameters that matter most in our case: H, ,
and the cosmological constant {24 through their direct effect on structure formation and size-
angle relationship, and € through the amplitude of the secondary distortion caused by individual
structures. One can reduce this parameter set further by taking recourse to measurement of H, and
) from other observations (like BBN). Finally, we are left with only two parameters, £, and Qx
. In this chapter, we concentrate only on 2, and look at models without a cosmological constant.
Using a complimentary approach, we look at models including a cosmological constant, in the next

chapter. Interestingly, both the approaches give very similar final results.

4.3 Cosmology with SZE from Galaxy Clusters: ‘Blank Sky Sur-

veys’

In the last chapter we have tried to probe the universe (via the Hubble constant) from targeted
observations of SZE from galaxy clusters. However, with the upcoming satellite missions (like
the Microwave Anisotropy Probe (MAP) and PLANCK) and ongoing/upcoming ground based
missions, observations are reaching sensitivities when one can look for SZE in ‘blank fields’ in the
sky. This would open up the possibility of detecting thousands of SZ sources in the sky from non-
targeted observations along with detection (or upper limits) on the diffuse microwave background
distortion due to SZE. These can then be used as powerful probes of the underlying cosmological
models. In this chapter and the next we take a look at the possibilities that exist for such studies.
Especially, we look at constraints on structure formation that can be put at present from recent
observations of ‘blank fields’ (this chapter) and the possibility of using the SZ power spectrum as
a tool in cosmology and astrophysics (next thapter). This chapter is devoted to simulating ‘blank
fields’ of SZ distortion, whereas we take an analytic approach in the next chapter. Most of the
basic materials (like normalization, number densities and cluster physics) discussed in this chapter
have significant overlap with tlie next chapter and hence are described in some detail. We begin

by brief overview of SZ number counts that will be possible in the near future.

As discussed in Chapters 1 & 2, clusters of galaxies may be ‘visible’, owing to the SZ effect
(the ‘holes-in-the-sky’ phenomenon), as sources in the sky with a negative flux density (w.r.t. the

flux at a position far from the cluster) at wavelengths longward of 1.35 mm and with a positive flux
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density at shorter wavelengths. This SZ effect has been imaged to-date towards several clusters (see
Birkinshaw 1999 for a recent review). We may consider distant cosmological clusters — observed
at wavelengths longward of 1.35 mm — as a sky distribution of sources with negative flux density.
Observational sensitivity in modern radio telescopes is reaching values close to that required for
detecting the SZ effect from cosmological clusters towards ‘blank fields’ where no obvious clusters
are seen in either their optical or X-ray emission. There have been claims in the literature of
the detection of radio decrements (thought to be due to the SZ effect) in sensitive images made
of ‘blank’ sky fields (Jones et al. 1996, Richards et al. 1997); however, sensitive observations of
several other blank fields with arc imin resolution have failed to detect any decrements or CMB
anisotropies (Subrahmanyan et al. 1998,1999). However, rapid progress is being made in this field,
and in the near future ground based surveys will be able to detect and possibly resolve a large
fraction of cluster population. Modeling clusters as a simple self similar population, studies show
that one would be able to discover ~ 100 clusters per square degree at a wavelength of 2 mm and
~ 10 per square degree at A ~ 1 cm (Bartlett, 2000). One can then use the number counts as a

cosmological test.

At wavelengths longward of 1.35 mm, a cluster appears as a negative source on the sky with
respect to the mean CMDB background intensity: the flux density S, due to the integrated SZ effect

over the sky area of a cluster is

_ . Jul(T) kT
Sy(z) = 2 (2) /dV——-—mec,zneaT.
o< Mges (Te) - (4.3)

where j,(z) containg the frequency dependence of the SZ flux and the other symbols have their
usual meanings as defined in the previous chapters. We have assumed that T' > Tims. The integral
extends over the cluster volume and d,4(z) is the angular-size distance to the cluster. S, has units
of erg s™! cin? Hz~!: this flux density is usually expressed in Jansky (Jy), defined as 1 Jy = 10~
erg s~! cm? Hz~!. It is clear from the equation above that the net SZ effect due to a cluster is
dependent only on the total mass of hot gas in the cluster and a density-weighted mean temperature.
This means that for unresolved clusters the SZ flux is insensitive to the spatial distribution of the
ICM or its temperature structure. The SZ flux density from a cluster diminishes as the square
of its angular-size distance: because the angular-size distance of objects at cosmological distances,
z 2 1, saturates to a limiting value or even decreases with increasing redshift, the SZ flux from a
cluster does not rapidly diminish with increasing cosmological distance. However, the distributions

of cluster gas temperature and electron density may be functions of redshift; therefore, the expected
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SZ flux density from a cluster may be redshift dependent. Now, using scaling arguments for clusters
i.e. (Tv,-,ia, o M23(1+ z)) and normalization from Evrard et al. (1996), one can express the total
flux density of a cluster in terms of the total mass and the underlying cosmology only. If the cluster
mass is supposed to follow the Press-Schecter mass function, then detection of clusters above a cutoff
in S, would act as a probe of the cosmological model. This is the basic philosophy behind using

SZ cluster counts from blank sky surveys to probe cosmological models.

Other than number counts, blank sky surveys of SZE from galaxy clusters can be used in
other complimenté.ry ways to probe our universe: 1) The power spectrum of secondary anisotropy
can be used as a probe of the cosmology (analogous to that from primary anisotropies) and of
the astrophysical phenomena/source causing the distortion. The TSZE power spectrum can be
recovered from‘multi frequency non-targeted observations of the CMB sky. Chapters 5, 6 & 7
look at the power spectrum of SZE from different sources. Especially, in the next chapter, we
take a detailed look at the SZE power spectrum from cluster of galaxies. 2) The other option is
to use limits on the microwave background anisotropy from arc-min scale surveys of blank fields
to put constraints on the background cosmology under the assumption that SZE of clusters are
the dominant contributor of microwave background anisotropy at arc-min scales. This chapter is

dedicated to such an approach.

It may be noted here that because the SZ effect has a generic non-Gaussian temperature distri-
bution, it could be detected in a sky image by estimators sensitive to skewed variance. Many other
secondary contributors to the temperature anisotropy have a Gaussian distribution in amplitudes;
therefore, the negative-skewed-nature of the SZ effect may be useful in distinguishing it from other
sources, foregrounds and instrument noise (Cooray, 2001b)

Finally, let us mention that though the large scale structure around us are in the form of web
and filaments of tenuous matter with high density structures sitting at their junctions, it is the
high density structures that mainly influence the microwave background photons. Hence, a halo
based approach is sufficiently suited to look at the impact of LSS on the CMB. More justifications
to this claim can be found in Cooray (2001a),

4.4 The cosmological distribution of clusters of galaxies

4.4.1 The Press-Schecter approach

For the purpose of our simulations, we wish to relate the number density of collapsed objects

of different masses, at different cosmic epochs, to the initial density contrast on different scales,
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i.e., the initial matter spectrum P(k, z5). It is assumed, in most theories of structure formation,
that the initial small-amplitude density fluctuations are Gaussian random, i.e., the amplitudes are
Gaussian distributed and that the fluctuations on different scales are uncorrelated (random phase
fluctuations). Structure is believed to form from the growing perturbations hierarchically, with
smaller-scale fluctuations collapsing first and larger scales later. The mass and redshift distribution
of the number density n(M, z) of collapsed objects may then be computed using the Press-Schechter
(PS) formalism (Press & Schechter 1974; see Padmanabhan & Subramanian 1992 for a tutorial):

p) ding(M,2)| _,2/9dM
n(M,z)dM = \/7 el Tdamm | T M (44)
wlere
5, §.D,(0)
- = . 45
ve(M, z) o(M,z)  oo(M)D,(z) (45)
30 12

In these equations, (p) denotes the mean co-moving matter density in the universe: (p) = YOk
where (O, is the density parameter, H, = 100k km s~! Mpc™! is the Hubble constant and G is the
gravitational constant. o (M, z) denotes the rms fluctuations, at redshift z, in the fractional density
contrast in the matter when smoothed to a mass scale M = %WRa(p), where R is the comoving
radial length scale of the smoothing function. o,(M) is the rms density contrast at the present
epoch and & is he density contrast in an overdensity, computed using linear theory, at the epoch
when the collapsed object is deemed to have formed. We adopt the collapse of a spherical top-hat
overdensity (Peebles 1980) as a valid model for the description of the dynamical evolution of the
peaks in the Gaussian density distribution; the collapsed object is deemed to have ‘formed’ at the
cosmic time ¢., which is approximately twice the cosmic time ¢,, at which the over dense region
attains maximum expausion radius. In a universe with Q, = 1.0, §. = 1.68. It has been shown that
dc varies by at most ~ 4 per cent for a range of 2, from 0.1 to 1 (Lacey & Cole 1993). Therefore,
we have chosen to adopt a constant value 1.68 for §.. However, in the next chapter, we use the SZE
to probe specific cluster physics. Thus we must be careful about the influence of the cosmological
parameters and hence use a changing value of 8, for different models. The more exact forms can

be written in terms of the conformal time n as

3 2 2/3 _
) (Qo,z _ Q_DQ(QCHO) [(sinh.’;]—-rl) -+ 1] Qo < 1, A 0 (46)
0.15(127)2/3Q2005 D (9,,0)/Dyg(R,2) Qo <1, A =1~9,

where

n = cosh™! [ 2__ 1] (4.7)
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In this Press-Schechter formalism, collapsed objects are identified on the basis of their overden-
sity assuming linear growth of perturbations. D,, in Equation (4.6), quantifies the growth factor
of the density perturbations from the epoch of matter-radiation density equality (z = z.4) to any
later epoch 2 in the matter dominated era. In the absence of free streaming, the growth function
is given by (Peebles 1980, Heath 1977)

50 ©14s
Dyle) =5 (L za)ale) [ s, (48)

where
9%(2) = Qo(1+2)° + (1 - Qo — Q) (1 + 2)* + Q. (4.9)

Closed form expressions are available in Weinberg (1972), Groth & Peebles (1975) and Edwards &

Heath (1976) for universes with and without a cosmological constant A.

For open universe, the growth function can be written as (Peebles, 1980)

3 31 +w)l/? : 2
Dg(ﬂo,z)=1+a+—m—1n((1+w)‘/ —w'?) (4.10)

where w(€,2) = Q,7!(2) — 1 The redshift dependence of the density parameter 0, is given by

_ Qo(1+2)
f(2) = Qe(l+2)+(1—9) ° (4.11)

For flat universe with a cosmological constant, the integral of the growth function cannot be

done analytically. Useful approximate expression are given by Lahav et al. (1991) and Caroll et al.
(1992), which is

_ Qo(142)3
Qo(z) - o(l-:z)3+l— ° (413)
‘ — 1-Q
Q/\ (Z) = m . (4.14)
The rms amplitude of the mass fluctuations at any redshift z, (M, 2}, when smoothed with
a spherically symmetric window function of characteristic co-moving radius R, may be computed
from the matter power spectrum P(k, z) using the relation:
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o< I .3
02(]\l,z)=/ EE ik, 2)
0

o 2
A Wn(k)l , (4.15)

where Wp(k) is the Fourier transform of the corresponding real space window function and, as
before, M = %nR3(p). A splerical top-hat forin with radius R is usually adopted for the window

function and this corresponds to a Fourier-space window function:
- 3 '
Wr(k) = k—ég(sin(kR) — kR cos(kR)). (4.16)

We have plotted the rms mass fluctuations o against the mass M or size R in Figure 4.1. In
the upper panels, we show the variation of ¢ with mass (or size) for three different cosmological
models: critical density mnodel (€, = 1), open model (OCDM) and flat models (ACDM) both with
Qs = 0.3. For each set of models, h = 0.7,0.65,0.6 from top to bottom. We see that o for the
critical density models are far higher than OCDM or ACDM models, rendering it incompatible
with observations. In the lower left panel, we show the variation of o with M for four values of: 1,
= 0.2 (dotted line), 0.4 (dot-dashed line), 0.6 (dashed line) and 0.8 (solid) line. Cases are shown
for flat and open universes and the critical density model is also shown for reference. In the lower
right panel, we show the effect of increasing the baryon fraction on ¢. As is evident from the figure,
increasing the value of €, (to 1.5 times the BBN value) lowers the values of 0. Interestingly, one

can see a degeneracy between a high €, universe and a low h universe.

The Press-Schechter formalismm has been verified by Tozzi & Governato (1998) against the
results from numerical n-body dynamical simulations, particularly for the mmass range encompassing

clusters of galaxies.

4.4.2 COBE normalization of matter power spectrum

There are two independent ways to constrain models of LSS with COBE data. One can either use
the shape of the power spectrum or the normalization. The first one turns out to be rather weak
for the more popular models and so we use COBE to normalize our power spectrum by normalizing
the small scale density fluctuation amplitude og, which is the rms mass fluctuations smoothed using

a window function with a radius B = 84~! Mpc in the present day universe.

Normalization of the matter power spectrum can be obtained from cluster abundance studies
(White et al. 1993, Bond & Myers 1996, Viana & Liddle 1996). The resulting og ranges between

0.5 — 0.8. Specifically, one can approximately write og as

o =~ (0.6 £0.1),7° , (4.17)
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Figure 4.1: COBE normalized o(M) (or equivalently o(R)) are plotted as function of Mass ( or

radius) for different cosmological models. The detailed explanation can be found in the text.

where ¢ = 0.4 for OCDM and ¢ = 0.54 for ACDM. However, such normalization can be affected
by selection effects and other cluster physics. On the other hand, the large-angle CMB anisotropies
discovered by COBE (Smoot et al. 1992) are believed to have been generated by processes at
the last scattering surface. Since the matter fluctuations that generated these anisotropies were of

small fractional amplitudes at the epoch ¢, and because the scale length of the perturbation modes
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well exceeded ct, the coupling physics between the matter perturbations and radiation was linear
and did not involve any astrophysical interactions. The CMB anisotropies detected by COBE may,
therefore, be related to the primordial matter spectrum fairly exactly without all the uncertainties
associated with the astrophysics involved in the formation of collapsed baryonic objects at late

epochs. For this reason, we have chosen to normalize the P(k) with the COBE results.

For the matter density perturbations, the LSS data are usually expressed in terms of the power
" spectrum P(k) = ]5k|2, where 8 is the Fourier transform of the fractional density perturbations
(8p/p). The power spectrum is often expressed as the dimensionless mass variance per unit interval
in Ink, denoted by A? (k), i.e.

do? K3

_di? _ K 418
dink 22 P (k) (4.18)

A% (k)

Equation (4.18) can then be used in terms of A? (k) to give the normalization of P (k), where
one puts r = 8h~! Mpc. In Table 4.1, we list the COBE normalized og for the different models
studied in this chapter.

We have adopted a power-law form for the initial primordial matter spectrum with (k) o k7,
where n is the index of the primordial power spectrum; this index m equals unity for Harrison-
Zel’dovich scale-invariant spectra. The power spectrum at any redshift z in the matter dominated

era may then be written in the form

k3
o

P(k,2) = (%)3+"5§,T2(k)pg(z) /D2(0), (4.19)

where the D,'s are the growth factors defined in Section 4.4.1. &y represents the amplitude
normalization of P(k, z) and is defined as the amplitude of perturbations on the horizon scale at the
present epoch z = 0. To a good approximation, dz as normalized to COBE is relatively insensitive
to both h and Q (see Bunn & White 1997, their figures 13 & 14). However, og depends on the
parameters 1, {1, Q5 and Q.

We have used the fitting formulae of Bunn & White (1997) to normalize the power spectrum to
the COBE-DMR measurements. For an open universe with vanishing cosmological constant, with

no CMB anisotropies coming from gravitational waves, we use the normalization

i = 1.95 x 10—5Q°-—0.35-—0.191nQ°—0.171'16~—ﬁ—0.1~tﬁ2 (4.20)

and for a flat universe with a cosmological constant (used in the following chapters), the pormal-

ization with no gravitational waves is given by
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Sy = 1.94 x 10750, ~0-786-0.05In {2, ,(~0.957-0.1697)* (4.21)

In the above equation, 74 = n — 1, and the normalizations are valid for 0.7 < n < 1.2. and over the

range 0.2-1.0 in ..
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1.6F COBE nomalised

1.2f

0.8

04p

o2}

Figure 4.2: COBE normalized o3 is plotted against €2, . The thick solid lines are for a flat universe
and the thick dashed lines for an open universe. The thick dash-dotted lines are for a critical density

universe with tilted power spectrum. Note, the values of o3 for 2, < 0.2 are only approximate.

As mentioned earlier, the shape of P(k, z) in the matter dominated era is completely determined
by the transfer function T'(k) and the assumed Torm for the primordial spectrum. With the choice of
a power-law form for P,(k), the transfer function is critical relates the power on small wavenumber
modes — which is fixed by the adopted COBE normalization — to those on large k modes at which
we have clusters of galaxies. There are several fitting forms available for T'(k) in the literature in the
context of the cold dark matter (CDM) dominated universes. However, different parametrizations
of transfer functions can differ by large amounts (Peacock & Dodds 1994) and, moreover, to obtain
better accuracy the effect of baryon damping must be included (Hu & Sugiyama 1996, Ma 1996,

Eisenstein & Hu 1999). We, however, work within the context of low-baryon-density universes and,
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therefore, include the effect of non-zero baryon content by adopting a modified ‘shape factor’ I. In
this work, we have adopted the fitting function provided by Bardeen et al. (1986):

In (1 + 2.34q) 9

Tepar(g) = 234g

2 3 411/
[1+3.89¢ + (16.1)? + (5.469) +(6.71q)] (4.22)

where g = k/hT, T = Q.hexp (~Qp — Np/Q,) and Qp is the baryon density parameter which is

the ratio of the mean density of baryons in the universe to the critical density pe = 3H?/(87G).

From Table 4.1 and Figure 4.2, it is clear that a low 0, has a lower value of gg, with the flat
Q, = 1 having the highest value. The reason for such a behaviour is as follows: In a ACDM
universe the fluctuations stop growing when z ~ (R - 1)1/ 3 for Q, < 1 and so the overall
growth from z ~ 1000 to present is suppressed relative to a flat ), = 1 universe. Also, in addition
the potential fluctuations are reduced by Q, . Thus for a fixed COBE normalization, one expects
P(k) o (Dg/Qo)2 ~ 1,719 (see Peebles 1984, Efstathiou et al. 1992). Hence for a COBE
fixed normalization, the present day matter fluctuations are larger for low density universe (with
or without a cosmological constant) than a critical density model. Another effect that influences
this normalization is the integrated Sach-Wolfe effect, which becomes important for a low density
open universe. Finally, two important features emerge from Figure 4.2: 1) for the same value of
Q, , a flat universe has a higher gg. Cluster abundance studies give the value of g ~ 0.9 — 1.
This corresponds to 2, ~ 0.3 for a flat universe and Q, ~ 0.7 for the open case. 2) Also notice
that adding a tilt (say, n = 0.95,1.05 can cha\nge tlie normalization by a large amount, specially at
higher ©, values. Thus, a critical density universe can be brought to agreement with observations

by the introduction of a small tilt (n ~ 0.9).

The Press-Schechiter formalism described in section 4.1, along with the COBE-normalized P (k)
defined above, have been used to calculate the number densities of collapsed objects. We choose
to identify the condensates as groups/clusters of galaxies and have computed their abundances as
a function of cluster mass and redshift for a set of CDM c‘osmologies differing in their .. We have
not considered the effect of including a cosmological constant in this work and have put A = 0.
The computations of cluster distributions n(}M, z) have been carried out over logarithmic bins in
the mass range 10'3-10'6 Mg. The distribution in mass is computed at redshifts spaced at intervals
of Az=0.1. Plots of n(M, z) distributions are shown in Figure 4.3.

The theory predicts that the cosmic abundance of massive collapsed objects are extremely

sensitive to the amplitude and slope of the primordial power spectrum and also on the growth

factor. In a flat cosmology with €, = 1, P(k) would grow as.(1 + z)™%; in an open universe
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Figure 4.3: Abundance of objects with mass M = 10'2 Mg (continuous line), M = 10'3 My (dashed
line), M = 10'* Mg (dot-dashed line) and M = 10'®* Mg (dotted line). A CDM cosmology with
h =0.65, A = 0 and Qp = 0.019h~2 is adopted; the four plots are labeled with the assumed values of
. The abundance n(M, z) is expressed as the number of objects per Mpc? and logio(M x n(M, z))

is plotted versus redshift z.

the growth approximately follows this evolution down to redshift z ~ (Q7! - 1) and is stunted
thereafter. Therefore, in these models, which are all COBE normalized, the total growth up to

the present time will be greater in models with larger Q,. Consistent with this reasoning, it may



4.4. The cosmological distribution of clusters of galaxies 89

Table 4.1: COBE normalization for different models

Model! Q, h as

SCDM 1.0 0.50 1.128

SCDM(high &) 1.0 0.65 | 1.567

OCDM1 0.8 0.65 1.326
OCDM2 0.6 0.65 1.004
OCDM3 0.4 0.65 0.605

SCDM(variant1) 1.0 0.50 1.128

SCDM(variant2) 1.0 0.50 1.128

be seen in Figure 4.3 that the larger 0, models are dynamically more evolved: they have larger
numbers of 10'® Mg objects at z = 0 and in these models the abundances of lower mass objects

are declining with cosmic time as they are incorporated into larger mass objects.

It may be seen from Figure 4.3 that the decline, with redshift, in the abundance of high-mass
(10'° Mg) collapsed objects relative to the abundance at z = 0 is steepest in the case of models
with lower ©,. This is the opposite of the expectations for models which are normalized at the
present time to, for example, a specific value of og. Although the growth function evolves slower
at low redshifts in models with low €,, the abundance of massive collapsed objects evolves more
strongly in the case of the low £, models because in these models the rms mass fluctuation o (M, z)

is itself low at z = 0.

The Gaussian characteristic of the Press-Schechter mass function is evident in the distributions:
at any redshift, there is a rapid exponential decline in the number density of objects in larger mass

bins.
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4.5 SZ distortion from a single cluster

In order to model the spatial distribution of the intra-cluster gas, the isothermal 8 model has
been adopted, in which the cluster gas is modeled as being spherically symmetric, centred in the
gravitational potential of the cluster and shock heated to a temperature corresponding to the

potential energy. The variation in gas density with radial distance r is assumed to be given by

p(r) = poll + (r/re) ¥/, (4.23)

where p, is the central density and r. is the core radius. The value of B, inferred from the X-ray
surface-brightness profiles observed in clusters of galaxies, is believed to be in the range 0.5-0.9
(Markevitch et al. 1998). Especially, isothermal 8 model fits to X-ray images give 8 = 0.67 (Jones
& Forman 1984). Spectroscopically determined 8 comes out to be =~ 1 (Girardi et al. 1996, Lubin
& Bahcall, 1993). Numerical simulations give 8 = 1-1.3 (Evrard et al. 1996, Bryan & Norman
1998). Here, for simplicity, we adopt a value of % for B. Since SZE, as compared to X-ray emission,
is more sensitive to the outer regions, it is important to pay careful attention to the underlying
density profile: a profile with a higher 3 is more strongly spiked towards the centre. Although 3
models describe the ICM well, for more accurate work an improved model is needed (for example

see Cooray, 2001a for a gas model based on hydrostatic equilibriuin with the total dark matter).

Assuming that the dynamical collapse of the cluster is self similar, the scaling of the core radius
¢ of collapsed objects with mass and redshift has been derived to have the forin (Colafrancesco et
al. 1997, Kaiser 1986):

1.3 !Mpec 1
P 1+

re(Qo, M, 2) =

[1 M A(ﬂo=1,z=0)]‘/3, (4.24)

OBh—IMy  Q.A(Q.,2)
where the non-linear density contrast at the epoch of virialisation is A = j/p where j is the density
contrast and p is the mean background density. In the above parametrization, P = Tyr [Te, is a
measure of the concentration of the cluster mass: small values of p model the clustér gas as centrally
concentrated where as larger values of p spread the gas mass away from the core. Sometimes it is
used as an adjustable free parameter that may be selected to fit observations of nearby clusters.
Values of p = 6 appear to better model the parameters of nearby clusters; a comparison of the
model with the observed parameters for the Coma cluster is given below. It may be noted that

sensitive X-ray imaging of the gas in nearby clusters has shown gas extending out to at least eight
core radii.
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For the case of an open universe,

1872 1

A = 7y oo )
Qngtf/ (1+zv)3

(4.25)

where t, and z, are the cosmic time and redshift corresponding to the epoch of virialisation. For
OCDM and SCDM models, the overdensity can be parametrized as

AQ,2) = 477Q[(Q% +2Q)1% — In(1 + Q+ (@ +2Q)?)], (4.26)
where @ = 2(1 — ,)/(6(1 + z)) (Oukbir & Blanchard 1997).

In the case of a flat universe, A =~ 178 (Peebles 1980; Colafransesco et al. 1997). For flat

universe, it can be parametrized as (Kitayama & Suto 1996)

A(Q, 2) = 1872 |1 +0.4093(R (2) ' — 1)%99%2 (4.27)
If rp, denotes the maximum radial extent of the cluster, p = (rm/7c) and is

Although recent observations indicate that intracluster gas has temperature structure (Marke-
vitch et al. 1998), we have modeled the clusters as being isothermal. From the assumption that
clusters form from self-similar collapse, it follows that the temperature T' o %— and a good approx-

imation for the temperature of the intra-cluster gas in clusters is (Colafrancesco et al. 1997)

M 2/3
|7

10'5h—‘M@
1/3
[ QOA(Qm z) ] K. (4.28)
A (Qo = 1, Z = O)
The relation between the mass and the temperature in Equation (4.28) agrees well with the recent

T =6.7x107(1+ z)[

M-T parametrization as suggested by Bryan & Norman (1998). We have assumed that the hot gas
detected in its X-ray emission is responsible for any SZ effect (Colafrancesco et al. 1994, Blanchard
et al. 1992, Vittorio et al. 1997, Kaiser 1986). The use of Equation (4.28), assumes the cluster
to form at recent times, which is however only an approximation for a low Q, universe. Voit &
Donahue (1998) have given an expression valid for a low o universe which takes accretion during
the evolution of the cluster into account. We, however, find that the final result is not much

different if one uses the more exact expression.
Only the baryonic matter in collapsed clusters gives the SZ effect. White et al. (1993) have
estimated the baryon content in clusters to be

M,

tot

> 0.009 + 0.050h7%/2, (4.29)
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where the first contribution is due to the galaxies and the second is due to the intra-cluster gas.
Primordial nucleosynthesis predicts a universal baryon abundance §;, =~ 0.019h~2 (Burles et al.
1999). Adopting the Hubble parameter h = 0.65, it is seen that the baryon gas-mass fraction in
nearby clusters is about 0.1 and is a factor of two greater than the universal baryon abundance. The
Einstein Medium Sensitivity Survey (EMSS) data appear to indicate a decline in the abundance
of X-ray luminous clusters with redshift (Henry et al. 1992); this may be parametrized as a hot-gas
fraction that evolves as t'*! with cosmic epoch. It may be noted that adopting a gas fraction that
declines with redshift is a conservative assumption because it reduces the predicted SZ effect. We

have adopted a parametrization

Mes _3,2[ Mot ]0-2 t19
—I% = 0.0507 — — 4.30
Mot 0.0507 101%h=1 Mg [to] ’ (4.30)

with ¢ = 1.4. Mg, represents the hot gas mass in the cluster and My, represents the total mass
in the collapsed object. The exponent 0.2 in Equation (4.30) is from a fit in Colafrancesco et al.
(1997). We have assumed that the intra-cluster gas has a primordial composition, with helium and
hydrogen atoms in the number ratio 1:10, and is fully ionized. Interestingly, this parametrization
can be cleverly used in future SZ surveys to look for any evolution of the gas mass fraction. We

will come to this point in a greater detail in the next chapter.

The cluster mass distribution, as also the intra-cluster gas, are modeled as truncated at a
maximum radius r,, = pxr.. We define the ‘impact parameter’ b as the projected distance between
the cluster centre and any line of sight through the cluster. It follows that the SZ decrement iu
the Rayleigh-Jeans portion of the spectrum, in units of temperature, expected at any sky position
b £ Trnaz 18 given by

2kgT

= — = 31
AT cmb Mol X bneUley (4.3 )

where Temy, i8 the average brightness temperature of the CMB. The integral is computed along the

line of sight through the cluster at the impact parameter b.

The assumption that the cluster gas is of primordial composition implies that the total number
of hot electrons in the cluster is N, = (18/14)(My,, /a.m.u). Using the isothermal S-model for the

cluster, the SZ decrement may be written in the form

2 2
ma:"'b

—1/Vr
AT ~ _2_kB_1:0 ) -1— tan™'( ~wes YNere (4.32)
Toms | Mec® T d4m VT + b [rermaz — 2 tan~! (Tmaz)] ' )

The Coma cluster at a redshift 0.0235, with a total mass about 2 x 10'> Mg, is observed to

have X-ray gas with a temperature 8-9 keV and a core radial size of 10.5 arc min (Silverberg et al.
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Table 4.2: Statistics for different cosmological models.

Model gas fraction | mean y Image rms Image rms
x10~3 | before convolution | after convolution
(uK) (nJy beam™)
SCDM parametrized 0.61 81 28
SCDM(high k) | parametrized 1.9 | 313 58
OCbM1 parametrized 0.46 60 23
OCDM2 parametrized 0.18 38 15
OCDM3 parametrized 0.05 9 3
SCDM(variant1) | no evolution 1.9 207 72
SCDM(variant2) | 22 =Qp 2.4 245 79

1997, Herbig et al. 1995). The Compton-y parameter has been measured to be 9 x 10~ towards
its centre (Herbig et al. 1995). In our simulations, for the choice p = 6 and adopting a value of
0.096 as the baryon gas fraction, we find that a collapsed object of mass 2 x 1015 Mg, at redshift
z = 0.0235 — corresponding to the Coma cluster parameters — yields values of 10.3-11.0 arcmin
for the core size, 8-9x 107 K for the gas temperature and the central SZ Compton-y decrement is
in the range 7-8.5x107°.

4.6 Simulations

Our simulation codes compute the abundances n(M,z) in redshift slices in the redshift range
z = 0-5. We make the conservative assumption that only collapsed objects in the restricted range
10'3-10'6 M, represent clusters of galaxies containing hot gas. Adopting a model, described below,

for the spatial distribution of hot gas in the potential wells of these clusters, we simulate sky images
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of the SZ effect expected owing to these clusters. The sky was simulated by separately computing
the contributions from different redshift slices along the line of sight. In any redshift slice, the
clusters are assumed to be Poisson-random distributed on the sky. We have simulated square
patches of sky consisting of 256 pixels along each side: the pixels were chosen to be 10 arc sec

square making the total image size 42'40". The redshift slices were of size Az = 0.1.

The mean number of clusters, A, with mass in the range M-(M + éM), is related to the

Press-Schechter number density by:
A =n(M,z) x 6M x volume corresponding to a pixel. (4.33)

The comoving volume of any pixel in a slice at redshift z is calculated as the product of the
comoving area (Al)? covered by the square pixels of angular size A@ = 10 arc sec and the comoving

line-of-sight distance As corresponding to the redshift slice Az. These are given by:

dz

[
Ag= — e % 4.34
*T H (1+2)vVT+Q2’ (4:34)
and
_ 2cA8 =
A= e {z+ (@ -2 [VOs+T - 1]}. (4.35)

We have associated every collapsed massive object with mass exceeding 10’3 Mg with cluster

gas.

We use the simulations for the purpose of predicting the sky variance as observed by the ATCA,;
these observations are made with arc min resolution and will be less sensitive to SZ effects from
clusters whose gas distribution is extended. The ATCA observations couple somewhat better to

models with smaller p; therefore, we have adopted the conservative choice of p = 8.

We have accumulated the SZ effect from clusters in redshift slices up to a maximum redshift of
5. In each redshift slice, the pixels were populated by collapsed point masses in a Poisson random
fashion; the expectation that any pixel was populated by objects in any mass bin was governed by
Equation (4.32). We then substituted our cluster gas model for every mass point: the SZ effect
owing to each cluster is distributed over several pixels surrounding that at which the point mass

was located. The variance of the temperature fluctuations in the cumulative SZ effect images was
then computed.

We have compared the results of the simulations with the observational limits on arc min-scale
CMB anisotropy set by the ATCA experiment at 8.7 GHz (Subrahmanyan et al. 1993,1998,1999).
These observations have been made with a Fourier synthesis array. The sky is viewed by the

telescope as attenuated by a primary beam that has a full width at half maximum of about 6 arc min
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Figure 4.5: The primary ATC A beam at 8.7 GHz
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Figure 4.6: Images of the six fields in Stokes I made using visibilities in the 0-1 kA range. Contours

are shown for 24.2 uJy beam—! x (-10, -8, —6, —4, —2, 2, 4, 6, 8, 10, 12, 14, 16). The locus

of the first null in the primary beam pattern is shown as a dotted circle with a 7 arc min radius.

Figure taken from Subrahmanyan et al. 1999,



4.7. Results and Discussion 97

and the synthetic images represent the convolution of the visible sky with a synthetic beam pattern.
The ATCA synthesized and primary beams are shown in Figure 4.4 & 4.5. The ATCA experiment
sets upper limits on any residual sky fluctuations apart from the instrument noise and confusing
foreground sources. Assuming ‘flat-band’ CMB fluctuations, the ATCA limit corresponds to a flat
band power Q¢ < 25 uK and, for their telescope filter function, this corresponds to an upper limit
of 21 puJy beam™! on the flux-density fluctuations on the sky. Sample observational images from
the ATCA observations are shown in Figure 4.6 We have convolved the images resulting from our
simulations by a beam that is the product of the ATCA synthetic beam and primary beam. Sample
images are shown in Figure 4.7 corresponding to CDM models with {2, = 1.0 and 0.6. Images are
displayed using a l-arc min Gaussian (normalized to unit volume) as the convolving beam and
separately using the ATCA product beam (normalized to a peak value of unity) as the convolving
function. It is seen that the extended clusters seen in the Q, = 1.0 simulation are resolved by the
ATCA beam: the extended SZ structures will not be detectable by the ATCA imaging. It may be
noted that before the convolution, the image pixels are in units of temperature (K); following the
convolution, the pixel intensities are in units of flux density (Jy beam™). The predictions for the

image variance have been made for different plausible cosmological models.

4.7 Results and Discussion

Results of the simulations are given in Table 4.2 for a range of model parameters. The image
variances have been listed both before and after convolving with the ATCA product beam. The
standard CDM model with A = 0.5, @, = 1.0 and with the hot gas fraction parametrized as
described in Equation (4.30), is expected to result in an image rms which exceeds the ATCA limit.
Increasing the Hubble parameter to a more likely value of A = 0.65 increases the expectations for
the image rms and this ‘high-A’ CDM model is rejected with greater confidence. Considering open
universe CDM models with Q. < 1, the expected image variance decreases with decreasing .

Low 2, < 0.8 open-universe models are allowed by the ATCA limits.

If we assume that ¢ = O and that the cluster gas fraction does not diminish with redshift,
high-redshift clusters contribute to the net SZ sky fluctuations. This is seen in the Table 4.2 where
the image rms rises from 28 to 72 pJy beam™! when the no-evolution assumption is made for the
standard CDM model. We have also simulated images corresponding to the case where the gas
fraction is a constant and equal to the mean baryon density predicted by nucleosynthesis. This .
gas model leads to predicted rms values which are not very different from that given by theg=10

parametrized model; this indicates that the lower mass (Mo = 1013~ Mg) objects dominate the
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Figure 4.7: Simulated images. The upper pair of images corresponds to CDM cosmology with 2, =
1.0; the lower pair corresponds to €1, = 0.6. The cluster gas distribution has been parametrized
with p = 8 and the baryon gas fraction is assumed to evolve with redshift as described by Equation
(4.30); the Hubble parameter h = 0.65 has been adopted. The images on the left have been
convolved with a Gaussian beam of FWHM 1 arc min; the images on the right have been convolved
by the ATCA product beam. Contours are for (-3, -2, ~1, 1, 2, 3, 4, 6, 8, 12, 16, 24) x —30 K
for the images on the left and —30 puJy beam™! for the images on the right.
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variance contribution in the no-evolution case.

We have computed the mean Compton-y parameter from the images for the different models
and these are also listed in Table 1. The COBE-FIRAS experiment has set an upper limit of
y < 1.5 x 1075 (Fixsen et al. 1996). It may be noted that our SCDM model with h = 0.65 is
independently rejected by these limits. Likewise, the models with no evolution in gas fraction are
also disallowed by the FIRAS results.

The value of o3 has also been computed for each model and listed in Table 4.1. The standard
CDM models normalized to COBE are known to be incompatible with estimates of og derived from
the local X-ray luminosity function or other local measures of galaxy clustering (which prefer low
values of og about 0.6). The ATCA results independently provide evidence in favour of a low-,
universe. It must be emphasized once again that the sky fluctuations due to SZE is generically

non-Gaussian in nature and a precise elimination of models have to take this into account.

An important difference between this work as compared to previous predictions for CMB
anisotropies from SZ effects is that we have normalized our matter power spectrum to the COBE
anisotropy results. All the previous predictions that we are aware of have normalized their models
to observations of the present day clustering in galaxies or to X-ray luminosity functions; conse-
quently, other workers have essentially normalized their matter power spectra to gs. This makes it
possible for all the models to be consistent with the observational estimates of present day cluster
abundances. Our choice of COBE normalization results in a gg that varies across the models. This
results in a dependence on §), which is opposite to what is usually found. The difference may be
understood in the following way : if the og is held constant across cosmological models, as previous
workers have done, varying €, changes the growth function and consequently the abundance of
clusters at redsifts z > 0 will decrease with increasing . On the other hand, when the matter
power spectrum is normalized to COBE-DMR. data, varying €, across models alters the shape
of the matter spectrum and the normalization in addition to the growth function. In this case,

increasing Q, results in an increase in cluster abundances at all redshifts.

In the last chapter we pointed out that a significant fraction of clusters have cooling flows in
them. We have, however, only considered isothermal clusters for simplicity. Since the majority of
clusters will not be resolved by the ATC A beam, the SZ contribution to the rms will only dependent
on the temperature weighted total gas mass of these clusters and not on their detail density and

temperature profiles.
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4.8 Conclusion

We have considered cosmological models composed of cold dark matter and baryons (and no cos-
mological constant), having an initial scale-invariant spectrum of adiabatic perturbations. We have
used the Press-Schechter formalism to generate the distribution of clusters. We have normalized
the rms mass fluctvations to COBE-DMR data. The Sunyaev-Zel'dovich decrement is calculated
for each cluster adopting a model for the density profile of the cluster gas. We have simulated
blank sky surveys for the SZ effect owing to a cosmological distribution of clusters. Finally, we
have predicted the expectations for the variance in the background sky both before and after con-
volving with the ATCA beam. Based on a comparison with the upper limits set by the ATCA
on CMB anisotropies on arc min scales, we conclude that COBE-normalized CDM models of the
universe with a high density parameter (2, > 0.8) are rejected. This result is independent of any
present epoch measures of . Thus, in this chapter, we have used ‘blank sky’ observatious of SZE
as a probe of our universe, through the matter density parameter €, . In the next chapter, we
continue to use Sunyaev-Zel'dovich effect as probe in cosmology, but also as a probe of specific
cluster physics. This we do by looking at the variation of the power spectrum of SZ distortion from

clusters of galaxies and linking it to the background cosmological model and astrophysics.



Chapter 5

A study of the power spectrum of

Sunyaev-Zel’dovich effect

5.1 Introduction

An unbiased and statistical description of SZE requires wide field surveys. ‘Blank’ sky surveys of
SZE have been envisaged to contribute to our understanding of our universe in three different ways:
1) using number counts of massive objects (clusters) to constrain the underlying cosmology, 2)
using rms limits on arc min scale observations to put limits on cosmological parameters and  3)
using the power spectrum of temperature fluctuations from SZE to constrain cosmological as well as
astrophysical models. This chapter is devoted to the study of the SZE power spectrum, especially

its shape, amplitude and peak position, and to use these probable observables as probes of our

universe.

The statistics (mainly the power spectrum) of SZ distortions has been studied by many :
Scaramella et al. (1993), da Silva et al. (1999, 2000), Springel et al. (2000) and Seljak et al.
(2000) have used numerical simulations of SZE maps to study the power spectrum, whereas Persi
et al. (1995)and Refregier et al. (2000) used a semi-analytic approach to compute the angular
power spectrum from a projection of the 3-dimensional power spectrum of gas pressure on thg sky.
The Press-Schecter formalism has been used by Atrio-Barandela & Mucket (1999), Aghanim et al.
(1997), Komatsu & Kitayama (1999) and Cooray (2000). Zhang & Pen (2000) has used non-linear
perturbation theory to calculate the SZ power spectrum. Figure 5.1 shows the results of these

works for comparison. It is clear that there is much discrepancy among these results. The reason

101



102 Chapter 5. A study of the power spectrum of Sunyaev-Zel’dovich effect

~-10
T T —r— T + . T — T —T

1
-
-

-
(=]

(1) C/2n

—y

°|
~
~n

~13

10

10

Figure 5.1: Comparison of published estiinates of thermal SZ power spectrum. The symbols rep-
resent the following: circles (Komatsu & Kitayama 1999); cross (Molnar & Birkinshaw 2000); star
(Cooray 2000); square (Zhang & Pen, 2000); diamond (Refregier et al. 2000); triangle (Seljak et
al. 2000) and pentagon (Springel et al. 2000). The solid line is fromn the work presented in this
Chapter. Note, that the maximum difference between the curves falls within an order of magnitude

in amplitude.

being that slight differences in cosmological parameters or gas physics can change the conclusions.
All of these approaches have their inherent advantages as well as disadvantages: the simulations
are mainly limited by lack of dynamical range, enormous CPU time but have the advantage that
they can incorporate the effects of non-linear feedback. The analytical approaches are simplistic to
incorporate all the relevant physics but have the advantage of being easy to handle and less time
consuming. In a recent study, Refregier and Teyssier (2000) have combined and compared both

of these basic approaches. They conclude that the halo based (Press- Schecter) approach can give
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sufficiently reliable results for the study of the SZE from clusters of galaxies. Encouraged by this
result we study, analytically, the power spectrum of SZ distortion over a large parameter range.
The main idea of this chapter is to look for some ‘signatures’ in the SZE power spectrum, which

can be used to probe specific issues in astrophysics.

Throughout this chapter we concentrate mainly on thermal SZE since it is at least an order of
magnitude more than the kinematic SZE for clusters of galaxies; see Molnar & Birkinshaw (2000).
We mainly consider three different cosmological models: SCDM (€2, = 1.0, QA = 0, h = 0.65),
ACDM (£, = 0.35, Q = 0.65, h = 0.65) and OCDM (Q, = 0.35, Qx = 0, h = 0.65). All the
models have §, = 0.05 and are COBE-normalized. Also, unless otherwise specified, all the power
spectra shown are independent of frequency (i.e.,, the frequency dependent part of SZE is taken

out) for easy comparison between them.

5.2 The SZE power spectrum

The fluctuations in the temperature background due to SZE from clusters of galaxies can be quan-
tified in terms of correlations between the fluctuations along two lines of sight separated by an
angle: this gives us the angular power spectrum of SZ distortion. The fluctuations of the CMB
temperature produced by SZE can be quantified by their spherical harmonic coefficients am, which
can be defined as AT(n) = Ty ' ¥1,n @1mYim(n). The angular power spectrum of SZE is then given
by Ci =< |am|* >, the brackets denoting an ensemble average. These effects can be quantified if
the cross correlation function of the clusters can be known ( for details see Peebles 1980, section 41;
Cole & Kaiser 1988). The pattern of temperature anisotropy on the sky is found by the convolu-
tion of the temperature anisotropy due a single ‘template’ cluster of mass M at redshift 2 with the
angular distribution of the clusters and then integrating over their mass and redshift distribution.
If one the takes an ensemble average and further assumes that n{M, z) is constant over the range
of comoving separation for which the cross-correlation function &(Mi, My, z,dr) is non zero, then

the angular temperature power spectrum C; can be written as the sum of two terms

C[ - C{Poisson + ClClustering (5.1)

The power spectrum for the Poisson distribution of objects can then be written as (Cole &
Kaiser 1988, Peebles 1980)

. 2maz dv (z) Mmaz d‘n(M, Zin) 2
Poisson _ —\=] ot Snbde R LTS M , (5-2)
C /0 dz— /A dM ——% [y (M, 2)|

Imin
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Figure 5.2: The SZE Poisson power spectra (thick lines) and the clustering spectrum from galaxy
clusters are shown for ACDM cosmology. The solid lines are for the thermal SZE, the dashed line
is for kinematic SZE with v,(z = 0) = 400 km s~! and the dash-dotted line is for the same with

vr(2 =0) = 300 km s~!. We have a constant f, = (/9.

where dV'(z)/dz is the differential comoving volume and dn/dM is the number density of objects.
For the number density, we use the Press-Schecter formalisin (see Chapter 4) and the volume

element is given by

-1/2
% = ’”")2%,9 [Qo(l + 2+ (1= — A)(1 +2)2+ A : (5-3)

where the comoving distance r(z) is

2 [ﬂ02+(ﬂo—2)(\/1+ﬂoz—1) A=0
r(z) =4 Mo f(1+2) ’ (5-4)
% S dz[Q(1+2)° +1- Q)72 A=1-9
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Since these fluctuations occur at very small angular scales, we can use the small angle ap-
proximation of Legendre transforination and write y; as the angular Fourier transform of y(6) as
i = 2 [ y(6)Jo[(1 + 1/2])6]0d8 (Peebles 1980, Molnar & Birkinshaw 2000), where Jo is the Bessel
function of first kind and zero order.

In addition to Poisson power spectra, one would expect contribution to a ‘correlation power
spectrum’ from the clustering of the galaxy clusters. Following Komatsu and Kitayama (1999), we

estimate the clustering angular power spectrum as

2

i Zmaz Minaz : ‘
ClClustermg___/ e [[ " dMMb(M,ziﬁ)yz(M,z) ,  (5.5)
A

0 dz dM

Imin

where b(M, z) is the time dependent linear bias factor. The matter power spectrum, Pn(k,2),
is related to the power spectrum of cluster correlation function P.(k,M1,M2,z) through the
bias, i.e., P,(k,M1,M2,z) = b(M1,2)b(M2,z)D?(2)Pn(k,z = 0) where we adopt b(M,z) =
(1 + 0.5/14)006-0027(1 4 (12 — 1)/4,) (Jing 1999 for details). This expression for the bias fac-
tor matches accurately the results of N-body simulations for a wide range in mass. In the above
equation D(z) is the linear growth factor of density fluctuation, 6. = 1.68 and v = §./o(M). These

quantities have the same meaning as discussed in the previous chapter.

If one calculates the variance in beams of fixed size, the Poissonian model is a good approx-
imation if the probability that a cluster has a neighbour is small inside the beam. (This is the
justification for our use of only Poisson distributed objects in the simulations described in the last
chapter). This probability is the product of the number density and the volume integral of the
cross-correlation function over the region probed by the beam. It can be shown that for beams
comparable to the size of rich clusters (R ~ 1.5h~! Mpc), the Poissonian approach to variance
is a valid approximation. Only for very large beams, the variance will increase due to positive

correlation of the clusters.

The statements made in the last paragraph are clearly illustrated in Figure 5.2, where we have
plotted the Poisson as well as clustering power spectra for our ACDM model. It is seen that the
clustering power spectrum is much less than the Poisson case and also falls off faster as one goes
to smaller angular scales (smaller beam sizes). As has been pointed out by Komatsu & Kitayama
(1999), the Poisson power spectrum dominates at all £ values greater than 100. However, by
subtracting X-Ray selected clusters of galaxies over a certain’ flux (say Sz > 10713 erg cm™? 571),
from both the power spectra, one can make the clustering spectra dominate at around £ ~ 700.
The main features to be noticed from this figure are: 1)the power spectrum rises and falls with

£ producing a peak at some fpear, Which is around 4000 for the model shown (ACDM with fo =
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/% = constant); 2) the main contribution of SZE to CMB anisotropy occurs at 1000< £< 20000

(i.e.,, after the CMB primary anisotropy becomes negli
SZE power spectrum is more than an order of magnitude s

gible) and 3) the amplitude of the kinematic
maller than that of therinal SZE spectrum

and also peaks at & higher £ value. We thus have a basic idea of the ‘shape and size’ of the the

power spectrum of SZE from galaxy clusters. In the next section we look at the nature of the power

spectrum in more details.

5.3 The nature of the power spectrum

-9
107 ¢ . e v T
COBE-DMR nomnalised
oL Q,=0.35, Qb=0.05,h=0.65
‘——"_- -----~~ E
107"
L
k1072
o 3
o
T—; 3
=10
10™
E "._l—I-I—'-I—|-|-I-‘~' ’ -
.—"'—l— b ~'~.s
15 "" .~'~
10°F  ocom .- ~
. “~
&""
X .
107" 27 ; i
102 T
10 10

Fi : i
igure 5.3: The SZE Poisson power spectra for different cosmological models are shown: ACDM
solid

(solid), SCDM (dashed) and OCDM (dot-dashed). The observational upper limits on arc minute
¢ .

emperature fluctuation seen by ATCA and BIMA are also shown with filled circles

The basic nat .
ure of the power spectrum is governed by the the underlying cosmology, which not
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only determines the peak position (i.e.,, £peqx) but also fixes the the amplitude of the distortion. In
fact, within accepted gas models of galaxy clusters (with e.g., ne ~ 1073, T ~ 107 K), the cosmology
is the sole discriminatory factor as far as the overall amplitude of the power spectrum is concerned.
This is easily seen from Figure 5.3. In this figure, we plot the power spectra for three different
cosmological models (SCDM, ACDM and OCDM), all normalized to COBE-DMR data following
Bunn & White (1997). Since the COBE normalized SCDM has the highest amplitude (og = 1.57),
the resultant power is also large at all angular scales. In contrast, the ACDM and the OCDM

model have lesser power.

Note is that this scaling (of the power with that of the mass variance) is insensitive to the details
of the individual gas physics, and hence if one can have ‘ideal’ clusters, the one can, in principle, use
the TSZE power spectruin to measure the cosmological parameters. Unfortunately, the gas physics
of individual clusters are not yet known with precision, and so one cannot use SZE to precisely
determine the cosmological model. One can, however, use the SZE power spectrum to consirain
cosmological models (as done in the last chapter). The way to do this is also straight-forward and is
illustrated in Figure 5.3. In this figure, we have also marked the observational upper limits given by
ATCA (Subrahmanyan et al. 1998)and the Berkeley-Illinois-Maryland Array (BIMA) (Holzapfel
et al. 2000) along with the various power spectra. The ATCA and BIMA observations put upper
limits of 23uK and 14.1uK respectively at effective £ of 4200 and 5470. One can immediately see
that the SCDM model is ruled out and the ACDM model is barely consistent with the BIMA
limits. Thus, it is difficult to have Q, much greater than 0.35 in a flat universe without violating
observations. One has, thus, been able to constrain the cosmological matter density parameter

with a power spectrum analysis of SZE. This is consistent with the results presented in Chapter 4.

Another point to be noticed from Figure 5.3 is that the peak positions are different for different
cosmologies, with the peak being at the highest £ for an OCDM universe. This is easy to understand
since an object would subtend a smaller angle in an open universe than in a flat one. The reason
for the small difference in the peak position between the SCDM and the ACDM models is more
subtle and depends on the exact nature of the size angular-diameter relation and the distribution
of the objects.

To understand these in a little more detail, let us concentrate on a particular model (say, the
ACDM model) and see the effect of mass and redshift cutoff on the power spectrum . These are
shown in Figures 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9. In Figure 5.4, we have shown the effect of
having different zpyq, the maximum redshift up to which we assume there are clusters capable of
distorting the CMB. It is seen that the contribution to the distortion from redshifts beyond 3 is

negligible. As one comes down in redshift, the power at high £ decreases. However, the power at
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¢ < 1000 starts differing 2s a function of 2 only for z < 1. This is because lower masses are present

at higher redshifts and thus their contributions get cutoff when one forces zmqr< 2, whereas the

more massive clusters are present mainly below z ~ 1.
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Figure 5.4: The SZE Poisson power spectra is plotted for different maximum redshifts : from top

to bottom the zp,q, are 5 (circle), 3 (thick solid line with dots), 2 (dash), 1 (dash-dot), 0.7 (dotted)

and 0.5 (solid line).

To see the effect of 2,4, more clearly, let us define the quantity C,** as

£(£+ 1)01/27r (5.6)
<y>? )

We have plotted C;** vs ¢ for different zmqz in Figure 5.5. We see that there is a cross-over of
different curves at ¢ ~ 7000, above which the behaviour of the different spectra are similar to that in

Figure 5.4. However, below this crossover point, the trend is reversed and C,** is la.fger for a lower

O[“ .

value of 2y4;. There is also a trend in the peak position of the individual clusters, which moves to
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Figure 5.5: Cy** is plotted for different maximum redshifts zmez = 0.5 (‘a’), 0.7 (‘b’), 1 (‘¢’), 2
(‘d"), 3 (‘¢’) and 5 (*f).

lower £ values as one lowers the value of zngz. It is interesting to speculate on the possibility of
using this plot to determine the maximum redshift up to which clusters can effectively contribute to
the SZ power spectrum. In particular, it is easily seen that the ratio C¢**(£ =~ 10%)/C¢™ (¢ = 10%)
is a decreasing function of zmez. Thus, if it is possible to determine the background cosmology
(from observations) and the gas physics (from simulations), then one can make use of Figure 5.5

to determine zqz.

In Figure 5.6, we show the effect of different values of zmaz On the clustering spectrum. Com-
pared to the Poisson case, the peak position remains almost the same. This is because the clustering
spectrum depends mainly on the inter-cluster distance and the major contributions to the clustering

power spectrum come from small redshifts.

At any epoch, one expects the temperature fluctuations to be dominated by very rare massive
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Figure 5.6: The SZE clustering power spectra is plotted for different maximuin redshifts : from top
to bottom the 2., are 5 (circle), 3 (thick solid line with dots), 2 (dash), 1 (dash-dot), 0.7 (dotted).

clusters (see Figure 5.7). It is clear from the figure that the main contribution to the Poisson power
spectrum comes from clusters in the mass range of 1014-1M. The higher masses clusters (i.e.,,
M > 10%Mg) contribute less due to their dwindling number densities and the lower mass one
(i.e.,, M < 10"¥Mp) contribute less because their individual SZE distortion is less due to lower
T and smaller sizes. Similar trends are seen in the clustering power spectrum as well. Another
feature that is immediately noticeable is that higher masses contribute at lower £ values and vice
versa. We show this later in more details in Figure 5.9. Although the variance is dominated by
richer clusters, the mean Compton distortion is dominated by numnerous smaller clusters. This is
evident from Figure 5.8 where we plot C¢** vs £ for clusters in different mass ranges. Since the

average y is least in the highest mass range, the resulting C;** is the highest (see Equation (5.6)).

Finally, we come to a discussion of the effect of size and number densities of different masses
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. ) 13-14
Figure 5.7: The SZE power spectra is plotted for different mass ranges: A) 10 Mo, B)

104-15M, and C) 10'5~'*Mp. The solid lines are for Poisson and the dashed lines are for clustering

power spectrum.

on the resultant shape of the power spectrum. For illustration, in Figure 5.9, we have considered
the three cases: 1) model A : 10'* < M < 1.1 X 1015 and 0.5 < z < 0.55  2) model B :
104 < M < 11x10™ and 1 < z < 105, and  3) model C: 10" < M < L1X 10" and
0.5 < z < 0.55. It is seen that for the same mass range, the model curve for B peaks at a higher
¢ value than that for model C. This is so since model B corresponds to a higher redshift. and
consequently a smaller effective angular gize. Between models B and C, the model C has a higher
amplitude due to the fact that for the mass range in consideration there are more structures at
z ~ 1than at z ~ 0.5, according to Press-Schecter formalism. For the same redshift range', the
curve for model C peaks at a higher £ than model A, the reason being that model A has a higher

i i . Tt also has
mass and so larger angular size (from the ‘M — reore’ Telation used in last chapter). It
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Figure 5.8: Cy** is plotted for different mass ranges
g ,

larger amplitude because along with larger size, it also has a larger gas pressure due to its higher

temperature,

Having already used the T'SZE power spectrum to constrain cosmological models, we now turn

to use the power spectrum as a probe of specific gas physics of galaxy clusters.

5.4 Cluster gas mass fraction

5.4.1 A debate in cosmology

Clusters of galaxies, being perhaps the largest gravitationally bound structures in the universe,
are expected to contain a significant amount of baryons of the universe. Moreover, due to their

large angular sizes, it is easier to observationally estimate their total mass Mr, the gas mass M,
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Figure 5.9: Poisson power spectra from objects in three different cases corresponding to different

mass and redshift range. Details are in the text.

and hence the gas mass fraction (fy = %_—‘;—) These estimates can be used as probes of large scale
structure and underlying cosmological models. For example, the cluster f, would give a lower limit
to the universal baryon fraction 25/$,,. Estimates of f, have been obtained in a number of studies
(e.g-White & Fabian 1995, Mohr et al. 1999, Sadat & Blanchard 2001) and the values obtained
through these studies are in agreement within the observational scatter. A point to be noted here
is that the estimated f, depends on the distance to the cluster (i.e., fy di,/ 2 ). Hence, if f, is

assumed to be constant, then in principle, one can use the ‘apparent’ evolution of f; over a large
redshift range to constrain cosmological models (Sasaki 1996 ).

The question as to whether there is any evolution (as opposed to constancy) of gas mass fraction,
however, is still under debate, with claims being made either way. For example, Schindler (1999)

has investigated a sample of distant clusters with redshifts between 0.3 and 1 and conclude that
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there is no evolution of the gas mass fraction. Similar conclusion has been drawn by Grego et al.
(2000). On the contrary, Ettori and Fabian (1999) have looked at 36 high-luminosity clusters, and
find evolution in their gas mass fraction (in both SCDM and ACDM universes); See also David et
al. 1995, Tsuru et al. 1997, Allen & Fabian 1998, Mohr et al. 1999. Observations suggest that,
though f; of massive clusters (T'2 5 keV) appears to be constant, low mass clusters with shallower
potential wells may have lost gas due to preheating and/or post-collapse energy input (David et al.
1990,1995, Ponman et al. 1996, Bialek et al. 2000). It is also well known that ICM is not entirely
primordial and there is probably continuous infall of gas, thereby, increasing fg with time. Thus,

there is considerable debate regarding the evolution of gas mass fraction.

Keeping future SZ surveys in mind, in this section we look at the SZE power spectrum as a
probe of the ICM. We show it to be a very sensitive probe of the evolution (or constancy) of fq -
Measurements of the primary anisotropy would give us ‘precise’ values of cosmological parameters
(like h, Qyn, Q4, ). Hence, for our calculations, we assume that we know the values of cosmological
parameters and do not worry about their effect on the SZE power spectrum. In that case, any
feature of the SZE power spectrum can be attributed to specific cluster physics (like gas content).
We note that, as shown below, this method of probing f, is not biased from any selection effect

that can occur while doing pointed SZE observations of X-ray selected clusters of galaxies, and
hence is more desirable.

5.4.2 Modeling the cluster gas

We assume the ICM to follow a S-profile (see Chapter 4) with 8 = 2/3 for simplicity. The other
physical parameters of the clusters are determined using the virial theorem and spherical collapse
model. We closely follow Colafrancesco & Vittorio (1994) in our modeling. We have for the gas
density, ne(r) = ne,o(l + fg) S/
The central gas density, Te,0 i8 given by n.g = fgm—jﬁ';_—‘ﬁ where X = 0.76 is the average proton
mass fraction and pp is the central gas niass density. To account for the fact that there is a

. We take the gas to be extended up to R, = pre with p = 10.

final cutoff in the gas distribution we introduce 2. Gaussian filter at the cluster edge R, given by

Ne(r) = ne(r)e~""/6R% where £ =4/7 is a fudge factor.

We parametrize the possible evolution of the gas mass fraction as

k
.fg = ng(l + 2)7° (WM‘W) , (65.7)

where the normalization is taken to be fg0 = 0.15, based on local rich clusters. We look at com-

binations of both mass and redshift dependence for a range of evolutionary models. In particular,
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we look at a case of strong evolution given by k£ = 0.5,s = 1 (Colafrancesco & Vittorio 1994);

k= 0.1,s = 0.5 (as suggested by Ettori and Fabian 1999); k = 0:1,s = 0.1 (weak evolution); & = 0

(no mass dependence) and s = 0 (no redshift dependence).

For the core radius r, and the temperature, we use

1.69~"'Mpe 1

re(Q0,M,z) = 5 T35~ (5.8)
[ M ) 178 11/3
(1015h—1M@ QA
. M 2/3
T =776~ 1 :
ksT =7.768 (1015;;—1M@) (1+ 2)keV (5.9)

Here, A(z), B and p are as defined in the last chapter.

Putting everything together, we have the temperé.ture distortion to be %Z—:;(‘%l = g(x)y(@), with

3  rel/tn? 7
o(6) = (arpneorckBT> e Erfe ( 1+ (8/6.)

. 5.10

The angular core radius 6, = r./d4.

5.4.3 A signature of gas fraction evolution

We study the power spectrumn of SZE from clusters of galaxies, under the assumption of a ‘pre-
cise’ and ‘a priori’ knowledge of the cosmological parameters. The results obtained below depend
crucially on this assumption, which is reasonable since future observations of the primary CMD
temperature anisotropies would, indeed, give us ‘precise’ values of the major cosmological pa-
rameters. ’fhe progress towards this ‘precision-era’ in cosmology is encouraging. Infact, current
observational data have already fully or partially detected the first three acoustic peaks between
£ = 200 — 800 (Netterfield et al. 2001). We also assumne that in the f-range of relevance, thermal
SZE from clusters of galaxies are the dominant contributors to the temperature anisotropy. The
other secondary anisotropies are either smaller in strength or contribute at even higher ¢'s or have

different spectral dependence (Aghanim et al. 2000; Majumdar et al. 2000).

We have plotted the Poisson SZE power spectrum in Figure 5.10. Clearly, the primary feature
distinguishing a non-evolutionary constant f, model from an evolutionary one is the position of
the peak. The model with a constant f, peaks at a higher l-value and also has greater power. The
constant f, model peaks at [ ~ 4000. This result is in agreement with that of Komatsu & Kitayama

(1999). If one assuines that there is no evolution of f, with redshift (i.e.,, s=0), the peak is at
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POISSON
POWER SPECTRA

Figure 5.10: The Poisson power spectra due to SZE from galaxy clusters for different f; models.
The thick solid line corresponds to constant fy model, the thick dashed line has no evolution with
redshift and the thick dash-dotted line has no evolution with total mass. The thin lines are for the

cages: a) k=0.5, s=1; b) k=0.5, =0.5; ¢) k=0.1, s=0.5 and d) k=0.1, s=0.1.
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Figure 5.11: The Clustering power spectra. Notations same as in Figure 5.10.
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I ~ 1100, whereas in the case of no dependence on mass (k=0), the peak is at I ~ 2500. Based on
EMSS data (David et al. 1990), Colafrancesco & Vittorio (1994) (and also Molnar & Birkinshaw
2000) model f, with k=0.5 & s=1. For this case, we see that the turnover is at a very low [ ~ 900,
Assuming a mild evolution (k=0.1, s=0.1), we get the peak at ! ~ 2100. We also show results for
(k=0.5, 3=0.5) and (k=0.1, s=0.5). The last parametrization is based on the recent analysis of
ROSAT data by Ettori & Fabian (1999). It is evident that the difference in the I-value of the peak
for the constant f, scenario from that for an evolutionary one can range between £ ~ 1500 — 3200..

The position of the peak thus is a strong discriminatory signature of any evolution of fe-

Following our discussion in the last section, it is easy to understand the shift in the peak of
the SZE power spectrum. Let us consider the case s=0, i.e., fg depends only on total mass. From
Equation (5.7), ’this means an enhanced reduction of fy of smaller mass clusters relative to the
larger masses and so a reduction of power at larger £'s, since smaller masses contribute at larger £.
Hence, the peak shifts to a lower [. For the case k=0, (i.e., only redshift dependence), we now have
structures at high z contributing less to the power (than without a redshift dependence). Since
from Press-Schecter formalism, less massive structures are more abundant at high 2, this negative
dependence of f, on redshift cuts off the contribution more of low mass structures than that of
the more massive clusters. Hence, once again there is less power at high [ and the peak shifts to
lower [-value. The parametrization of Equation (5.7) affects the larger masses less, as evident from
almost equal power seen at /<600 for all models. The net effect is a reduction of power at smaller

angular scales, and hence a shift in the position of the peak to a smaller multipole value.

We note that these results are independent of the arguments given (see Rines et al. 1999) to
explain any possible evolution of f, . There, fo is assumed to be intrinsically constant but there is
an ‘apparent’ change in fy due to any change in the assumed cosmology. In such a case, if there
is ‘actually’ even a slight evolution of f; , then one can still account for it with a non-evolutionary
model, by simply changing the cosmological parameters. In contrast, our method does not assume

a priori any constancy or evolution of f, and tries to look for it.

In Figure 5.11 we show the SZE clustering power spectrum. For all models, it falls off at a
smaller | w.r.t the Poisson power spectrum. Since for clustering, the peak depends mainly on the
average inter-cluster separation, which is fixed once the cosmology is fixed, there is no appreciable
spread of the peaks in I-space. The only difference is in their relative power w.r.t each other which
depends on the total gas mass available to distort the CMB. Addition of the clustering power

spectrum to the Poisson case results in slight shift of the peaks to lower I’s.

It maybe possible to measure the power spectrum of SZE with the ongoing and future high
angular resolution CMB observations. In principle, observations with SUZIE, OVRO, BIMA and
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Figure 5.12: The total (Poisson + Clustering) power spectra (in thick lines) and the corresponding
Poisson (labeled with ‘p') and clustering spectra (labeled with ‘c’) are shown. The solid lines
corresponds to constant fg; the dashed line correspond to no evolution with redshift ; the dash-

dotted lines correspond to no evolution with mass and the dotted line is for the case (k=0.5, s=1).

ATCA can probe the range in ! from = 1000 — 7000 and a frequency range of =~ 2 — 350 GHz. The
SZE power spectrum would also be measured with increased precision by the proposed ALMA and
AMiBA (which is geared for blank sky surveys).

The observations will, however, measure the total power spectrum given by the sum of the
Poisson and the clustering power spectrum. In Figure 5.12 we show the total power spectrum
for 4 parameters sets, along with their Poisson as well as clustering power spectrum. Since for
clustering, the peak depends mainly on the average inter-cluster separation, which is fixed once the
cosmology is fixed, there is no appreciable spread of the clustering peaks in l-space. However, as is

evident from the plot, the clustering power spectra are far smaller than the corresponding Poisson
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spectra, and hence addition of the clustering spectrum to the Poisson spectrum does not shift the
peaks significantly. Thus, for the total power spectra, the difference in the [-value of the peak of
the constant f; scenario from an evolutionary one, can range between ¢ ~ 1100 — 2500. The peak

position thus remains a strong discriminatory signature of any evolution in f,.
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Figure 5.13: The Poisson SZE power spectra are plotted for different cosmologies and with different
extension of the gas mass. The solid lines are for a ACDM, with Q, = 0.35,24 = 0.65,h = 0.65,
and the thin lines are for OC DM with £, = 0.35, h = 0.65. The OC DM lines have been multiplied
by a factor of 10 in the plot. The solid and dashed lines are for gas mass extending up to 10re,

whereas the dash-dotted and the dotted lines are for extension up to 7r..

Finally, let us comment on the validity and robustness of our results. In Figure 5.13, we show
the results for an open universe (Qg = 0.35,h = 0.65). It is clearly seen that the peak positions for
constant f, and evolutionary models remain far apart. In fact, for same parameters of k = 0.5, = 1,
the difference between the peaks increases to &~ 4500 from the value of x 3000 in a flat universe. It
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is seen that the turnover of the SZE power spectrum is insensitive to the mass cutoff, since the main
contribution to the anisotropy comes from clusters with 10" My < M < 10'°Mg. In Figure 5.13,
we also indicate the effect of having a more comnpact gas distribution with p = 7. We see that the
shift in the peaks is negligible (though the height is reduced a little) and effect of any uncertainty
on the extent of the cluster gas extends is not significant. The use of a single 8 to model the
full gas distribution introduces little error, though a $-model fits the inner cluster regions better.
This is because the major contribution to the anisotropy comes from around the core region, and
increasing [ slightly decreases the overall distortion, without changing the position of the peak,
significantly. We also note that simulations predict a tight relation between the total mass and the
gas temperature of a cluster (Evrard 1990, 1996) and so we not taken a evolving T in our analysis.
The final conclusions should be interpreted in terms of any uncertainty that may creep in from our

incomplete knowledge of cluster M — T relationship.

5.5 Conclusions

We have computed the angular power spectrum of SZE from clusters of galaxies. we have tried to
understand the shape and the amplitude of the power spectrumn due to TSZE from galaxy clusters.
Using the resultant power spectrum for different cosmological models and observational upper limits
on small angular scale temperature anisotropy by from ATCA and BIMA observations, we have
been able to constrain cosmological models. We have suggested a procedure to look for contribution
to the power spectrum from high redshifts. We have also shown that the position of the peak of
the power spectrum is a strong discriminator between different fq models . One of the goals of
arc minute scale observations of the CMB anisotropy is to measure the SZE power spectrum from
blank sky surveys. Such observational results can be used to constrain fg models. This also has
the added advantage of being devoid of uncertainties that can creep in through ‘selection biases’
in estimating the f; using pointed studies of X-ray selected galaxy cluster. Our method, thus,
provides a powerful probe of evolution (or constancy) of gas mass fraction and can potentially

resolve the decade long debate.

With this chapter, we come to the end of our probe of universe through SZE from galaxy
clusters. In the next chapter, we go to the farthest parts of our universe and look at the distortion
of the CMB from galactic winds at high redshifts.



Chapter 6

SZE at high redshifts: Distortions

from galactic winds

6.1 Introduction

We have so far discussed the distortion of the CMB due to SZE from clusters of galaxies, in the
context of targeted as well as non-targeted observations. 87 studies of X-Ray selected clusters
typically look at distortions from clusters at low redshifts (say z < 0.5). With ‘blank sky’ surveys,
one can further push back this redshift limit and look at contribution to the rms temperature
fluctuations at arc minute resolution from a cosmological distribution of clusters. Omne can also
extract the power spectrum of SZ distortion from these surveys. Since the density of clusters of
galaxies decreases rapidly at higher redshifts, the above two methods together can probe redshifts
only up to z = 1. To use SZ distortions from astrophysical objects as a probe of our universe at
higher redshifts one must consider distortions due to lower mass objects. Dwarf galaxies, having
masses in the range 10" Mo < Mga < 10'°M, give us the opportunity to go to redshifts around
10 and more! This chapter is devoted to the study of SZ distortion from galactic winds arising out
of these dwarf galaxies at high redshifts.

Recent studies of the epoch of reionization of the universe offer the following scenario for the
first baryonic objects. Although the first objects form at redshifts z ~ 40 with masses of order 10°
Mg, UV radiation from stars formed in these objects obliterate the molecular hydrogen in other

objects in their vicinity, thereby suppressing further formation of objects with masses M <10% Mg

INote that one can probe high z’s with other objects as well, e.g., quasar's

121
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(Haiman, Rees & Loeb 1997, Ciardi et al. 1999). These objects with masses comparable to local

dwarf galaxies appear later, at redshifts z< 15.

These dwarf galaxies are thought to have affected the intergalactic medium (IGM) in at least
two ways. Along with the radiation from early black holes, they provided the UV radiation needed
to re-ionize the IGM and keep it ionized thereafter. It is also possible that outflows from them
provided the metals needed to explain the enrichment of the IGM (Miralda-Escudé & Rees 1997,
Nath & Trentham 1997). Observations show that the metallicity of the IGM at z ~ 3 was ~ 10725
Zo (Songaila & Cowie 1996, Songaila 1997).

Recent studies on galactic outflows at high redshift contend that these winds could also have
suppressed galaxy formation in the vicinity, for masses < 10° Mg, by mass stripping and gas heating
(Scannapieco & Broadhurst 2000). They assume spherical shells of winds from dwarf spheroidals
at high redshift and find that these outflows could have distorted the microwave background to
an extent that is marginally below the current detection limits, with a mean Compton parameter
~ 1075, Thus, distortion of CMB from these outflows can be important and deserves detailed

calculations and comparison with distortions from other phenomena.

The rest of this chapter is organized as follows. First, we discuss the motivations for looking
at galactic winds. Next, we consider in detail the effect of the outflows from high redshift dwarf
spheroidals on the cosmic microwave background. We then study the effect of kinematic SZE and
the clustering of parent galaxies in addition to thermal SZE and Poisson distribution of sources.
We discuss various properties of the outflows and calculate the angular power spectrum of the CMB
distortions caused by the outflows originating at some initial redshift, zi,. Finally, we vary this
initial redshift and study the dependence of the distortion on it. We find galactic winds to be an

important source of secondary distortion of the microwave background at arc minute and sub arc
minute scales.

Throughout this chapter, we assume a flat universe with a cosmological constant, with Qo =
0.35, 24 = 0.65 and h = 0.65 as our fiducial model.

6.2 Enrichment of the IGM: A motivation for galactic winds

In the hot big bang model, elements of atomic number greater than 2 can only be substantially
synthesized after the first stars are formed. These can then be distributed throughout the universe
as the stars release the fusion products in stellar winds or supernovae ejecta. Stars can form

most efficiently only in dense gas gravitationally bound in galaxies or protogalaxies. Observations,
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however, show substantial metal enrichment of the IGM up to high redshifts. From observation of
quasar absorption lines (Lya ‘forest’ in the spectra of quasars at z > 2) one concludes the presence
of metals over and above the smoothly fluctuating neutral hydrogen component of the IGM (e.g.
Cen et al. 1994, Hernquist et al. 1996). High resolution spectroscopy has identified metal lines
(mainly CIV and SiIV) associated with absorbers with column density N(HI) > 105 cm=2 (
Cowie et al. 1995, Songaila & Cowie 1996, Ellison et al. 2000). These lines give useful information
of the metallicity on the low density coinponent of the IGM. The observations agree on an inferred
metallicity of Z ~ 1072 Zg for 2.5< z< 3.5 (Songaila & Cowie 1996, Rauch et al. 1997, Songaila
1997, Davé et al. 1998). However, very little is known about the variation and scatter of the
metallicity as a function of density.

Since most cosmic metals are formed in stars, a fundamental question arises as to how these
metals are finally distributed throughout the IGM. Three possibilities have been considered in
the literature: 1) Enriched gas might become unbound during a merger or tidal interaction with
another galaxy or by ram-pressure of the IGM on a galaxy ( Gnedin & Ostriker 1997, Gnedin 1998,
Cen & Ostriker 1999) and thereby pollute the IGM with metals. 2) radiation pressure on dust
grains due to stellar light can remove the grains from the galaxy, which can then give metals after .
being destroyed by thermal sputtering (Ferrara et al. 1990, Aguirre et al. 2000) and 3) enrichment
by galactic winds (Dekel & Silk 1986, Metzler & Evrard 1994,1997, Nath & Chiba 1995, Nath &
Trentham 1997, Madau et al. 2000). It is this third method of enrichment of the IGM that we

focus on in the rest of the chapter.

In all the studies mentioned above it has been seen that galactic winds can distribute metals
into IGM far away from where they are formed. The cases where overlapping supernovae bubbles
can drive a coherent wind across the galaxy before they cool have been investigated in dwarf
galaxies (McLow & Ferrara 1999), elliptical galaxies(David et al. 1990,1991) and starburst spiral
galaxies(Heckman et al. 2000). All these wind types described above have some common features

1) The supernovae energy release is the main source of energy, with some critical supernova
rate necessary for the galactic wind to form and blow out. 2) the wind speed initially exceed the
escape speed of the parent galaxy, but later the wind is pressure confined at some radius  3)
the wind energy is generally tied to the star formation rate and 4)Finally, if the shell swept is
massive enough, it can confine the wind from expanding further. Or if the bubble has enough
energy, then it can finally get fragmented due to Rayleigh-Taylor instabilities or because of density
inhomogeneities in the IGM. These properties are, however, highly dependent on the properties of
the IGM and on a better understanding of the energetics of the explosion and detailed physics of

the fragmentation processes.
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Galactic winds have been observed both locally (e.g., Heckman 1997) and at high redshift
(Franx et al. 1997, Pettini et al. 1998). Such winds have also been observed in starbusrt galaxies
such as M82 (Lehnert et al. 1999). It is not, however, entirely clear what the efficiency of these
outflows is in driving out the gas in the galaxy. Mac Low & Ferrara (1999) have recently shown
that efficient blow away occurs only in halos with masses M < 107 Mg, and that a blowout occurs
perpendicular to the disk for 108 < M < 109 M. Their simulations assume a disk geometry.

However, it is certain that galactic outflows do occur from other galaxies types as well.

"To sum up, galactic winds offer one of the interesting possibilities to explain the enrichment of
the metals in the IGM. To do so, they must originate at high redshifts. Due to energy input by the
supernovae, the interior of the wind shells is hot and has higher pressure than the ambient medium.
This gives us patches in the IGM which are capable of scattering the CMB photons (analogous to
the ICM) and can act as an additional source of SZ distortion. This is the main motivation of the

study outlined in this chapter.

6.3 Modeling the galactic winds

The evolution of a galactic wind in the IGM is similar to the evolution of a bubble following an
explosion. There are a number of analytic solution representing spherically symmetric explosion
(see McKee & Ostriker 1977, Weaver et al. 1977, McCray & Kafatos 1987, Ostriker & Mckee,
1988). These solutions mainly look at expanding bubbles in the inter stellar matter and hence
neglect the expansion of the universe. For the case of an expanding bubble in the IGM one can
no longer neglect the Hubble expansion. For the case of galactic wind, we follow the approach of
Tegmark, Silk & Evrard (1993; hereafter TSE). They considered the evolution of the blastwaves
with an initial energy input (which stops after ty,,, ~ 5 x 107 yr), which have thin shells sweeping
up most of the ambient IGM gas. The shells are assumed to lose a small fraction fm = 0.1 of their
mass to the interiors, so that its total mass is given by m(t) = ff;wR(t)3 (1 = fm) pigm, where we
take the background density to be that of the IGM. Since Pigm/Pigm = —3 H, one gets

g = (rspigm)_l%( 3pi9m) =3 (% - H)a (6.1)

if £ > 0. Otherwise, m/m = 0. The shell acquires new mass when it expands faster than the

Hubble flow, which finally catches up with the shell only at ¢ — co. Therefore, we have R > HR
and 7h > 0.

Following TSE, we now calculate the braking force on the shell. The shell must be acceler-
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ated from the velocity H R to R and hence experience the net braking force (R - H R) m. The
interior pressure p drives the shell outwards with a force pA = 47r2p = 3m 2/ pigm R. Fi-
nally, there is the gravitationally braking force which, in our thin shell approximation,.is given by

%rmG R (pa + pigm), where py is the total density.

The thermal energy within the shell can be found from the equation of state for the plasma:

E, = ng = 27rpR3 , (6.2)

and from energy conservation, we have
dBy _, _ dv
at O Pa
where L incorporates all sources of heating and cooling of the plasma. Adding all these, we obtain
the Equation (6.5) (see below). '

(6.3)

We assume, as in TSE, that the total mechanical luminosity of the out flow is Ly, ~ 1.2(My /Mg) L
where M, is the baryonic mass of the parent galaxy and L is the solar luminosity. Since the galac-
tic winds last for tp,n ~ 5 x 107 yr, the total energy in the galactic wind is 0.02 x 0.007 x Myc2.
The factor of 0.02 follows from the observations of Heckman, Armus & Miley (1990) who show
that approximately 2% of the total luminosity of high redshift starburst galaxies goes into galactic
winds. Another empirical observation is that for a solar neighbourhood initial stellar mass func-
tion, one has roughly one supernova for every 150 Mg of baryons that form stars, with a typical
kinematic energy per explosion of the order of 10°! ergs. If one assumes the galactic wind to have

a constant mechanical luminosity Lg, for the duration of ¢pyrq, then it can be shown that

Jon My c?
tburn
where the efficiency fon = 4 x 1076, assuming a constant energy release during a period of tpyry =

Ly = O(tpurn — 1) ~ 1.2(Mp/Mp)Leob(tourn — 1), (6.4)

5 x 107 years.

To determine the baryonic fraction, we can either use the baryonic fraction in clusters, or the
baryonic fraction of matter in the diffuse IGM, with €, = 0.05. The latter for a low density universe,
with Qp = 0.35 as in our model, corresponds to a baryonic fraction f, ~ 0.15. Also, for clusters,
White et al. (1993) has estimated that f > 0.009 + 0.05h~3/2. Adopting the Hubble parameter
h = 0.65, this gives f ~ 0.1. For these reasons, in this calculation we assume that M, = 0.1 M,
where M is the total mass. However, we show the results for the assumption M = 0.05 M, to show |
the effect of changes in f; on the final constraints. Since the mechanical luminosity in this model

is proportional to M, this will show the effect of changing the efficiency of winds on our results.



126 Chapter 6. SZE at high redshifts: Distortions from galactic winds

We now numerically solve for the radius and velocity of the shell, and the energy and particle
density inside the shell. For the radius and velocity of the shells, we use the equation 1 of TSE,

that is,

. 8mpG 3 p 2 2 r
=—=— —~ —(R-HR)* - (24 +0.5Q;car)(0.5H*R) . 6.5
R=o W% 7t )* = (R4 + 0.5Q 6 ) (6.5)

Here, Q1qa is the ratio of the density of the intergalactic gas to the critical density, and §24 expresses
the total density. We assume that Qg = S = 0.05 as constrained by big bang nucleosynthesis
(for h = 0.65), since at redshift z ~ 4-5 most of the baryons are in the IGM (Rauch et al. 1998;
Weinberg et al. 1997). The evolution of the total energy inside the shell is given by TSE as,

dE :
753 = Lgp — 47pR?R — Liyem — Leomp- (6.6)

Here, the first term refers to the energy input from the galaxy, the second term describes the
adiabatic loss, the third term describes the energy loss due to Bremsstrahlung and the last term
is the energy loss rate due to inverse Compton scattering off the microwave background photouns,
which becomes important at high redshifts. Lyerm is found to be always much smaller than Leomp,
as was noted by TSE. We have neglected the energy dissipation of the shell due to its collisions
with the IGM (which is shown in TSE to be small relative to other losses) to obtain a conservative
estimate of the CMB distortion.

If the shells lose a fraction fy,; to the interiors, then the particle density inside the shell of radius
R evolves as (assuming a uniform density),

m(‘ii—: =fmd—p§-?—{+ %j—f fmprcat, (6.7)
where pign, is the mass density of the ambient IGM at the given redshift. It is worth noting at this
point that the uncertainty in the efficiency of mass loss in galactic outfiows, as discussed by Mac
Low and Ferrara (1999), is not relevant here, as we assume that the entire mass in and inside the
shell is provided by the ambient IGM (from Equation (6.7)); outflows only provide the mechanical
energy needed for the wind to expand.

Once we know the density and temperature of the material inside the shell, we can write down

the energy loss rate due to Compton cooling as

472 kBT \ [kpTemb\?
L _ cm
comp 15 (UT c Tl) < ecz ) ( fic ) hCVa (68)
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where T is the temperature of the plasma interior of the shell and V = 4§1rR3. As las been
shown in TSE, Compton cooling takes place on a timescale, tomp ~ 2 x 1012 x (1 + z)™* seconds,
and hence is more important than X-Ray cooling at higher redshifts. TSE also takes into account
energy loss due to ionization and dissipation. In our case we can neglect the ionization loss since the
early supernovae driven winds are expected to expand into an IGM which has already been ionized
by the same massive stars which gave rise to the supernovae later (Ferrara, Pettini & Shchekinov

2000). Moreover, as observed by TSE, the dissipational losses are not significant.

For initial conditions, we assume that the initial radius R; of the shell is the radius of the dwarf
spheroidal, which is obtained using the scaling of the optical size of elliptical galaxies with their
total mass. We have R; = 1.2 x 102(M/10'2 M) kpc (Saito 1979, Matteucci & Tornambre
1987). The scaling mentioned above is a useful relation, although its validity has not been updated
with more recent data. Our wind solutions, however, do not depend stro;lgly on the value of R;,
and therefore the exact validity of the scaling is not relevant here. The initial velocity is expected

to be of the order of the thermal velocity of gas heated to 10° K.

With the above equations and initial conditions we calculate for a given initial redshift zin, the
wind parameters as functions of the mass of the parent galaxy and redshift, using a fourth order
Runge-Kutta technique. We plot in Figure 6.1 the evolution of the radius (in physical coordinates).
The electron temperature, the wind velocity and the electron densities are shown in Figures 6.2,
6.3 and 6.4 respectively. The winds are assumed to originate out of galaxies of masses M = 107
and 10° Mg for 1 + z;; = 9,11, 13. We have checked that our results for radius and 7, match with

that of Scannapieco & Broadhurst (2000) for similar parameters (their Figure 3).

Although, we have solved the wind evolution numerically, one can try to solve it analytically
as well to sufficient accuracy (see TSE, for a detailed discussion). The behaviour of the expanding
shell can then be seen to go through three qualitatively different phases representing interplay of a

number of different physical effects :

e the initial phase, when gravity and Hubble flow are negligible and the radius is R o £3/5

o the intermediate phase, when the supernovae explosion stops after 5 X 107 yrs, one gets the
pressure driven snowplow phase and R  t%7 (for our case with no dissipational loss). This
would have been the case in the absence of cooling and Hubble expansion. Cooling and pdV
work reduce the pressure and slow down the expansion. One would then get the momentumn
conserving snowplow phase given by R o t!/4 in the absence of Hubble expansion and gravity.
Also with time, the IGM density drops. This boosts the expansion of the shell.

o At the asymptotically late phase, the shell gets frozen into the Hubble low and R « £2/3,
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Figure 6.1: The evolution of the wind radius is shown for (1 + z;,) = 9 (dash-dot), 11 (dash) and
13 (solid line). The thick lines are winds originating from parent galaxy with mass M = 10°Mg,
and the thin lines are for M = 10"Mg.
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Figure 6.2: Evolution of the electron temperature of the gas inside the shells. Everything else are

same as Figure 6.1 .
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Figure 6.3: Evolution of the wind velocity. Everything else are same as Figure 6.1 .
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Figure 6.4: Evolution of the electron density of the gas within the shells. Everything else are same

as Figure 6.1 .
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Once we know how to model the evolution of the galactic wind arising out of the parent galaxy of
mass M at some initial redshift z;, we can go forward and look at an ensemble of galactic winds

arising out of a cosmological distribution of galaxies.

6.4 Ensemble of galactic outflows

Although a series of outflows would probably occur in the universe, for simplification and tractability
of the calculation, we consider the case of outflows originating at a single'epoch, at z;,. We consider
a large range of values for 3 < z; < 15. This assuiption of a single initial epoch of the outflows
can be justified to some extent because of the fact that after the first objects of mass of order
~ 108 Mg, start shining, the resulting UV background radiation and the winds both inhibit further
formation of low mass objects: photons do this by heating up the IGM gas (Thoul & Weinberg
1996), and the outflows, by gas stripping (Ferrara, Pettini & Shchekinov 2000). Therefore, if there
were widespread outflows associated with the epoch of first luminous objects with masses of order

10® My, it could not have lasted a long time.

We use the results of the previous section to set up an ensemble of galactic outflows from galaxies
with masses 5 x 107 < M < 10!! Mg, using the abundance of collapsed objects as predicted by
a modified version of the Press-Schechter (PS) mass function given by Sheth and Tormen (1999)
which matches N-body simulations well at galactic scales. We assumme that the galaxy number
density is linearly biased and traces the abundance of collapsed dark matter halos. The lower limit
of mass of parent galaxies is motivated by the fact that the first baryonic objects to shine after
the initial pause (due to destruction of molecular hydrogen) have virial temperatures of order 10t
K with corresponding masses of order 5 x 107 Mg (Haiman, Rees & Loeb 1997, Scannapieco &
Broadhurst 2000). The motivation for upper limit of masses comes from the fact that a blowout
seems to be inhibited for masses above 10'2(1 + 2)~3/2 M, as reported by Ferrara, Pettini &
Shchekinov (2000). We note, however, that although these limits apply strictly to disk galaxies, we

assume them to valid for dwarf spheroidals as well.

The PS mass function essentially calculates the mass function of objects in terms of their collapse
redshift z.. The epoch of galactic winds occur later, and so, in principle, zin < z.. The difference
between these two redshifts is, however, extremely small. There are two effects that can make z;,
differ from z in principle: the extra time required for cooling and the time for the commencement
of the galactic winds. Firstly, the change in the PS formalism due the effect of cooling which comes
from replacing (1 + z¢) by (1 + 2:)(1 + M/Meo0)?/?, is negligible here, as Meoot ~ 3.6 x 10'! Mg
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(Peacock & Heavens 1990) which is larger than the objects considered here. In the above M.,
is the minimum mass at which cooling becomes efficient. Moreover, the timescale for the galactic
wind to originate from dwarf galaxies is much smaller than a Hubble time at 2 ~ 15 (Nath &

Trentham 1997). We, therefore, assume that z;, = z.

As in the previous chapters we use the transfer function of Bardeen et al. (1986) with the
shape parameter given by Sugiyama (1995), and the Harrison - Zel’dovich primordial spectrum, to
calculate the matter power spectrum P, (k). The resulting mass variance (og) on scales of 84~!
Mpc is normalized to 4-year COBE-DMR data using the fit given by Bunn & White (1997).

Once the objects are distributed in redshifts, we calculate their peculiar velocities with respect
to the CMB frame of reference. We have, in the last chapter, already written down the redshift
dependence of the peculiar velocity. We present the details below. The velocities are usually
assumed to follow a Gaussian (Moscardini et al. 1996, Bahcall et al. 1994, Bahcall & Oh 1996), or
Maxwellian distribution (Molnar & Birkinshaw 2000), which is completely defined by its rms value
oy. For analytical simplicity we assume a mean peculiar velocity for all galaxies for a given redshift

and cosmology, which is equal to the rms value o, of the distribution.

Following Molnar and Birkinshaw (2000), we assume a Maxwellian for the peculiar velocity

distribution. Note, that this is expected if one has a Gaussian initial density field. Thus

P(vr, 2) duy  v2 exp{—v2/20y(2)?}dvr, (6.9)

where 0,(z) is the Maxwellian width of the peculiar velocity distribution. The rms peculiar velocity

calculated from linear theory, smoothed by a top-hat window function Wpg of radius R is then

(v®)r(2) = H*(2) a%(2) £*(Q0, A) 0-1(R) , (6.10)

where a(z) is the scale factor and by definition we have

oi(R) = 2—71;5 /0 > kY +2P(k)W (kR)dk | .(6.11)
where P(k) is the Fourier transform of the matter power spectrum (see Peebles 1980). For the
case of velocity (Equation (6.10)) we have j = —1. The velocity factor f(z) = dInd/dIna can be
written as

QOO.G(Z) A=
J‘(»’:)&'{Q 5 -3 A=1-9 12
o) [ mrmardymes — 3] °
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where for the universe with cosmological constant §2,(z) and D,(2) are given by Equations (4.13)
and (4.12).

Since we assume that massive objects form at the peaks of the density distribution, the cluster
peculiar velocity rms differs from the one expressed above (see Peacock 1999). The bias can be

expressed as (Bardeen et al. . 1986)

o4(R)

(63 r(e) = (P)n(e) 1= 2 ] (6.13
rinlz) ( of(R)o?,(R)

The Maxwellian width in Equation (6.10) is obtained from the rms peculiar velocity by averaging

a Maxwellian

_ [ exp{=u?/20,(2)"}dv _
B Jo° v? exp{—v2/20,(2)%}dv -

(v2)

302, (6.14)

Next, one expresses o, as (Normalization) x[H(z)a(z)f(z)]/[H(0)a(0)f(0)]. The normalization
at z = 0 is taken to be v,y = 400 km s~! for flat models with a cosmological constant (Gramann
1998). But we also show our results with a smaller v,(z = 0) = 300 km s~!. For SCDM and OCDM

models one can write o, as

(R, 2) = (400km s™1) 298(2)(Qo(1 +2) + 1 - Q)12 (6.15)

whereas for the ACDM model it is

0y (Qo, R, 2) = 400kms™1

(6.16)

14z Dy(£2,0) [5—=3(1 + 2)Dyg (s, 2)
[Q(1 + 2)2 +1 — £2,)1/2 Dy(o, 2) 5 — 3D4(90,0)

In the above formula, Dy(Q,, z) is from Equation (4.12). Given a large number of realizations of
a given cosmology, we expect the final result to be close to that obtained from using the mean
velocity. Note, that the normalization of the peculiar velocity, though a good match to Gramann
(1988) is greater than that quoted by Bahcall & Oh (1996).

6.5 SZ distortion from galactic winds

The hot gas in the interior of the shells is responsible for distorting the microwave background,

introducing temperature anisotropies through Sunyaev-Zel'dovich effect. Thermal motion of the
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Figure 6.5: The temperature distortion %-I (in the R-J linit) is plotted against zi, for both KSZE
and TSZE effect due to winds. The thick solid curve is for KSZE with v,(z = 0) = 400 km s™!
and the thick dashed curve is for vr(z = 0) = 300 km s~!. Both are with M, = 0.1M. The thin
solid curve is for KSZE with v,(z = 0) = 400 km s~ and M, = 0.05M. The dotted curves are for

TSZE with the thick one for My = 0.1M and the thin one for My = 0.05M. A horizontal line with

5% =5x 107 is shown for easy reference.

hot plasma heated by the evolving shell give rise to TSZE. This, as discussed in the next section,
would turn out to be negligible compared to the kinematic SZE. The KSZE is due to the Doppler
shift of the CMB photons due to the shells having a peculiar velocity. The spherical shells have
the same peculiar velocities as the parent galaxies since they are accelerated by the same large

scale density gradient. For a radial peculiar velocity vy of the shell (w.r.t the Hubble flow) , the
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amplitude of the kinematic SZE is given by

R
6T _ v 6.17
7 ; x/;Ra-rndl, (6.17)

where n is the density inside the shell given by Equation (6.7) and v, is ideally drawn from the
Maxwellian distribution of peculiar velocities. For simplicity, we assumne that the density and
temperature inside the shells are uniform. At high redshift, this is a realistic approximation as the
sound crossing time is less than the Hubble time. At lower redshifts, this approximation admittedly

breaks down to some extent.

We note here once again, that in contrast to the CMB temperature change due to TSZE, the
temperature change due to KSZE is independent of frequency (see Chapter 2). Thus one can utilize
the different frequency dependence of temperature anisotropy of TSZE and KSZE to separate them
out in any observation involving multiple frequencies. We shall use this frequency dependence to

show the relative importance of distortion by winds compared to that due to galaxy clusters.

The ratio of the temperature change due to TSZE to that due to KSZE is given by %f:% / 2—:,’&

It is generally found that larger structures (like clusters of galaxies), which form later, will have a

larger thermal SZ effect than kinematic SZ effect, whereas structures going back to high redshifts

(like quasar ionized bubbles, black hole seeded proto-galaxies: see Aghanim et al. 1996,2000,

Natarajan & Sigurdsson 1998) will have the opposite behaviour. CMB distortions due to galactic
winds fall in the second category.

In Chapter 4, we have already introduced the power spectrum of SZ distortions from clusters
of galaxies. We use the same technique for SZ distortions from galactic winds as well. We first
consider the objects to be Poisson random distributed and consider the correlation between them

later. The power spectrum, for distortion from winds, can then be written as

dM

. Zmaz dV(z) Mmazx dn(M 2 )
CPouaon —_ / dz 1 <in 2 .

where V(2) is the comoving volume and dn/dM is the number density of objects. Once again we
define the power spectrum, which is independent of frequency, as C; = Ci(z)/¢?(x), with g(z) given
by Equation (2.46) for TSZE. For KSZE C; = C; (z). Note that z,., < 2in in our case.

At high z we expect a significant contribution to the anisotropy from correlation among the
structures. The clustering angular power spectrum for SZE from winds is

Clusters fmes M"-" M 2
Crertering = /o [ f "‘"")b(M, Zm)u(M, 2)| (6.19)

mln
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Figure 6.6: Angular Power spectrumn due to kinematic SZ effect from winds are shown for different
models. The thick lines show clustering power spectrumn and the thin lines show Poisson power
spectra. The models shown are : (1) zi, = 9,v,(z = 0) = 400 km s~! (solid line), (2) zin =
9,v,(z = 0) = 300 kmn s~! (dashed line), 3) 2;, = 7,v,(z = 0) = 400 km s~! (dot-dashed line) and
zin = 11,v,(2 = 0) = 400 km s~! (dotted line). For comparison, Poisson (solid line with stars)
and clustering (solid line with squares) spectra from from thermal SZ effect due to galaxy clusters
are shown. We have used the same cosmological model as in Komatsu & Kitayama (1999) for
comparison (with their figures 1 & 4). The ATCA and BIMA upper limits are also marked in the

figure by the two open circles.

where b(M, z) is the time dependent linear bias factor. The matter power spectrum, P(k,zin), is
related to the galaxy correlation function P,(k, M1, M2, z;,) through the bias, i.e.,

Pg(kv M11 M21Zin) = b(Mlvzin)b(Mzu Zin)Dg(zin) Pm(kv z= 0) (620)
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where we take b(M, z) to be given by b(M,z) = (1 + 0.5/1,4)0-06-002n(1 L (12 — 1)/8.) (Jing 1999).
This expression for the bias factor matches accurately the results of N-body simulation for small
halos. This fitting formula for bias does not underestimate the clustering of small halos with 1 < 1,
and accurately fits simulation results of CDM models and scale-free models. The difference between
the fitting formula and the simulation result is generally less than ~ 15%. In the above equation
Dy(z) is the linear growth factor of density fluctuation, 8. = 1.68 and v = §./o(M), and we have
utilized Limber approximation (Limber 1954) to set k¥ = [/r,, where r, is the comoving angular

diameter distance.

T T — T T T T T T T T T

clustering, tSZ from galaxy-cluster
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poisson, 1SZ from winds
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Figure 6.7: Angular Power spectrum due to thermal SZ effect due to winds are shown for different
models. The thick lines show clustering power spectrum and the thin lines show Poisson power
spectrum. The models shown are : (1)z;, = 9 (solid line), (2) and z;, = 11 (dashed line). For
comparison, clustering (solid line with squares) spectrum from from thermal SZ effect due to galaxy

clusters are shown.
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Figure 6.8: A comparison of the power spectrum for the two cases (i) Mp = 0.1M ( thick lines)
and (ii) M, = 0.05M (thin lines) is shown, for zin =9 and vy = 400 km g—!. The solid lines refer
to clustering spectra due to KSZE; the dashes lines refer to the Poisson spectra for KSZE; the

dot-dashed lines refer to the clustering spectra for TSZE ;and the dotted lines refer to the Poisson

spectra for TSZE.

6.6 Results and discussions

We plot the mean Compton distortion due to TSZE and temperature distortion due to KSZE as

functions of z;, in Figure 6.5. As can be seen from the figure, winds originating at redshifts ~ 6-8

distort the CMB more than those which originate relatively earlier or those from more recent

epochs. This can be naively understood as follows: the distortion of the CMB due to winds is

proportional to the number of galactic winds originating at Zin; the distribution of the galaxies

follows from the Press-Schecter formalism where the number density per comoving volume peaks
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at redshift ~ 5 for the mass range relevant here, and falls off at higher redshifts. This combination

produces the maximum distortion at an intermediate value of z;n.

We also show in Figure 6.5 our results for the case of M}, = 0.05 M (thin lines), which represents

the case of winds with efficiencies decreased by a factor of two.

Next, we focus on the angular power spectrum of temperature anisotropy from galactic outflows.
First, we plot in Figure 6.6 the anisotropy due to kinematic SZ effect from outflows with and without
clustering. We plot the power spectra for outflows for three initial redshifts z;, = 7,9 and 11. For
Zin = 9, we present the results for v.(z = 0) = 400 and 300 km s~!. We also plot in Figure 6.6
the angular power spectra due to thermal SZ effect from clusters of galaxies, with and without

clustering, for comparison.

It is evident from Figure 6.6, that the power spectrum due to clustering of the sources (thick
lines) can be very important for CMB distortions due to winds at high redshifts. In comparison,
for clusters of galaxies, the Poisson power spectrum is larger than the clustering power spectrum,
as shown by Komatsu & Kitayama (1999). In that case, if flux limited clusters detected in X-
ray surveys are subtracted, then clustering power spectrum can dominate at [ < 200. In all the
cases that we consider here, however, we find that clustering power spectrum is dominant below
I ~ 3 x 10%. This is easy to understand in the following manner. Since, C{ *** /CFoisson ~
n(M, z)b*(M, z)DZ (2)Pm(k), with k ~ l/r(2), the bias increases at high z along with r(z), thereby
boosting up the clustering power spectrum. The evolution of bias with redshift has been studied
by many authors both theoretically (Tegmark & Peebles 1998, Valageas, Silk & Schaeffer 2000)
and through simulations (Blanton et al. 2000, Davé et al. 1999). All of these studies show that

the bias increases rapidly with increasing redshift.

The thick lines in Figure 6.6 also show that the clustering spectra from winds are generally
higher than the clustering spectra due to clusters of galaxies above [ ~ 10® in almost all cases we
consider. The clustering spectra from winds are, however, in general smaller than the Poissonian

spectra due to clusters of galaxies.

The thin lines in Figure 6.6 show that the Poissonian spectra from winds (kinematic SZ) peak
at I ~ 4 -6 x 10%. Although it is swamped by the thermal SZ signature from galaxy clusters, we
note that the frequency dependence of kinematic SZ effect is different from that of the thermal SZ
effect. So, it would be possible in principle to separate them out. The above angular scale is an
order of magnitude less than the the angular scale at which TSZE due to galaxy cluster peaks.
This is beyond the ranges of observations with the upcoming Planck satellite, but is well within the

range for ALMA. However, it may well be swamped by other secondary distortions of the CMB at
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Figure 6.9: The figure shows the power spectrum at different frequencies. The thick lines in all
the subplots are due to winds with zin =9 ; solid lines are for clustering spectra due KSZE with

vp0 = 400 km s=! and the dashed lines are the Poisson spectra for the same; the dot-dashed lines

are for clustering spectra due to TSZE from winds and the dotted lines are the Poisson spectra

for the same. For comparison, in the left and the right figures, Poisson spectra for TSZE from
clusters (lines with filled circles) and clustering spectra for the same (lines with stars) are shown.

In the middle panel, the line with open circle shows the Poisson spectrum due to KSZE from galaxy

clusters.

Recently, observational upper limits (shown in Figure 6.6 with open circle) have been put on the
arc-minute scale distortion of the CMB temperature anisotropy observed by ATCA (Subrahmanyan
et al. 1998) and BIMA (Holzapfel et al. 1999). In the R-J limit AT, = Teampy/ I+ 1)Cr. Angular

power spectrum from any viable model must satisfy these upper limits in addition to the limit on
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the mean y-distortion. In Chapter 4, we have used these limits to constrain cosmological models
(Majumdar & Subrahmanyan 2000). None of our wind models, however, violate the ATCA and
BIMA limits, and hence cannot be ruled out independent of the violation of COBE limit on y.

The result of the power spectrum due to clustering dominating the anisotropy brings about an
interesting possibility to probe bias at high redshift. Komatsu & Kitayama (1999) have noted that
a possible detection of the clustering spectrum due to galaxy clusters would give us information
on bias at high redshift. In our case, we find that the clustering spectrum due to winds (KSZE)
is much larger than the clustering spectrum from galaxy clusters (TSZE), and smaller than the
Poissonian spectrum from galaxy clusters (TSZE), for a wide range of {. If the X-ray luminous
clusters are removed, then it may be possible to detect the spectrum due to clustering of galaxies
having galactic winds. Moreover, the different frequency dependence of kinematic and thermal SZE
may allow us to separate these two effects. This may give valuable information about the evolution
of bias at high redshifts, although we note that the parameters for the wind shells are not very
certain, as we explain below.

We plot the power spectra due to thermal SZ effect from winds in Figure 6.7. As the figure
suggests, the thermal SZ effect is much smaller than the kinematic SZ effect in both Poissonian

and clustering cases. It is also much smaller than that from clusters of galaxies.

We compare the results with different efficiency of winds in Figure6.8, where we show the results
for the cases My = 0.1 M (thick lines) and M, = 0.05 M (thin lines). The curves show how a change

of a factor of two in the assumption of wind efficiencies would change our results.

In Figure6.9, we have plotted the power spectra for both TSZE and KSZE distortions from
winds for three representative frequencies. We show the results for 100, 217 and 545 GHz. These
are 3 of the proposed 9 frequencies in which the Planck surveyor satellite mission would operate.
The larger two frequencies would have a resolution of about 5’, and so would be able to go to
Al. > 2000. Note that at these [ values the primary anisotropy drops and the power spectrum would
be dominated by secondary anisotropies. Also, the clustering power spectra due to distortion by
winds peak at these angular scales, as evident in Figure 6.6. At 100 GHz and 545 GHz, the effect
from TSZE distortion due to clusters of galaxies is greater than that from winds. However, we can
take advantage of the crossover in the frequency dependence of TSZE, as given in g(z), where the
contribution from TSZE goes to zero. The middle panel in Figure 6.9, shows the spectra at 217
GHz. At this frequency the TSZE from both cluster of galaxies and winds is zero, and we see that
the clustering spectra due KSZE from winds exceeds the Poisson spectra from KSZE from galaxy
clusters. This difference is further highlighted in Figure 6.10, where we plot the composite spectra

(i.e., sum of both Poisson and clustering spectra) for distortion due to galaxy clusters and wind at



8.6. Results and discussions 141

217 GHz. It is clear that at this frequency, distortion due to wind peaks at ! ~ 2000 — 3000 and
is an order of magnitude greater than distortion due to galaxy clusters. One can thus hope to be
able to detect SZ distortion due to galactic winds at high redshift with Planck. We also note that
the anisotropies are likely to be detected and measured in future by the proposed long base line
interferometers such as ALMA.

The above results, however, should be viewed in light of the uncertainties inherent in our
calculation. Firstly, the parameters of the outflows are by no means certain. The mechanical
luminosity of galaxies, for example, is somewhat uncertain. The efficiency of galactic outflows, and
its dependence on the mass and redshift, are also not well known. At any rate, the curvés in Figure
6.8 give an idea of the magnitude pf changes that might occur if some of these assumptions are
changed. Lastly, our assumption for a single epoch of galactic outflows might be naive. Also, we
bave assumed a mean peculiar velocity for all galaxies. Perhaps a simulation with a distribution in

Zin and v, would be able to address these issues in a better way.

We also note here that we have neglected the anisotropy caused by the inverse Compton cooling
of the shells of outflows. Also, we have not taken into account the heating of the interior gas due

to collision of the shell with the IGM. Our estimates of the anisotropy are, therefore, conservative.

Our results, however, seem to be robust with regards to the assumed upper mass limit for
the out flowing galaxies, as long as the the upper limit is greater than ~ 10° Mg. We note that
Scanmapieco & Broadhurst (2000) have calculated the upper mass limit of out flowing galaxies in
the ACDM universe at z ~ 10 to be of order 10° M. Our results do not change significantly if we

assume this upper mass cutoff instead of the one described earlier.

As far as cosmologies other than the ACDM are concerned, we found that the resulting anisotropy
is less in the case of a SCDM (£}, = 1,A = 0, h = 0.5) universe for a given 2j,. This is mainly
because of the fact that structures form later in SCDM universe although the value of og is larger
in this case, and since the contribution to the distortion in the case of wind is biased towards the
high redshift. The anisotropy in the case of the OCDM universe (Q, = 0.35,A =0,k = 0.65) is
slightly less than in the ACDM universe. There are two reasons for this: in the OCDM universe,
firstly the COBE normalized ag for OCDM is much less than in ACDM case, and secondly, peculiar

velocities are also smaller at higher redshifts, for a given normalization at the present epoch.



142 Chapter 6. SZE at high redshifts: Distortions from galactic winds

- — T * M —
.
wind
107k E
cluster
~14
10 ¢ E
&
g
3
]
10—15 o B
1
217 GHz ]
10—16F -
i al e P n " i N P
10° 10° 10* 10°

Figure 6.10: The composite power spectra (KSZE+TSZE, including contribution from both clus-
tering and Poisson spectra) are shown for distortion from winds (thick line) and clusters (thin line),
Zin = 9 and vy = 400 km s~!. The spectra are calculated for the proposed Planck observation

frequency of 217 GHz.
6.7 Conclusions

After studying in earlier chapters, the distortion of the CMB in the nearby universe due to inverse
Compton scattering by the ICM, we have studied in this chapter, the SZ distortion from sources at
far away universe. To do so, we have calculated the SZ distortion of the CMB due to galactic winds
at high redshift, originating at a single epoch z;,, from galaxies of masses between 5 x 107 and 10!
Mg, in a ACDM universe. This has led us to probe our universe at redshifts of around z ~ 10 (i.e.,
~ 10Gpc comoving distance away from us in our fiducial cosmological model, or equivalently when

the universe was ~ 0.035 its present age). We summaries our findings below:

(a) We confirm the previous estimates of the mean y-distortion due to thermal SZ effect. We,



8.7. Conclusions ' 143

however, found the kinematic SZ effect to be more important than the thermal SZ effect in terms

of the effect on the angular power spectrum of distortions.

(b) We obtained the angular power spectrum of distortions with and without clustering of
parent galaxies. The Poisson power spectrum due to kinematic SZ effect from winds is found to be

comparable or larger than the SZ effect from clusters of galaxies for 12 10°.

(c) We found that clustering of low mass galaxies at high redshift could increase the angular
power spectrum of distortions. The power spectrum due to clustering of parent galaxies of outflows
(kinematic SZ) was found to be also larger than the clustering power spectrum from galaxy clusters
(thermal SZ) and somewhat smaller than the Poisson power spectrum from galaxy clusters (thermal
SZ). This is opposite to what one finds for galaxy clusters (as in Chapter 5). We have explicitly
shown the frequency dependence of the various power spectra. It is possible that the clustering
power spectrum from winds can be estimated after subtracting X-ray luminous clusters dominating
the Poisson power spectrum from clusters, or by using the different frequency dependence for

thermal and kinematic SZ effects, yielding information on bias of low mass galaxies at high redshift.

(d) We have shown how the total power spectra (kinematic and thermal SZ, including both
Poisson and clustering effects) for winds will dominate over the corresponding spectra. for clusters,

at 217 GHz, a proposed frequency for the Planck satellite mission.

We conclude that the SZ distortion from galactic winds at high redshift, if present, could
constitute an important source of secondary CMB anisotropy on arc minute and sub-arcminute
scales. If discovered, it would lelp us constrain models of galactic winds and their evolution. In
addition, it would give us a new probe of bias at high redshifts (higher or comparable to those
probed by the upcoming quasar surveys). Finally, let us comment that starting from z< 1, we have
probed redshifts as high as z ~ 10. We are now ready to probe the intermediate redshift. This we

do in the next chapter where we consider the distortion of the CMB from radio galaxies.
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Chapter 7

Probing the intermediate redshifts:

SZE from radio galaxies

7.1 Introduction

In our quest to probe our universe fromn the nearby to the far distant regions, we have looked at
cluster of galaxies and then at dwarf galaxies. There are a few other sources, however, containing
energetic gas that can distort the CMB, and it is useful to estimate their contribution to the final
distortion. Cocoons of radio galaxies, which consist of the energetic particles supplied by the jet
(Scheuer 1974, Blandford & Rees 1974, Begelman & Cioffi 1989), is one such source. These radio
galaxy cocoons allow us to probe our universe in the intermediate redshifts regions between that
probed by dwarf galaxies and galaxy clusters. The present chapter is devoted to studying thermal
SZ distortion of the CMB by radio galaxies, i.e.,, their cocoons and the shocked gas surrounding
the cocoons. A schematic structure of a radio galaxy is shown in Figure 7.1, which is explained in

detail in the next section.

We start by addressing a ‘confusion’ that seems to be present in the literature. Yamada et al.
(1999) have investigated the SZ distortion from the population of radio galaxies in the universe and
found that the mean y-parameter could be as large as 5 x 10~%, which is above the limit obtained
by COBE. This distortion was calculated using the pressure inside the cocoon and the volume of
the cocoon. Since a relativistic non-thermal plasma coming from the hotspot occupies the cocoon,
the distortion is due to the non-thermal population of particles. This distortion, as calculated by

Yamada et al. (1999), has been referred to as the thermal distortion, although, as explained above,

145
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it is due to the relativistic particles inside the cocoon. Enfilin & Kaiser (2000) have also studied
the distortion from the cocoons of radio galaxies. They estimated the thermal distortion from the
gas surrounding the cocoons, which is heated as the result of the work done by the cocoons on the
surrounding medium, as well as the distortion due to the non-thermal electrons inside the cocoon.
They, however, compared their estimate of the thermal distortion (of order 10~°) due to the heated
gas surrounding the cocoon with the non-thermal distortion calculated by Yamada et al. (1999).
We would like to stress that while calculating the SZ distortion due to radio galaxies, one must
pay close attention to the nature of the distortion i.e., non-therial (from the cocoon) and thermal

(from the shocked gas), and estimate both the effects in a self consistent manner.

Enfllin & Kaiser (2000) have pointed out that the energy input rate used by Yamada et al.
(1999) is much larger than implied by the observed radio luminosity function. They used a radio
luminosity function which yielded a net energy input by radio galaxies that is less (by a factor
~ 50) than that used by Yamada et al. (1999). Assuming that a fraction of ~ 25% of the the jet
luminosity is used in the pdV work on the surrounding gas, Enfllin & Kaiser (2000) estimated that
the SZ distortion from the gas heated by the work done by cocoons is of order ~ 1076, They also
investigated the distortion from the non-thermal plasma from ‘radio ghosts’ which are embedded

in clusters and found the effect to be very small.

The purpose of the present chapter is three-fold: (1) to calculate the non-thermal SZ distortion
using a better model for the evolution of the cocoon than used in Yamada et al. (1999), taking
into account various different energy loss processes of a cocoon which were neglected by previous
authors; (2) to calculate the thermal SZ distortion from the pdV work doue, by surnming over the
work done by individual cocoons at different redshifts; (3) to investigate the dependence of the

distortion on the cosmological model.

There is another reason to study the SZ distortion by radio galaxies. In a recent study, Yamada
& Fujita (2001) have used the result of Yamada et al. (1999) to put a upper limit on the redshifts
of preheating of clusters in the scenario that radio galaxies provide most of the non-gravitational
heating of the cluster gas as required by recent observations (Ponman et al. 1999). Because of
the implications of such limits to cosmology and cluster physics, it is worthwhile to do a thorough

investigation of the basis of these limits, namely the SZ distortion of CMB due to radio galaxy
cocoons

As in the previous chapter, we assume a flat universe with a cosmological constant, with Qg =
0.35, 24 = 0.65 and h = 0.65 for our ACDM model. For our OCDM, we use €y = 0.35 and
h = 0.65. In the next section we start with a brief description of a model of radio galaxy evolution,

before proceeding to build an ensemble of radio galaxies and then calculate the resulting distortion
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Figure 7.1: A schematic diagram of a radio galaxy

of the CMB from these objects.

7.2 Evolution of radio galaxy cocoons

We model the evolution of cocoons of radio galaxies following the approach of Begelman (1996).
This simple model takes into account the fact that the cocoons are mostly over pressured compared
to the surrounding medium and that the jet feeding the cocoon jitters in the ‘dentist’s drill’ fashion
as envisaged in Scheuer (1982) (see also Begelman & Cioffi (1989); Nath (1995)). Bicknell et al.
(1997) modified this model by including the adiabatic expansion of the cocoon plasma (the pdV
work done by it). We follow this model, and also include the effect of Hubble expansion, which may

become important for large cocoons, say, or giant radio galaxies, of sizes of order of a few Mpc.

A cartoon of a radio galaxy is shown in Figure 7.1. Below we briefly explain the figure. The
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jet emanating from the central engine, where the jet material has a speed v;, produces a hotspot,
which moves with a velocity v, against the pressure of the ambient medium (F,, with a mass
density p,)- In the ‘dentist’s drill’ scenario, the direction of the jet changes from time to tiine to
produce a working surface of area A,. The distance of the hotspot from the central engine is z;,
and the transverse size of the cocoon is r.. The shocked intergalactic gas (inside the shocked region
of thickness ~ @,;) with pressure Py, is separated from the cocoon gas (with pressure P;) by a
contact discontinuity. The cocoon is filled with non-thermal particles, whereas the shocked region

is filled with thermal plasma.

In this model, the distance of the hotspot from the central engine is determined by the balance
of momentum flux of the jet and the ram pressure of the ambient medium. The transverse size
is, however, determined by the pressure of the cocoon. The volume of the cocoon is given by
Ve = €p2mrizy, where €p is a geometrical factor, which equals 1/3 for a semi-ellipsoidal cocoon,
with major and minor axes x; and r, respectively. If E, is the total energy inside the cocoon, then
the corresponding pressure is given by P, = (1/3)(E./V.), assuming a relativistic plasma inside the

cocoon. If Fg is the jet luminosity, then one has,

dzy, B;FE \1/2

P, — PN\ 172

(_—-—( ¢ a)) / + H(z)a:h y > tite
Pa
% (PC - Pa) 1/2
i ( Pa ) +EG),

dE, dVe
7t ~ FE"(Pc—Pa)“E{"'Lr' (7.1)

Here )5 is the lifetime of the jet and L, is the luminosity of the cocoon. The differences between
the equations here and those of Bicknell et al. (1997) come from tle inclusion of the Hubble
expansion in the first two equations, and the loss of energy through radiation. It is, however,
extremely difficult to model the radiation energy loss in a simple way. Kaiser et al. (1997) have
tried to model the radiation loss as a function of time, in which radiations coming from electrons
in different parts of the cocoon are summed ever and tracked in time. It would be extremely time

consuming for us to follow this procedure here, since we would like to sum over the distortions from
an ensemble of cocoons.

We, therefore, use a simple approach to estimate L,. We assume (as in Daly (1994) and Nath
(1995)) that the radio luminosity can be approximately written as L, ~ gf N(E)dEP(E), where
N(E)dE ~ Ny (y/m)~*dy with & > 0 is the number of relativistic electrons with energy between
E and E + dE, and P(E) ~ 1.6 x 107134282, is the rate of synchrotron loss for a single electron

in a magnetic field B and E1, E2 are the lower and upper energy cutoffs. Here, « is the Lorentz



7.2. Evolution of radio galaxy cocoons 149

factor (E = ym®c?), v is the lower cutoff in the Lorentz factor and B is the magnetic field. If

we assume that most of the cocoon energy is in the form of very lowest energy electrons, then
Niot ~ Ec/('ﬂmecz)-

Enfllin & Kaiser (2000) have demonstrated that even after taking into account different energy
loss mechanisms in the radio plasma in the cocoon, the electrons in the cocoon remain relativistic
for a cosmological timescale. This means that 4, > 1. Also, Rawlings & Saunders (1991) found that
1 ~ 500 for a 100 kpc size cocoon. Evidently, v is a function of time. But here we simply use two
extreme values of vy, namely 4; = 50, 500, to demonstrate the importance of radiation energy loss
in the context of SZ distortion. This prescription gives the radio luminosity at, say 178 MHz, of a
cocoon with jet luminosity 10%5 erg/s at an age of 107 yr, of order ~ 3 x 10% W/Hz for an effective
size of ~ 100 kpc, and the luminosity falls to ~ 102> W /Hz when the effective size increases to ~ 1
Mpc. This is comparable to the observed luminosities of radio galaxy cocoons (although usually
one uses the distances of the hotspot as the size of the cocoon), as in Kaiser et al. (1997) (e.g.,
their Figure 1). This lends credence to our simple estimate for the radiation loss from cocoons. We
note here that this is still a conservative estimate of the radiation loss, since there is also loss of

energy from inverse Compton scattering of the CMBR. by the relativistic electrons.

For the ambient medium parameters, we assuine (as in Yamada et al. (1999)) those of the
intergalactic medium. We assume that the baryon density is given by €, ~ 0.015h~2, given by the
Big Bang nucleosynthesis. 1 We assume a temperature of Tigar ~ 3 x 10! K, typical for a photo
ionized gas. Of course, the temperature does not play much of a role in the evolution of the cocoon
as long as it remains over-pressured with respect to the surrounding medium (Nath (1995)). As was
pointed out by Nath (1995), for the parameters relevant for the intergalactic medium, radio galaxy
cocoons remain over-pressured for cosmological timescales. Also, to make calculations simpler we
define an effective radius R,fy, such that R is the radius of a sphere having the same volume as

the volume of the cocoon.

The temperature of the ambient medium becomes important in high pressure regions, since

here the pressure inside the cocoon attains similar values of the surrounding medium after a while.

We show in Figure 7.2 & 7.3 the evolution of the effective radius and pressure inside the cocoon
with redshift, for the case when the jet is switched on at (1 + zin) = 14 and 7. We assume that
the jet remains active for 5 = 3 x 107 yr. In Figure 7.2 we show the evolution of the hot spot
distances from the centre (dashed lines), the transverse sizes (dot-dashed lines) and the effective
radii (solid lines) in the case in which we include energy loss due to pdV work, Hubble expansion
and radiation. For the radiation loss we have assumed a y; = 500. Here, we have assumed an
ambient density of (3, a temperature of 3 x 10* K, and a jet luminosity of 10% erg/s. We also
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Figure 7.2: The cocoon size is plotted for a single cocoon, in a ACDM universe, originating at
(1 4 2) = 14 (thick lines) and (1 + z) = 7 (thin lines), where all the different energy losses are
taken. The dashed lines show the hotspot distance from the centre, the dash-dotted line shows the
transgverse size and the solid line shows the effective radius (explained in the text). For comparison,

the effective radius for the case of no energy loss is shown in dotted lines.

show the evolution in the case when no loss of energy is assumed (dotted line). As is clear from
Figure 7.2, the loss of energy due to pdV work and radiation loss change the evolution of the cocoon

pressure and size substantially.

In Figure 7.3, we show the evolution of the cocoon pressure. The pressure inside the cocoon
as calculated here is consistent with the observed values. Subrahmanyan & Saripalli (1993) noted
that the pressure inside the cocoons of giant radio galaxies with hotspot distances of ~ 1 Mpc is

of order 10~ dynes cm™2. We recover similar values of the pressure for such a cocoons.

We have also calculated the luminosity of the cocoon at different stages of its evolution and
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cocoon pressure (cgs units)

Figure 7.3: The cocoon pressure is plotted for a single cocoon, in a ACDM universe, originating at
(1+ z) = 14 (thick lines) and (1 + z) = 7 (thin lines). The dashed lines are for no energy losses

and the solid lines are for the case when all the losses are taken into account.

compared with the typical observed values. We find that for cocoons in the IGM, the luminosity
at 178 MHZ is ~ 3 x 10 W/Hz for an effective size of ~ 100 kpc, and the luminosity falls to
~ 10% W/Hz when the effective size increases to ~ 1 Mpc. This is comparable to the observed
luminosities of radio galaxy cocoons as in Kaiser et al. (1997) (e.g., their Figure 1); note, though,
that in most studies, the size of the cocoon is usually taken to be the distance of the hotspot from

the centre. This lends credence to our simple estimate for the radiation loss from cocoons.

7.3 Ensemble of radio galaxy cocoons

We follow the approach of Yamada et al. (1999) to set up an ensemble of cocoons in the universe.
The number density of radio galaxies is computed using the Press-Schechter mass function assuming
that radio galaxies reside within halos of mass M > 1012 My. Following them, we also assume

that a constant fraction f = 0.01 of these galaxies has jet activity, and that the jet luminosity
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Fpg is given by the Eddington luminosity of the central black hole mass Mpy, where one uses a
scaling Mpg = 0.002Mjp,, where My, is the mass of the spherical halo of the host galaxy. The
jet luminosity is thought to be constant for a typical life time of #j;5 = 3 x 107 yr, and is assumed

to be zero afterwards.

According to Yamada et al. (1999), the advantage of using the Press-Schechter formalism
in counting the radio galaxies is that cocoons which are old and hardly radiate but which still
contribute to the SZ distortion, are also included, whereas they are not counted in the observed
radio luminosity function as was used by Enfilin & Kaiser (2000). It is difficult to estimate the
real advantage of the Press-Schechter formalismn in this context, however, since the extent of the
population of low luminosity ‘radio ghosts’ still remains uncertain. We, shall nevertheless,‘ follow
the approach of Yamada et al. (1999), to estimate the total energy inputs from all the radio

galaxies.

In using the Press Schecter mass function, we have as before used the transfer function given
by Bardeen et al. (1986) and the shape parameter by Sugiyama (1995), along with scale invariant

initial matter power spectrum. The final power spectra are COBE normalized

As was pointed out by En8lin & Kaiser (2000), the net energy input rate due to all the radio
galaxies calculated using the formalism of Yamada et al. (1999) is larger than that obtained by
using the observed radio luminosity functions of radio galaxies. We note here that this is true even
for individual radio galaxies. If one assumes a mass cutoff of ~ 10'2 Mg on the radio galaxy mass,
then the above prescription gives the minimum jet luminosity of order 2.5 x 10*7 erg/s, whereas the
typical observed jet luminosity ranges between 10%-106 erg/s (Rawlings & Saunders 1991). Thus,
the Yamada et al. (1999) prescription over estimates the total energy input from radio galaxies.
We, however, continue to use the parameters used by Yamada et al. (1999) to show the difference
in the result we obtain using a better cocoon evolution model from the original Yamada et al.
(1999) results. Here, we only note that lowering the jet luminosity of individual cocoons, or the

net energy input rate by the radio galaxies, will further decrease the distortion.

7.4 Sunyaev-Zel’dovich distortion from non-thermal plasma

The hot gas in the interior of the cocoon can distort the microwave background, introducing
temperature anisotropies. For a single radio cocoon which starts evolving from some initial redshift
Zin ;the CMB distortion at a lower redshift z can be rewritten as
or
Ysc(2in ,2) = a2 Pe(zin, 2) 2Reff(z,-n, z) (7.2)

e
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Figure 7.4: The effective y-distortion from a single cocoon originating at (1 + zin) = 14 is shown.
The effect of different energy losses are shown: dotted line (no loss), dash-dot (including Hubble
loss), dashed ( Hubble loss + loss due to work done) and solid (all losses including radiation). Thick
solid has y; = 500 and thin solid has ~; = 50.

where P, is the non-thermal pressure inside the cocoon. For simplicity, we assume the pressure

inside the cocoon to be uniform.

We have shown y,. as a function of redshift in Figure 7.4, for a single cocoon originating at
(1+ zin) = 14, for the two cases when all the above mentioned loss processes are included (solid
lines) and when no losses are assumed (dotted lines). We also show the cases when only Hubble loss
is included (dash-dotted lines) and when all loses are taken except radiation loss (dashed line). For
the cases, where all th energy losses are included, we show the results for both « = 50 (thin solid
line) and 4 = 500 (thick solid line). The dotted line is consistent with the estimate of SZ-distortion
by Yamada et al. (1999), as given by their equation (17) (after scaling the jet luminosity to 10%
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erg/s as we have used). We, therefore, find that energy loss processes substantially decrease the

amount of SZ distortion.
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Figure 7.5: The mean y distortion from cocoons of radio galaxies are shown for different cosmological
models. The dotted lines are for an OCDM universe, the dashed lines for SCDM and the solid
lines for ACDM universe. The thin lines correspond to cases when no energy losses are taken and
the thick lines are for for cases when all the different energy losses are taken. The ‘SCDM, no loss’

case has < y > similar to that found in Yamada et al. (1999).

At this point, we note that though the cocoon distorts the CMB through the ‘thermal SZE’, since
the electron population inside the cocoon is non-thermal in nature resulting in SZE which does not
have the same spectral dependence of ‘standard’ thermal SZE which has the crossover frequency at
~ 217 GHz. The effect of the non-thermal population of electrons is to shift the crossover frequency
to a slightly higher value. Given the power law index of the electron energy distribution, then one
can in principle calculate the spectral dependence of the SZ effect (see Birkinshaw 1999). This can
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then be used to separate the SZ distortion due to the cocoon from other sources of thermal SZ

effect (for example, from the ICM, if the cocoon resides in a cluster).

To calculate the mean y-distortion from the cocoons, we first have to know the rate of formation

of the cocoons. This can be calculated from the PS distribution of the radio galaxy masses as
dn d

_an_ 4 ( dn )
dMd: ~ * dz \dM
where f ~ 0.01 (for a detailed discussion, see Yamada et al. (1999)).

(7.3)
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Figure 7.6: The mean y distortion from cocoons of radio galaxies in a ACDM universe is shown
against the maximum redshift of the occurrence of radio galaxies. The thin lines show the differ-
ential contribution to y as a function of z, and the thick lines show the integrated y up to 2 (maz).

The different losses taken in each case are mentioned in the figure.

The mean y can then be written as the integral of the product of the CMB distortion from

single cocoons, the formation rate of cocoons, the volume element and the crossing probability.
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Thus,

<y>= [ [ [vilain 2 S (2) Z(2) g";—,(z,-n, 2)) dzin dz dM (7.4)
Here, 0 is the angular diameter of the cocoon and '.(11:’2 is the probability for the line of sight to
cross the cocoon, where df is the solid angle element. In the evaluation of the mean distortion by
cocoons, Yamada et al. (1999) have approximated ﬁ,;(zin) dzin by 341{‘—,. We have not made this
approximation; instead we explicitly take into account the formation rate of the cocoons as function
of redshift z;,. Finally, the integration is done for 10'2 Mgy < M < 10" Mg and 0 < 2 < 15.

However, there is practically no contribution to the y-distortion after z ~ 4.

We show in Figures 7.5 and 7.6 the integrated and differential distortion from the ensemble of
cocoons, as a function of the maximum redshift up to which there can be radio galaxy cocoons in
the universe. Here we also show the dependence of this distortion on the assumed cosmological
model. It is clear that the distortion is largest in the COBE normalized sCDM, which was assuined
by Yamada et al. (1999). It is clear that radio galaxies become rare beyond a redshift of ~ 4
and including the contributions of cocoons from higher redshifts do not add substantially to the

integrated y-parameter (see Figure 7.6).

Figure 7.7 shows the angular power spectruin of distortion from the cocoons, distributed in a
random manner (the Poisson spectrum; thick solid line), and including the clustering of the cocoons
(the clustering spectrum, thick dashed line). We compare these power spectra to that from hot gas
in clusters of galaxies. It is seen that the distortion from the non-thermal plasma of the cocoons
(the Poisson spectrum) peaks at angular scales [ ~ 4000; note, however, that the amplitude of
the spectra are much smaller than those for clusters of galaxies. The power spectrum from the

clustering of cocoons peaks at a lower [ and is smaller than the Poisson power spectruin.

7.5 Thermal SZ distortion

As pointed out by En8lin & Kaiser (2000), distortion from the gas heated by the work done by
the cocoon can be substantial. This shocked gas in the periphery of the cocoon is separated from
the non-thermal plasma inside the cocoon by a contact discontinuity. These authors argued that a
fraction of about 1/4 of the total jet luminosity is used in the work done against the surrounding
medium. Other authors, however, have come to different conclusions. Bicknell et al. (1997), e.g.,
found that for a cocoon embedded in a homogeneous medium, this fraction equals 3/8, and for a
medium with a density profile of p o r~2, the fraction is 1/2.
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Figure 7.7: The power spectra of TSZE from radio cocoons are shown. The thick solid line shows the
Poisson power spectrum and the thick dashed line shows the clustering power spectrum spectrumn.
For comparison, the corresponding cases for TSZE from galaxy clusters are alsé shown (thin solid
lines with circles and stars, respectively). The underlying cosmology for all the cases is £, =0.35,

24 =0.65 and h =0.65.

Instead of using any simple estimate, we have calculated the total energy spent by the cocoons
in work done against the surrounding medium, using Equations (7.1). The advantage of this
calculation is that it is self-consistent with the equations of evolution of the cocoon, which includes
the pdV work done against the surrounding medium. In addition, it includes the work done by
cocoons that are not included in the radio luminosity function used by Enflin & Kaiser (2000).

If the total energy contained in the shock heated gas is supplied to the microwave background

photons through inverse Compton scattering, then the extra energy density in the photons, red-
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shifted to the present epoch, would be given by,

AU = /-Zma: dz /Zin dz/d]\/f dn pfi‘z (7 r)
0= z n z=0 dzln dA{ (1 + z)‘l ! 9

in=0

where we have used the Press-Scheclhiter mass function as in the previous section. The factor of
(1 4+ z)~* accounts for the dilution of the energy density in photons due to the expansion of the
universe upto the present epoch. This method was used by En8lin & Kaiser (2000) in their estimate

of the distortion from the thermal gas heated by the cocoons.

Log(f)

(1+2)

Figure 7.8: The evolution of logarithm of fic: is shown for A-CDM cosmology.

We, however, note that energy loss due to inverse Compton scattering is but one of the many
mechanisms of energy losses that are relevant for gas in the IGM. Especially, for gas at low redshifts,
where most of the energy input from radio galaxies takes place, only a small fraction of its energy
is lost to the microwave background photons. The efficiency of energy loss due to inverse Compton
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scattering increases with redshift and it becomes the dominant mechanism of energy loss only at

very high redshift. At low redshifts, however, one should be careful in calculating the amount of
energy supplied to the microwave background photons.

We estimate the efficiency of energy loss due to inverse Compton scattering, fic, from a simple
argument. The most important cooling mechanisms for hot gas in the IGM are adiabatic expansion,
Bremsstrahlung and inverse Compton scattering. If their respective cooling timescales are denoted

by tad, ts and t;c, then one has,
1

fe~ T T (76)
tad t{f tic

Here, t,g = T—i;(-dt/dz), tif =1 fogi_%)ff&na B (ng is the ambient particle density at redshift z),
and t;c = (45/72)(he/kT,) (me/oTh) ~ 9 x 10'2(1 + 2)~* yr (e.g., Tegmark, Silk & Evrard 1993).

We show the variation of this efficiency with redshift in Figure 7.8, for a gas at temperature 10°

K. We have found that the efficiency is an extremely slow function of this temperature, since what
determines the efficiency most in Equation (7.6) is the factor t,4 and not tys. We, therefore, treat
fic as a function of redshift, and write fic(z).

We can now rewrite our previous equation on the energy supplied to the microwave background

radiation, including this efficiency factor, as

AUy = / " / 4z / a1 ¢, (z)——-’%—- (7.7)
0= im0 ™ Jemo dzmdM T T+ 2)0° ‘

The final y-distortion is then given by,

<y>=12U
Y 4 a'Tcmb‘1 ’

where a is the Stephan’s constant and Tenp is the present day temperature of the microwave

(7.8)

background.

We have calculated the y-distortion in the ACDM universe (using Equations (7.7) and (7.8)) to
be~5x 1078,

This assumes the same scaling of the jet luminosity with the halo mass as in Yamada et al.
(1999). As mentioned above, this scaling probably suffers from an over estimation of the jet
luminosity of individual jets and the net energy input rate by radio galaxies. We estimate the net
energy input rate (in a ACDM universe) to be ~ 5 x 10%7 erg Gpc~3, whereas Enflin & Kaiser
(2000) estimated the net energy input rate from the radio luminosity function used by them to be
10% exg Gpe=3. If the net energy input rate is indeed as small as this value, then we estimate that
the thermal SZ distortion will be ~ 10~9. This is almost three orders of magnitude smaller than

the simple estimate of Enflin & Kaiser (2000).
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7.6 Distortion from cocoons in clusters

The results mentioned above assume that the mediumn surrounding the cocoon has the parameters
of the intergalactic medium, with density given by {2, and temperature of 3 x 101 K. Most observed
radio galaxies, however, reside in galaxy clusters, where the surrounding medium (the ICM) has
much higher pressure. To compute the SZ distortion from cocoons in clusters one would have to
use the probability of finding a radio galaxy in a cluster, which would be a function of masses (of
radio galaxies and clusters) and time, and the cosmological model. One would also have to assume
a model for the evolution of the ICM, and also take into account the spatial distribution of radio

galaxies in clusters.

Here, we attempt to estimate from simiple argumnents the relative contribution to the y-distortion
from radio galaxies in clusters and field radio galaxies. First, let us look at the y-distortion from
individual cocoons inside the intra-cluster medium. We show in Figure 7.9, the evolution of a
cocoon (with jet luminosity of 10%® erg/s and a lifetime of 3 x 107 yr), in a medium with deusity of
n~10"% cm~3 and T ~ 10® K, which we assume to be constant. The figure shows that although
the size of the cocoon is much smaller compared to a cocoon in the intergalactic medium, the
pressure inside the cocoon is much larger. This results in the y-distortion from a cocoon being
much larger in the case of a cluster-cocoon compared to a field cocoon. The pressure, however,
remains higher than the surrounding (ICM) pressure only for about 10® yr (irrespective of the
redshift when the jet starts), after which it attains a pressure similar to that outside. It is difficult
to determine the evolution of the cocoon, without computing the diffusion timescale amnong other
things, to determine the timescale over which the cocoon would retain its identity. For simplicity,
we assume that the cocoon does not contribute to any extra SZ distortion, in addition to the usual
SZ distortion from the thermal gas in the ICM, after it attains the ICM pressure. This is in contrast
to the case of cocoons in the IGM, where the cocoon remain over-pressured over an effective lifetime

much longer than the jet lifetime and hence can continue to distort the CMB for a long time.

From Figure 7.9, we can see that the y-didtortion of a cocoon in ICM is of order 10—4, approx-
imately an order of magnitude larger than in the case of a cocoon in the IGM. Cocoons in clusters
are, therefore, good candidates for looking for SZ distortion from radio galaxy cocoons, although

the small angular size of the cocoon can make the detection very difficult.

Secondly, one should compare the number densities of radio galaxies inside and outside clusters
to estimate the relative contribution to the mean SZ distortion. We assume the masses of clusters
to range between 10'-10'® Mg. One can then calculate the total number of clusters up to a

maximum redshift zpq;. If we then assume that each cluster can lave approximately 10 radio
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Figure 7.9: The evolution of the y-distortion of cocoons embedded in the ICM (with n = 1073
em™3 and T = 108 K) is shown for two cases of cocoons originating at 1 +2 = 1.5 and 1.55. The
lifetime of the jet is 3 x 107 yr in both cases, which shows up as a kink in the evolution. The cocoon
then attains similar pressure as outside, which marks the end of the evolution in this plot. The

period between the epoch of zg,r¢ and that of attainment of pressure equilibrium is of order ~ 108

years.

galaxies (as in, e.g., Derezinsky et al. 1997), then we can estimate the total number of radio
galaxies in clusters. We can then estimate the mean y-distortion from cocoons in clusters. We
have found this to be of order ~ 5 x 10-9, for a ACDM universe. This is an order of magnitude
larger than the distortion from cocoons in the IGM, but still short of the COBE limit. In doing
this estimate, we have used similar jet luminosities as for radio galaxies in the IGM. At this point,
we would like to emphasize once again that the jet luminosities used are larger than the observed

jet luminosities, and decreasing the assumed jet luminosity will further reduce the contribution
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towards the CMB distortion by cocoons in clusters.

7.7 Preheating of the ICM by radio galaxies ?

Recently, Fujita (2000) and Yamada & Fujita (2000) have used the SZ distortion from radio galaxies
in clusters to put an upper limit on the redshift of heating by radio galaxies. Observations show
that the properties of the ICM are different from that expected from scaling arguments of self-
similar gravitational collapse (e.g., Ponman et al. (1999) and references within). This has led to
the idea of non-gravitational heating of the ICM from different sources, such as supernovae driven
winds (Valageas & Silk 1999, Wu, Fabian & Nulsen 1999) and AGNs (Fujita 2000). The radio
galaxies which are supposed to heat up the ICM would also distort the CMBR through SZ effect,
and Yamada & Fujita (2000) use the results of Yamada et al. (1999) to put a constrain on the
epoch of heating to be z £ 3. This is in contradiction to the scenario in which the ICM is preheated,
before the formation of the cluster. They, therefore, rule out the preheating scenario based on their
limits.

From our estimate of the y-distortion of cocoons in clusters, with y ~ 5 x 107, it is however
difficult to put any constraint on the energy input epoch as it does not violate the COBE limit.
If clusters of galaxies each harbour more than ~ 30 radio galaxies (which seems unlikely, see e.g.,
Berezinsky et al. 1997), only then the y-distortion from radio galaxies would violate the COBE
limit. We, therefore, believe that the constraints put by Yamada & Fujita (2000) on the prehieating

redshift is premature.

7.8 Conclusions

We summaries, below, the work presented in this chapter:

e We have calculated the non-thermal SZ distortion from cocoons using a model of the evolution
of the cocoon which takes into account loss of energy due to the work done against the ambient
medium, radiation loss and the Hubble expansion. Using the scaling of the jet luminosity
with the halo mass as in Yamada et al. (1999), we find that the final y-parameter is 6 x 10~7
in a ACDM universe. In a sSCDM universe the distortion amounts to y ~ 2 x 10~¢, compared
to y ~ 5 x 1075 as claimed by Yamada et al. (1999).

* We have calculated the power spectrum of anisotropy from the cocoons. The Poisson power

spectrum peaks at ! ~ 4000 with an amplitude much smaller than that of hot gas in the
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clusters.

o If the net energy input rate is decreased by a factor of ~ 50, to be consistent with that implied
by the observed radio luminosity function, then the distortion should be smaller by a similar
factor. Also, if the jets are made of protons, and not electron-positrons, then the distortion

will be smaller than our results here.

e We have also calculated, instead of using simple estimates, the thermal SZ distortion from
gas heated due to the work done by cocoons. We have self-consistently included in our
calculations the energy spent by cocoons on the ambient medium. We have then calculated
the fraction of energy in the hot gas that is supplied to the microwave background photons
through inverse Compton scattering, and calculated the final y-distortion. We find that the
final y-parameter is 5 x 10~ for a ACDM universe, using a population of radio galaxies as in
Yamada et al. (1999). Decreasing the energy input rate by a factor ~ 50, will decrease the
distortion to y ~ 10~°, which is smaller than the earlier simple estimate by EnBlin & Kaiser
(2000) by a factor ~ 10~3.

e We have also estimated the distortion caused by cocoons embedded in the intra-cluster
medium. For individual cocoons, we have found that the distortion could be as large as
y ~ 107, and have estimated that the population of cocoons in clusters could contribute to

a mean y distortion of order ~ 5 x 1076,

o Our refined calculation shows that the limits used by Yamada & Fujita (2001) to constrain

the preheating redshift is premature.

With the above conclusion, we come to the end of the list of the main results to be reported
in this thesis. We started with SZ distortions from clusters of galaxies at low redshifts and then
studied distortions of the CMB by galactic winds at high redshifts. In this chapter we looked the
intermediate redshift by estimating the distortion of the CMB by radio galaxies. Thus, we have
probed different important sources of CMB distortions due to SZE from the present up to the time

when the universe was approximately one percent of its present age.
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Chapter 8

Epilogue

In the last seven chapters, we have used Sunyaev-Zel'dovich effect as a probe of the universe from
the present epoch to redshift z < 15. To cover this wide range in redshifts, we have looked at SZE
from different sources: the intra-cluster medium, the intergalactic medium energized by galactic
winds, and cocoons of radio galaxies and shocked IGM around them. With these we have probed
the underlying cosmology, the ICM, evolution of bias, specific physics of radio galaxies and so on.

An overall conclusion to the work presented in the thesis is given below.

8.1 A summary of the results

The main new results obtained in this thesis are the following:

e We have looked at the reliability of estimation of H, using SZE coupled with X-Ray obser-
vations and have pointed out a long list of uncertainties that can bias the estimation of H, .
We found cooling flows in clusters of galaxies to be a new and major source of error, which

can lead to an over-estimation of H, by greater than 10% even when 80 % of the cooling flow

region is neglected.

e Based on comparison of the rms temperature anisotropy obtained from simulated maps of
SZ distortion with the ATCA limits on arc-minute scale temperature fluctuations, we have
conchided that COBE-normalized CDM models of the universe with a high density parameter
(Q% > 0.8) can be ruled out. This constraint on the cosmology is independent of any present

epoch measures of os.

e We tried to understand the shape and the amplitude of the Sunyaev-Zel’dovich effect power

165
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spectrum due to TSZE from galaxy clusters. Using the resultant power spectrum for differ-
ent cosmological models and observational upper limits on small angular scale temperature
anisotropy from ATCA and BIMA experiments, we have been able to constrain cosmological
models. we have, then, shown the position of the peak of the power spectrumn to bear a strong

discriminatory signature of different gas mass fraction models

e We have calculated the SZ distortion of the CMB due to galactic winds at high redshifts
and confirmed the previous estimates of the mean y-distortion due to thermal SZ effect. We,
however, found the kinetic SZ effect to be more important than the thermal SZ effect. We
found that clustering of low mass galaxies at high redshift could increase the angular power
spectrum of distortions. We have shown how the total power spectra (kinetic and thermal SZ,
including both Poisson and clustering effects) for winds will dominate over the corresponding
spectra for clusters, at 217 GHz. Finally, we speculate that a possible detection of the power

spectrum due SZE from winds can yield important information on bias at high redshifts.

¢ We have calculated the non-thermal SZ distortion from radio cocoons and estimated the final
y-parameter to be ~ 6 x 10~ in a ACDM universe. We found the the resultant Poisson
power spectrum to peak at | ~ 4000 with an amplitude much smaller than that due hot gas
in the clusters. We also estimated the thermal SZ distortion from gas heated by the work
done by cocoons which was found to be ~ 5 x 1078, For cocoons embedded in clusters, we
found he distortion could be as large as y ~ 1074, and have estimated that the population of

cocoons in clusters could give a mean y distortion of order ~ 5 x 10~6.

8.2 Future prospects

As we have noted earlier, in the near future, important improvements are like to occur in the
spectral measurements of the SZE and in interferometric mapping of clusters using optimized
interferometers. The first would be used to separate the KSZE from the TSZE for galaxy clusters
and hence to set limits on the peculiar velocities of galaxy clusters which can in turn give us an idea
of the underlying density field. The latter would be used for improved estimations of the Hubble
constant and the gas mass fraction of galaxy clusters. Moreover, interferometer arrays would be
used to measure the CMB distortions at small angular scales.

SZ surveys would be coming of age in the next few years, with the launch of satellite missions
such as MAP and Planck and also dedicated ground based observational facilities like AmiBA. With

good sensitivity, clusters could be selected without orientation-bias, and statistical interpretation



8.2. Future prospects 167

of SZE data for garnering information on specific cluster properties and cosmological parameters
would become feasible. For example, it will possible to reduce the uncertainties in estimation of H,
coming due to non-sphericity of the clusters. Also, it will possible to constrain Q, by studying the
integrated (and redshift dependent) number densities of clusters detected through SZE. Finally,
cross-correlating CMB maps with X-ray aid weak lensing maps would help to map the luminous
matter distribution, along with its bias, in the universe. Fo;' targeted cluster studies, a cross-
correlation of SZ and X-Ray observations would give us knowledge of the intra-cluster gas and its

temperature distribution.

In this thesis, we have not dealt at all with polarization of the CMB due to scattering of the
electrons causing the secondary anisotropies (Audit & Simmons, 1998; Sazonov & Sunyaev, 1999).
Polarization is generated through Thomson scattering of quadrupole anisotropies. For clusters of
galaxies, the polarization is proportional to the square of the transverse velocity of the clusters.
Hence, it is weaker than KSZE. It has been shown (Audit & Simmons, 1998) that polarization has
a strong frequency dependence and so for some clusters, at least, it should be detectable. This
measurement, along with that of KSZE, would then give us the vectorial velocity of the cluster.
Other than clusters, quasars outflows have also been argued to give rise to polarization signal
(Natarajan & Sigurdsson, 1999). Along with temperature anisotropies, polarization studies would

also provide an important probe of secondary CMB distortions.

Finally, before we end, we mention that in addition to the sources that we have studied in
this thesis, there are several other possible astrophysical objects and/or systems which may, in
principle, contribute to CMB anisotropies through SZE. A partial list includes SZ distortions from
quasar outflows or from quasar ionized bubbles; from Lyman-« forests; from proto-galactic outflows
etc. Other related sources of secondary CMB distortions would be from Reese-Sciama effect from
transverse motions of clusters of galaxies; from the so called Vishniac effect aud from gravitational
lensing of secondary anisotropies. Study of the angular power spectra and and higher order statistics
(like skewness etc) of the CMB anisotropy due to this ‘zoo’ of sources would give us new handles on

the physics of astroplysical objects and would provide added constraints on cosmological models.

Thus, as far as the subject of secondary CMB anisotropies is concerned, the future looks exciting

indeed.
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“ The Moving Finger writes; and, having writ
Moves on: nor all the Piety nor Wit
Shall lure it back to cancel half a line,

Nor all thy Tears wash out a Word of it.

Ah, but my Computations, People say,
Reduced the Year to better Reckoning? - Nay,
"Twas only striking from the Calendar
Unborn Tomorrow, and dead Yesterday”

Rubdiy4at of Omar Khayyam

TAMAM SHUD
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