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ABSTRACT

This Thesis presents the results of analytical as well as numerical investigations
of radiation-plasma interaction instabilities in astrophysical plasmas. It consists of
two introductory chapters, four main chapters and one conclusion chapter. The
introductory Chapter 1 provides an introduction to astrophysical situations rich
with the possibilities of radiation—plasma instabilities. The Chapter 2 describes the
parametric plasma instabilities along with the derivation of the general dispersion

relation.

The remaining four chapters are concerned with the specific cases of parametric
instabilities. Each chapter begins with an introduction, derivation of analytical
results followed by numerical results (Figures). The effect of various parameters
such as density and temperature of plasma, luminosity, bandwidth, polarization of
radiation on plasma instabilities have been studied in detail. The results which are
presented in the graphical form and tables are analyzed and discussed in detail. A
brief conclusion at the end of each chapter sums up the results. The books and
original papers referred to in the text of the Thesis are enlisted alphabetically at
the end of each chapter. Although various symbols and abbreviations are defined
as and when they occur, for easy reference the list of more often used symbols and

abbreviations are listed at the end of the Thesis.

Chapter 3 explains the possible role that the stimulated Raman and Compton
scattering play in the continuum emission of a quasar. There are three ways in

which an electromagnetic wave can undergo scattering in a plasma: (i) when the

viii



scattering of radiation occurs by a single electron, it is called Compton scattering;
(ii) if it occurs by a longitudinal electron plasma mode, it is called stimulated Raman
scattering, and (iii) if it occurs by a highly damped electron plasma mode, it is called
stimulated Compton scattering. The non-thermal continuum of quasars is believed
to be produced through the combined action of synchrotron and inverse Compton
processes, which are essentially single-particle processes. Here, we investigate the
role of stimulated Raman scattering and stimulated Compton scattering in the
generation of continuum radiation from these compact objects. It is shown as an
example that the complete spectrum of 3C 273 can be reproduced by suitably
combining stimulated Compton scattering and stimulated Raman scattering. The
differential contributions of these stimulated scattering processes under different

values of the plasma parameters arc also calculated.

In Chapter 4, the cohcrent plasma process such as parametric decay instability
has been applied to a homogencous and unmagnetized plasma. These instabilities
cause anomalous absorption of intense clectromagnetic radiation under specific con-
ditions of energy and momentum conservation and thus cause anomalous heating
of the plasma. The maximum plasma temperatures reached are functions of lu-
minosity of the radio radiation and plasma parameters. It is believed that these
processes may be taking place in many astrophysical objects. Here, the conditions
in the sources 3C 273, 3C 48 and Crab Nebula are shown to be conducive to the
excitation of parametric decay instability. These processes also contribute towards
the absorption of 21-cm radiation, which is otherwise mostly attributed to neutral

hydrogen regions.
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In Chapter 5, the change in polarization of an electromagnetic wave due to
stimulated Raman scattering in a plasma is discussed. In this process an electro-
magnetic wave undergoes coherent scattering off an electron plasma wave. It is
found that some of the observed polarization properties such as the rapid temporal
variations, sense reversal; rotation of the plane of polarization and change of nature
of polarization in the case of pulsars and quasars, could be accounted for through
stimulated Raman scattering.

Chapter 6 deals with the modulational instability of a large—amplitude, electro-
magnetic wave in an electron-positron plasma. The modulational instability excites
due to the effect of relativistic mass variation of the plasma particles, harmonic gen-
eration, and the non-resonant, finite frequency electrostatic density perturbations,
all caused by the large -amplitude radiation field. The radiation from many strong
sources such as quasars and pulsars, has been obscrved to vary over a host of
time-scales. It is possible that extremely rapid variations in the non-thermal con-
tinuum of quasars as well as in the non-thermal radio radiation from pulsars can
be accounted for by the modulational instabilitics to which the radiation may be
subjected during its propagation out of the emission region.

In Chapter 7, we conclude that coherent plasma processes must be included in
the study of generation, absorption, polarization and modulation of electromagnetic

radiation in high—-energy sources such as quasars and pulsars.
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Chapter 1

INTRODUCTION

1.1 ASTROPHYSICAL PLASMAS

It is generally believed that the Universe is a plasma. Even before the invention
of the concept of a plasma, astrophysicists studied its properties. The essential
difference between a plasma and a normal gas lies in the fact that it consists of
ions and clectrons along with the ncutral atoms. It is important to note that
due to the long range of the Coulomb forces, the mobility of the light electrons,
and the existence of several thermal equilibration times, collective properties such
as electromagnetic and electrostatic oscillations or waves and instabilities form an
integral part of the plasma phenomena.

One of the main problems of astrophysics is the analysis of the radiation of
celestial objects in the widest sense of the word.  Astrophysical objects such as
stars, galaxics, quasars, pulsars, so on and so forth, can only be studied through
the analysis and interpretation of their radiation over the entire electromagnetic
spectrum. Some information is also obtained from corpuscular radiation (cosmic
rays and neutrinos).

In order to understand the workings of cclestial objects we must know the
radiation mechanisms as well as the state of the emitting system. The detection
of sporadic radio—emission from the Sun and particularly in sixties, the discovery
of powerful radio-sources (radio—galaxies, quasars, pulsars) brought out the nced
for efficient radiation mechanisms through which different forms of energy could be
converted into electromagnetic waves. Morcover, it became clear that the accelera-
tion of charged particles under cosmic conditions is not a rare phenomenon, but an

often encountered process. Here, one requires everything that plasma physics can



offer and more. Especially important are the processes associated with collisionless
plasmas in which the electron mean free path is much longer than the characteristic
dimensions of the collective phenomena. Such a plasma exhibits its wave nature
in an all-encompassing way. The large brightness temperatures in many cosmic
objects (especially in the radio—band) are a pointer to the non-thermal radiation
processes. Thus, the pursuit of astrophysics through plasma physics promises to be
a highly rewarding experience.

The dimensions of astrophysical plasma systems are huge, and their optical
thickness can be large. This means that an appreciable part of the energy con-
tained in the plasma can change into electromagnetic radiation of relatively high-
frequencies. In a cosmic plasma high-frequency electromagnetic waves can excite
an intensive plasma turbulence or, on the contrary, lead to stronger dissipation of
the turbulence. The first difference between plasma astrophysics and laboratory
plasma physics lies thus in the appreciably stronger interaction with the radia-
tion. The cosmic plasma can be considered to be practically homogeneous: the
characteristic lengths over which its parameters change are generally larger than
the characteristic lengths of the collective processes. The availability of high spa-
tial and temporal resolution observations has however necessitated the inclusion of
inhomogeneities, as for example, in the solar plasmas.

A plasma, by nature is hyperactive. More often than not, it responds violently
to external stimuli in an attempt to attain cquilibrium. An important feature of
electromagnetic wave propagation in an istotropic and unmagnetized plasma, is a
cutoff (dielectric function € vanishes) at the plasma frequency; an electromagnetic
wave with frequency less than the plasma frequency cannot propagate in the plasma.
Since plasma frequency is proportional to the square root of the charged particles
density, the density fluctuations in interstellar space create local variations in the

velocity and direction of propagation of radio wave propagation. The frequency of
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the electromagnetic wave for which its phase velocity vanishes, is called as resonance
frequency. The electromagnetic waves at resonance frequency are strongly absorbed

in a plasma.

When a plasma is subjected to the electric field of an high-intensity electromag-
netic wave, it exhibits a variety of non-linear processes which modify the plasma
parameters as well as those of the electromagnetic waves. When the size of the
plasma region disturbed by the electromagnetic wave is much larger than the mean
free path of an clectron, the electron can gain enough energy before suffering colli-
sions with other ions and neutrals. Further the large mass difference between elec-
tron and other particles hinder the transfer of energy from electrons to the heavy
particles. Thus the electric field of the electromagnetic wave heats the electrons
preferentially, as a result of which the dielectric function € and the conductivity ¢
of the plasma become functions of the clectromagnetic wave ficld and a non-linear
relation between the clectric ficld E and the current density J = U(E)E is set up.
In the opposite case, when the size of the disturbed plasma region is much smaller
than the mean free path of an electron, the inhomogeneous electric field of the
electromagnetic wave exerts a pressure on the clectrons, creating compressions and
rarefactions. Thus, the diclectric function begins to depend on the électromagnetic
wave field and the plasma again becomes a non-linear medium. Summarizing, a
collisional plasma becomes non-linear mainly through the dependence of electron
temperature on the electromagnetic wave field and a collisionless plasma becomes
non-linear mainly through the dependence of electron density on the electromag-
netic wave field. In such a non-lincar medium an electromagnetic wave undergoces
anomalous absorption, anomalous scattering, modulation and polarization change.
In this thesis, the role of these non-lincar plasma processes in the functioning of

quasars and pulsars is investigated.



1.2 QUASARS

The obscrvations made by Seyfert (1943) and Allen et al. (1962) showed the
cxistence of powerful encrgy sources in the nuclei of galaxies and posed several
theorctical problems. The magnitude of the problem became apparent during 1962
and 1963 with the identification of a new class of astronomical objects, the quasi-
stellar objects (QSOs). The quasar 3C 273 being one of these objects, turned out to
be several orders of magnitude brighter than the brightest known field and cluster
galaxies, yet with dimensions comparable to the size of a galactic nucleus rather
than the galaxy itsclf.

Quasars and active galactic nuclei are the most luminous objects in the uni-
verse. It is generally believed that they consist of a central engine, perhaps a su-
permassive (A = 108-10%A/,) black hole powered by the accreting matter. Fig. 1.1
shows a schematic representation of a quasar with Schwarzschild radius IR, =
2GM/c? = 2.95 x 10130 g cm, where M = Mg x 1087 .

The truly remarkable charecter of 3C 273 became apparent when Schmidt
(1963) identified a series of broad emission features with lines of the Balmer series
and a line of Mgll but at a redshift z = 0.168. The total energy output of 3C 273
at cosmological redshift z = 0.168 is about 10" erg scc™!. However, the angular size
of the object in both the optical and radio regions was estimated to be not more
than 0.5 arcsec, corresponding to a lincar size of not more than 1 kpe, (1 pc =
3.086 x 10'® cm).

The identification of 3C 273 had led to the recognition of a completely new
type of an extragalactic object. Its optical cnergy output was some 100 times
that of a giant galaxy and originated in a region less than 1 pc. The discovery of
light variations on a time scale of order of 1 year (Smith & Hoffleit 1963; Sandage

1964), led to the conclusion that the source of radiation was confined to a region
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of size less than 1 pc. Later with the observations of 3C 48, 3C 196 and 3C 286, it
was concluded that these objects were extragalactic, if the observed redshifts were

cosmological in origin.

CLOUDS 10" em
BROAD
LINE 18
REGION - 107 em
L10 om
NONTHERMA 10" ¢m
CONTINUUM s
EMISSION
-10" cm

BLACK HOLE

Fig. 1.1 Schematic representation of a quasar.

Alternative explanations for the redshifts, given by Greenstein and Schmidt
(1964) include: (1) Doppler effects from a high-velocity star, and (2) gravitational
redshift at the surface of a massive object. But both the suggestions were discarded
early. The cosmological interpretation of the QSO redshifts was later strongly
challenged by Terrel (1964), Hoyle and Burbidge (1966), Arp (1966), and Burbidge
et al. (1971). However, the most widely accepted interpretation is that the redshifts

of QSO’s are due to the expanding Universe. The QSO phenomenon is common
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to other types of astronomical objects such as BL Lacs and Seyfert galaxies. The

defining characteristics of QSO’s are (Wiita 1985):

(a) stellar appearance,

(b) strong ultraviolet emission, relative to main—sequence stars, arising as result of
non-thermal continuum by synchrotron and Compton processes, with a spec-
trum of the form F'(v) « v™%, where a = 1,

(c) rapidly varying emission,

(d) an emission-linc spectrum with broad permitted lines (more than 20 A in the
high-redshift QSOs) and in some cases absorption features,

(e) if we believe large redshifts are due to the expansion of the Universe then the
absolute magnitudes for the QSOs range from about M, = —23 to —30. This
shows that QSO’s are significantly brighter than the brightest cluster galaxies
(=24 < M, < —22).

Onc can construct a model, consisting of a non-thermal source of small angular
size in the nucleus, to explain main features and relationships among QSOs, BL
Lacs and Seyfert galaxies. Then, the propertics of QSOs, Seyferts and BL Lacs are
consistent with the view that common physical processes contribute to the total
non-thermal emission.

The study of spectrum of quasars and active galactic nuclei with broad emis-
sion-line features provide most valuable information on the physical processes going
on around the central engine. The information on temperature, density and abun-
dances of the emitting gas can be obtained by measuring relative strengths and
widths of the lines. The shape of the line profile reflects the dynamics of the gas
whereas the temporal variations indicate the physical dimensions of the emitting
region. The photolonization models, in which clouds or filaments illuminated by a

central source of ionizing radiation, have been partly successful in accounting for
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the observed strengths of the emission lines (Davidson 1972). The emission lines
are commonly separated into “narrow lines” and “broad lines”, whose full widths at

1

half intensities correspond to gas speeds of a few hundred to 1000 km sec™ and of a

1

few thousands to 20,000 km scc™", respectively. The emission regions of these lines

have varied dimensions and densities. The narrow-line emitting region (NLR) has

3

dimensions of a few hundred to 1000 pc and an clectron density of 10* to 108 cm™3,

while the broad-line emitting region (BLR) has dimensions of 0.01 to 1 pc and an
clectron density of at least 10! cm™3. The BLR lics close to the central region of an
active galactic nuclei (AGN) and thercfore its study has a tremendous diagnostic

potential.

1.2.1 Jets, beams and non-thermal continuum

Quasars and active galactic nuclei are usually associated with jets which can
reach distances of the order of megaparsecs. The basic idea underlying jet models
is that a continuous collimated outflow transports energy from the nucleus to the
radio hot spot (Begalman ct al. 1984). It is believed that the production and
initial collimation of the jets occur on much smaller scales (parsccs) near the central
engine. The jets are thought to originate as rclativistic particle beams that tap the
rotational kinetic encrgy of the black hole or the accretion disk, and are accelerated
by electromagnetic or hydrodynamic mechanisms (e.g., Lovelace 1976; Blandford

1976; Lovelace, Wang and Sulknen 1987). The radiative deceleration model (Konigl
| 1991) indicates the transformation of ultrarclativistic beams into relativistic jets in
extragalactic radio sources. Camenzind (1986 1989) believe that these jets may
be produced due to the magnetic sling effect in a rapidly rotating magnetosphere.

The collimation of the outflow can be provided by the pinching effect of the toroidal
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magnetic field. This would resolve the puzzle that some jets are not freely expanding
and an agent is neccessary to confine them. Jets carry currents which enhance their

stability (Benford 1978).

Collective plasma processes play a major role in the energy dissipation of jets
at the hot spots of extragalactic radio sources (Lesch, Appl and Camenzind 1989).
The polarization measurements by Roser and Meisenheimer (1987) have proved
beyond doubt that the hot spot emission is non-thermal. It is generally agreed that

jets provide links between the central activity and the hot spots.

On smaller scales, closer to the active nucleus, beams of accelerated particles
are supposed to be streaming through the ambicent plasma. The ambient medium
is basically a plasma made of protons and clectrons. There may be three types
of beams with different constituents: (i) electrons and positrons, (ii) electrons and
protons, or (iii) a mixture of clectrons, positrons and protons. Depending upon the
physical conditions and encrgy density close to the central engine, other particles
such as neutrons, pions or anti-protons could be present at the very beginning of
the beams but they may not propagating out to large distances. These beams
must be relativistic, at least in some objects, as required by the standard model
to account for the observed superluminal motions. Recently, the models based
upon the conversion of relativistic beam energy into radiation (Baker et al. 1988;
Weatherall and Benford 1991) have received much interest. They more or less
explain the observed frequency distribution of non-thermal radiation from cosmic
sources (for review sce Schlickeiser 1986). The most probable processes for the
relativistic electron beams to lose cnergy are: (i) inverse Compton scattering of
ambient photon gas, (ii) synchrotron radiation, (iii) non-thermal bremsstrahlung

emission (Weatherall and Benford 1991) and (iv) ionization.
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The role of stimulated Compton and Raman scattering of soft pho-
tons and generation of continuum emission from active galactic nuclei, is
discussed in Chapter 3. There are three ways in which an electromagnetic wave
can undergo scattering in a plasma: (i) when the scattering of radiation occurs by
a single electron, it is called Compton scattering; (ii) if it occurs by a longitudinal
electron plasma mode, it is called stimulated Raman scattering, and (iii) if it oc-
curs by a highly damped electron plasma mode, it is called stimulated Compton

scattering.

1.2.2 Absorption and heating in the emission—line regions

[t has been generally belicved that the dominant heating mechanism in the
quasar emission-line regions is the absorption of ionizing ultra-violet radiation.
Krolik, McKee & Tarter (1978) have demonstrated that in quasars with compact
radio sources, the radio frequency (RF) heating can dominate the ultra~violet heat-
ing. The RF heating produces a hot corona around each emission-line cloud in the
emission-line region. Under extreme conditions, the RF heating may be so strong
that cooling by the gas is unable to maintain the thermal balance. Such heating
may explain the absence of broad emission lines in BL Lac objects. The most plau-
sible explanation for the absence of broad emission lines is the absence of gas, but
this leaves the question of why the gas is missing. For the lack of observable gas
in BL Lacs, Krolik and McKce (1978) have proposed that the RF heating is so
strong in BL Lac objects that the emission-line gas is ablated and thus heated to
high-temperatures. Davidson and Netzer (1979) have reviewed some of the heat-
ing processes proposed by scveral workers, which are (1) ionization by ultra-violet
photons, (2) excitation and ionization encrgetic by non-thermal particles, (3) shock

waves dissipation, and (4) free—free (bremsstrahlung) absorption of radio waves.
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The coherent plasma process such as parametric decay instability
(see Chapter 4) can cause anomalous absorption of strong radio waves
and thus lead to heating of the plasma. We believe that this process
may be taking place in quasars. It can also contribute to the formation

of 21-cm absorption line (Krishan 1988).

1.2.3 Polarization

By assuming a synchrotron origin for the radiation in compact extragalactic
radio sources, source models have been readily constructed which explain both the
spectral and temporal behavior of intensity (e.g., van der Laan 1966; Blandford
& Konigl 1979), but polarization does not lend itself to such a straightforward
explanation. The problems arisc mainly from the observed value of the ratio of
circular to lincar polarization and the often obscrved large depolarization factor.
It is important to determine whether this depolarization is a geometric effect or
the onc that results from radiation-plasma interactions. There have only been very
preliminary attempts to explain depolarization and microvariability using plasma
mechanisms.

The change of polarization of an clectromagnetic wave due to its propagation
in a magnetized plasma as well as due to an electron scattering is well known. In
a magnetized plasma, the Faraday rotation is recognized to be the most common
cause of the rotation of the planc of polarization of an electromagnetic wave. In a
plasma, the spectral components of radiation of finite band—width travel different
path lengths and lead to the depolarization. Any change in the direction of the
magnetic field also manifests itsclf through polarization variation. The strong linear
polarization obscrved in the radio as well as in the optical regions of the spectrum in

BL Lacs is believed to originate in the source itself. The fact that optically violently
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variables and NGC 1275 show similar polarization characteristics, suggest that BL
Lacs, quasars and Seyfert galaxies have a similar source of energy. If so, then the
lack of polarization in quasars and Seyfert galaxies can be due to depolarization
effects (Stockman 1978). The rotation of the electric vector has been observed in
core—jet structure of 3C 454.3 (Cotton et al. 1984) and is interpreted to be due to
the propagation of radiation in a medium of varying optical thickness.

It is shown in Chapter 5 that in strong radio radiation sources, the
rapid temporal variations, sense reversal, rotation of plane of polariza-
tion and change of nature of polarization can be accounted for through
stimulated Raman scattering. When an clliptically polarized electromagnetic
wave scatters off two clectron density fluctuations with a phase difference of r, the
scattered electromagnetic wave, will have polarization change, depending upon the
ratio of amplitudes of density fluctuations. The polarization changes through stimu-
lated Raman scattering may take place in accretion disks, emission line regions and
the intercloud medium of quasars and active galactic nuclei. A comparison between
stimulated Raman scattering and the well known process of the Faraday rotation
and situations in which stimulated Raman scattering dominates, is discussed in

Chapter 5.

1.2.4 Variability

Observations have revealed that many compact radio sources, in addition to
the usual long-term variability, posses an intrinsic variability with time—scales less
than a day. Heeschen et al. (1987) found, quite uncxpectedly, the variations of ~
1 day at a wavelength of 11 cm in several flat-spectrum sources. Observations of
intraday radio variability in compact radio sources and their probable explanations

are given by Quirrenbach (1990).
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In addition to usual long term variability, the short time (rapid) optical vari-
ability has been observed in several quasars and BL Lacs (Smith and Hoffleit 1963;
Angione 1969; Shen and Usher 1970; Eachus and Liller 1975; Liller and Liller 1975;
Miller 1975, 1977; Heeschen et al. 1987; Webb et al. 1988). Oke (1967) observed
0.25 magnitude change in a day for 3C 279. Bertaud et al. (1973) reported a varia-
tion for BL Lacertae of 1.3 magnitude in a day and of 0.7 magnitude in 74 minutes.
Racine (1970) detected an optical variability of 0.1 magnitude within a few hours
in BL objects.

In principle, several mechanisms can account for radio source variability. One
needs detailed information about spectral characteristics, time dependence and po-
larization behavior to separate intrinsic variability from that arising from propaga-
tion effects.

Gravitational microlensing is one of the such possible mechanisms, to explain
the observed variability. In the microlensing theory the observed time-scales are
related to the relative transverse velocity of cither the obscrver, the lens, or the

source by:

LMYV,
At—;(m—) 9% 10" cm.

To produce short time scales At < 1 day, by a deflector of mass M = Mg requires
transverse velocities v of the order ¢. Such velocities cannot be due to the deflector
but must be attributed to relativistic motions in the source. The lensing magnifies
variability but does not to produce.

The rapid variability of BL Lac object 0716471 has been assumed to be due to
a mechanism known as the refractive interstellar scintillation (Heeschen et al. 1987).
The arguments against this mechanism come from the wavelength dependence and
from the short time-scale of variations. It needs very small scatterers situated close

to the Sun (< 100 pc).
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Intrinsic variability secms to be the most plausible explanation for intraday
radio variability. The most dramatic challenge to present-day models of rapid vari-
ability is given by the extremecly high-brightness temperatures ~ 10!® K suggested
from the intraday variability. Coherent radiation mechanisms can explain the high-
brightness temperatures fairly casily (Benford 1984; Lesch 1991).

We believe a plasma process such as modulational instability may be
a potential mechanism for rapid variability in quasars and BL Lacs (see
Chapter 6). Low-frequency clectrostatic density perturbations are non-linearly
excited due to the interaction of a large amplitude electromagnetic wave with a
plasma. The superposition of low—frequency oscillation (electrostatic wave) over
an high-frequency wave (electromagnetic wave) produce a amplitude-modulated

electromagnctic wave.

1.3 PULSARS

Jocelyn Bell and Antony Hewish at Cambridge University discovered clock-
wise radio pulses and pulsars in the year 1967. Since then pulsars are being (e.g.,
Cocke, Disney and Taylor 1969; Kanbach ct al. 1980; Demianski and Proszynski
1983; Bignami and Caraveo 1988; Lyne, Pritchard and Smith 1988) to delineate the
duration, shape, spectrum and polarization of the pulses.

The radio emission is believed to occur from each magnetic pole of a pulsar,
with an angular width of the order of 10°. The magnetic axis and the line of sight
may be arbitrarily oriented with respect to the rotation axis of the pulsar. The
geometry of the pulsar polar cap emission is shown in the Fig. 1.2. The observer
sees radiation from the point P, which moves across the arc ST as the pulsar rotates.
The zero of the longitude ¢ starts at the meridian through the rotation axis, and

position angle 7 is measured with respect to the projected direction of the magnetic
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axis.

The radio pulse occurs during a small fraction of the period, corresponding to
between 5° and 20° of angular rotation, for most pulsars. Due to the rotation of
the pulsar, the beam of radiation sweeps across the line of sight of the observer
and it forms a pulse at each rotation, in analogy with the lighthouse. The high-
energy plasma particles moving along the curved magnetic field lines emit a beam
of radiation. DBecause of magunetic field, the source of radiation is rigidly attached
to the solid surface of the ncutron star. The cmission occurs at a radial distance
of about a few tens of neutron star radius (~ 10 km). High frequency radiation
is emitted at lower radius while lower frequency radiation at higher radius of the

beam.

4 Rotation axls

Magnetic axis

Qbserver
direclion

Fig. 1.2 The geometry of pulsar beams.
The intensities of the pulsar radio emission are extremely high and are observed
to fluctuate on several time scales. Therefore, the radio radiation cannot be due to

thermal emission or incoherent synchrotron emission. It is therefore concluded that

the sources of radio emission are coherent. Coherent emission is also implied by the
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high-intensity of the radio sources. For the Crab Pulsar the brightness temperature
estimated for the radio spectrum exceeds 10°°K. Pulsars have power—law spectra
F ~ v~ at radio frequencies. The spectral index o lies between about 1 and 3,
with a low energy cutoff and the flux density F is normally of the order of 1 Jansky,
(1 Jansky= 1072% erg cm™2 sec™!Hz1).

The individual radio pulses are often observed to be highly variable in intensity
as well as in polarization. However, the integrated pulse profile obtained by the

supecrimposition of some 103-10* recorded pulscs is stable and a unique characteristic

of cach pulsar.

The anomalous absorption of radio waves can take place in pulsars
also. In Chapter 4 we have shown that the rate of anomalous absorp-
tion of radio radiation in Crab Nebula is much higher than that due to
collisional absorption rate (Gangadhara and Krishan 1990).

Many pulsars have subpulses or quasi—periodic sequences of subpulses, called
as ‘periodic microstructures’. Mcasurements with time resolutions < 1 msec show
subpulse structure with characteristic widths of several percent of the period. But
for resolutions < 1lpsec the subpulses of some pulsars exhibit microstructure with
widths of the order of ~ 1073 P, where P is the period of a pulsar. This fine structure
is usually regarded as modulation of the radiation by the noise (Cordes 1983;
Lyne & Graham-Smith 1990). In Chapter 6, we discuss the modulational

instability of electromagnetic waves and the production of micropulses.

The radio emission from many pulsars shows linear and often circular or ellipti-
cal polarization. The integrated pulse profile may have a high-average polarization
and the position angle of the lincarly polarized component swings monotonically
through the integrated pulse by an angle up to 180°. In some cases (e.g., Vela, PSR
0833-45) essentially all the integrated profile is linearly polarized while in others
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a circular component is seen near the center of the pulse. The sense of polariza-
tion may remain same throughout the pulse or it may reverse (Manchester and
Taylor 1977). Roughly, about 20 percent of the integrated profile is circularly po-
larized. In Chapter 5, we discuss the change of polarization properties,
such as sense reversal, rotation of the polarization plane and degree, on
extremely short time scales due to the stimulated Raman scattering.
The general dispersion relation for parametric instabilities in a homogeneous
unmagnetized plasma is derived in Chapter 2. In appendix, we discuss the concepts
such as collision frequency, plasma waves, Landau damping and ponderomotive

force in a plasma medium.
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Chapter 2

THE PARAMETRIC INSTABILITY

2.1 INTRODUCTION

Parametric excitation has been recognized to be a very important non-linear
phenomenon in plasmas. By this mechanism, non-linear mode conversion takes
place: clectromagnetic waves can be converted into the electrostatic waves and vice
versa. These processes through absorption and scattering of electromagnetic and
clectrostatic waves facilitate heating and acceleration of the plasmas which then
become strong emitters of radiation.

Parametric excitation may be defined as an amplification of an amplitude of
oscillation due to a periodic modulation of a parameter that characterizes the os-
cillation. The first systematic investigation was made by Lord Rayleigh in 1883.
He studied a stretched string attached to a prong of a tuning fork vibrating in the
direction of the string. When the frequency of the tuning fork was twice the nat-
ural frequency of the string, vibration of the string was observed to be amplified.
This amplification was due to a periodic modulation of the frequency of the string
at twice its natural value. Here, the longitudinal vibration of the string induced
by the tuning fork modulates the string’s tension and hence the frequency of the
. transverse vibration at the tuning fork frequency. In general if the frequency of an
oscillator is modulated weakly with a period T, an amplification of the amplitude

of oscillator can take place only when one of the following conditions are satisfied:
QT = nm, (n=1,2,3,...) (2.1)

where  is the natural frequency of the oscillator.



Parametric excitation has a large variety of applications in physics, in technol-
ogy and even in everyday life. The phenomenon of parametric excitation may be
characterized with the following properties:

(1) Matching condition: Frequencies of the modulation (pump) and the excited
oscillations should satisfy a phase-matching condition, such as the one given
by equation (2.1).

(2) Threshold: amplification occurs only when the modulation amplitude exceeds
a certain critical value so that the growth rate of the wave is larger than its
damping rate.

(3) Frequency locking: A resonant amplification of the amplitudes occur only
when the frequencies of the excited modes are equal to their natural frequencies
or harmonics of natural frequencies. For example, when n=1 in equation (2.1)
amplification occurs at the frequency «/T", while for n=2 at 27 /T and zero.
Through paramectric instability two non-linearly excited waves (a signal and

an idler) are exponentially grow at the cost of energy of the modulating (pump)
wave due to 2 mode—coupling interaction. The three-wave interaction is a simple
example of a parametric instability. The following frequency and wave number
matching conditions have to be satisficd for the resonant coupling of the three
waves:

Wo = W; + Wy, k, =k + E,, (2.2)

where the subscripts o, 7 and s, respectively, denote the pump (Ea,wo), idler (]_c'i, w;)
and signal (Es, ws). Any non-linear medium can support such a three-wave inter-
action process. When the pump intensity exceeds a threshold value, determined
by the damping rates of the idler and the signal, an instability is sets in. In the
absence of the pump wave the idler andvthe signal in general, may exist as small

amplitude normal modcs of a plasma. If one of them is weakly damped and the
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other a highly damped mode or a quasi-mode, the three—wave interaction described
above is known as non-lincar Landau damping of the pump wave.

It is clear that paramectric excitation is an important mode-coupling mecha-
nism. Above threshold, the energy of the pump wave can be efficiently transferred
to the idler and signal waves. If these waves are plasma waves, i.e., those that are
localized inside the plasma and if the pump energy is supplied by some external de-
vices, then the mode—conversion results in a deposition of the external pump energy
into the plasma. If the excited plasma waves subsequently damp, their energy can
be converted to thermal energy of the particles. In this way, parametric excitation
can act as an cfficient mechanism to heat the plasmas.

From a practical point of view, it is important to know the physical processes
responsible for absorption and heating, and their efficiencies. One has to estimate
the saturation mechanism and the resulting saturation levels of the decay waves
(idler and signal) by mecans of a non-lincar treatment of parametric instability.
Spatial non-uniformity of the plasma, spectral cascade, particle trapping, and many

other effects can act as saturation mechanisms.

2.2 General formalism of parametric instability in a plasma

An unmagnetized plasma supports three types of natural modes, namely
(1) the electromagnetic wave (k,,w,) with the dispersion relation (see equation
2.19):

w? = wl, + k2, (2.3)
(2) the high—frequency electron plasma wave (k,,w,) with dispersion relation [see

section (A) in appendix]:

‘ 5 3.9
W= wje + ikivg (2.4)

and
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(3) the low-frequency ion plasma wave (E,-, w;) with dispersion relation [see section

(A) in appendix]:
1 }-—-1/2

wi= “’Pi{l MO

(2.5)

The parameters n;j, m;, Tj, wy; = (dan;e?/m;)Y?, v; = (2kpT;/m;)*? and
Apj = (kpT;j/4nn;e?)'/? are density, mass, temperature, plasma frequency (angu-
lar), thermal velocity and Debye length of 7™ species, where j = e for electrons and
¢ for ions. Here, kg is the Boltzmann constant.

Consider a large amplitude plane polarized electromagnetic pump wave
7 1 i(ko. F—wot) 4
E, = 3 (Eoe oTwetl g - cc) (2.6)

propagating in a homogencous plasma, where ce stands for the complex conjugate.
In the equilibrium, electrons oscillate with velocity @,(= eE,/m.w, < ¢) in the
incident clectric field E, and the ions form a stationary background. Imagine a
propagating density perturbation (,l:, w) associated with an eclectrostatic wave dis-
turbing this equilibrium. These clectron density fluctuations will be carried about
by the oscillating field E‘o and will lead to currents at E,, ilZ, w, X w. These currents
will generate mixed electromagnetic—clectrostatic side~band modes at l::o:}:E, w,tw.
The side-band modes, in turn, interact with the pump wave field pfoducing a pon-
deromotive bunching force ~ VE? [sce section (C) in appendix] which amplifies the
original density perturbation. Thus, there is a positive feedback system which will
lead to an instability of the original density perturbation and the side-band modes
(signal and idler) provided the rate of transfer of energy into them exceeds their
natural damping rates.

Consider a pair of Maxwell’s equations:

- 198
— = 2.7
VX E= PR (2.7)
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IBE

B=— 2.
V x J v (2.8)
Taking curl operator on both sides of equation (2.7) and substituting equation (2.8),
we find
. 47 8J 16°E
\Y% E)y=—-"%— - ———. .
x (V< B) ¢ ot ¢ ot? (2.9)

Using a standard vector identity, we find

. 10% 47r af
(V 258 E V(V. E) T 5 (2.10)
The current density J is defined as
J = —en.d, (2.11)

where 1 is the oscillatory velocity of clectrons in the electric field E. We obtain @

from the equation of motion of an clectron

ou e =
— =—-—0F 2.12
ot me (2.12)
where E = E’o + Ei with
5 _ 1 iR pFwil) o ,
E:._;. = E[Eic ey + CC] (2.13)

are the electric ficlds of the side-band modes, which are perturbations to the incident
radiation field EO, in a plasma.

Substituting E into equation (2.12), we get
E, E
ﬁ:ﬁo+ﬁi—_——if—(—"+—*). (2.14)
me\ W, Wi
Substituting equation (2.14) into equation (2.11), we get
o > - . 82 Eo Ei
J=J,+Ji = Z;l—ne — + — (2.15)
€

Wo Wi

24



Let n, = n, +dn, be the density of the electron plasma where én, = 6n exp{i(E.F—
wt)} is the perturbation. Then retaining terms only upto the first order (i.e., ne-

glecting the terms containing (571,6177;), we obtain

By + i LBy +i—24n,, (2.16)

where w < w,. Now, substituting equation (2.16) into equation (2.10), we get

(CPhE — w? + W )Ey — o ko Bp) +(PkL — w2 + wl,) By — Phou(Fy By
w2 (2.17)

e -—
= ——6n.E,.
Ny

From the zeroth order terms in equation (2.17), we find
(k2 — w2+l E, = Pk, (k.. E,). (2.18)

Since the incident wave is transverse, the right hand side of equation (2.18) is zero.

Therefore, we obtain

w? = er + k22, (2.19)

This is the dispersion relation for an electromagnetic wave propagating in a plasma
medium. Equation (2.19) shows that w,, is the minimum frequency for propagation
of an electromagnetic wave in a plasma i.e., k becomes imaginary for w, < wp,.
Hence the condition wpe = w, defines the maximum plasma density in which an
electromagnetic wave of frequency w, can penetrate.

Now, by considering the first order terms in equation (2.17), we get

- 97 7 A wQC —
Di:Ei —C }\::}:(kiEi) = -t 6716E0, (2.20)

72/0

where Dy = kic? —wj + k.
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To find E. we have to invert cquation (2.20). Taking scalar product on both

sides of equation (2.20) with Ei, we obtain

2 R
g, - e (i)

; on,. 2.21
Mo (wi _wf)c) e ( 2 )

Taking twice vector product on both sides of equation (2.20) with Ei, we get

2
Wpe 6N

K Ey — ks (ks By) = [y (ks B,) — k1E,). (2.22)

N, g

Substituting equation (2.21) into cquation (2.22), we have

— ‘ 5’11. kz E - E:}:(Eiﬁ ) }:i(k‘iE‘ )
E _ 2 € :t [ ' a _ i ‘ [+ i . .
£ T e - D, FLwL(1 — o Jod) (2.23)

To calculate the low—frequency clectron density perturbation 51%(13,(.0), pro-
duced by the beating of the side-band modes with the pump wave, it is most
convenient to introduce the ‘ponderomotive force or the non-linear Lorentz force’,

[sce section (C) in appendix] given by

—

I, = —~Vi,. (2.24)

The ponderomotive force depends quadratically on the amplitude and produces
a slowly varying longitudinal field, which leads to slow longitudinal motions and

modifics the plasma density. The ponderomotive potential (Drake et al. 1974) is

Pulit) = == <(R"t'§" O )2>w (2.25)

2m, W W Wy
S

62 - = - =
= (EO.E__ + EO.E+).

mew?

given by

The angular bracket <>w represents the w frequency component of an average over

the fast time scale w, > w; only linear terms in E. are retained. With the inclusion
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of the ponderomotive force, as a driving force, the Vlasov equation for the low

frequency response of electrons can then be written as
el
f = =0, (2.26)

e S (Ve - V).

where ¢ is the self-consistent scalar potential associated with the electrostatic waves

and f.(7,7,1) is the electron distribution function
Linearizing the equation (2.26) with fo(7,7,t) = fe, (V) + 8. (7, U, 1), we get
Ofeo

f = =0, (2.27)

a(gfe)+ V(5fe)+““(ev‘10 Vipeo) —=

The Fourier transformations of § f,, 1., and ¢ are given by

8 fu(k, Uw) = 5—/ féfe(r 7,t)e i(RF—t) B gy, (2.28)
Yeu(k,w) = 51— / [ oo (7, £)e™ ET0 7 dt, (2.29)
T
and v ©
go(E,w) = L/ [(p(r", t)e"i(’;';_“")dgr dt. (2.30)
2
The Fourier transformation of the cquation (2.27) gives
. k.9
Of(k,v,w) =—]e Dews z—. 2.31
$F.5) = lep = bl 2 (2.31)
The perturbation in the electron density is given by
B, T 12
b (k,w) = /7Lo5fed17= = [e — Yew]Xes (2.32)
—-0C
where -
L k.9
Xe (k, w) / 8{. di (2.33)
—00
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is the electron susceptibility function. For a Maxwellian plasma

feolv) = (52 T

therefore, we obtain

Xe(k’ w)

(}a,\1 BE [

m,

3/2 .
)" exp(~v?/v),

{4 — (w/kve)],

6

where Z (&) is the plasma dispersion function (Fried and Conte, 1961):

“a= \/_/(v—ﬁ)

Note that x, has the following asymptotic forms:

2

Xc(k,CU) =
(A,\, (1 +iVmEs),

7

Woe 3k V2
—F(+570) Himny s

exp[—w?/(kv.)?],

for w > kv,;

for w < kv,

To determine (7, t) self consistently we use Poisson equation,

V.E = dme(n; — ne).

Using E= -V, n; = n, + én; and n, = n, + én, we obtain

Vip =

—4me(bn; — 6ne).

Using Fourier transforming (cquation 2.30), equation (2.38) reduces to

p(k,w) =

4re

k?

[5711 6716] ,

where 571,(!3, w) is given by (similar to equation 2.32)

sny(k,w) =

.2
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[ ep — "‘/’W]Xu
e

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)



and

2 7. O fo
(R w) = 2t kB (2.41)
L k2 (w - I:'D') |

is the ion susceptibility function. For a Maxwellian plasma, we obtain

i by w) = 1 Te[

W
mf 1 + EZ((H/A'UZ)] (2.42)

Note that x; has the following asymptotic forms:

2
——E’%}(l + %%’*) +ig 3 i oxp[—w?/ (kvi)?), for w > ku;;
Xi(k,w) =
W} L1+ + /T ), for w < kuw;,
(2.43)

Substituting 571,3(5, w) from equation (2.32) and 671i(E,w) from equation (2.40) into
equation (2.39), we get

(p(k ) — Q/JC:JFXr (l _ :{:ii:)» (244)

where e(k, w) = 1+xe(k, w)+xi (F:,w) is the plasma. diclectric function. Substituting
equation (2.44) into equation (2.32), we get

1. k? 1 i € DX Xe 5 A 4
57le(k,L4J)=—' 2[ +X 'f‘('flel,/?rl )X]X (EO,E_+E0.E+). (245)

4rmnew]

Now, substituting £_ and E,, from equation (2.23) into equation (2.45), we obtain

14+ X+ X — 52 |E= < 5,7 |£-.5, 2 + YAk _
Xe[l + xi + (me/mi)xa] ED_  Rwl(l-wi/uwl) kKD,
li":+ 170|2 jl
kitdi(l pe/w-i-)

(2.46)
where v, = eE,/mew, is the quiver velocity of clectrons in the field E,.
The dispersion relation (2.46) describe the parametric instability, excited by a

large amplitude electromagnetic wave (Eo,wa) in a plasma. This dispersion relation
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describe the parametric coupling of a low frequency electrostatic mode at (E,w)
and two high frequency mixed electrostatic—electromagnetic side band modes at
(ko & k,w, & w). The kx x ¥, terms in equation (2.46) arise from the electromag-
netic components of the side-band modes and k..U, terms from the electrostatic
components. Note that equation (2.46) reduces to equation (I-20) (Liu and Kaw
1976) for m./m; =~ 0. This cquation is uscd to study the parametric phenomena in

astrophysical plasmas.

References

Drake, J. F., Kaw, P. K., Lee, Y. C., Schmidt, G., Liu, C. S. & Rosenbluth, M. V.,
1974, Phy. Fluids., 17, 778

Fried, D., & Conte, S. D., The Plasma Dispersion Function, (Academic Press,
New York, 1961)

Liu, C. S. & Kaw, P. K., 1976, Advances in plasma physics, eds. Simon, A. &
Thompson, B., 6, 83

Lord Rayleigh, 1883, Phil. Mag., 15, 229

30



Chapter 3

THE ROLE OF COMPTON AND RAMAN SCATTERING IN
THE QUASAR CONTINUUM

In this chapter, the possible role that stimulated Raman end Compton
scattering can play in the continuum emission of o quasar is explored. There
arc three ways in which an electromagnetic wave can undergo scattering in a
plasma: (1) when the scattering of radiation occurs by a single electron, it is
called Compton Scattering; (ii) if it occurs by a longitudinal electron plasma
mode, it is called stimulated Raman scattering (SRS); and (vii) if it occurs
by a highly daemped clectron plasma mode, it is called stimulated Compton
scattering (SCS). The nonthermal continuum of quasars is believed to be
produced through the combined action of synchrotron and inverse Compton
préccsscs, which are essentially single particle processes. As an example,
it 18 shown that the complete spectrum of 3C 273 can be reproduced by a
suttable combination of stimulated Compton scattering and sttmulated Raman
scattering processes. It is shown that the observed spectral breaks in the blue
region could.be due to the change of emission process from stimulated Raman
scattering and sttmulated Compton scattering. The differential contributions
of these stimulated scattering processecs for different values of the plasma

parameters are also calculated.



3.1 INTRODUCTION

One of the most challenging problems in the area of active galactic nuclei
(AGN) is the mechanism of continuum emission. In the broadest sense, the impor-
tant issues are (1) mechanisms responsible for the radiation, (2) the kinematics and
the spatial distribution of the continuum emitting regions, and (3) the connection
of the continuum emission to the central engine. A surprisingly large number of
plausible explanations for the origin of this continuum have involved incoherent ra-
diation mechanisms. The most common is synchrotron self-Compton emission from
nonthermal electrons, which seems to work rather well from the infrared (IR) to
ultraviolet (UV), particularly for blazars (e.g., Stein and O’Dell 1985; Stein 1988).
But the Comptonized, self-absorbed thermal cyclotron radiation from a mildly rel-
ativistic electron beam also appears to be able to fit that part of the spectrum
(e.g., Begelman 1988). The magnetized accretion disc of a massive black hole acts
as an electric dynamo producing two oppositely directed beams of ultrarelativis-
tic particles (Lovelace, 1976). The physics of relativistic jets on submilliarcsecond
scales (~ 10’ cm to 10! cm) is discussed by Rees (1984). He conc¢luded that the
power emerges mainly as directed Poynting flux, rather than primarily as particle
kinetic energy. Melia and Ko6nigl (1989) studied the radiative deceleration of ultra-
relativistic jets in AGN. The inverse Compton scattering of ambient radiation by a
cold relativistic jet in the case of blazars has been studied by Begelman and Sikora

(1987).

The generation (Blandford and Payne 1982; Wiita, Kapahi and Saikia 1982)

and stability of extremely sharp electron beams in the quasar environment has been
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discussed by Lesch, Schlickeiser and Crusius (1988). Baker, Borovsky, Benford and
Eilek (1988) have constructed a model of the inner portions of astrophysical jets in
which a relativistic electron beam is injected from the central engine into the jet
plasma. This beam drives electrostatic plasma wave turbulence, which leads to the
collective emission of electromagnetic waves. The coherent scattering of relativistic
electron beam from concentrations of electrostatic plasma waves (cavitons) produce

emission over extremely broad-band (Benford 1992).

The collective plasma processes have been shown to play significant role in
the absorption (Krishan 1987; Krishan 1988b; Beal 1990; Gangadhara and Kris-
han 1990) and spectral modification of the radiation through its interaction with
the plasma in the accretion disc and the emission-line region (Krishan 1988a). A
sequence of plasma processes, which account for the energy gain and loss of the
electron beam, has been discussed by Krishan (1983, 1985), and Krishan and Wiita
(1986, 1990). This Chapter, illustrates the scattering of the incident electromagnetic
wave (pump) off the electron plasma wave in the two regimes, namely stimulated
Raman scattering and stimulated Compton scattering, and estimate the contribu-
tion of these processes in the generation of the complete spectrum; from radio to
X-rays, in quasars. The special features, like the threshold of the pump, the growth
rate of the instability, and the angular and spectral distribution of scattered power,
are studied under various conditions of electron demsity and temperature. Using
power—law spatial variations of density, Lorentz factor, temperature, and the spec-
trum of the pump, one can reproduce the spectrum of 3C 273 (Gangadhara and
Krishan 1992). The inclusion of stimulated Raman scattering (SRS) and stimulated
Compton scattering (SCS) seems to be essential to account for spectral breaks in

the observed non-thermal continuum emission of quasars.
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3.2 STIMULATED RAMAN AND COMPTON SCATTERING AS

ENERGY LOSS MECHANISMS

Consider a standard model consisting of a black hole of mass M = 10%M,
surrounded by a relativistic plasma which extends 'to a few times Schwarzschild
radius R,, (Rs = 2GM/c*) and produces the nonthermal continuum (Wiita 1985).
The non-thermal polarized low—frequency electromagnetic wave (soft photon) is
considered as a pump which drives parametric instabilities. This soft photon field
may be identified with cyclotron or synchrotron radiation (Stein 1988, Krishan and
Wiita 1990). Our model consists of a relativistic electron beam which propagates
radially outwards and interacts with the soft photon field and produces radiation
at higher frequencies. The scattering of soft photons off the electron plasma wave,
the collective mode of the relativistic clectron beam, can be studied more easily
in the rest frame of the electrons, as is done in the study of the inverse Compton

scattering.

Consider a relativistic electron beam (REB) moving radially outward from a
central engine. Assume that, in the laboratory frame, the direction of propagation
of REB is in the positive z-axis, and there exists a randomly moving radiation field

in the path (see Fig. 3.1).

In the REB frame, electrons will be at rest and radiation field will get confined
to a cone of angular ?vidth ~ 1/, because of Lorentz transformation of angles, where
~ is the relativistic Lorentz factar. The radiation beam will be in the direction
of negative z' axis. This beamed radiation is intense and can excite stimulated
scattering instabilities in the electron beam plasma. Here, we assume that massive

ions form a neutralizing background.
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> r4
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« VNN )
« VWV
Beam frame

Fig. 3.1 Interaction of electromagnetic radiation with relativistic electron beam
in quasars.

3.2.1 Lorentz Transformations

Since it is much simpler to do the non-relativistic calculations in the beam
frame, we compute growth rates and the scattered flux in the beam frame and then
transfer these quantitics to the laboratory frame.

Consider a linearly polarized electromagnetic wave with electric field
-1 T \ q -
E; = §[E, exp{i(k; 7 — w;t) }é; + ccl, (3.1)

undergoes scattering from a relativistic electron beam moving in the z-direction, in

the laboratory frame, where cc stands for complex conjugate. We use primes on
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the quantities in the beam frame to distinguish them from the quantities (without
primes) in the laboratory frame. The invariance of the phase of an electromagnetic

wave gives:

~

B — ot = ki.F— wit, (3.2)

-

where time ¢’ and the components ¥ have the following Lorentz transformations:

r =, Yy =y, ¥ =~(z — ut), "= 7(t - -Zgz). (3.3)

Here, vy and v = 1/4/1 —vi/c? are the relativistic electron beam velocity and

Lorentz factor, respectively. The equation (3.2) implies that:

kL = kg, k; = ky, (3.4)
Up
and
wi =y (w; — k,w). (3.6)

The Lorentz transformation of electric field E; and magnetic field B; to beam

frame is given by

Efu = E'i"a EZL =7 [Eii + % X éz] s (3-7)
— — — — 1-7 —
By=By, B =’Y[Bu - -CE X Ei] : (3.8)

where the parallel and perpendicular components of E; and B; refer to along and
perpendicular to z. Taking Ei" = 0, the angle a between the magnetic ficld of the

incident radiation B; and 2 can be transformed to the beam frame and is given by:

_ sin(a) — v/c
1 — (vp/c)sin(a)
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The tips of E’.il and B}I lie in a disc of angular width =~ 2/ perpendicular to the
beam velocity.

In addition to these quantities, we need the transformation of the plasma fre-
quency, Wy, the beam thermal speed v,, and the growth rate I.

Since a Lorentz contraction increases both the density and the effective mass
by a factor 7, the plasma frequency wye (= 4mn.e?/m.)/* (where ¢ is the electron
charge, n, the beam density and m, the electron mass) is frame-invariant.

The thermal speed v, in the beam frame can be expressed in terms of the

energy spread of the beam in the laboratory frame as follows. From the definition

1\ 12
vp = c(] — —) (3.10)

,Yl

The velocity spread év, in the laboratory frame can be expressed in terms of the

of v, we have

spread in 7,

by
b3 for > 1 (3.11)

Now, using the Lorentz transformation of velocity

Svp =~ c

!
v, + Up
= 3.12
1T v, [c?’ (312)
we obtain I,
v
bup = bv, = — 53
Y2(1 + v’ /c?) (3.13)
1 PR
~ :‘y‘é‘ 'Uz —_— :)72‘,
because v, = 0. Hence from equation (3.13), the thermal speed in the beam frame
is obtained:
)
v = c—L. (3.14)
B

We now consider the transformation of the growth rate I'. If a wave with slowly

varying amplitude A’(z’,t') grows in time and space at a temporal growth rate I'”
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in the beam frame, then A’ satisfies the following equation:

0A’ N ,OA
ot' Y oy

=T"4, (3.15)

where vy is the group velocity in the beam frame. Using the Lorentz transformation
we get from equation (3.15):

oA N vyt v 9A r

ot  1+wulfct 8z y(1+ v /c?)

A (3.16)

The amplitude A in the laboratory frame is linearly proportional to A’. Hence the

equation (3.16) gives the Lorentz transformation of the group velocity as well as

the growth rate, i.e.,

v+
_ g
I’ I’
r (3.18)

= 7(1 -l—'l)b'U;’/C‘Z) ~ .2_,;‘

for v, = v, = c.

3.2.2 Stimulated Compton or stimulated Raman scattering?

In the equilibrium, electrons oscillate with velocity v} in the pump field E{ As-
sume that in a plasma the propagating density perturbation (l:’ ,w') associated with
an electron plasma wave disturbs this equilibrium. This electron density perturba-
tion combined with the oscillatory velocity v; of the electrons produce currents at
(K + &, w! + w'). These currents will generate mixed electromagnetic-electrostatic
side-band modes at (k] & k', w} & o). The side-band modes, in turn, interact with
the pump wave field, producing a ponderomotive bunching force ~ VE? which
amplifies the original density perturbation. Thus, there is a positive feedback sys-
tem which leads to instability, called parametric instability, of the original density
perturbation and the side-band modes, provided the rate of transfer of energy into

them exceeds their natural damping rates.
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We consider a special case of parametric instability in which the high-frequency
side-band modes are predominantly electromagnetic, so we essentially have the
problem of stimulated scattering where a pump (electromagnetic) wave excites an
clectron plasma wave (E;, w’) and two new electromagnetic waves at shifted frequen-
cies: the stokes mode (k’,w!) and the anti-stokes mode (k.,,w’.,). The instability is

excited resonantly only when the following phase matching conditions are satisfied

wi = + W, (3.19)

=k +F, (3.20)

wit+w, =, (3.21)
and

K+ =k, (3.22)

Fig. 3.2 shows the frequency spectrum of the stimulated scattering of electro-

magnetic radiation into sideband modes.

Fig. 3.2 Frequency spectrum of stimulated scattering.

Each of the excited modes satisfies its own linear dispersion relation in the

plasma medium. The dispersion relation of the electron plasma wave in the beam

frame (a stationary plasma) is [Hasegawa 1978; sce section (A) in appendix |:

w?, [ 8f./8v
. : = 3.23
: k2 [-oo v = (wé + zo)/ké =0 : ( )

€
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where f.(v) is assumed to be the Maxwellian velocity distribution function of the
electrons in the beam frame and o is the small imaginary part of frequency of the

electrostatic perturbation. If we solve equation (3.23) for w’, we have
W, R Wy for kl\p, <« 0.4; (3.24)

w, & kv [l —io(1)] for kLN, >0.4, (3.25)

where ve = [(2/n]) [ v?fedv]'/? and N}, = (kpT./47n’e2)"/? are the thermal speed
and Debye length of the clectron plasma, respectively (kp = Boltzman constant).
Equation (3.25) indicates that if k], is larger than or equal to 0.4 then the electron
plasma mode loses its wave nature because of its large Landau damping.

The dispersion relation of an electromagnetic wave in a plasma is

w'? = Wpe” + K. (3.26)

The pump wave, the stokes mode and the anti-stokes mode satisfy the dispersion
relation (3.26) in the plasma medium. If the pump wave undergoes backscattering,
ie., k! = —k and for (w!, w,) > wp so that w] = klc, W) = klc, ki ~ k!, we get
k. ~ 2k,. Hence for a given quality of a beam, if w/ is increased by increasing
pump frequency w;, k, which may be initially smaller than 0.4/X}, becomes larger
than 0.4/X)p, at some value of w),. Now, we know that for k,\,_ > 0.4, the electron
plasma wave suffers strong Landau damping. Thus, there are two distinct scatter-
ing processes: (i) the scattering of an electromagnetic wave off a weakly damped
electron plasma wave known as the stimulated Raman scattering (see Fig. 3.3a) and
(ii) the scattering by a damped electron plasma wave known as stimulated Compton
scattering (see Fig. 3.3b). Hence, there exists a critical frequency of the scattered
wave above which the scattering occurs through stimulated Compton process and

below which through stimulated Raman process.
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STIMULATED RAMAN SCATTERING (kApe<<1)

(a()_k" ) MW
i O 3

(k. @)

E,=e”'E'cos(K,.T-0,t') €

-)
E,fis the electric field of a weakly damped electron plasma wave

STIMULATED COMPTON SCATTERING (K Ap,>1)

5 > o
” k\f‘s'w

(Ril’ (D;)

=l . Iy A
E,=e¢ 'E'cos(K,.T-0,t) €
_)

Eéis the electric field of a highly damped electron plasma wave

COMPTON SCATTERING (k Ape>>1)
(C) 2
— k\l‘s’gs)\/\/\m

(€

Sy p:)

Fig. 3.3 The scattering of an electromagnetic wave (Icf,wg) in a plasma medium.
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If w; > wp, or kK'Ap, > 1 then the electron plasma wave vanishes. In this
case, incident photon undergoes compton scattering from a relativistic electron
with energy €, and momentum g, (see Fig. 3.3c¢).

Consider the transformation of the scattered frequency (see equation 3.6)
wy = y(Wl + K, vp). (3.27)
For vy = c and w, = kjc, we get
ws X 2w, (3.28)

We define the critical frequency w, = w, of the scattered wave corresponding to
kLA = 0.4, where M, = ﬁve/wpc is the Debye length.

Using the expressions

ke = 2k, (3.29)
and
04w
k! = — -2 3.30
=5 (3.10)
we get
0.2w
kl = —=-E. 3.31
=L 1)
Therefore, we have
0.2 c
wh =ckl, = 7 o e (3.32)
Substituting equation (3.32) into equation (3.28), we get
Wer = 0.2\/2_71)30);,5, (3.33)
Now, using equation (3.14), we obtain
7 .
Wer = 0.2V 2 Wpe— (3.34)

&y
Thus the critical frequency depends on the relative spread &/« of the beam energy
observed in the laboratory frame, as well as the beam density n, and the Lorentz

factor «.
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3.2.3 The growth rates of the stimulated Raman and Compton scattering

The general plasma dispersion relation (see equation 2.46) to describe paramet-
ric instability excited in a plasma medium by a large amplitude coherent electro-
magnetic wave, has been derived in section (2.2). If the excited side-band modes are
predominantly electromagnetic then by treating ions as a stationary backgrounds,

it reduces to

l + ————r

- 2 - 2

" _*— IL;
(o w) K2D_ K2D, |’
where v} = ¢E!/m.w} is the quiver velocity of electrons, Wy = !+ o', K}, = K + k'

and

2702 12 2
DiZCki _(U:h +wpe

- L ' (3.36)
= K" 4+ 2k kP F 2wl — W
For the three-wave stimulated Raman scattering process, in equation (3.35) o' and

k' become the angular frequency and the wave vector of the clectron plasma wave

(w!, k). The clectron susceptibility function is given by (Fried and Conte, 1961):

1t 1 /
X(w) = i )2[ Z(w [Kv.)], (3.37)
where .
k' 3.38
20 K0, f/ T (3.38)
is the plasma dispersion function. The x.L(k', w') has the following asymptotic forms:
—;%(1 + gk—’z;;—’i) + i(T\){’—EP exp[~w?/(k'v.)?], forw > kv
Pt oo w De
Xe(k',w') =
(k’A’ (1 + i /T ) for o' < K.
(3.39)

If we use the dispersion relations for w} (which satisfies equation 3.26) and w/ (which
satisfies equation 3.23), the resonant conditions (3.19), (3.20), (3.21) and (3.22) can

be plotted in a (k,w) diagram. In Figs. 3.4 and 3.5, the arrows show the direction
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¢’ =180°

Fig. 3.4 Dispersion diagram of the electromagnetic wave and the plasma wave
in the beam frame. Arrows indicate the direction of decay of the incident wave

(w;, l—c‘:) into the stokes mode (w;, k;) and electron plasma meode (w;, ké) during

the backscattering of incident wave. Since (w;s,k"u) does not fall on the disper-

sion curve of the electromagnetic wave, the anti-stokes mode is pot excited in the
backscattering of the incident wawve.

in which energy and momentum transfer from one mode into the other. In the case
of backscattering, [¢, = cos™}(k} - k) = 180°], D_ ~ 0 and D, # 0, therefore,
Fig. 3.4 shows that the stokes mode is excited but the anti-stokes mode is not. But
in the case of right angle scattering (¢, = 90°) both D_ =~ 0 and D = 0 and hence
both the modes are excited as indicated by Fig. 3.5. The anti-stokes mode is not
excited for w' < (k- k. /w}) and it is excited only the k. is very small or if E/ is

nearly perpendicular to E{
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Fig. 3.5 Dispersion diagram showing the right angle scattering of incident wave

(wl{, k:) In this case, both stokes mode (wg, k;) and anti-stokes mode (w:ls, k;s)

are excited. The arrows on the solid lines show the decay of incident wave into

electron plasma mode (w,':, k.) and stokes mode (w;, k;) and the arrows on the

broken lines arrows show the production anti-stokes mode.

When o' > klv,, the electron plasma mode is well defined and weakly damped.
In this case using w' = w) + iI'sps and the asymptotic form of x;, we find from

equation (3.35), with D, # 0 (Drake et al. 1974; Liu and Kaw 1976),

2 1

1 1 ; 3
Dons = =5 (T4 +T%) & 5 [(TL = T)? + 475 sin® () cos’ (@)l (3.40)
C

This is the expression for the growth rate of the stimulated Raman scattering of an
electromagnetic wave in a plasma. Here we have introduced I', = (cu;Je Ju')2 /2 to

denote the collisional damping rate of the scattered electromagnetic wave (w;, k).

45



In equation (3.40), I'", is the damping rate of electron plasma mode,

1 3
—— ~] + (3.41)

pfzﬁ_ﬁa_exp[
T2 () (KXo 2 2

Here, we have introduced v/; = 4rnle! In A/m/?v? and lnA = 10 is the Coulomb
logarithm [see sections (A) and (D) in appendix], to denote the collisional damping
rate of electron plasma mode, where v, is the electron thermal velocity.

In equation (3.40), €, is the angle between icZ and Eé, and 7] the angle between
E! and E!. The growth rate is a maximum when the scattered wave has the same
polarization as the incident wave (¢, = 0).

The threshold condition for SRS can be obtained by setting I'; ;¢ = 0 in equa-
tion (3.40)

2
vl I
=) = 5ot . 3.42
(2) = oo (42
Using flux 8’ = c|E?|/87 and v; = ¢|E!|/m’w!, we get

c [ miwivi\?
S == N 3.43
87r( e ) (343)

Now, from equations (3.42) and (3.43), we obtain the threshold flux required for
the excitation of SRS

3 N2,y '
St,wzﬁ_(ﬁlc;) I S— (3.44)
8t \ e /) wye sin®(y) cos?(0.)

We now look for electron plasma modes with frequency w’ = kLv,. In this region, the
large argument expansion of electron susceptibility is not valid. Here k), > 0.4,
hence the electron plasma mode in this domain is heavily Landau damped. The
growth rate for SCS derived from equation (3.35) is given by:

v Xe
Csos = —2-;2— sin?(1)%) cosQ(HL)wQIm(W) -T. (3.45)

[

The threshold for SCS can be obtained by setting ['gog = 0.
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3.2.4 Numerical solution of equation (3.35)

When w, = wye < kiveor kLA, = 0.4, it is not possible to expand x/(«’, k') into
an asymptotic series. Therefore, using w’ = W’ + ¢I"', we numerically solve equation
(3.35) including all the damping effects. If we separate the real and imaginary
parts of equation (3.35) we get two coupled equations. To find w] and I, we solve
these two equations with the plasma dispersion function (see equation 3.38) and
its relation with the error function. We have to find the value of k. such that it
satisfies equations (3.19), (3.;'20), (3.21), (3.22), (3.23) and D_ = 0.

We assume a power-law spatial variation along the path of the beam for elec-
tron density 1., Lorentz factor «, pump frequency v} and pump flux f,;, to calculate
the growth rate I and the scattered flux f,, [equation (3.63)]. We find the following
power laws give a fairly good agreement with the observed spectrum in the case of
3C 273. The density of relativistic electron beam follows the power-law given by:

-3.2
Ne = Ng (—t) , (3.46)

To
where n, = 9.24 x 10" em™® and r, = 10R, for a black hole of mass 3 = 108} .
In the beam frame, an electron density is given by n’, = n,/v. The frequency and
flux of the soft photon field are assumed to follow the power laws gi’ven by:

v; = V(,(—T—)—l, (3.47)

To

where v, = 4 x 101° Hz and

fu = fo(2) - (3.48)

yo
where f, = 7.1 x 1072 erg cm™? sec™! Hz™!. Thus we study the scattering of this
low-frequency (v; = w;/27) wave with the beam electrons through the processes

sl

SRS and SCS. Here we find that even though w; < wp., w] > w,, for IZ: = —z.
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Therefore it suffices to take w; < w,, for v > 1 for the present calculations. The
radiation field which is isotropic in the laboratory frame becomes beamed in a
direction opposite to beam velocity in the beam frame. In the beam frame, the
component of flux vector of the pump drawn antiparallel (-2') to beam velocity
becomes much stronger than the perpendicular component. The tips of electric
field E{ and magnetic field E: lie in a ring of angular width ~ 1/y perpendicular
to the beam velocity. Any anisotropy in the radiation field in the laboratory frame
becomes magnified in the beam frame. The power—law for the Lorentz factor is

assumed to be:

Y= %(I_)"”, (3.49)

To
where v, = 3 x 10%. We observe that in the beam frame the plasma expands uni-
formly with the density proportional to 7~2. The spread in epergy of the beam
A~v/v is assumed to remain constant throughout its path. Also, we assume the

scattered radiation has the same polarization as the incident radiation (i) = 0).

3.2.5 Limiting gain and output power

The scattered radiation fields E’ and B! become large as the instability pro-
gresses. At the critical frequency (see equation 3.34) the Lorentz force ¥ xﬁi begins
to act on the electrons. The associated electric potential traps the beam electrons
which results in an increase in their thermal spread. The trapping potential ¢}, due

to the Lorentz force #; x ﬁ;, in the beam frame, is obtained from

09 — k) = 2ot (3.50)

so that

# =L “;"I B). (3.51)
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The effective thermal speed v¢// due to the trapping potential is
v/ = (2ed! ). (3.52)

The growth rate of the instability reaches a maximum (I = I'}) at the critical fre-
quency (equation 3.34) when k, = wy. /v’ (see Fig. 3.7) because for v¥/f > w,/k!
Landau damping begins to play a dominant role and the gain changes from Raman

to Compton. The scattered radiation magnetic field, at the critical frequency, is

found by substituting for v¢

1 2 w, /K. in equation (3.52) and using equation (3.51):
/ me\ C wge
B = ( ) . (3.53)

)
2e /v Kkl

The growth of the scattered radiation magnetic field B is governed by the equation:

dB!
dt’

=I'B., (3.54)
where I is the growth rate in the beam frame. Integrating equation (3.54), we get
B! (¢) = Crexp[l"?]. (3.55)

The flux vector of the scattered radiation in the beam frame is
§ = :—W(E; x B). (3.56)

At TV =TV, B, = B,,. We find the flux emitted during the characteristic time
t = 1/T, chosen as the saturation time for instability. Using cquation (3.55),

equation (3.56) can be written as:

§ = {;B;%n exp [2(-1% _ 1)]15;. (3.57)
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To transfer flux to the laboratory frame, first we resolve E" and B’ into components
E—"i I and B’ s parallel, and B .. and E " |, perpendicular to 2. Now, the flux in the

laboratory frame is given by:

2 ' ’ 2 /2
a _____C__ 2 Zj_l_;_ BsJ_ sl Esi_i_BsJ_ ~
Su = 47r’Y [(1 + c2) o + . Up (3.58)
= c El, w =, B, _,
S1= g (BZL +2) BB+ (f_;; +2)E } (359)

Taking E! , E! along #', the components of E/ and B! are given by:

on = —Bycos(4,)d, E, =Ed,

;u = '—B; Sin((ﬁ;)il, E," = 0,

3

(3.60)

where ¢ = cos™!(k/- k). Now, the components of the flux vector in the laboratory
frame are given by:
22

§ = ——7 2B, exp {2 (—;—1>}[{1+cos'2(¢;)}'; (1+ )cos(¢> ] 7, (3.61)

!

S, = —4—1B exp {Z(I];_;n )} [1 - %cos(qﬁg)] sin(¢,)7’. (3.62)

[f the pump field strength is increased it produces a spread in the beam velocity due
to radiation pressure, consequently it decreases the scattered power even though the
growth rate increases. The component §|| is rﬁuch stronger than S. because it is
proportional to 42, while the latter is proportional to 7. The scattered radiation
gains its energy from the relativistic electron beam. Consequently, the electron
beam gets decelerated due to the interaction with the pump. The emitted radiation
is beamed and confined to a cone of angular radius ~ 1/y. The scattered radiation

flux, at the observer, is given by:

2
fva = —;—(-@3) —S—, (3.63)



where S = [Sﬁ + S%)'/2, A@ the angular radius of the beamn, I, = rtan(A9)
the radius of the beam at a distance of r > 10R, from the central engine and
R, = 7.9 % 10® pc is the distance between quasar 3C 273 and the Earth. Using the
observed value of the flux of 3C 273 at 10'®Hz, we fix A8 = 0.0065°. We calculate
the scattered flux at other frequencies using the spatial variation of plasma param-
eters as discussed earlier. Thus R, increases as r increases for constant A8 at all

frequencies.

3.3 DISCUSSION

Figs. 3.4 and 3.5 show the conditions for SRS and SCS.

The quantity kA, is related to the frequency of the incident radiation via

phase matching conditions:

X, .
KX, ~ Z—IE)E‘ [Antv? — w2, (3.64)

In Fig. 3.6, we have plotted KA}, [equation (3.64)] as a function of the frequency
v; of the incident radiation. For plasma parameters indicated on the figure, we
find that in the range v; > wye/7, kLA, < 0.4. In this regime, clectrons show the
collective behavior and the excited electron mode is weakly damped, because its
phase velocity is much large‘r than the thermal velocity of the electrons. Here the
scattering of the electromagnetic radiation off the electron plasma mode occurs due
to SRS.

For v; > we/m, we find kX, > 0.4. Therefore the phase velocity of the
electron plasma mode becomes comparable to the thermal velocity of the electrons.
This leads to large Landau damping and hence the electrons lose their collective
behavior. In this case, scattering of the electromagnetic radiation occurs due to a

highly damped electron plasma mode and this process is called the SCS process.
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Fig. 3.6 The quantity k:: XD . versus the frequency of the incident wave v; for three
different densities. At k_\},, < 0.4, SRS occurs and at k], > 0.4, SCS occurs.
The constants are: Y, = 3 X 10°, 1, = 9.24 x 1073, v, =4 x 10 Hz.

There are three curves in Fig. 3.6 for three values of initial electron density: n,,
no/2 and 2n,. At higher density (2n,), since k,),, approaches 0.4 at higher v; (=
10>%Hz), SRS extends to higher frequencies, while at lower density (n,/2), kN),

approaches 0.4 at a lower v;(= 10%2Hz), and SRS occurs over a smaller range of

incident frequencies.

Fig. 3.7 shows the growth rate as a function of the frequency v, of the backscat-
teréd radiation for three different values of initial density: n,, n,/2 and 2n,, using
the power law variations of the parameters given on the figure. First, consider the
curve labelled with n,: in the range 1010 < v, < 1038 Hz, the growth rate of the
backscattered electromagnetic radiation increases with v, and reaches a maximum

at v, = 1013%Hz. As v, is further increased, electron plasma mode experiences a
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Fig. 3.7 Growth rate I' versus scattered wave frequency U, at three different
values of electron density in the laboratory frame. At maxima, the scattering
process changes from SRS to SCS. The constants are: Y, = 3 x 103, n, =
9.24x 10V em ™3, v, = 4x 10"°Hz and f, = 7.1 x 10" Perg cm™isec™ Hz L.

large Landau damping in the range v, > 10'*3° Hz and hence the growth rate de-
creases rapidly with v,. For v, > 10'"Hz, which occurs rather in the high—density
region, the collisional damping rate of the electron plasma mode becomes large,
resulting in a sharp decrease in the growth rate. The frequency of the scattered
radiation corresponding to the maximum growth rate, the critical frequency v,

acquires higher values with an increase in density. The scattered radiation of fre-

quency below v, is produced due to the SRS and above v, due to SCS.

Fig. 3.8 shows the variation of the growth rate as a function of the incident

radiation frequency v; for three values of the initial density: n,, n,/2 and 2n,. The

variation is found to be qualitatively similar to that shown for Fig. 3.7. However,
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Fig. 3.8 Growth rate [ versus incident wave frequency V; at three different values
of electron density in the laboratory frame. At maxima, the scattering process
changes from SRS to SCS. The constants are as in Fig. 3.7.

one must note that the bandwidth of the incident radiation (10%%°Hz < v; <

1019% Hz) is much narrower.

Fig. 3.9 shows the variation of the growth rate of the backscattered radiation
as a function its frequency v, for three different values of the energy spread Avy/y =
0.0035, 0.005 and 0.01. First consider the curve labeled with Avy/y = 0.005. In
the range 10'° < v, < 103%Hz, the growth rate increases with frequency due
to the increase of pump strength and weak damping, and reaches a maximum at
v, = 1013%Hz. In the range v, > 10!3%% Hz, the electron plasma mode experiences
a large Landau damping and hence the growth rate decreases. For v, > 10!"Hz, due
to the large electron density, the collision damping rate becomes large, consequently

the growth rate decreases rapidly.
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Fig. 3.9 Growth rate I' versus scattered wave frequency v, at three different
values of A’)’/ 7. At maxima, the scattering process changes from SRS to SCS.
The constants are as in Fig. 3.7.

At a lower value of Avy/~ (=0.0035), the Landau damping begins to act at a
higher frequency, therefore the growth rate peaks at a higher frequency. On the
other hand, if A/~ is large (=0.01), then Landau damping begins to act at a lower
frequency and hence the growth rate peaks at a lower frequency. Hence the critical
frequency v, shifts to a higher frequency when A~y/~ is small. Since the collision
frequency decreases with the increase of A~/v, the growth rate becomes non-zero
even up to much higher frequency, i.e., up to v, > 10'®Hz. Note that the bandwidth

(10%%Hz < v; < 10'%°Hz) of the incident radiation is much narrower.

Fig. 3.10 shows the growth rate as a function of scattering angle ¢, at four
different frequencies: v, = 10'2, 10, 10'® and 10'"Hz. Here ¢, is the angle between
E,- and E,,. The instability is excited in the range 10° < ¢} < 180°, but not in the

range 0° < ¢, < 10° because in the latter range k. becomes imaginary for the
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Fig. 3.10 The angular dependence of the growth rate [* at four values of scattered
radiation frequency v, in the laboratory frame. The angle ¢, is the angle between
k; and k,. The constants are as in Fig. 3.7.

plasma parameters given on figure. Due to the Lorentz transformation of ¢ given
by:
cos(d)) + wp/c
cos(py) = (%5) /’ ’
1+ (v/c) cos(é,)

b, in the laboratory frame, is confined to a narrow angle about the beam axis. The

(3.65)

backscattering, (4, = 180°) corresponds to 6, =0, and the growth rate becomes
maximum, (sce equation 3.40). For ¢, < 180°, &, increases and hence the growth
decreases. At v, = 10"Hz, which is close to the critical frequency, the growth
rate peaks at ¢, = 179.2° and k,\},, approaches 0.4. The growth rate peaks for
backscattering at all frequencies except when v, = 101Hz. The strange behavior of
the growth rate at v, = 10'*Hz reflects the transition in the scattering process.

In Fig. 3.11, the theoretical spectra of the backscattered and the incident radia-

tions are plotted (continuous curves). For comparison we have also shown observed
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Fig. 3.11 The spectrum of the quasar 3C 273. The solid lines represent the
calculated spectrum and the spectrum of the pump wave. The observed points,

o (February, 1984) and /A (February, 1986) by Courvoisier et al. (1987), are also
plotted. The constants are as in Fig. 3.7.

points (open circles represent spectrum of 3C 273, when flare activity was occurring
during 1984 February and open triangles represent its normal spectrum observed
during 1986 February) from the quasi-simultancous multifrequency observations of
Courvoisier et al. (1987). At the critical frequency v, = 10138 Hz, there is a break
in the spectrum due to the change of scattering process from SRS to SCS. The SRS
process contributes in the lower frequency part of the spectrum (v, < 10'3%)Hg,
while SCS contributes in the higher encrgy part. The slope of the spectrum in
the SRS region is —0.8 and in the SCS region it is —0.7. The hard X-ray part
of the spectrum is stecp, due to collisional damping of electron plasma wave and
decreasing growth rate, and the slope of this part is —1.5. The bump in the spectrum

is produced at the transition (k.),, = 0.4) between the SRS and SCS regions.
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The dependence of the spectrum on the electron beam density is shown in
Fig. 3.12, where we have chosen three different values for initial density: n,, 2n, and
n,/2. The region of higher density and lower scattered frequency, corresponds to a
weakly damped electron plasma mode and a higher scattered flux f,,. The scattered
radiation gains its energy from electrons of the relativistic electron beam. Therefore,
the scattered flux at higher density is large in comparison with flux generated due
to the scattering by a damped electron plasma mode at lower density. Note that
at higher density, the SRS region extends to even higher frequencies while at lower
density, SCS extends to lower frequencies. However, the entire spectrum can be

produced by either SRS or SCS by choosing the density appropriately but without
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Fig. 3.12 The spectrum of the scattered radiation at three different densities: 1,,
2n, and no/ 2. The SRS occurs at lower frequencies and SCS occurs at higher
frequencies. In the transition region between the two there is a bump on each
curve which shifts towards higher frequencies with an increase in density. The
constants are as in Fig. 3.7.
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any break in the spectrum. Hence the transition region (bump) between SRS and

SCS moves to higher frequencies with an increasing density.

The effect of change in the energy spread A~vy/v on the spectrum is shown in
Fig. 3.13 for various values of A+y/~, (0.0035, 0.005 and 0.01). The bump between
SRS and SCS regions moves towards higher frequencies side with the decrease of
Av/~v, because the damping parameter (k_\p,) depends on A~y/vy. Though the
scattered flux increases with an increase in A~y/v, the critical frequency decreases.
At a lower value of the energy spread, the entire spectrum can be produced by SRS
whereas at higher value of the energy spread, the entire spectrum can be produced

by SCS. Hence the transition region (bump) between SRS and SCS moves to higher
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Fig. 3.13 The spectrum of the scattered radiation at three different values of
A'}'/ %. The SRS occurs at lower frequencies and SCS occurs at higher frequencies.
In the transition region between the two there is a bump on each curve which

shifts towards higher frequencies with a decrease in Avy/~y. The constants are as
in Fig. 3.7.
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frequencies with a decrease in the energy spread.

The dependence of the entire spectrum of the scattered radiation on the scat-
tering angle is shown Fig. 3.14 for three different values of the scattering angle
¢, = 180°, 120° and 90°. The critical frequency shifts towards lower frequency
with decreasing ¢),. The scattered flux as well as the highest scattered frequency

decreases with the decrease of ¢); see equations (3.6), (3.61) and (3.62).

Fig. 3.15 shows the beamed emission of scattered radiation. As the scattering
angle ¢/, is varied from 10° to 180° the emitted flux in the laboratory frame remained

confined to a cone of angular radius = 1/ about the beam axis.

Fig. 3.16 shows the angular distribution of the scattered flux f, = v, f,,. The
angular distribution of the scattered flux broadens as the frequency decreases. The

flux is higher and narrower at higher frequencies.
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Fig. 3.14 The spectrum of the scattered radiation at three values of scattering
angle ¢,. The high—frequency end of the spectrum terminates at lower frequency
as the scattering angle ¢, decreases from 180° to 90°. The constants are as in
Fig. 3.7.

60



-22.50 : r — , . . :

N

X

0 -23.60

[19]

1)
N

£

5 —24.70

@)

©
~-25.80} Me=ne(r/re) > ]

2 7=7(r/1o) -
N Vi=vo(r/ro) “oi

8’ fvl=fo(ul/uo) :

— —26.90F Ay/v=0.005 1

-28.00 : ' ; : . ; L :
175.80 177.46 179.12 180.78 182.44 184.10

Ps

Fig. 3.15 The angular distribution of the scattered radiation flux f,, at four

scattered radiation frequencies in the laboratory frame. The constants are as in
Fig. 3.7.
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Fig. 3.16 The angular distribution of the scattered radiation flux f; = U, f,s in
the laboratory frame. The constants are as in Fig. 3.7.
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(vi)

(vii)

(vii)

3.4 CONCLUSIONS

The conclusions of this chapter can be summarized as follows.
Compared to Compton scattering, Raman scattering is a faster process.

At higher plasma density n. and lower energy spread A+/~, Raman scattering

can produce the entire continuum radiation right from radio to X-rays.

Similarly, at lower density and higher energy spread A-~y/~v, Compton scattering

can produce the entire continuum radiation right from radio to X-rays.

For the parameters chosen here, the transition region between SRS and SCS
lies where the bump is observed for 3C 273. Thus, we suggest the change of
scattering process as one of the possible causes for the spectral break observed

in the most of the quasars and AGN.

Raman scattering occurs in a region of density greater than or equal to one

quarter of the critical density (w! > 2w,.).

An electron beam gets decelerated much faster due to Raman scattering than

due to Compton scattering.

The beamed, stimulated Raman or Compton emission can be detected at a
small angle to the electron beam axis. The higher frequency radiation is pro-
duced in a narrower angular region around the electron beam axis than the

lower frequency radiation.

As we see, the scattering processes also bring about the polarization changes,

which we have studied in Chapter 5.
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Chapter 4

ANOMALOUS ABSORPTION OF RADIATION IN
ASTROPHYSICAL PLASMAS

In this Chapter, colierent plasma processes such as parametric decay
instabilities (PPDI) have been studied in o homogenecous and unmagnetized
plasina. These wstabilitics cause anomalous absorption of intense electro-
magnetic radiation under specific conditions of energy and momentum con-
servation and thus cause anomalous heating of the plasma. The mazimum
plasma temperatures reached are functions of luminosity of the radio radia-
tion. and plasma paramecters. It s belicved that these processes may be tak-
g place in many astrophysical objects. Here, the conditions in the sources
3C 273, 3C 48 and Crab Nebula are shoum to be conducive to the excitation
of parametric decay instabilities. These processes also contribute towards the

absorption of 21-cm radiation.



4.1 INTRODUCTION

One of the fundamental processes in the interaction of intense electromagnetic
radiation, of frequency close to the clectron plasma frequency, with fully ionized
plasmas 1s the parametric excitation of two new waves. If both the excited modes
are purely electrostatic, they are eventually absorbed in the plasma due to collisional
and Landau (wave-particle interaction) dampings. In a plasma, waves and the
particles exchange encrgy. If the phase velocity v, of a wave lies in the region of
positive velocity gradient of the particle velocity distribution, i.e., if 8f/8v > 0 for
v = vp,, the waves gain energy from the particles. If, on the other hand, f/8v < 0
for v = v,, the waves lose encrgy to the particles and are said to suffer Landau
damping [see scction (B) in appendix]. When the wave dissipates, its energy gets
converted into thermal energy of particles. The incident electromagnetic radiation
is anomalously absorbed in the plasma at a rate which is much larger than the
collisional absorption rate [sce section (D) in appendix].

Quasars, Seyfert galaxics and pulsars arc among the most luminous objects
in the universe, emitting strongly at radio frequencies. Krolik, McKee and Tarter
(1978) have shown that the radio frequency waves can heat the plasma through
free-free absorption process. Here we study parametric decay instabilities in 3C 273,
3C 48 and the Crab Ncbula and calculate the anomalous absorption rate of their
radio radiation in the surrounding plasma. The excitation of parametric decay
instabilities in the emission-line regions of quasar was first discussed by Krishan
(1987) and then by Gangadhara and Krishan (1989, 1990, 1991), to include the new
effects associated with strong and broad pump in the three astrophysical objects

mentioned above.
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4.1.1 Density and temperature structure of broad line region of active

galactic nuclei

The emission line regions of Active Galactic Nuclei (AGN) are commonly sep-
arated into a ‘narrow line region’ (NLR) and a ‘broad line region’ (BLR). These
regions consist of photoionized ‘clouds’ moving with large velocities, usually as-
sumed to be embedded in a hot dilute medium providing confinement. It has been
recognized for a long time that the intense thermal and/or non-thermal ultra-violet
and X-ray radiation emitted by AGN is responsible for heating and ionizing the
linc-emitting regions. The density structure of the BLR is closely related to the ion-
ization structure (Kwan and Krolik, 1981). The density deduced in the models has

gradually increased from 107 cm™ up to 10 cim™®

, & value which is now commonly
assumed. The absence of broad components in the forbidden lines is interpreted as
due to collisional de-excitation, so that the clectron density must be greater than
107cm™3. On the other hand the presence of the broad semi-forbidden CIII} A1909
line which starts being de-cxcited at n, > 10%m™2 implies n, < 10° cm™3. Larger
densities are however, indicated by some line intensities like those of Fell. The high-
ionization zone (HII), facing the central source of ionizing radiation, emits what we
call the high-ionization lines (HIL) L., NV, CIV, Hell, CIII], eté¢. The temper-
ature of HII zone varics between about 15,000 K and 25,000 K according to the
values of the density and of the ionization parameter. The BLR has a dimension of
0.01-1 parsec, and clouds have clectron densities 10°-10° cm™ and temperatures
1.5 x 10*-2.5 x 10" K (Collin-Souffrin and Lasota 1988). The BLR is very close to
the active nucleus and thercfore is an important diagnostic of the central region of
AGN.

Davidson and Netzer (1979) have reviewed some of the heating processes pro-

posed by several workers, which are (1) ionization by ultra-violet photons, (2) ex-
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citations and ionizations by encrgetic non-thermal particles via , (3) shock waves
dissipation, and (4) free-free (bremsstrahlung) absorption of radio waves. Here, we
propose the absorption of radio waves and hence the heating of line-emitting regions
due to collective plasma processes such as parametric decay instability driven by

intense radio radiation.

4.1.2 The density and the temperature structure of the Crab Nebula

Ginzburg and Ozcrnoy (1960) considered the simplest plasma mechanism in
which radio-wave emission Crab Nebula occurs at frequencies v ~ v, where v, =
wpe /27 is the plasma frequency. This means that the following inequality is assumed

to hold

cH

W N Wye D Wi = =1.76 x 10" Hz,

and hence 1t should be sufficient to analyze only in isotropic plasma. Plasma
waves of frequency w,, change into transverse waves as a result of ‘interaction’
between the normal waves in the inhomogencous medium and scattering on con-
centration fluctuations (Ginzberg and Zheleznyakov 1959; Wild, Smerd and Weiss
1963; Zheleznyakov 1964; Ginzburg 19G4).

For the ‘compact’ Crab radio source whose radius does not excéed 7~ 10'° cm
(sce Hewish and Okoye 1965) the observed frequency band lies between 2.5 x107 and
4 x 10" Hz (Hewish and Okoye 1965; Andrew, Branson and Wills 1964) which for

v ~ v, correspond to a clectron density 1 ~ 10" —10° em™3, with T, ~ 10* - 105 K.

4.1.3 The radio source

Most of the radio emission in quasars is believed to originate in accretion disks
and also in regions interior to BLR. The radio flux f, at 1400 MHz in 3C 273 is
46.4 Jansky and in 3C 48 it is 15.63 Jansky (Lang 1980). The redshift of 3C 273
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is z = 0.158 and that of 3C 48 is z = 0.3G7. We find the distance ‘d’ between an
observer and a quasar using the Hubble distance-redshift relation d = 5000z Mpc.
The luminosity of 3C 48 and that of 3C 273 at 1400 MHz, determined by using the
relation L, = 47d?f,, are 5.95 x 103 crgsec™ Hz™! and 3.28 x 10% ergsec~! Hz™!,
respectively.

The total luminosity of the Crab Nebula is 103 ergsec™!, twelve percent of

which is in the radio band (Lyne and Graham-Smith 1990).

4.2 PARAMETRIC DECAY INSTABILITY (PDI)

Consider a large amplitude plane polarized electromagnetic pump wave
= 1 i (B, oty l) 5
E, = E(Eoe TRl e 4 cc) (4.1)

propagating in a homogencous plasma, where cc is the complex conjugate. In a
plasma medium clectromagnetic wave (k,,w,) satisfies the usual non-relativistic

dispersion relation,

W =0+ 13, (4.2)

when the oscillation velocity v,(= eE,/m.w,) of electrons is much smaller than the
velocity of light c.

The incident electromagnetic wave (pump) with frequency close to the electron
plasma frequency, resonantly excites a high-frequency electron plasma wave (I;e,we)
and a low-frequency ion plasma wave (l;:,-,wi), (sce Fig. 4.1), when the following

frequency and wave number matching conditions are satisfied:

Wy = We + Wy, ]-":0 = Ec + Ei’ (43)



where

and

((D[, Ki)
(mm Ku)

(me' Ke)

0 "k

Phase Matching Conditions Frequency Spectrum

— i
0 o o,

©, o

Fig. 4.1 Parametric decay instability.
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T T H (RApe)?

(4.4)

(4.5)

are the resonant dispersion relations of the electron plasma wave and the ion

plasma wave, respectively [sce section (A) in appendix]. The parameters wy; =

(4rnje?/m;) /2, v; = (2kpTj/m;)/* and Ap; = (kpTj/4mn;e?)"/? are the plasma

angular frequency, thermal velocity and Debye length of species j (=e for electrons

and ¢ for ions), respectively. Here kp is the Boltzmann constant. The density, mass

and temperature of the species j are nj, m; and T}, respectively.

For w, ~
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have k. ~ —k;. When kAp, < 1, from equations (4.4) and (4.5), we find

3 kiv?
e N Wpe| 1+ = "3) .
w Wy ( + 2 Wf)e (4 6)
and
w; & wy kA pe. (4.7)

Substituting equations (4.5) and (4.6) into the frequency matching condition w, =
we + w;, we get:

Wo

QADJ2+§(EE)@ADJ-—§<

pe Wpe

~1) =0, (4.8)

where we have used v, = ﬂw,,c)\pe. Now, solving equation (4.8) for wave number

k.| = |k;| = k, we obtain:

1 1( /w, \? w 20 1
k= + = L 6 —= —~1 -2 :
ADe [ 3{(“)1)6) N (wpe >} 3‘*’1)6} (49)

The plasima dispersion relation describing the non-relativistic theory of para-

metric instabilities of lincarly polarized pumps [sce section (2.2)] is given by:

1+ xi + Xe 2 i x > k5,2 By x B2
Xell + x:i + (me/mni)xi] k2D_ krw? (1 — wl/w?) k2D,
IE+-"70l2

EPE w;fc/wm] |

(4.10)
where v, = eE,/mew, is the quiver velocity of electrons in the field E',,.

If the pump wave frequency w, & wpe then 1 — wl, /wi ~ 0 and hence the
k1.7, terms dominate on the right hand side of equation (4.10), where wy = w, tw
and I-c'i = ED + k. Therefore, the excited side-band modes must be predominantly
electrostatic. Neglecting the terms containing ki % 7, and m./m; in equation (4.10),
we obtain the following dispersion relation for parametric decay instability:

1 1
= + =
Xe(k1w) Xi(k, w) +1

1 1

5 ; 5 T ; ;
wi(l - wz%c/wf-) wi(l - wz{c/wi)

= —(k.7,)? , (4.11)
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where w and k are the angular frequency and wavenumber of the low frequency
side-band mode. Here x, and x; are the susceptibility functions of electron and ion
plasmas and their asymptotic expansions are given by (Liu and Kaw 1976; Fried

and Conte, 1961):

2

-21_12 . Fig y :
~25(1+ 3 58) + iy & oxp[—w?/(kv.)Y],  for w > ku,;

2 w?

Xe(kaw) - (412)
m(1+z\/7—rk—ﬁ:), for w < kv,,
w2 e . z T . .
o) -5 (1 + %%) + z————f(k;/;) %-L-“z’— exp[—w?/(kv;)?, for w > ku;;
Xi\k,Ww) =
sy 7t (L +ivmes), for w < kz:i. |
4.13

For kAp. < 1, w; = wy,kAp. = ke, where ¢ = Apewy; = [kpTe/m;]Y? is the
ion-acoustic velocity. In equation (4.11), we neglect the term containing (1-w?, /w?})
as the mode (I:+, wy) is off resonant. If we include the thermal and damping effects
then w?, is replaced by w? and the condition w?(1 — wk/w?) ~ 0 tells us that
(E-,w-) is the electron plasma mode with frequency (w, — w). Therefore, we have

2

(wo —il)? — Wl = (W — w — i[)? — &
~ (wo — w)? — 12T (wo — w) — w?
2 (W — W + We) (Wp — w — we) — 12T (w, — w) (4.14)
2 2w (A — w) — 220w,
2 —2we(w — A +1T,),

where A = w, — w, is the frequency mismatch, w < w, and w, = w, has been used.

Here T is the damping rate of clectron plasma wave

\/7—r (.L)pe 1 3
—_— ) o ———————t— o Ci’ 4-15
© T T ) P T 2ap? 2] Y (4.15)

where v,; = 47n.e?ln A/m?v3 is the collision frequency of the electrons, and In A =

10 is the Coulomb logarithm [sce sections (A) and (D) in appendix].
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If the pump is strong enough, then the normal side-band modes get modified
and no more remain lincar. An intense pump can cause amplitude dependent shift
in the real and imaginary parts of the normal mode frequencies. For w, > w,,
PDI occurs due to the parametric decay of a pump wave into an electron and an
ion modes. Depending on the pump strength and the ratio T, /T3, it can occur
through three different routes: PDI-I, PDI-II, PDI-III, discussed below. However,
when w, < w,, purely growing (zero frequency) ion density fluctuations will arise
from the noise level. As it grows in amplitude, so also does the associated electron
plasma wave. This case of parametric instability is called the ‘oscillating two stream

instability’ (OTS).

4.2.1 Decay of a pump wave into an electron plasma wave and an ion-

acoustic wave (PDI-I)

In this case, radiation encrgy gets transferred to the electrostatic side-band
modes: the electron plasma wave and the ion-acoustic wave, consequently their
amplitudes grow exponentially in time. To derive an expression for the growth rate

we use the asymptotic forms for x,. and x; corresponding to kv, > w > kv;:

Gy
e 1414 ) 4.16
Xe = 5o)? VT— (4.16)
and
w?,
Xi = ———’;i + 1 Im(x;)
w
2 T w (4.17)
i : 2/ (kv;)Y.
T (A)\Dc)2< )(m) expl—w”/(kvi)’]
Using equations (4.14), (4.16) and (4.17) we write equation (4.11) as
. , 1 (k.7,)?
khp.)2(1 — w : = — (4.18
[( D) ( zﬁk%) 1z (Wi /w?) +1 Im(xl-)} 2we(w — A + L) (4.18)
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Since w < wp;, we obtain

(kADE)‘Z(l - iﬁw/kve){(wpi/w)z —1 Im(Xi)} -1 — (I:':"Uo)2
(w])i/w)2 —1 Im(Xi) zwe(w - A + ire) '

(4.19)

Taking (wyi/w)? — i Im(x;) & (wpi/w)? in the denominator on the left hand side of
equation (4.19), we obtain

) -

(kXpe)? [(&Zﬂ) -—zIm(X,)—z\/—(

) Im(xz)] 1

4.20
far (e (4.20)
2we(w —A+il)\ w
Multiplying both sides by w?, we get
w?
(kApe)? wp iw’ Im(x,)~z\/—< ) ;l — ﬁ(k ) Im(X,-)} — w?
Vg
, (4.21)
_ (k.'uo)z 2
2w (w — A +dl,) P
Neglecting the term containing w®, we get
2 L= \2
2122 s oy 2 f‘_’y_) ,, _}_____ (k-¥,) 2 (499
w” —k°c; + w(kApe) {ﬁ(kve + w Im(x;) oo — AT iI‘c)w’”' (4.22)
In equation (4.22), we dcfine
Ltk )2{ﬁ( i ) +wIm(x) } =T2 (4.23)
9 De k”Ue i

as the ion Landau damping rate. Now, substituting for Im(x;) from equation (4.17)

into equation (4.23), we get

2

mi= o [V + s () () exo-st )]

(4.24)
T\ [ w?

=5 [+ () () ot/
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Substituting w = w,;kAp., we get

Iy = ——\/2—/:51'»'(:5 [Z—‘: + (%) (%—:—) exp{~c§/vf}]. (4.25)

If the ion temperature 7; is not too small compared to T, then

<k3724-3k31})1ﬂ
Cyg =

my;

(4.26)

Consider the ratios:

cs  (kpTe +3kpTiNV2/ my V2 1 T \1/2 1 (TeN\1/2

vi—'< m; ) (2k37}) _.v§(34—]}) Nﬂ;@(iﬁ) » (4.27)
¢s _ (kpT, +3kpTiNY2 me \1/2 1 rme\1/2
e ( ™m; > <2kBTc> - ﬁ(E (4.28)

Substituting the equations (4.27) and (4.28) into the equation (4.25), we get

1/2 1/2 3/2
T Me T, 1/, T,
b= (§> v [(m.-) i (7) CXP{ 2 (3 " T)H (4.29)

Let I'; = 't + vie be the total damping rate of the ion-acoustic wave, where v, is
the ion collision frequency, given by vy = 4rn.e In A/miv?.
Now, from equation (4.22), we obtain:

. Ny ATALE
(W + 20w ~ K22 (w — A +iT,) + ( 22) w? =0. (4.30)

Let w = key + 471, M1 < kes, where vy is the growth rate of the instability, then
w? = k*c? + i2kc,v;. Using these expressions for w and w?, in equation (4.30), we

obtain

(key +4T3)72 + (T +Ti)kes + i(kes — A) (T — kes) — Teli)yi—

AN (4.31)
i(key — D) ke, Iy + ke Lel's — (—l—)—wf,i = 0.

2w,
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Since [ = (/8)/2kc,(m./m)/?, we take (kc, + ;) ~ kc,. We know from the
frequency matching condition w, — w, = w;. Thercfore, we take A = w, — w, = kc,.

Using these approximations, in the equation (4.31), we obtain

(A

2 . R e Y )
71 + (Fe + Fz)’YI + FCPL 4]’\2C3wewpl

= 0. (4.32)

Solving equation (4.32), we get the growth rate ; of the growing mode:

(T4 | 1[(R5,)? , 1/2
=T T e, @ (T F T AL -
_ T+ Ty n (k.7,)* (77le>1/2 - (T, — ;)22 '

B 2 dkc, \m; “pi 4

The threshold condition, obtained by sctting v equal to zero in equation (4.33), is

given by

(l-\;.'z')‘,,)2 e 12
iy T = Fcri- 4.34
4kc, “ ™m; (4.34)

We assume & || E, (the clectric field of pump wave), n; = n, in the hydrogen
plasma and w, = 1.0lw,.. Though we have chosen initially a single value of the
frequency w, = 1.0lw,,, as the instability scts up plasma temperatures T, and T;
go up due to the damping of excited clectrostatic waves and so do w, and w;. Since
W, = w, + wj;, the resonant pump frequency should also increase. Therefore, a band
of pump frequencies satisfics the resomdnece condition. An inhomogeneity in plasma
density will also admit a broad pump. Therefore, we assume that in the maximum
band width dw =~ w, the resonant condition of the parametric decay instability is
satisfied. Since «, is the growth rate due to a monochromatic pump at w,, the
actual growth rate y; due to the broad pump with spectral width éw > v is given

by (Kruer 1988)
= A2, (4.35)



Hence due to a broad pump the growth rate of PDI is decreased by a factor
of éw/v;. The coherence condition is satisfied for dw < 4. Since the resonance
condition for the instability is satisfied for the fraction of the band width, i.e., for
§w < 7 only a portion of the total luminosity is useful for the excitation of the
instability.

The threshold is higher for an incoherent pump because the incoherency effec-
tively amounts to having more collisions in the system. A partially polarized pump
again offers only a part of its luminosity for the excitation of PDI.

We introduce a decay paramcter D, defined from equations (4.34), as

podun B
T 47 2n.c (Ape, k), (4.36)
where the function
kw,; 1
POpe k) = it (4.37)

2cs(men )12 T.T;

expresses the cffect of plasma parameters on the instability. The integration over
the luminosity has to be computed over the band-width vy — vy = bw/2r. The
variation of the function PP with respect to T, for different densities is shown in
Fig. 4.2. The bending of curves at kAp, < 1 is due to collisional damping. But
when kApe = 0.4, Landau damping opcrates which is a strong function of T, but
not of n.. The strength of I’ describes if the conditions in the plasma are favorable
for PDI to occur. For small pump, PDI is favored at large 7. PDI occur for D > 1
and switches off for D < 1. The variation of D with respect to temperature T, is
shown in Fig. 4.3. When D > 1, the ion-acoustic mode losses its linearity and the
instability falls in to one or the other of the three cases discussed in the following

sections.
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Fig. 4.2 Variation of /m;I” with electron temperature T, for different electron
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Fig. 4.3 Decay parameter D vs 1, in the 3C 273.

78



Similar to electrostatic waves, electromagncetic waves also experience collisional
damping in the plasma medium. If v, is the collisional damping rate of electromag-
netic wave, then rate of energy loss from the clectromagnetic wave (v,E2/8r) must
balance the rate at which the oscillatory encrgy of electrons is randomized by the
electron-ion scattering, i.c., (1,E2/87) = (veimev?/2). Since v, = eED/mawg,v this

power balance gives

2
vy = ( ‘””“) Veis (4.38)

We

where v = v, is the clectron-ion collision frequency. The dependence of v, on
electron tempcerature 7, is shown in Fig. 4.5.
The energy density E?/87 of the pump and the luminosity L (= Lg x 10%

erg sec™!) of the source arc related by
E? L
8 dmxlite’ (4:39)

where I (= r,:3.086 x 10 cm) is the distance between the radio source and the
plasma. Therefore, the oscillation velocity of clectrons in the pump field, is given

by
eE, e (2L\'"*1
= I i T 4.40
v MW, Mg (ch,‘) Wo ( )

The average values of different parameters in the resonant interaction region

of radio waves in the different sources, determined from observations, are listed in
the Table 4.1.

Electrons being lighter gencrally heat up before the ions and since the electron-
ion collision time is much larger than the excitation time of PDI, the inequality in
temperature will remain during the instability. The ion temperature T; and w, used

for each case of PDI, arc given in Table 4.2.
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Table 4.1 Obscrved parameters in the resonant interacting region.

Source Ne minimum 7, r W, Ly

(cm™3) (K) (pc) (rad/sec) (6w = w,)
3C 273 1010 1.5 x 10* 0.05 8.8 x 10° 4.59 x 102
3C 48 1010 1.5 x 10! 0.05 8.8 x 10° 4.59 x 10?
Crab Nebula 107 1.0 x 10? 0.03 1.8 x 108 1.24 x 104

Table 4.2 Model Parameters.

Type of Instability minimum 7; W,

(K) (rad/secc)
PDI-I T./100 1.01lwpe
PDI-II T./100 1.01wp,
PDI-III 10 x T, 1.01wp
OTS T./100 (We + wpe) /2

We solve the equation (4.30) numerically for real and imaginary parts of w, and
exhibit the results of PDI-Iin Fig. 4.4. At logT, ~ 10° K, instability is well excited.
If temperature goes up, due to Landau damping, growth rate falls exponentially. If

T. > 1033 K then wyq = ke, and 71 K Wyp,-

Fig. 4.5 shows the growth rate v, due to a monochromatic pump and +{ due to
a broad pump of width (6w = w,) as a function of T,. It shows both +; and «] are
well above the collisional damping rate v, of electromagnetic wave. Therefore, the
radiation with frequency w, close to wy, gets absorbed more efficiently due to PDI-I
rather than due to collisional absorption in a plasma medium, For T, > 10%3 K

growth rate decreases due to large Landau damping.
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Fig. 4.5 Variation of 7y, ] and v, with T, in 3C 273.
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The dependence of growth rates 3 and -] on pump strength is shown in
Fig. 4.6. It shows that near the threshold, -y, is proportional to Ls while 4 is
proportional to Ly V2. At well above the threshold both 7 and 7] are proportional
to LHQ. If the pump is slightly above the threshold, then both v, and +{ dominate

over the collisional damping rate v,,.

10 T T ’ M 7 M ' T ¥ T T T T T A T
5 \09@////2
- - - -
!
\09“0/ —~ 7 .
orf - - n,=10"cm® -
’ y T,=10'K “
// rpc=0.05
/
_5 i 1 PR 3
2 1 0 1 2

log(L44)

Fig. 4.6 Variation of y; and 'yi as functions of luminosity L4;

The threshold value of the luminosity is a strong function of electron temper-
ature T, as indicated by Fig. 4.7. At lower temperature (T, < 10*® K) collisional
damping exceeds Landau damping while at higher temperature (T, > 10>! K) Lan-
dau damping becomes larger than collisional damping. But in the range 10%° <
T. < 10°! K both collisional and Landau damping are small and therefore lower

threshold luminosity is needed.
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Fig. 4.7 Variation of threshold luminosity with 7.

4.2.2 Decay into a Reactive Quasi-Ion Mode (PDI-II)

For large pump strengths and low temperatures, the ion mode losses its linear-
ity. Its frequency w,y becomes higher than the ion-acoustic frequency (w, = kc,).
Since its growth is higher than w,s, this mode is known as reactive quasi-ion mode.

We solve equation (4.30) to cvaluate frequency wyy and growth rate -, of the
reactive quasi-ion mode. The variations of w,o and vy with respect to T, are shown
in the Fig. 4.8.

Fig. 4.9 shows that both v, and 4} are much higher than v, in 3C 273. Fig. 4.10
shows the variation of v, and +} as functions of Ly. It shows both v, and 73

2

are proportional to Ly '?. The threshold luminosity required for the excitation

of reactive quasi-ion mode as a function of electron temperature 7, is shown in

Fig. 4.11.
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Fig. 4.8 Variation of W, and 7, of the reactive quasi-ion mode with T, in 3C 273.
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Fig. 4.9 Variation of 79, 7} of the reactive quasi-ion mode and U, with Te in
3C 273.
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Fig. 4.11 Variation of threshold Ly of the reactive quasi-ion mode with T..
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4.2.3 Decay into a Resistive Quasi-Ion Mode (PDI-III)

When T; = T, the phase velocity of the ion-acoustic mode (c,) becomes com-
parable to the thermal velocity (v.) of the ions. Therefore, the beat mode (i.e., the
ion mode) of a pump wave and an electron plasma mode undergoes the non-linear
Landau damping [see section (B) in appendix] over the thermal jons. This ion mode
is highly damped and weakly excited compared to the other three cases.

Neglecting the term containing w.(1 — w2, /w}) in equation (4.11), we obtain

. . ~ ol xelx: +1
Wk — Wl = —(k.5,)? [2&9‘?—1] , (4.41)
where € = 14 x; + Xe.

Since w/k = v;, we can not use the asymptotic forms of x;. Using equation

(4.14) we write equation (4.41) as

, 4.42
2w, € ( )

o

_A
FTF

w-A+&FV=(E@V[XAXV+D]

Using w, = w;3 + i3, scparating the recal and imaginary parts of equation (4.42),

we obtain .
k-—‘oz e\ X1
Wz(vhqx&+ﬂ +A (4.43)
2w, € A
o2
kT k
and
%=(“H4XW+W ~T.. (4.44)
2w, € gt
=%

We numerically evaluate w,3 and 3 and find w,;3 = w,. Fig. 4.12 shows the
dependence of v; and 5 on electron temperature T, for 3C 273. Fig. 4.13 shows
the variation of v; and ~§ with respect to luminosity Ly of the radio source. The
threshold luminosity required for the excitation of resistive quasi-ion mode is plotted

as function of T, in Fig. 4.14.
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Fig. 4.12 Variation of y3 and '7’:’3 of the resistive quasi-ion mode with T, in 3C 273.
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Fig. 4.14 Variation of threshold L4; with with 7T,.

4.2.4 Oscillating Two-Stream Instability (OTS)

This instability excites when an intense clectromagnetic pump of frequency
less than or equal to the frequency of an clectron plasma wave, interacts with the
plasma. Here wy, < w, < we. The pump electromagnetic wave (w,, I_c‘a) couples with
a high-frequency wave (w,, Ee) and a non-oscillatory ion mode (0, E,) We find that
I—c‘a = ——l_c‘,- = k. In this case the thermal ion density fluctuations of zero frequency
grow along with an electron plasma mode. Since these static ion density fluctuations
do not qualify for a normal mode of the plasma, we can not include OTS in the
class of parametric decay instabilities. However, it has been considered as a special

case of the parametric instability.
Here both the terms with wi(l — w? /w}) in equation (4.11) are resonant.

88



Similar to the equation (4.14), we obtain

2
2 ( _ _‘*’i) _ 2 9
w =) =wi —wi
+ w2 +
~ (we +w + . 2—w3
( ) (4.45)
~ (wo +w — we) (Wo + w + w,) + 12T, (w, + w)
22 2we(A + w + iT).
For w = 0 + iv,,,, from equations (4.14) and (4.45), we get:
. w?
Wt (1 - _;) = 2w {A — i(Te + Ty} (4.46)
and
2 w;
w2 (1 =% ) = 2w {A +i(Te + o) ). (4.47)
+
Substituting equations (4.46) and (4.47) into cquation (4.11), we get
1 1 k.7,)? A
-4 =BG 5 (4.48)
Xe Xi+1 2we A%+ (De + Yors)
Consider the asymptotic expansions of x. and x;:
X ! (1 iV ) - ( \/"'YOTS) (4.49)
¢ (kADe) ’Ue (k/\Dc)2 k'Uc

Xi (k)i;c)z?; (1 T vl> (u;e)l T (l B ‘/—%TS) (4.50)

Substituting the equations (4.49) and (4.50) into the equation (4.48), we obtain

1 N 1 _ 1 (E#,)*(kApe) A
1= Vors/kve (1= v/@ors [kui) T/ T; + (kApe)* 2we {(Yors +Te)? +(A2})
4.51

If we simplify equation (4.51) for v,,, we get

Y+ ar + a3 Yors + a1 =0, (4.52)
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where

_ VT VL
_kve kviTi’

aj

T, (k)2 wA T,

ay = 2Tcay — (kApe)? — T 2o ok b
a3 = ay(I'* + Az)—Z(l + (kApe)® + —f,%)l‘gr
ﬁ(é.vo>‘24{< 1 1 )2 N <_kin_2_}
2we(kApe)? \\kve @ kvi) T, ' kv,
and
(E.7,)2A

, T ‘ ‘ T
—_ . 2, e 2 2y __ _\Vr7o) — 2, e
ay = (1 + (kApe)” + fl“i)(Fe + A7) 20 (FAp)? ((k}\pe) + 5 )

i

For kAp. = 0.4, equation (4.52) gives

Yors = :}:z{zwe Y B vy g S A .. (4.53)

The 7,5 is real only when A = w, —w, <0, i.e., w, < w,. The expression v, =0
gives A = Ay, while dv,,4/0A = 0 gives A = Ap,, corresponding to a maxi-
mum growth rate. Now, Ay, = Auer gives the minimum pump strength at which

instability occurs

U 2 1 |
2) =1 ==, 4.54
(ve) { T DT TT, } o, (454

We solve equation (4.52), using k = 8.75cm™! for 3C 273, where k has been
determined using the condition k > 1/2/3(koc/ve), obtained from wpe < w, < we
and the values of parameters given in the Tables 4.1 and 4.2. One of the three
roots represents a growing ion density fluctuation while other two represent damped
modes. Using A = Ay, Yors a0d 7, are plotted as a function of T, in Fig. 4.15 for
3C 273. Note that the v, and «/__ are much larger than the collisional absorption

rate v, of the electromagnetic wave.
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Fig. 4.15 Variation of 7, and 7, . with T, in 3C 273.

Fig. 4.16 shows the dependence of v, and 7/, on the luminosity of the source.
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Fig. 4.16 Variation of 7,,; and 7y, with Ly;.
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Fig. 4.17 shows the variation of threshold luminosity with 7.

o ——
[
[

log(L44)

[ ]
0 N 2 2 A, 1 N i - " 1 A, R | S S " "

4 45 5 5.5 6
log(T.)

Fig. 4.17 Variation of threshold Lq; with 7.

4.2.5 Comparisons between PDI-I, II, III and OTS

Fig. 4.18 shows the frequencies and growth rates of ion-acoustic and reactive
quasi-ion modes as functions of T,. Here we decfine T, = T,. and c¢orrespondingly
D = D, (Fig. 4.3) at the point where 7; crosses w,. At this point the ion-acoustic
mode losses its lincarity. For T, < T, the imaginary part of w crosses its real part at
Te = Ter and D = D, (Fig. 4.3). In Fig. 4.18 the range T. > T, represents the region
of PDI-I while T, < T.; represents the region of PDI-II. The range Tes < T, < Tec
and Dy > D > D, represents the transition region in which the reactive quasi-ion
mode changes into an ion-acoustic mode or vice versa (i.e., PDI-I to PDI-II or vice
versa). Figs. 4.3 and 4.18 shows for 3C 273, T.. = 10°1 K, Ty = 10+°K, D, = 1032

and D, = 10*8, Under the coherent pump approximation, the variation of growth
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rates 71, 72, 73 and v, with respect to T, are shown in Figs. 4.19 for 3C 273,
4.21 for 3C 48 and 4.23 for Crab Nebula. Similarly, using a broad pump of width
8w = w,, the variation of growth rate 7], ¥, 73 and 4, with respect to T, are
shown in Figs. 4.20 for 3C 273, 4.22 for 3C 48 and 4.24 for Crab Nebula. Even if we
include a band width of order éw = w,, growth rates are higher than v, for 3¢ 273
and 3C 48. Since the luminosity is low in Crab Nebula, growth rates with broad

pump lie below v,.

log(T,)

Fig. 4.18 Variation of real parts of the frequencies of the low frequency daughter
mode W,, W;; and its growth rates 7y; (j=1,2) vs T, in the 3C 273,

The variation of growth rates vy, 2, ¥3 and ~y,,, with respect to the luminosity
of the pump are shown in the Fig. 4.25. Similarly, the variation of growth rate vi,
Y3, 13 and v, with the luminosity of a broad pump are shown in Fig. 4.26 The
reactive quasi-ion mode is not excited in the Crab Nebula because radio luminosity
is too low to cross the threshold luminosity Ly = 1.1 x 1072, calculated using the

parameters given in the Table 4.1 and 4.2.

93



The dependence of growth rates v, 2, 73 and ,,, on monochromatic pump
strength are shown in the Fig. 4.25. Similarly, Fig. 4.26 shows the variation of v;,
¥y, 73 and 7/ with respect to the strength of a broad pump. Fig. 4.27 shows the
dependence of threshold luminosity on electron temperature T, for all cases of PDI
together with OTS. At T, < 10*°K the collisional damping operates and as the
temperature goes up Landau damping takes over for T, > 105! K. But in the range
10°°K < T, < 10> K both collisional and Landau damping are small and therefore
lower threshold luminosity is needed. Value of threshold luminosity required for the
excitation of PDI-I is small compared to other three cases, see Fig. 4.27. The cross
marked regions in Figs. 4.18, 4.19, 4.20, 4.21, and 4.22 represent transitions from
PDI-I to PDI-II.

8.50

7.60

6.701

5.80

4.90

i =l A

4.10 4. 40 4,70 5.00 5.30 5.60
log(Te)

Fig. 4.19 Variation of growth rates y; (j=1,2,3 & OTS) vs T, for a monochromatic
pump at w, = 1.0lwp, in the 3C 273.
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Fig. 4.20 Variation of ’)';- (=1,2,3 & OTS) vs T, using a broad pump in the
3C 273.
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Fig. 4.21 Variation of growth rates y; (j=1,2,3 & OTS) vs T, for a monochromatic
pump at w, = 1.01w,, in the 3C 48.
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Fig. 4.22 Variation of 7; (=1,2,3 & OTS) vs T, usihg a broad pump of width
Aw = w, in the 3C 48.
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Fig. 4.23 Variation of growth rates y; (j=1,3 & OTS) vs T, for a monochromatic
pump at Aw = 1.01wp, in the Crab Nebula.
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Fig. 4.24 Variation of 'y;- (3=1,3 & OTS) vs T. using a broad pump of width
Aw = Wpe in the Crab Nebula. Note that PDI-II is not excited and also collisional
absorption is dominant.
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Fig. 4.25 Variation of growth rates v; (j=1,2,3 & OTS) vs pump luminosity Ly
at w, = 1.01wp,.
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Fig. 4.26 Variation of ’)"; (=1,2,3 & OTS) vs luminosity L4; of broad pump of
width Aw = w,.
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Fig. 4.27 Variation of threshold luminosity L4; vs 1, for the plasma parameters
given in the figure. [Fluctuations in curves v; = 0 & 3 = 0 are due to numerical
effects].
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4.3 FORMATION OF 21-CM ABSORPTION lINE IN THE
EMISSION-LINE REGION

The 21-cm absorption line has been observed from several QSO systems. It
is believed to originate in the ncutral hydrogen clouds in the vicinity of the QSO.
This absorption line can also originate when the radiation of frequency 1420 MHz
(21—cm) drives the PDI in the plasma having electron plasma frequency close to
1420 MHz. This effect was first considered by Krishan(1988). This process has a line
character in principle since it occurs only when a frequency matching condition is
satisfied. The presence of 21-cm absorption line indicates that the electron density
in the emission-line region must be ~ 2.5 x 10" cin=3, which falls within the range of
the inferred densities for these regions. The 21-cm radiation luminosities in 3C 273
and 3C 48 are sufficient to drive PDI.

For comparison, the standard expression (Krishan 1988) for absorption rate for
the spin flip transition is given by

f (w)N -1
—~ cm,
Tk

where Tk is the temperature which characterizes the population distribution be-

K(w) = 2.58 x 1071 (4.55)

tween the two atomic states, f(w) is the line shape function normalized to unity
and N is the number of hydrogen atoms/cm?. Using standard values of the different
parameters we find absorption rate due to PDI in the ionized region is much larger

than the absorption rate for the spin flip transition in the neutral hydrogen region.

4.4 CONCLUSION

(i) An incident electromagnetic pump wave drives purely electrostatic oscillations
at two frequencies close to w,e and wy;.
(ii) A parametric amplification occurs for drive frequencies w, > wpe and for driver

amplitude exceeding a certain critical threshold.
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(iii) The growth rate of the instability is maximum for k || B, and zero for k L E..
(iv) For circularly polarized pumps the general picture remains unchanged, since
growth rates are again determined by the component of Ea parallel to k.

(v) The absorption raté of an electromagnetic wave depends on the ratio (L41/r}2,c)

and it is much larger than the frec-free absorption rate v,.

(vi) Electron and ion temperatures increase by orders of magnitudes for moderate

radio luminosities.

Compared to all other processes reviewed by Davidson and Netzer (1979),
PDI is a faster process. The excited Langmuir wave will heat the plasma when
it undergoes Landau damping. Apart from damping it can undergo many other
processes: we +w, — wh, w, — w, + i, etc. In the first process, two electron plasma
waves combine together to produce an clectromagnetic wave. In the second case,
it drives PDI, and produce clectron and ion-acoustic wave. Therefore, the incident
electromagnetic cnergy can heat the plasma medium, as well as get reprocessed to

other frequencies.

The growth rates indicate the rates at which the plasma medium and the
radio radiation try to attain cquilibrium with cach other. The threshold condition
(see equation (4.21) and Fig. 4.6) cnsures those valucs of plasma parameters like
density and temperature for which the fast process of PDI does not occur and the
equilibrium is reached. Decay instability may be the mechanism for the formation
of hot lower density corona adjoining cach photoionized dense region. The dip in
the spectrum of 3C 273 at 5.0 x 10° Hz (Cowsik and Lee, 1982) may be due to the
anomalous absorption of radio waves through PDI. Since PDI is an efficient process,
it must be included while accounting for the observed value of the radio luminosity
which is less than that ubtained by cxtrapolation from the high-frequency part of

the spectrum.
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Chapter 5

POLARIZATION CHANGES OF RADIATION THROUGH
STIMULATED RAMAN SCATTERING

In this Chapter, change in the polarization of electromagnetic waves due
to the stimulated Raman scattering in o plasma s studied. In this process
an electromagnetic wave undergoes coherent scattering off an electron plasma
wave. It is found that some of the observed polartzation properties such as the
rapid temporal variations, sense reversal, rotation of the plane of polarization
and change of nature of polarization in the case of pulsars and quasars, could

be accounted for through stinulated Raman scattering.



5.1 INTRODUCTION

By assuming a synchrotron origin for the radiation in compact extragalactic
radio sources, source models are readily constructed which explain both the spectral
and temporal behavior of intensity (e.g., van der Laan 1966; Blandford & Konigl
1979), but polarization does not lend itself to such a straightforward explanation.
The problems arise mainly from the observed ratio of circular to linear polarization;
also, depolarization by a factor of 10 or more is often observed. It is important to
determine whether this» depolarization is a geometric effect or results from radiation-
plasma interactions. There have only been very preliminary attempts to explain
depolarization and microvariability using plasma mechanisms.

The change in polarization of an electromagnetic wave due to its propagation
in a magnetized plasma as well as due to an electron scattering is well known. In
a magnetized plasma, the Faraday rotation is recognized to be the most common
cause of the rotation of the plane of polarization of an electromagnetic wave. In a
plasma, the spectral components of radiation of finite band-width travel different
path lengths and lead to depolarization. Any change in the direction of the mag-
netic field also manifests itself through polarization variation. The strong linear
polarization observed in the radio as well as in the optical regions ¢f the spectrum
in the BL Lacerate objects is believed to originate in the source itself. The fact that
optically violently variables and NGC 1275 show similar polarization characteris-
tics, suggests that BL Lacs, quasars and Seyfert galaxies have a similar source of
energy. If so, then the lack of polarization in quasars and Seyfert galaxies could be
due to depolarization efiects (Stockman 1978). The rotation of the electric vector
has been observed in core-jet structure of 3C 454.3 (Cotton et al. 1984) and is in-
terpreted to be due to the propagation of radiation in a medium of varying optical

thickness.
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A powerful collective emission occurs when relativistic electron beams with
‘density ~ 1 per cent of the background plasma density, scatter off coherently from
concentrations of electrostatic plasma waves (cavitons) (Benford 1992). The polar-
ization of the emitted radiation depends on the orientation and the shape of cavi-
tons. Assuming the usual power-law spectrum for electron energies, polarization
features are found to mimic synchrotron radiation (Baker et al. 1988; Weatherall

and Benford 1991).

In pulsars, the ambient magnetic field determines the orientation of the polar-
ization ellipse, but with an ambiguity of 7/2: the instantaneous angle often attains
bimodal distribution with modes separated by ~ /2. Modes are actually elliptically
polarized such that one angle correlates with one sense of circular polarization, the
orthogonal angle correlates with the other sense. Several pulsars exhibit one or more
reversals of the sense of polarization through the profile. The appearance of strong
circular polarization (some times > 50 per cent) implies conversion of the elliptically
produced radiation some-where along the propagation path. Apart from the ap-
pearance of circular polarization, however, pulsar magnetospheres do not appear to
be magnetoactive (no generalized Faraday rotation is evident) (Cordes 1983). For
pulsars in which the integrated profile is highly polarized, essentially all subpulses
must like wise be highly polarized and have stable polarization characteristics. How-
ever, many pulsars have rather weakly polarized integrated profiles. Three possible
reasons for low polarization, apart from the Faraday rotation, electron scattering
and magnetic field orientations, are that (Manchester & Taylor 1977) the subpulscs
at a given longitude may (1) be themselves weakly polarized; (2) be divisible into
groups with orthogonal polarization; or (3) have randomly varying position angles

and sense of circular polarization.
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Collective plasma processes have been shown to play significant roles in the
absorption and spectral modification of the radiation through its interaction with
the plasma in the accretion disc and the emission line regions (Beal 1990; Krishan
& Wiita 1990; Benford 1992; Gangadhara & Krishan 1990, 1992; Krishan & Gan-
gadhara 1992). This chapter shows that in strong radio sources the rapid temporal
variations, sense reversal of rotation of electric field, rotation of plane of polariza-
tion and change of nature of polarization in the case of quasars and pulsars, may
be accounted for through stimulated Raman scattering (SRS). In this process, an
intense electromagnetic wave scatters off an electron plasma wave resulting in the
scattered electromagnetic wave. The physics of SRS in a plasma has been explained
in many papers and books (e.g., Drake et al. 1974; Liu & Kaw 1976; Hasegawa
1978; Kruer 1988). The role of stimulated Compton and Raman scattering in the
quasar continuum has been shown by Gangadhara & Krishan (1992). Polarization
changes through SRS may take place in accretion disks, the emission line regioxﬂs
and the intercloud medium of active galactic nuclei and also in the emission region
of pulsars (Gangadhara and Krishan 1993). In section 5.2, we derive the dispersion
relation describing the SRS of an electromagnetic wave. In section 5.3, the polar-
ization states of the incident and the scattered electromagnetic waves have been
defined with stokes parameters. In section 5.4, we numerically solve the dispersion
relation to find the value of the growth rate of the SRS instability (see Fig. 5.2).
In section 5.5, we make a comparison between SRS and the well known process of
the Faraday rotation. We investigate the condition under which (e.g., in Fig. 5.5,
growth rate I' = 1075 sec™!) SRS dominates over the Faraday rotation. The effect of
incoherence in the electromagnetic waves on SRS instability is discussed in section

5.6.
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5.2 STIMULATED RAMAN SCATTERING

We begin with a model consisting of a pulsar with non-thermal component
of radiation interacting with the plasma in the emission region at a distance r =
100 ys = 10® em (Neutron star radius Ryg =~ 10 km). In the case of a quasar, we
consider a black hole surrounded by a plasma which extends to a few parsecs. The
non-thermal continuum is considered as a pump which drives SRS. Here, we consider
an electron-ion plasma with uniform and isotropic distribution of temperature and
density, and assume that it is at rest with respect to the source of radiation.

Consider a large amplitude elliptically polarized electromagnetic wave,
Ei = Ei[COS(Ei e wit)él + o COS(]-C‘,; c T — wit—i— 5{)62], (51)

propagating in a plasma with density ng and temperature Ts,.
We can think of E; as the superposition of two linearly polarized waves: E; =

€; cos(ic} -7 — w;t)é€; and E:y = a;e; cos(fc} -7 —wit + 6;)é;. Let
61ey = 6ny cos(k - 7 — wt) (5.2)

and

Sney = dnycos(k - 7 — wt + &), (5.3)

be the density perturbations in a plasma with equilibrium density ng. Assume that
éne couples with Eil and én.y couples with Eiz. The coupling between the radia-
tion and the density perturbations is non-linear because of the ponderomotive force
(< VE% and o« VE?). Consequently, density perturbations grow up and lead to
currents at (l-c‘, + k ,w;j = w). These currents will generate mixed electromagnetic-

electrostatic side-band modes at (E, + E,w,- 4+ w). The side-band modes, in turn,
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interact with the incident wave field, producing a ponderomotive force which am-
plifies the original density perturbation. Thus, there is a positive feedback system

which leads to an instability.

The electric field E_"s of the electromagnetic wave scattered through an angle ¢,

with respect to k; can be written as

— -
v

E, = e,[cos(k, - 7 — w,t) &} + a, cos(k, - 7 — wyt + 8s)és). (5.4)

Fig. 5.1 shows the directions of l_c'i and ES in the orthogonal coordinate systems
Al At

(é1,é2,é3) and (&), &y, ;). The coordinate system (&}, &,,é3) is rotated through an

angle ¢, about an axis parallel to é;. Here, k; || &, k, || & and é || é.

i
A é1 v $
Al
€ -
» 1
\, -
N xR,
. ’/
\. s
\ g
i \¢s -
0 > > ki
X
~ A'
e, &

Fig. 5.1 The wave vectors and the electric fields of the incident and the scattered
radiation.
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The unit vectors are related by
& = cos(¢s)é1 — sin(es)es, é, = éy, &y = sin(@,)é1 + cos(¢,)é3.  (5.5)
The scattered wave in the coordinate system (é;, é;, €3) is given by
E, = 53[005(133 - 7 — wgt){cos(¢;)é; — sin(¢,)é3} + a, cos(ici., T —w,t +6,)&). (5.6)

The wave equation for the scattered the electromagnetic wave is given by

(v-25)E=5% 5.7

ct ot c? Ot
where ¢ is the velocity of light and J is the current density. The components
of the current density are J; = —engue = —e(ng + g e, Jo = —engtieg =
—e(ng + nez)uer and J3 = —engues, where .y, Ues and ug are the components of
the oscillation velocity 4, of electrons in the radiation fields Ei and E’s. We obtain
% from the equation:
Ot e

ot = _%[El + Es]a (5‘8)

where e and mgy are the charge and the rest mass of an electron.
In SRS, the scattered radiation consists of the stokes mode (E__,w_.) and the

anti-stokes mode (E+,w+) with electric fields

—

E, = 5i[cos(gi T —wyt){cos(Ps)é; —sin(Ps)é3} + s cos(Ei-F——wit+5_)éz]. (5.9)

Now, separating the components of equation (5.7) , we have

2me? -~ - -
DiEy; = — 225 ¢.6m, {L—i— cos(k_ - T—w_t) + e cos(ky - 7 — w+t)J (5.10)
my Wy w;
and \
2 _ -
DiEyy=— e o€;0M [f__ cos(k_ « 7 — w_t + & — 6. )+

o i (5.11)
e cos(E+ P —wipt+ 6+ 53)] ,
Wy
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and

DiEy; =0, (5.12)

where By = 64 cos(¢s) cos(ky - 7 — wit), Byp = azey cos(ky - 7 — wit+61), By =
—€4 sin(@x) cos(l_c‘i T = wyt), wr = w; T w, ki = k; =k and Dy=Fkc~w? +w;f’e.
Here, wye = (47noe?/mg)!/? is the plasma frequency. Equation (5.12) restricts the

value of ¢4 to 0 or 7 for e4 # 0 and Dy # 0.

-

Expressions Dy = 0 are the dispersion relations for the stokes mode (k

-9

w_) and the anti-stokes mode (I—c‘+, w, ), when the following resonant conditions are

satisfied: L.
W —Ww=w._, ki—k=k_,

L (5.13)
w; +w =wy, kl+k=k+

Multiplying equation (5.10) on both sides by cos(k; - ¥ — w;t) and neglecting the
terms containing (2/2';-, 2w;) as being non-resonant, we get

47re?

myg

D.ey cos(py) = — €;6my. (5.14)

Similarly, if we multiply equation (5.11) by cos(k; - ¥ — wit + &;), we obtain

- 4me? -
Diogeycosk - 7—wt £ (61 ~ &) = — ;e a;eiéngcos(k -7 —wt +6,).  (5.15)
0

Similar to equations (5.13), it gives following conditions between the phases
5y = 8 %6, (5.16)

Dividing equation (5.15) by equation (5.14) , we have

oy = aig—::l cos(P+) = o; R cos(dy), (5.17)
1

where R = éngy/bn;. The value of I is related to E;: &ney couples with E",-l and éney
couples with Ej. In the linear theory, it is not possible to determine R, but one

expects that it may not differ too much from the value of a;.
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If we multiply equation (5.14) by €; and equation (5.15) by a;e;, and subtract,

we find

5
ei(l- 2R) =y (5.18)

4ret

(aia:}: —~cO8 Py )etr =

Now, we have to determine the electron density perturbations oény and én,.
Here, we neglect the ions response because of their larger mass compared to that
of the electrons. With the inclusion of the ponderomotive force, as a driving force,
the Vlasov equation for the low frequency response of electrons can then be written
as

of
ot

where ¢(7, t) is the scalar potential associated with the electrostatic waves, f(7,7,1),

+ Vf+——( V6 V). oL f =0, (5.19)

is the particle distribution function and (7, t) is the ponderomotive potential.

Linearizing equation (5.19) with f(7,4,t) = fo(0) 46 fa (7,0, 1)+ 8 fea (T, U, 2), we get

O(gﬂ)* a(g°2)+~V(5fd> +1. V(5fcz)+*—(€v¢ W)af“ =0, (5.20)

where 6 f, = 6 fy cos(E- F~wt)and 6 f.o =81 cos(E~ 7 —wt—+08,). The ponderomotive
force of the radiation ficld is given by F, = —V. It depends quadratically on the
amplitude and leads to a slowly varying longitudinal field, corresponding physically
to radiation pressure, which leads to slow longitudinal motions and modifies the

density. The ponderomotive potential is given by:
2 , - ~
e E E. E
= <( Re|— 4+ — + =
QTTLO

2
Wy Wo Wy ) >w
2

53 ; o2 [eie— cos(¢_) coS(E- T — wt) + a0 e cos(E- r—wt+6; —6_)+
molw;

ei64 cos(d, )cos(k - 7 — wt) + ooy €e, cos(E F—wt+ 8, - 8)]
(5.21)

The angular bracket <>w represents the w frequency component of an average over

the fast time scale (w; > w).
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To determine ¢ self-consistently we use Poisson equation, which gives
4Te

¢ =~ (Ona + 8nes). (5.22)

Now, substituting the expressions for éfe1, 8fea, éne1, énea, ¢ and ¢ into equation

(5.20) , we have

4ne? k?

6fs +péfi + ok §ny + pbng + Srma? 156 cos(P-)n + eiey cos(by ) pt+
sink - 7 — wt + §; — 6_) sin(E-F—wt—k&L-—&-)}]x

o] + o a4€E, —
sin(k - 7 — wt + 6.) sin(k - 7 — wt + §,)

Q;_€;E__

L 9L
k-5

..______—-:‘—_———-:O’
(w—k-v)

(5.23)
where p=sin(k - ¥ — wt)/sin(k - ¥ — wt + Se).
Equation (5.23) shows that 65 = §; +8, and ., =0 or . We obtain, for §, =,

4rct k? k.2
5fy — 6F = — > — : D :
fr = of Ty K [5”2 b+ 8rmow? A} (w—k- 7))’ (5:24)

where A = (oo —cosp_)e;e_ + (azey —cos ¢y Je;e4. The difference in the density

perturbations (ériy — ény) is given by

dng — by = j no(5f, — 6f1)d?
“oo (5.25)
2
= — [5712 —&ny + 2A] Xe
8mwmow;
where
2
Xe = -2 4, (5.26)

[
k2 (w—Fk-%)
-
is the electron susceptibility function (Liu and Kaw 1976; Fried and Conte 1961).

Since I2 = ény/énq, from equation (5.25) we have

(1 + —1—) (1 - R)on, =

[

A (5.27)

k2
2

8rrmgw;
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Substituting equation (5.27) for én; into equation (5.18) , we obtain

(1 + i)(l ~R)= "3:2 (lelii;) (D{ + Dl+), (5.28)

where vy = e€iv/1 + a?/mow; is the quiver velocity of electrons in the field of

incident electromagnetic wave. The energy density of the incident field and the

luminosity L of the source are related by

1 2
— (1 1y —
ei(1+af)

L

prrg (5-29)
where r is the distance between source of radiation and plasma. Therefore, the

quiver velocity of clectrons is given by

e (2L\*1
Vo = ( ) (5.30)

mo\r2c/ ;'

Equation (5.28) is the plasma dispersion relation describing the SRS of elliptically
polarized electromagnetic wave. The SRS instability resonantly excites only when
the frequency and wave number matching conditions (see cquation 5.13) are sat-
isfied. The simplest stimulated scattering process is the one involving only one
high-frequency sideband, i.e., the stokes component (I?..,w..). Thus, we consider a
case where D_ = 0 and D, # 0, ie., the anti-stokes component (E+,w+) is non-
resonant. This approximation is justified as long as w <« (c2lgi . E/wi); it breaks
down for very small k (i.e., for long wavelength electrostatic perturbations) or if k
is nearly perpendicular to E,)

The value of k is approximately 2k;, corresponding to backward scattering
(¢— = =) and for forward scattering (4. = 0) it is approximately wp,/c. Thus, the
growth rate of the instability attains its maximum value for backscatter. For the
case of backscattering, D_ (k- ,w_) = 2wi{w— c¥k;-kfw; +k2/2w;) 20 forw; > w.

The dispersion relation for primarily backscatter is, therefore,

1 1 v3k? (1 —Rod)
(1 + _—) (1-F) = twi(w—4) A+’ (5.31)

€
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where 12,2

A:E-ﬁq—- o

(5.32)

with ¥, = k;c®{w;. From the equation (5.31) , we can derive the threshold and the

2 2
P

growth rate for the SRS instability. For w? ~ w? = w?, -+ (I’i/‘l)k"luﬁf,, the natural

2 2 YN s .
frequency of the plasma wave and w*® =~ W b« (ki - k)%, equation (5.31) can be
written as

iRy (1 R

— : —we 1)1 - ) — 0.3:
((&) We + ZF(‘)((’U We 1 )( ) 8(‘),’ ( 1 (r?) ' (\).d ;)
where - '
_ VT e b3 , .
Fe - 2 (kA])():; exp 2(}\:/\[)(.)2 2 { . (0."‘4)

. g proge 12 .
is the damping rate of the clectron plasma wave, v, - 3.632n,.1n A/’]',/ is the eloe-
tron collision frequency and Coulomb logarithm In A = 10. Here, I® 0—"]2,,.!’,/26&.‘2

is the collisional damping rate of the scattered electromagnetic wave. Setting

w =w, +1I', and solving equation (5.33) for the growth rate I', we find

i 1 R TE W(x I v
=—([. 4+ Y&/ (1, - 1" )2 ¢ =0 mpe A0 0T 5.35
r 2( -+ ) 2\/( ! 20, (L1 o)y (1 I (5-35)

Setting I' = 0, we obtain the threshold condition for the excitation of Raman

scattering;
I.r 3
¢ Jthr Wil (1 : [{”‘1)
The growth rate just above the threshold is given by
! o= TJSLI?'LUP(, m-(,l, w[{'l'l) s (r‘ e,r-v)
8<wi wpr')l‘(' (l * (Y?)(I I(’) ) D

which is proportional to EZ. The maximum growth rate abtainable for Wy 2 ' > Ty

on the other hand, is

vk Wye e |
F = )] . r :
2 \/‘Z(wi ~ap) (LEa)(1 Ry (5.38)
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For k == 2k;, equation (5.38) becomes

- ~ Ra?
r— CE; \/wpe (1 Ral). (539)

- mpcC 2(.4),: (1 - R)

We note that backscatter by plasma wave is possible only if 2k; Ap. < 1. For k;\p,
not too small, the stimulated Compton backward scattering due to the non-linear

Landau damping of the beat mode by resonant electrons becomes important.

5.3 STOKES PARAMETERS

The polarization state of the incident radiation changes due to the stimulated
Raman scattering in a plasma (see equations 5.1, 5.9, 5.16, with §, = 0 or 7). The
stokes parameters for the incident and gcattered electromagnetic waves (Rybicki &

Lightman 1979) are:

c 2 C 2
17 = 8—7r(1 +C1_7)Ef = 57‘{603, (5'40)
(1 ——a?)
=] 5.41
@ (1 +a]2~) 7 (541
U, = 20, I, cos(8;) (5.42)
] (1 +a?) b] 1/ TR
and
20t
Vi=——"1__ T gin(§.). 5.43
f; 1+ af) ; sin(6;) ( )

The sense of rotation of the electric field is given by

sin(28;) = II/i = —a—i_a%g)—sin(&,-). (5.44)

The magnitudes of the principle axes of the ellipse are

aj = Ijlcos(B;)] and b = Ii|sin(f;)]. (5.45)
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The orientation of the major axis of the ellipse relative to é; axis, is given by

tan(2y;) = %’— = Z-li_c—x—";-é—)- cos(6;). | (5.46)
J J

Here, j = ¢ for incident and — for scattered electromagnetic waves.

We use the relations é, = 7, §_ = §; — 8, and a_ = ;R to compute the stokes

parameters for the scattered wave.

5.4 NUMERICAL SOLUTION OF EQUATION (5.28)

For a strongly damped electron plasma wave with k;Ape = 0.4, it is not possible
to expand x.(w, k) in to an asymptotic series. The regime ki Ap. ~ 0.4 corresponds
to the transition region between SRS and stimulated Compton scattering (SCS)
(Gangadhara & Krishan 1992). Therefore, using w = we +1I', we numerically solve

equation (5.28) including all the damping effects.

5.4.1 In pulsars

The typical values of the plasma and radiation parameters at a distance r =
100Rxs = 108 cm, (Neutron star radius Rys ~ 10 km), in a pulsar are electron
density n. = ng x 10 cm™3, temperature T, = 15 X 10° K and luminosity L =

L3y x 10°° erg/sec in the band Av < v = 600 MHz (Gangadhara, Krishan & Shukla

1992).
Fig. 5.2 shows the e-folding time t, = 1 /T as a function of w; /wpe at the different

values of electron temperature 7, (= 10°, 5 x 10°, 108, and 7.5 x 10° K) for

forward SRS of the incident wave. The frequency of the scattered electromagnetic
wave is w_ = w;+w,. One recalls that at high temperatures an electron plasma wave

ping but large Landau damping. The rather fast

rise in t, is obtained in the SCS regime (keApe = 0.4). The points indicated by

experiences a small collisional dam
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C correspond to k.Ap. =~ 0.4 and represent the change of scattering process from

Raman to Compton.

4
©,,=5.6x10° rad sec’’
R=0.5
2 _(1|=0.5
— 2 -2
8 ‘Lao/re = 10
20
82}
4}
0.3

Fig. 5.2 The e-folding time t. = 1/I" versus the normalized frequency (w,'/ wpe).
The points C represent the transition between SRS and SCS, where kiAp. = 0.4.
At lower values of (w,- / wpe) SRS occurs while at higher values SCS occurs.

We know from the observations of pulsar PSR 1133416 by Cordes (1983) that
flux I; = 10~ Perg cm™2 sec™! Hz™! at the radio frequency v; = 600" MHz. To find
the relation between the incident flux I; and the scattered flux I_ we use condition

for conservation of wave—energy within the systems of waves, the Manley—Rowe

relation (Weiland & Wilhelmsson 1977), given by

L _ I (5.47)
w; W
It gives
v 5.48)
=({1-—)& (
I (1 wi)

For w = wp, and w; = 2.5wp., we get I_ =061
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The sense of rotation and the orientation of the ellipses of the incident and the

forward scattered electromagnetic waves are shown in Fig. 5.3.

—_

k. K

Fig. 5.3 The ellipses of the electric fields of the incident and forward scattered

electromagnetic waves.

In Table 5.1, the values of stokes parameters for the incident and the forward
scattered electromagnetic waves in a pulsar PSR, 1133+16 are listed. It shows that:
(1) a linearly polarized incident electromagnetic wave (§ = m,a; = 0.5) scatters
into another linearly polarized electromagnetic wave with its plane of polarization
rotated through an angle y_ with respect to & axis (see Fig. 5.3); (2) a elliptically
polarized incident wave with counterclockwise sense (§; = 37 /4, a; = 1) scatters
into (i) a linearly polarized wave when R = 0, (ii) elliptically polarized waves
with clockwise sense with major axis rotated thorough an angle x- when R =

0.4,0.8& 1.2; (3) a circularly polarized incident wave with counterclockwise sense
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TABLE 5.1

STOKES PARAMETERS OF THE INCIDENT AND FORWARD SCATTERED EM WAVES
For PSR 1133416

Parameters Incident wave Scattered wave
(erg cm™%sec™'Hz™1) & =, a; =0.5 6_=0

R=0 R=0.4 R=0.8 R=1.2
I 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
Q 6.0000E-21 6.0000E-21 5.5385E-21 4.3448E-21 2.8235E-21
U -8.0000E-21 0.0 2.3077E-21 4.1379E-21 5.2941E-21
v 0.0 0.0 0.0 0.0 0.0
x (rad) -0.4636 0.0 0.1974 0.3805 0.5404
a 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
b 0.0 0.0 0.0 0.0 0.0
Sense of
rotation
Nature linear linear linear linear linear
Parameters Incident wave Scattered wave
(erg cm™2sec™Hz™!) & =3r/4, 05 =1 6. = —m/4

R=0 R=0.4 R=0.8 R=1.2
I 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
Q 0.0 6.0000E-21 4.3448E-21 1.3171E-21 -1.0820E-21
U -7.0711E-21 0.0 2.9260E-21 4.1392E-21 4.1731E-21
v -7.0711E-21 0.0 2.9260E-21 4.1392E-21 4.1731E-21
X (rad) 0.0 0.2963 0.6314 ~0.6586
a 9.239E-21 6.0000E-21 5.8064E-21 5.5705E-21 5.5618E-21
b 3.8268E-21 0.0 1.5118E-21 2.2291E-21 2.2510E-21
Sense of counter— clockwise clockwise clockwise
rotation clockwise
Nature elliptical linear elliptical  elliptical elliptical
Parameters Incident wave Scattered wave
(erg Cm“zsec'le'l) Si=7/2,a; =1 6. = —m/2

R=0 R=04 R=0.8 R=1
I 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
Q 0.0 6.0000E-21 4.3448E-21 1.3171E-21 0.0
U 0.0 0.0 0.0 0.0 0.0
\ -1.0000E-20 0.0 4.1379E-21 * 5.8536E-21 6.0000E-21
x (rad) 0.0 2.9170E-17 1.3613E-16 ...
a 70711E-21 6.0000E-21 5.5709E-21 4.6852E-21 4.2426E-21
b 7.0711E-21 0.0 2.2283E-21 3.7482E-21 4.2426F-21
Sense of counter— clockwise clockwise clockwise
rotation clockwise
Nature circular linear elliptical elliptical circular
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(6 = m/2, a; = 1) scatters into (i) linearly polarized wave when 12 = 0, (ii) an
elliptically polarized wave with clockwise sense when R = 0.4&0.8, (iii) circularly
polarized wave with clockwise sense when IZ = 1.

Similar to the Table 5.1, the stokes parameters of the incident and backward
scattered electromagnetic waves in PSR 1133416 are listed in Table 5.2. In the case
of backward SRS sense reversal does not occur.

Fig. 5.4 shows y_ as a function of the e-folding time %, for different values of
a; in the case of forward scattering of the elliptically polarized radio wave E;, in

the emission region of a pulsar. Here, R is varied between 0 and 1. For R close to

1, one observes t, < 10~* sec. The rotational angle x- reaches a maximum when

the growth rate attains its maximum. It is seen that a reversal in the sense of

polarization can take place in a time scale lying between micro to milliseconds.

R
0.8 0.6 0.4 0.2 0

% © =3.8x10°rad sec”
®,,=5.6x10%ad sec™ |

log[t,] (sec)

Fig. 5.4 The orientation angle X - of the scattered radiation versus the e-folding

time %, for the SRS scattering of radio wave in a pulsar.
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TABLE 5.2

STOKES PARAMETERS OF THE INCIDENT AND BACKWARD SCATTEREDEM WAVES
For PSR 1133416

Parameters Incident wave Scattered wave
(erg cm™?sec™'llz"!) 6 =m, o; =05 6_=0

R=0 R=0.4 R=0.8 R=1.2
I 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
Q 6.0000E-21 6.0000E-21 5.5385E-21 4.3448E-21 2.8235E-21
U -8.0000E-21 0.0 -2.3077E-21 -4.1379E-21 -5.2941E-21
v 0.0 0.0 0.0 0.0 0.0
X (rad) -0.4636 0.0 -0.1974 -0.38051 -0.54042
a 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
b 0.0 0.0 0.0 0.0 0.0
Sense of
rotation
Nature linear linear linear linear linear
Parameters Incident wave Scattered wave
(erg cm™2sec™!Hz™!) §; =3n/4, oz =1 6_ = —m/4

R=0 R=0.4 R=0.8 R=1.2
1 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
Q 0.0 6.0000E-21 4.3448E-21 1.3171E-21 -1.0820E-21
U -7.0711E-21 0.0 -2.9260E-21 -4.1392E-21 -4.1731E-21
\ -7.0711E-21 0.0 -2.9260E-21 -4.1392E-21 -4.1731E-21
X (rad) -0.7854 0.0 -0.2963 -0.6314 0.6586
a 9.2388E-21 6.0000E-21 5.8064E-21 5.5705E-21 5.5618E-21
b 3.8268E-21 0.0 1.5118E-21 2.2291FE-21 2.2510E-21
Sense of counter— counter— counter— counter—
rotation clockwise clockwise clockwise clockwise
Nature elliptical linear elliptical elliptical elliptical
Parameters Incident wave Scattered wave
(erg cm™2sec™Hz™)) & =7/2, a; =1 6. =-m/2

R=0 R=0.4 R=0.8 R=1
1 1.0000E-20 6.0000E-21 6.0000E-21 6.0000E-21 6.0000E-21
Q 0.0 6.0000E-21 4.3448E-21 1.3171E-21 0.0
U 0.0 0.0 0.0 0.0 0.0
\ -1.0000E-20 0.0 -4.1379E-21 -5.8537E-21 -6.0000E-21
X (rad) 0.0 -2.9170E-17 -1.3612E-16
a T O0711E-21 6.0000E-21 5.5709E-21 4.6852E-21 4.2426E-21 -
b 7.07T11E-21 0.0 2.2983E-21 3.7482E-21 4.2426E-21
Sense of counter— counter— counter— counter—
rotation clockwise clockwise clockwise  clockwise
Nature circular linear elliptical elliptical circular
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5.4.2 In quasars

The typical values of the plasma and radiation parameters in the broad-line

region, at a distance r = rp. x 3.086 x 1018 cm from the central engine of a quasar

are (Krishan & Wiita 1990; Gangadhara & Krishan 1990) electron density 7.

9 . -
ng X 10%cm™3, temperature T, = T5 X 10° K and luminosity L = Ly X 10*2 erg/sec

in the radio band Aw = wye.

Fig. 5.5 shows x_ as a function of the e—folding time t., for different values of

a; for forward scattering of the elliptically polarized radio wave E; in a quasar. The

rotational angle x_ reaches a maximum when the growth rate attains its maximurm.

Similarly, Fig. 5.6 shows x_ as a function of the e-folding time ., at different values

of x; for forward scattering of the elliptically polarized optical wave E; in a quasar.

0.8 0.6 0.4 0.2 0
%=0.75 w=4x10'""rad sec”’ |
@ py=4x10"rad sec”

log[t.] (sec)

Fig. 5.5 The orientation angle X of the scattered radiation versus the e—folding

time ¢, for the SRS scattering of a radio wave in a quasar.
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We k i
now from the multifrequency observations of 3C 273 by Courvoisier et al

(1987) that I; = 4.226 _22 _
6 x 10722erg cm™? sec! Hz™! at the radio frequency v; =

6.366 x 10° Hz. =~
z. For w = wy, and w; = 2.5wp, we obtain from equation (5.48) that

I_ = 2.5360 x 10~ 22erg cm™ % sec™! Hz™

R
g 08 o4 0.2 0
0=3x10"%rad sec”

 py=5.6x10"rad sec™

. T,=10°K
L,,=10°
Tpe=0.1

5;=7t

0.6

T

0.4

%_ (rad)

0.2

O L 3
-3 ]

log[t,) (sec)

Fjig- 5.6 The orientation angle X of the scattered radiation versus the e-folding

time t. for the SRS scattering of optical wave in a quasar.
arameters for the incident

Similar to Table 5.1, in Table 5.3 the values of stokes p
3 are listed. It

and the forward scattered clectromagnetic waves in a quasat 3C 27
arization of pon-thermal radiation varies

has been observed that the variability in pol
over the time scales between a second to a day-
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TABLE 5.3

STOKES PARAMETERS OF THE INCIDENT AND FORWARD SCATTERED EM WAVES

For 3C 273

Parameters Incident wave Scattered wave
(erg cm™2sec™Hz™Y) & =m a; = 0.5 65_=0

R=0 R=0.4 R=0.8 R=1.2
I 4.2266E-22 2.5360E-22 2.5360E-22 2.5360E-22  2.5360E-22
Q 2.5360E-22 2.5360E-22 2.3410E-22 1.8364E-22 1.1934E-22
U -3.3813KE-22 0.0 9.7537E-23 1.7490E-22  2.2376E-22
v 0.0 0.0 0.0 0.0 0.0
X (rad) -0.4636 0.0 0.1974 0.3805 0.5404
a 42266E-22 2.5360E-22 2.5360E-22 25360E-22  2.5360E-22
b 0.0 0.0 0.0 0.0 0.0
Sense of
rotation
Nature linear linear linear linear linear
Parameters Incident wave Scattered wave
(erg cm™2sec™'Hz™1) 6 =3n/4, oy = 1 5. =—m/4

R=0 R=0.4 R=0.8 R=1.2
I 4.2266E-22 2.5360E-22 2.5360E-22 2.5360E-22 2.5360F-22
Q 0.0 2.5360E-22 1.8364E-22 5.5667E-23  -4.5730E-23
U -2.9887E-22 0.0 1.2367E-22 1.7495E-22 1.7640E-22
v -2.9887E-22 0.0 1.2367E-22 1.7495E-22 1.7638E-22
X (rad) ~0.7854 0.0 0.2963 0.6314 ~0.6586
a 3.9049E-22 2.5360E-22 2.4541E-22 2.3544E-22 2.3507E-22
b 1.6174E-22 0.0 6.3896E-23 9.4217E-23 9.5139E-23
Sense of counter— clockwise clockwise clockwise
rotation clockwise
Nature elliptical linear elliptical elliptical elliptical
Parameters Incident wave Scattered wave
(erg cm™%sec™'Hz™l) & =1n/2,a; =1 b_=-n/2

R=0 R=0.4 R=0.8 R=1
4.2266FE-22 2.5360E-22 2.5360E-22 2.5360E-22  2.5360E-22
Q 0.0 2.5359E-22 1.8364E-22 5.5667E-23 0.0
U 0.0 0.0 0.0 0.0 0.0
v -4.2266E-22 0.0 1.7489E-22 2.47410E-22 2.5360E-22
X (rad) 0.0 2.91705-17 1.3612E-16 ...
a 2.0886E-22 2.5359E-22 2.3545E-22 1.9802E-22 1.7932E-22
b 2.9886E-22 0.0 9.4183E-23 1.5842E-22 1.7932E-22
Sense of counter— clockwise  clockwise clockwise
rotation clockwise
Nature circular linear elliptical elliptical circular
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5.5 FARADAY ROTATION VERSUS STIMULATED

RAMAN SCATTERING

Here, we make a comparison between the rotations of the plane of polarization
produced by Faraday rotation and forward SRS, using the typical plasma and radi-
ation parameters for a quasar. A linearly polarized electromagnetic wave which is
incident on a plasma, will be Faraday rotated through 7 rad, where Q is given

by (Lang 1974)

L
4
qp = 2362107 /neHcos(B) d  rad (5.49)
174

0

after traversing a thickness, L, of the plasma. Here, H is the magnetic field and 6
is the angle between the line of sight and the direction of the magnetic field. For
e = ng X logcm_g, H = H_3x 103G and v = vg x 10°Hz in the broad-line region

of quasar, we get

smeflsl g (5.50)

Vg

Qp =236 x 10

Consider the point log[t] = —5 sec and X~ = 0.65 rad in Fig. 5.5 on the

curve with a; = 0.75 and x; = —0.644 rad. The angle through which the plane of
polarization rotated due to SRS is given by Qsps = x- — Xi = 1.294 rad during the
time t, = 107° sec. To compare QF and Qgps we need to convert . into the light
travel distance L= ct, = 3 x 10° cm. Now, for ng = 5, H_3 = 1, and vy = 6.366
(Fig. 5.5) we get Qp = 8.735 x 107 rad, much smaller than Qggs.
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5.6
I};;?gE AMPLITUDE ELECTROMAGNETIC WAVES AND THE
CT OF THEIR INCOHERENCE ON SRS INSTABILITY

We deri

. realit:‘:::i :ile;:)eve results as.suming the incident field to be monochromatic.
by Tamour (1973)’ - r;‘L}rlnount of incoherence is always present. It has been shown
Aw; of the incident field Omson.et al. (1974) that the effect of finite bandwidth
fomping rafe of the sideb on the instability can be taken care of by replacing the
of phase jumps per unitet-ands FL. by (T +2¢) = (T +Aw;) where { is the number
of time an el . ime. This happens because I'; is a measure of the duration

ectron is allowed to oscillate with the driving field before being knocked
out of phase by a collision. The same effect results when the driving field suffers

a phase shi
ift and the two effects are additive. Thus replacing Tz by 'z + Aw;

certainly raises the threshold for the instability.

If T is th
¢ growth rate due to a monochromatic pump at w;, then the actual

growth rate I )
due to the broad pump with a spectral width Aw; > T is given by

(Kruer 1988)
1

= —TI?
Th Awi .
us, the reduction in the growth rate due to the finite bandwidth may be

e large luminosity radiation believed fo be generated

(5.51)

com-

pensated to some extent by th

by cohe issi
r * -
Y ent emission processes. Hence, the presence of incoherence through finite

vely increases the damping rates and the

band width in the radiation field effecti
of SRS instability.

thresholds, and therefore reduces the growth rate (te increases)

emission from bunches of relativistic electron

radiation (Gil & Snakowski

Several coberent processes like (i)
beams (Ruderman & Sutherland 197 5), (ii) curvature
1990a, 1990b; Asséo, Pellat & Sol 1980) and (iii) parallel

osed for the radio emission from

acceleration mechanism

pulsars. On the other

(Melrose 1978) have been prop
emission processes for the generation of continuum

hand, the role of the coherent
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emission of the quasar was emphasized long back (Burbidge & Burbidge 1967) and
has now begun to receive the attention it deserves (Lesch & Pohl 1992; Krishan &
Wiita 1990; Weatherall & Benford 1991; Baker et al. 1988; Gangadhara & Krishan
1992).

Baker et al. (1988) constructed a model of the inner portions of astrophysical
jets, in which a relativistic electron beam is injected from the central engine into
the jet plasma. This beam drives electrostatic plasma wéve turbulence, which lead
to the collective emission of electromagnetic waves. Weatherall and Benford (1991)
describe the scattering of charged particles from an intense localized electrostatic
ficlds (cavitons) associated with plasma turbulence. These cavitons arise from a
process known as plasma collapse (Zakharov 1972), in which electrostatic energy
accumulates in localized wave packets. When the beam is ultra-relativistic, the
emitted radiation is enhanced by relativistic beaming along the direction of propa-
gation. In the same spirit, in this paper, we have studied the scattering of coherent
clectromagnetic radiation by electron density fluctuations or Langmuir waves of
different phases in order to explain the polarization changes.

Analysis of the data by University of Michigan (Aller, Aller and Hughes 1991)
in the cm-wavelength regime showed both flux and linear polarization variability,
and in addition polarization frequently exhibited position angle swings and large

changes in percentage of polarization. To explain these observational results one

incorporates shock models with special geometries. While SRS, without invoking

many constraints, can explain these results.
Sillanpai, Nilsson and Takalo (1991) observed rotation of polarization position
in the optical regime. This is the

angle linearly 55° in five hours, in all five colors,
J 287 or blazar. It

fastest ever observed position angle swing at optical regions in O

s observed position angle swing with shocks in jet model.

is difficult to explain thi
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5.7 CONCLUSION

Usually, when one talks about polarization change, one is referring to the same
wave. SRS however brings about change of frequency but when the frequency of
the incident wave is much higher than the plasma frequency, the scattered wave
frequency differs very little from the incident wave frequency.

The value of R can be determined only by the non-linear calculations. However,
one can easily expect that the value of R may be close to the value of o;.

Similar to the frequency and wave number matching conditions (see equation
5.13) we found conditions between the phases &;,6: and 6, (see equation 5.16) in
the process of three-wave interaction.

Through SRS the clockwise polarized radiation can change into counterclock-
wise polarized radiation and vice versa. In addition, circularly polarized wave can
change into a lincarly polarized, a circularly polarized or an elliptically polarized
wave or vice versa, depending upon the value of R. The plane of polarization gets
rotated through an angle (x_ — x;). Compared to the Faraday rotation the SRS is
a faster process.

A direct measurement of the growth rate cannot be done by a remote observer.
The e-folding time represents a characteristic time during which a significant change
in the degree of polarization, sense and rotation of plane of polarization takes place.
Therefore, the observed variability time should be of the order of or a few times the
e-folding time.

The features like a large change in rotation of polarization plane, sense reversal
and extremely rapid temporal changes would help to explain many obscrvations,
for which, the existing mechanisms prove to be inadequate. Because of the very
strong dependence of rotation angle on plasma parameters via the growth rate,

in an inhomogeneous plasma medium the depolarization is a natural outcome. A

128



strong magnetic field can also affect the process: we intend to study this in detail in
later work. We believe that the plasma process such as the SRS may be a potential

mechanism for the polarization variability in pulsars and quasars.
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Chapter 6

THE MODULATION OF RADIATION IN AN ELECTRON-
POSITRON PLASMA

This chapter illustrates, the modulational instability of a large—amplitude
electromagnetic wave propagating in an electron-positron plasma. The ef-
fects such as relativistic mass variation of the plasma particles and the non-
resonant, finite frequency electrostatic density perturbations, caused by the
large—-amplitude radiation field, are taken into account. The radiation from
many strong sources such as AGN and pulsars, has been observed to vary
over a host of time-scales. It is possible that extremely rapid variations in
the non-thermal continuum of AGN as well as in the non-thermal radio ra-
diation from pulsars can be accounted for by the modulational instabilities to

which radiation may be subjected during its propagation out of the emission

Tegion.



6.1 INTRODUCTION

The observations of active galactic nuclei (AGN) in all bands of the electromag-
netic spectrum have been reviewed by Wiita (1985). He concentrated on quasars
radio galaxies, Seyfert galaxies, and BL Lacertae objects, with an emphasis placed,
on the energy production efficiency, compactness and variability. Observations have
revealed that many compact radio sources have, in addition to the usual long-term
variability, an intrinsic variability with time-scales less than a day. Heeschen et al.
(1987) found, quite unexpectedly, the variations of ~ 1 day at a wavelength of 11
cm in several flat-spectrum sources. Observations of intraday radio variability in

com i .
pact radio sources and their probable explanation are given by Quirrenbach
(1990).

Generally, the time-scale of the amplitude variation is associated with the size

Of o e R
the emitting region, such that shorter time scales are associated with smaller

regions. (Time-scales refer to the e-folding time or the doubling time of the am-

plitude). However, variations observed for durations smaller than, for example,

the doubling time may not, when extrapolated to actua] doubling time, provide a

meaningful limit on the physical size of the emitting region.

Optical variations in blazars on time—scales ranging from a few minutes to
). In several instances, day-to-

nd Hoffleit

decades are well established (e.g. Webb et al. 1988
1 mag have been observed to occur (Smith a

day changes of more than
us and Liller 1975; Liller and Liller

1963; Angione 1969; Shen and Usher 1970; Each

1975; Miller 1975, 1977). For example, Oke (1967) observed a 0.25 mag change in

1 day for 3C 279; Bertaud et al. (1973) reported a variation for BL Lacertae of
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1.3 mag in a day and of 0.7 mag in 74 minutes. Racine (1970) detected optical
variability of 0.1 mag within a few hours in BL objects.

OJ 287 is the only AGN for which claims have been made (Kiplinger 1974;
Folsom et al. 1976; Smith et al. 1985) for the existence of periodicity P less
than a day. Visvanathan and Elliot (1973) reported the detection of P = 39.2
minutes in the optical band, which was later confirmed by Frolich (1973). Carrasco,
Dultzin-Hacyan and Cruz-Gonzalez (1985) reported the existence of P = 23.0 and
40.0 minutes in OJ 287. This object’s long history of variability, the evidence of
variability with time-scales of 1 day or less and the possibility that such variability

may be periodic conspire to make this object a prime candidate for the investigation

of microvariability.

There are several mechanisms which can account for the radio variability and

the spectral characteristics of AGN. Details of the time dependence and the polar-

ization behavior of the flux are needed to separate the intrinsic variability from the

propagation effects.

One might expect that the rapid optical variability of blazars could be explained

. -I - f
by gravitational microlensing. However, the comparatively large size of nuclei o

L .
AGN in the radio regime tends to smear out such variations, unless the Einstei

nsi i o) could
radii of the microlenses are large. The lensing by massive stars (M < 100Mp)
1t transverse velocities of the

P L o
account for variations in the cm. regime, but appa

i ired to
observed in superluminal sources, are requir

order of ~ 40c, much higher than -
me scales of ~ 1 day. Moreover, the amplitude of the variations is expec

ear contradiction with the o

produce ti '
bserved behavior of

to increase with frequency; this cl

| S

&Y.
ARALLIL s

; i ible exp:
quasar 09174624 seems to rule out the microlensing as 3 possi
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rapid variability (Quirrenbach 1990).

Another more plausible mechanism for intraday radio variability is refractive
interstellar scintillation (RISS). The wavelength dependence and short time-scale
of variations, however, argue against this explanation; very small scatterers must be
present close to the Sun (< 100 pc) if this is the mechanism. Heeschen et al. (1987)
speculated that unusual filaments associated with the galactic loop IIT could be
responsible for an enhanced scattering in high-declination sources, but the statistics
of intraday variations in (Quirrenbach 1990) samples with 60° < § < 90° and with
35° < § < 50° respectively, are consistent with each other, indicating that the
observed effects do not depend on celestial coordinates. Polarization variations and
possible correlations with optical variability present further difficulties for the RISS

hypothesis. Intrinsic variability seems therefore to be the most plausible explanation

for the intraday variability.

Effects such as the absorption, the spectral modification, and the change in
polarization of intense radiation propagating through plasma in AGN, have been

explained with a sequence of plasma processes and have been shown to be much

faster than single—particle processes (e.g. Krishan and Wiita 1986, 1990; Krishan

1988; Beal 1990; Gangadhara and Krishan 1990; Benford 1992).

The radio flux of pulsars fluctuate over the time scales 1ps to 1 yr. Observa-

tions for pulsars PSR 1133+16 at 600 MHz and PSR 1944+17 at 1.4 GHz, made

by Cordes (1983), showed a pulse sequence, with a broad range of quasi-periodic

and intermittent structures, which is weakly frequency dependent. Intrapulse fluc-

tuations include narrow spikes and micropulses with durations from 1 ps to a few

roader features and

ms which also show quasi-periodicities of 0.1 to a few ms. B
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subpulses (At ~ 1-100 ms) sometimes appear as envelopes of micropulses and as
modulations of amorphous noise-like structures. One may conclude that a large
number of independent emitters contribute to the signal in a resolution time of

1-10 ps, so even the narrow micropulses may be incoherent composites of many

coherent emissions.

The observational data (Gil 1986; Smirnova et al. 1986; Smirnova 1988)
strongly support the hypothesis that pulsar micropulses are a temporal phenomenon
and can be interpreted within the amplitude-modulation mechanism (Rickett 1975).
As discussed by Chain and Kennel (1983) and others (Mofiz, de Angelis and Forlani
1985), modulational instability provides a natural mechanism for amplitude mod-
ulation. According to pulsar models (Ruderman and Sutherland 1975; Arons and

Scharlemann 1979), the pulsar magnetosphere is composed of secondary electrons

and positrons.

This chapter explains the modulational instability of a large amplitude linearly

polarized electromagnetic (EM) wave propagating in an electron-positron plasma.

We take into account the combined effects of relativistic mass variation of plasma

particles and the finite-frequency electrostatic density perturbations which are cre-

ated by the ponderomotive force of the EM wave. We show that the modulational
instability is a possible mechanism for the short-time intrinsic variability of compact
radio sources. In addition to accounting for the éxtremely short time variability,
this mechanism could prove to be a valuable diagnostic for the source region. In

contrast, the other mechanisms, such as refractive interstellar scintillation and mi-

. s ‘ f the
crolensing, depend on the very specific conditions far away from the source o

radiation.
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6.2 THE MODULATIONAL INSTABILITY

An electron-positron plasma is found in the early universe (Rees 1983), in
active galactic nuclei (Miller and Wiita 1987), in pulsar atmospheres (Goldreich and
Julian 1969) and in the Van Allen Belt (Voronov et al. 1986). The collective plasma
effects in an electron-positron plasma are of significant interest (e.g. Lominadze,
Machabelli and Usov 1983; Shukla et al. 1986). Lately, the processes of non-
linear wave conversion (Gedalin, Lominadze and Stenflo 1985) and self-modulation
of EM waves have attracted a great deal of attention (Chain and Kennel 1983;
Shukla 1985; Mofiz, de Angelis and Forlani 1985; Kates and Kaup 1989; Tajima
and Taniuti 1990).

In an AGN, the electron-positron plasma exists at a distance of about r 2>
10Rg, from the central engine (Lightman 1983), where Hsp, = 2GM/c is the
Schwarzschild radius. In pulsars, the plasma exists at a distance of about r >
100Ry, from the neutron star (Cordes 1983), where Ry, ~ 10 km is the neutron-

star radius. In the present model, the electron—positron plasma is considered to be

uniform and at rest with respect to the source of radiation.

Let us consider the non-linear propagation of a large-amplitude, linearly polar-

ized EM wave with an electric vector
E,=E, cos(ky.7 — wot)é (6.1)

through an electron-positron plasma. The EM wave can cause such non-linear

effects as charged particle mass modulation and the excitation of forced electro-

. 13 N . 4 w r
static density perturbations. The non-linear processes occur 01 & time scale slowe

than the radiation oscillation period and are responsible for the spatio-temporal

M wave packet. The charged particle mass mo

ation in the EM fields, whereas the electrostat

dulation arises

modulation of the E
ic den-

from relativistic mass vari
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sity perturb'a.tlons are due to the parametric coupling of EM wave and plasma via
:;n(iferomotlve force. Thus a constant-amplitude EM wave i;lteracting with small
(E P Zude non-resonant perturbations will generate upper (EO+E, w,+w) and lower
—k, w,— 3

th,,e pOSSi; ) :) E;\/I 31de-band-s. The non-linear processes, as described above, provide
1‘ y of coupling sidebands with the original pump. A low-frequency non-
inear force will result, which in turn, will reinforce the low—frequency perturbations
thereby lending support to the amplitude modulation of the radiation. |

The non-linear interaction of a large-amplitude, plane polarized EM wave with

an electron-positron plasma is governed by

@ v.J
5tV /=0 (6.2)
m~(§_+g..v)(p.-‘. B+ 25 x B il
i+ 107 = g;( +‘;Uj><B)—77_—V"ja (6.3)
7
V - E = 4np, (6.4)
. 10B
VX :———87 (6-5)
and
-  4m - 10F
VxB=—J+-7"
—J+ 5 (6.6)

where I'; = (1- U?/cz)—l/2 is the Lorentz factor, ¢ is the speed of light, vj, 7, ¥ T3

m; and g; are, respectively, the adiabatic exponent, the number density, the fluid

velocity, the temperature, the rest masé and the charge of particle species j (equals
). Here, p = e(n, — Ne)

Equations (6.2) and (6.3) are the charge

DS, respectively, whereas cquation

e for electrons and p for positrons and J = e(nyTp — nele)

are the charge and the current densities.
conservation and relativistic momentum equatio
(6.5) and (6.6) are the Maxewell's

amitude of

(6.4) is the Poisson’s equation and equations
— —e, where € i8 the mag

equations. We take me = Mp = Moy de = ~p
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the electron charge. The electric and magnetic fields are given by

., 104
E=-vy,_222
¥ c ot (6.7)
and
B=VxA4, (6.8)

where ¢ and A are the scalar and vector potentials, respectively.

Inserting equations (6.7) and (6.8) into equation (6.6) we get

-
10°4 gy 19Ve (6.9)

VX(VXA)_f—c_zW c c Ot

Using a standard vector identity, we write

. ~ 184 4x - 18V
— V2 = J - L, 6.10
V(VA) -V A+ 55 =—J- - (6.10)

Since we are interested in the propagation of electromagnetic waves in a plasma
medium, we chose Coulomb gauge V - A = 0. Therefore, we have
(V2 —1—6—2)5—— Ly l—a—(w), (6.11)
2o ¢ c Ot
We now separate J into a transverse component Ji (associated with the EM
vave) and a longitudinal component Ji (associated with forced electrostatic pertur-
>ations). The longitudinal part of J can be related to E = —Vyp with equations

6.2) and (6.4). By eliminating p between equations (6.2) and (6.4), we obtain

v? Q‘f =47V - J. (6'12)
ot
/i V - J; = 0, we obtain
ince ¢ . (—92 ) — and (6.13)
ot



Substituting equation (6.13) into equation (6.11) yields

8 .
( V- 2)A = —4ncl;.

The total transverse current density is defined as

jt = e(nyily — Netle),

(6.14)

(6.15)

where 4, is the transverse velocity of the species j in the presence of the electric

ficld of the EM wave. We find @; from the equation of motion of a particle of species

7 in the electric ficld of the EM wave
6 — b d
mogfj{(1~u§/c 1/2 }-—q]

Using equation (6.7), we obtain from equation (6.16)

9 In1/2 — q 7
(1 - /)y =~ A

cmy,

Equation (6.17) gives

Substituting equation (6.18) into equation (6.17), we get
2 42 ~1/2
oo 9 A.
Ui = T e (1 + m2c4)

T mec 2m2c4

6.15), we get

1 242 i
J,, = —-—-—r(n,,+na)<1 9 ?,C-s

Substituting equation (6.19) into equation (

'We now suppose that

- 1 i(Re—wol) 1 A*(T,t)e
(70 = A HeET + A

140
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(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)



where fL(F, t) is a slowly varying function of space and time, and E;(ﬁ t) is its com-
plex conjugate. Squaring equation (6.21) on both sides, we obtain 4% = (1/2)A4,.A4*,
where we have neglected the higher frequency terms 2w, as they are non-resonant.
Substituting the expressions for J, and A(7, ) into equation (6.14) and equating
the coefficients of eibo™wot) and e=iF-wot) on both sides, we obtain
2 -

[c2v2 +i2¢%k, - V — k2 — % + i2w0—3(2t +wg] A, =

4me? 1eX(A,- A)) »

- ('Ile + np) {1 — Z—m_gci_ A,, (622)
and
AV? -2k, - V — ¢Fk? — _Bi — 12w ?— +w2}g* =
0 0 atz Dat o|*'s
4re? 1 62(14. A‘*) e
N8 sl . 6.23

o (ne + np){l PR s (6.23)

Using n;(7,t) = n, + én;(7,t) and A(Ft) = A, + 8A(F,t), linearizing equations

(6.22) and (6.23), we have

-~ 2 0 g? ~ _
[C2V2 + 2%k, - V — —8%5 + i2w,,—a—t —|—w§ - czkf - wa, (1 - Z)} (A, +04) =
w2 32 - = - - - 9 62 A' (624)
——F (5A.A*+AO.JA*)A,,+wP6N 1-— |4, .
2 mict ’ 4
and
— . 52 , %) 2 2k2—2w2 1_.Ei (A"—}-(Sfi"):
[c2V2 — 2%k, -V — 32 - 12%55 +w, —CK, P 4 4
T T R _E i .
_‘1’21’. '264(6A-A;+A0-5A )Aa+wp5N(1 4)Ao'
m?

- . 2 _ 2 /m, is the plasma
where 6n,~(1"‘,t) and & A(f’, t) are the perturbations, wp dnnye’/

frequency, €2 = e?|4,|*/mlc* and 6N = (bne + bny) /70
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The relation between e and luminosity of radiation L is given by
2 _ elAf> 22 1L _ (6.26)

2.1 x 10* 1L
mict T midwlr? )

2.2°
w; T

where r is the distance between the source of radiation and the plasma medium.

From the zeroth order terms in equations (6.24) and (6.25), we have
2 2 el 272
w, = pr<1 - -Z) “+c ko' (6.27)

This is the dispersion relation for an intense EM wave (E,,,w,,) propagating in an
electron—positron plasma. It shows that the plasma frequency of the electron—

positron plasma gets depleted by a factor of €2/4.

From the first order terms in equations (6.24) and (6.25), we now find
2

22 4 1252k & ., 0 2 _ 213 2 € 1
[CV +7,2c2k,,-V———5t7+z2w05t—+wa—c k0—2wp(1——4—)]5.4—

w? g2 - - - 2\ -
2 S (§A- A4 A, 64 ) A0+ w}:m(l - Z) i, (6.28)

2.4
2 mic

and
2

2 7 0 0 2 2p2 2 € A+
V2 — 122K, - V = 2w, AWl — R = 20y |1 |[6A7=
dt? ? 4

Bt
2 2 2\ o
W e - P — e T 2 . f_ Tx 2
-2 o~ (6A- A3+ 4, 6AN) A, +wp(5N(1 ; )Ao, (6-29)

where w, 3> w and w is the frequency of the electrostatic wave. Fourier transforma-

tion of equations (6.28) and (6.29) with

5A(F,w) = 51— f / §A(F, e Fdr dt (6.30)
v
and e
55 (R w) = 51— / / SN (R, e i di, (6.31)
T
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~  w? o2 Yoo L m - g2\ .
DibA= 2 (G4 Kyt Ay o8 H0) A, - w}%&N(l-~ -4-) i, (6.32)
and
DsK =€ (64 A + A, .64 A" —w25N(1 - 5—2) i (6.33)
2 m2ct o e F 4 /)7

where Dy = (k, =+ k)2 — (wo £ w)? + 2w2(1 — */4) are the dispersion relations
for the Stokes mode (E,,,w,,) and the anti-Stokes mode (Ea,wa) when the following

resonant conditions are satisfied:

Wo — W=,  ky—k=k,
(6.34)

Wotw=uw,  kyt+k=k,
Combining equations (6.32) and (6.33), we obtain
SR ~ 5 2\ Wl S -
6A-AS+ A, 84 = { - wg;Ao|2(1 - -Z—)«SN+ —2252(5,4 A+ A, 5A*)}x

X {—151? + b%} (6.35)

We must now calculate the low-frequency electron and positron density fluctu-
ations én, and én, produced by the radiation (ponderomotive) force E, = Vi,
where 1, is the ponderomotive potential, which corresponds physically to radiation
pressure. The ponderomotive force depends quadratically on the amplitude and
produces slowly varying longitudinal field, which leads to slow longitudinal motion

and modifies the density. The ponderomotive potential is given by

n, o, 2 6.36
Yo = W<A2>w = M2 <A"A8>w’ ( )

vhere the angular bracket ( ) represents the w frequency component of an average
»ver the fast time-scale w, > w. In the presence of the ponderomotive force, the
low motion of the plasma is governed by the following linearized equations:

aén

> g +n,V - gvj =0, (6.37)
t
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00U _ _Gig, 1

Bt-mocpz

V(aA A+ A, 64 - ijfjv(i”f), (6.38)

o

and

= —4xw Z gjon; (6.39)
j=e,p
where, ¢ is the scalar potential associated with electrostatic perturbations, v; =

(kpT;/ m;)!/? is the thermal velocity of the particle species j, and kg is the Boltz-
mann constant.
When the continuity and momentum equations for the electron fluid are com-

bined with equation (6.39), we obtain

52
(8t2 YeVEV? +w ) on, = w26np + 5, (6.40)

where the source term is defined as § = (n,e?/2m22)VHEA - A + A4, - 64°).

Similarly, for the positron fluid, we have

32
(BH ’vatpvz +w ) on, = w26ne + 8. (6.41)
Fourier-transforming equations (6.40) and (6.41), we obtain
(w? — v k?vE — wz)éne = wﬁ&ﬁp +35, (6.42)
and
( — k2vtp 2)(5ﬁp = —wﬁéﬁe + 8. (6.43)

n the absence of the EM wave, we obtain from equations (6.42) and (6.43)
2

1— Z ( Wp =0, (6.44)

2.2
: w? - ’ij Utj)
j=ep

vhich is the dispersion relation for electrostatic plasma oscillations in a warm
lectron-positron plasma. By summing equations (6.42) and (6.43) and assuming
e=Y=vand T, =T,=1T, we obtain
2 . =
V=S i i 5 A" ) (6.45)
(w? — yk*of) 6N = —Fk (64- 4+ 4,

0
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where v, = (kgT/m,)!/2.
Substituting the expression for 6N from equation (6.45) into equation (6.35),

we obtain

1_‘_‘_’;62 1 ! 2 2,2 212 2.2 ¢’ 3 1
5 D +D—+)](w -~k vt)—_-——wpkcs {1—2}(5:'}"5:) (6.46)

This is the dispersion relation for the modulational instaBility of an EM wave prop-
agating in an electron—positron plasma. Note that equation (6.46) is general and
can be applied to the circularly polarized radiation also.

Since w << w,, we have Dy =~ k2c? & 2k - k,c? F 2ww,. For a cold plasma (i.e.

w? >> 7;k*vk), equation (6.46) can be written as

- 1k22 2 2.2 2.2 2
(w—Fk- ) = — [1’”2_1“’?6 {1—2£—C—(1—-6—)H, (6.47)

2 w, |2 w, 2 w,

where the group velocity of the EM wave is denoted by v, = ;ocz/wo. The last
two-terms on the right-hand side of (6.47) are the contribution of the radiation

pressure driven finite-frequency density perturbations.

In a special case, for k = ew,/c, the solution to equation (6.47) is given by

1- 1/ - w 2\ )} /2
w= k- T%5 (k-ﬁq)2:t2k2c2;}£e{2(l—z)} (6.48)

Equation (6.48) predicts an oscillatory instability for

21 g? 12 > “’O(i‘;' ’79)2
€ T4 2w, k2c? ’

with the growth rate:

1/2 1/4
2 3 2
. (_“’_) a1~ ) (6.49)
wo
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It follows that the growth rate of the modulational instability for the case k = ew,/c

is proportional to £%/2[2(1—€?/4)]/*, in contrast to the growth rate of the relativistic

modulational instability (Chain and Kennel 1983), which is proportional to €2,
Since w < w,, the w* and w?® terms in (6.46) can be dropped, and for £/8 <

vy < ¢, = 90° v, = cand k < k,, we have the expressions for quasi-period of the

modulation

2T 2w 1
(6.50)

Wy w,cos® y

and for the e-folding time

1 6v, vt2 9 2 172 1
te = = = 36— b —-12— -, .
' wee { c? €08 32 Y (6.51)

where y = k/k,, 8 = w,/wp, I is the growth rate of the modulational instability, w,

is the frequency of the electrostatic density perturbation and @ is the angle between

Eo and k.

6.3 LARGE-AMPLITUDE EM WAVES IN AGN AND PULSARS AND
THE EFFECT OF THEIR INCOHERENCE ON THE
MODULATIONAL INSTABILITY

Above results have been derived assuming the incident field to be monochro-
matic. In reality, however, some amount of incoherence is always present. It has
been shown by Tamour (1973) and Thomson et al. (1974) that the effect of the
finite bandwidth Aw, of the incident field on the instability can be taken care of
by replacing the damping rate of the sidebands I'y by (Tp + 2¢8) = (I + Aw,),
where ¢ is the number of phase jumps per unit time. This replacement is possible
because I'f is a measure of the length of time an electron is allowed to oscillate with
the driving field before being knocked out of phase by a collision. The same effect

results when the driving field suffers a phase shift, and the two effects are additive.

Thus replacing I'y, by I'r + Aw, certainly raises the threshold for the instability.
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Another source of incoherence of the EM radiation is the lack of definite po-
larization. In an unpolarized beam, the tip of the electric field vector undergoes
random changes of direction. Thus an electron in such a field undergoes changes
in its direction of motion at the same rate. This essentially increases the effective
collision frequency of the electrons and thus raises the threshold for the modulation
instability. In the case of quasars, 1-10 per cent of the radiation is known to be
polarized.

If I' is the growth rate due to a monochromatic pump at w,, then the actual
growth rate I due to the broad pump with a spectral width Aw, > I is given by

1
r?, (6.52)

IV =
Aw,

(Kruer 1988; see section F in appendix). Thus the reduction in the growth rate due
to the finite bandwidth may be compensated to some extent by the high-luminosity
radiation believed to be generated by coherent emission processes.

Several coherent processes, such as (i) emission from bunches of relativistic
electron beams (Ruderman and Sutherland 1975), (ii) curvature radiation (Asséo,
Pellat and Sol 1980; Gil and Snakowski 1990a, 1990b) and (iii) the parallel accel-
eration mechanism (Melrose 1978), have been proposed for the radio emission from
pulsars. On the other hand, the role of the coherent emission processes in the gen-
eration of continuum emission from AGN was emphasized long ago (Burbidge and
Burbidge 1967) and has now begun to receive the attention it deserves (Baker et al.
1988; Krishan and Wiita 1990; Weatherall and Benford 1991; Gangadhara and Kr-
ishan 1992; Gangadhara, Krishan and Shukla 1992; Lesch and Pohl 1992). Thus
the presence of incoherence, due to finite bandwidth and lack of polarization in the
radiation field, effectively increases the damping rate and therefore the threshold
(in the kinetic treatment) and reduces the growth rate (. increases) of the modula-
tional instability. Here, since we use a fluid treatment of treated the modulational

instability, there is no damping of the side band modes, and therefore there are no
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thresholds. However, due to a smaller pump luminosity being available (say 1-10
per cent) at a frequency w,, the growth rate I’ and frequency w, are reduced, with

an attendant increase in the e—folding time t. and the period P.

6.4 DISCUSSION

In this paper, we have shown that low—frequency electrostatic density per-
turbations can be non-linearly excited due to the interaction of a large amplitude
linearly polarized EM wave with an electron-positron plasma. The superposition
of low—frequency oscillations (E,w) over the high—frequency waves (Ea,wg) produées
an amplitude-modulated wave:

. sA ~ -
A(Ft) = A, [1+ Z—et/"‘ cos(k.7 — t/P) | cos(ko.7" — wot), (6.53)

o

from equation 6.21). Initially, §4 is infinitesimally small, but it grows exponentially
vith time and reaches saturation due to some non-linear processes. Since here the
nodulational instability has been investigated in the linear regime, we can not find
he depth of modulation. For the sake of illustration, with 6A/A, =0.5,t. =200 s
nd P = 23 minutes, we have plotted the amplitude modulated vector potential as

. function of time in Fig. 6.1. In the beginning ie. for 0 < t < 92 minutes, 6A

s small and starts to grow exponentially. For 0 < ¢ < 92 minutes, the incident

adiation therefore remains unchanged; but for ¢ > 92 minutes, 5A grows and the

adiation is modulated.

For the case of BL Lac object OJ 287, we derive a value of 64/A,
Gonzalez (1985). For the

= (.02 from

he observations of Carrasco, Dultzin-Hacyan and Cruz-

lasma parameters assumed in section 4.1 for an AGN, we obtain a period of 23

he redshift z = 0.306, the mag m, = 12 and modulated
-1, Using H, = 50 km 571 Mpc~l, the value of A,

iinutes. This object has t
uminosity L = 4 x 10% erg s

>rresponding to this luminosity is given by 6.86 x 1071® gauss cm. For t. = 2005

1e Fig. 6.2 shows the modulated flux f = w2 | A(t) | /(8mc) as a function of time.
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Fig. 6.1 The modulated vector potential of EM wave versus time t.
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We solve equation (6.46) numerically, using conditions typical to an AGN and a

pulsar, to find w = w, +iI' = 27/ P + il/t,.

6.4.1 In an AGN

The typical values of the plasma and radiation parameters at a distance r =
15 X 10'° cm from the central engine of an AGN are (Lightman and Zdziarski 1987;
Krishan and Wiita 1990; Gangadhara and Krishan 1992) pair density n; = ng x 10°
cm™3, temperature T; = Ty x 10! K and luminosity in the radio band L = Ly x 10*?
erg s™'. For & = 90° instability is purely growing and non-periodic, but for & = 0°
the instability is purely oscillatory.

Fig. 6.3 shows the period P = 2m/w, of the modulational instability of radio

wave of frequency v, = 10° Hz as a function of the wavenumber y = k/k, of the

6.50 . : , , _ : ] .
N ©,=6.3x10%rad/sec
f"’p=“’o/ﬁ |
5.20 3 Laz/rls=1072
3 T=10%K
E $=89%.99 |
o 3.90}
Q
Q
[1)
P ]
a 260}
(8]
o
1.30} ]
{ N L . | N
O'9‘1)1.00 -9.70 ~8.40 -7.10 -5.80 ~4.50

log(y)

versus the wave number § = k/k,

Fig. 6.3 The period of modulation P =2m/w, = w,/2,

. i W,
of electrostatic density perturbations at three plasma frequencies, Wp

w,/100 and w,/400.
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density perturbations at three plasma densities corresponding to f = w,/wp, = 2,
100 and 400. The figure shows that P is inversely proportional to y, as expected
from equation (6.50). When y < 1, P can be as large as a few days. The e-folding
time t. i.e. the reciprocal of the growth rate of the modulational instability, is
plotted as a function of y in Fig. 6.4. For y < 1, ¢, is inversely proportional to y,

as expected from equation (6.51).

Fig. 6.5 shows the period P as a function of Lg/rfs for 8 = 2, 100 and 400,
and y = 10°. This figure shows that the period P of the modulation is nearly
independent of the value of Lyy/r?;. The e-folding time . is plotted in Fig. 6.6 as a

function of Lyy/r%. If we include the effect of incoherence in the incident radiation,

then ¢, will increase.

4.60 T 1 T I 1.4 1 T 1
0,=6.3x10%rad/sec
wpzwo/ﬁ

3.08 L/ =103

» T=104K

2 <Y $=B9°.99

= ! ]
9 156

Q

72}

~ _4
+ 0.04}

g

[l ]
O

-1.48} -

N
- — o8B 460
32900 -9.72 —8.44 ~7.16 5.88 4.6

log(y)

uen-
Fig. 6.4 The e—folding time t, =1/ versus y = k/k, at three plasma freq

cies, Wy = wo/ 2, w,,/100 and w,,/400.
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Fig. 6.5 The period of modulation P versus the L42/1‘f5 at Wy = wo/Z, w,,/lOO
and w,/400.
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The period of modulation P is a strong function of the angle ® (see Fig. 6.7).
At frequencies close to the plasma frequency (w, = 2w,), the instability occurs over
a large range of ® (87°.5 < & < 92°.5). If the radiation frequency is much above the
plasma frequency, then the instability is confined to a narrow range of ¢ around

90°. The large-period (P > 1 h) pulses are produced when @ is close to 90°.

Fig. 6.8 shows t. as a function of ®: when ® = 90°, ¢, is small and the density
perturbations grow very fast in time. The instability therefore becomes very strong

near ¢ ~ 90°.

Figs. 1-8 describe the modulational instability of a radio wave with frequency

w, = 6.3 x 10° rad s~! for plasma parameters typical of an AGN.

6.00 — ‘ I
| ©,=6.3x10%rad/sec
wp=w°/ﬂ ]
SIBF,,/rk=10"3
v T=104K
s -9
c y=10 |
O 4,36}
3]
o
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/\ -
8 354}
m -
Lo
272t 1 09.5:5 % g
8=
QR 7
1'9897.50 88?50 l 89.50 90.50 91.50 92.50

-1/ 7 — 9
Fig. 6.7 The period of modulation P versus ® = cos™!(k.ko) at wp Wo/2,

w,/100 and w,/400.
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Fig. 6.8 The e-folding time ¢, versus & = cos™! (IEIED) at w, = wa/2’ wo/m()
and w,/400.

Consider now the modulation of optical radiation (w, = 4 x 10*) Hz in the
electron-positron plasma. The period P = 27/w, versus y = k/k, is plotted in
Fig. 6.9. For 8 > 1000, the period is independent of /. The value o6f the period of
modulation P lies in the observed range of time-scales (10-50 minutes) of variations
in the optical flux (Frolich 1973; Visvanathan and Elliot 1973; Kiplinger 1974
Folsom et al. 1976; Carrasco, Dultzin-Hacyan and Cruz-Gonzalez 1985; Smith

et al. 1985). The figure shows that, at smaller wave numbers y < 1071, pulses

of P > 1 day are produced. Fig. 6.10 shows £, as a function of y at three values

of B8 = 1000, 2000 and 3000.: f. is inversely proportional to y for y < 10°7%,

At y = 10775, growth rate is maximum. The modulational instability of X-ray

radiation at 3 =~ 10° exhibits variations similar to those in the optical case.
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Fig. 6.9 The period of modulation P of optical radiation versus ¥y for 4 > 1000.

3.20

A T r T A T ¥ T

2.4

|
|
l
4 |
2
c I
o -4
9 1.62 Nk
o
» I
3 I
> 0.84 w,=4x10"rad/sec l |
— L42/r415=10 |
| T=10% ]
0.05 $=89°.99
-
~0.74 00  —to.20  -9.40  -8.60 —7.80  -7.00

log(y)

Fig. 6.10 The e-folding time ¢, versus y at B = 1000, 2000 & 3000.
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The period of modulation P is independent of Lyy/r? in the optical range (see
Fig. 6.11). The values of y = 5 x 1078, 2.5 x 10~® and 1.7 x 10~8 adopted here are
those values for which growth rate is maximum in Fig. 6.10. At y = 107! growth is
not maximum but Pis large. Fig. 6.12 shows t, as a function of L4 /ri at different

values of 8 and y.

4.50 . l : ! . : : :
£=1000, y=10""0
3.80} .
g wo=4x10"rad /sec
- Wn=0)
9 3.10f T"1 4°/ﬁ ]
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1.00 i 1 i i 1 1 1 L el
0.75 1.40 2.05 2.70 3.35 4.00

log(Lsa/ris)

Fig. 6.11 The period of modulation P of optical radiation versus Lo / rfs at
B = 1000, 1071, 8 = 1000, 1.7 x 1078; B = 2000, 2.5 x 107® and 8 = 3000,

y=>5x 1078,
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Fig. 6.12 The e-folding time £, versus L42/7‘%5 at (3 and y as for Fig.11.

6.4.2 In a Pulsar

Typical values of the plasma and radiation parameters at a- distance » =
100Rys = 10° cm, (Neutron star radius Rys = 10 km) for the pulsar PSR 1133+16
are pair density n; = ng x 10° cm™3, temperature T; = T; x 10° K and luminosity,
in the band Av < v = 600 MHz, L = L3y x 10% erg s7! (Cordes and Hankins 1977
Cordes 1983). The micropulses of duration 1us to a few ms at 600 MHz have been
observed. Fig. 6.13 shows P as a function of y. The period P is found to lie in
the observed range. Fig. 6.14 shows the e—folding time ¢, as a function of y. The
growth rate is maximum at y =~ 0.2.

157



—1.00 T Y r Y r .

PSR 1133+16

~2.20

|
w
>
(@)

log(P) seconds

-4.60F 9=80° -
B=wo/wp 2
T,=10%K
L3o/rg=1

—>.80r p=2.4x10%rad/sec 1

\ -
_7.00 4 i 1 1 1. 1. L 1 i
-5.80 —4.54 ~3.28 ~-2.02 -0.76 0.50

log(y)
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6.5 CONCLUSION

In our model, we have taken an electron-positron plasma with uniform and
isotropic distributions of temperature and density. We have also assumed that the
plasma is at rest with respect to the source of radiation. If the plasma is moving
with relativistic velocities, then the relativistic effects must be taken into account.
Tajima and Tanuiti (1990) investigated the non-linear interaction of EM wave and
acoustic modes in an electron—positron plasma, invoking the assumption of quasi-
neutrality in the dynamics of plasma slow motion and ignoring relativistic mass
variations of charged particles. Here we have investigated the non-linear interac-
tion of the EM wave with electrostatic density fluctuations in an electron—positron
plasma including the relativistic mass variation. The relativistic mass variation
of electrons and positrons produces the non-linear wave equations (6.22 and 6.23)
for an EM wave propagating in the electron—positron plasma. The ponderomotive
force of the EM wave leads to the excitation of low-frequency density perturbations.
The modulational instability of an EM wave produces localized EM pulses. This
is an intrinsic process since it occurs in the source itself. The growth rate of the
instability is proportional to e¥/2[2(1 — £2/4)]Y/*. The electron-positron plasma is
modulationally unstable for either linear or circular polarization. A strong magnetic
field can also affect the process: we intend to study this in detail in later work.

We believe that plasma processes such as modulational instability are potential

mechanisms for the rapid variability and the production of micropulses in AGN

and pulsars. Most of the mechanisms proposed previously, require very specific

environmental conditions; microlensing, for example, requires the nuclei of AGN to

be large and transverse velocities to be of the order of 40 ¢, and refractive interstellar

scintillation requires very small scatterers close to the Sun (< 100 pc) and unusual

filaments associated with the galactic loop IIL. Since the conditions for modulatio
modulation of the EM radiation may

nal

instability exist naturally in the source region,

take place through this process.
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Chapter 7

SUMMARY

In this final and concluding chapter, we would like to summarize the important
results presented in the previous chapters and discuss the scope of future work on

the mechanisms under study.

In this Thesis, we have explained the results of analytical as well as numerical
investigations of radiation-plasma interaction instabilities in astrophysical plasmas.
We investigated the role of collective plasma phenomena in the (1) generation of non-
thermal power-law spectrum of quasars, (2) radio frequency heating, (3) polarization
variability and (4) rapid flux variability in BL Lacs and quasars and the production

of micropulses in pulsars.

The non-thermal continuum of quasars is believed to be produced through
the combined action of synchrotron and inverse Compton processes, which are es-
sentially single-particle processes. Collective plasma processes can duplicate all
features of ordinary single-particle synchrotron emission, while greatly enhancing
the emissivity. Astrophysicists have long been assumed synchrotron emission as the

default choice, since no one could make a case for other, more powerful mechanisms.

Collective processes such as SRS and SCS of electromagnetic waves from rel-
ativistic electron beams, can amplify both the frequency as well as the flux. We
find SRS is much faster than SCS and hence relativistic electron beam decelerates
much faster due to SRS. The power-law spectrum of the quasar 3C 273 can be

reproduced from a relativistic electron beam. We believe the change of scattering



process from SRS to SCS or vice versa, can be the reason for blue bump in the
spectrum of 3C 273. Slight variations in the density or temperature of electron

beam shifts bump to other frequencies.

Radiation with frequency close to the plasma frequency can be anomalously
absorbed in a plasma, due to parametric decay instability (PDI). This instability
causes anomalous absorption of intense electromagnetic radiation under specific
conditions of energy and momentum conservation and thus cause anomalous heating
of the plasma. The rise in plasma temperature is determined by luminosity of
the radio radiation and plasma parameters. It is believed that this process may
be taking place in many astrophysical objects. For example, the conditions in
the sources 3C 273, 3C 48 and Crab Nebula are shown to be conducive to the
excitation of parametric decay instability. This process can also contribute towards
the absorption of 21—cm radiation, which is otherwise mostly attributed to neutral
hydrogen regions. With this phenomenon one can explain the strong radio frequency
heating in BL Lacs and quasars. Decay instability may be the mechanism for the
formation of hot lower density corona adjoining each photoionized dense region. The
dip in the spectrum of 3C 273 at 5.0 X 10° Hz (Cowsik and Lee, 1982; Wiita 1985)
may be due to the anomalous absorption of radio waves through PDI. Since the

growth rate of parametric decay instability 18 much higher than collisional damping

rate of electromagnetic wave, this dip can not be due to collisional damping alone.

Compared to all other heating processes reviewed by Davidson and Netzer (1979),
PDI is a faster process. Since PDIis fast and efficient process, it must be included
while accounting for the observed value of the radio luminosity which is less than

that obtained by extrapolation from the high frequency part of the spectrum.
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Usually, when one talks about polarization change, one is referring to the same
wave. SRS however brings about change of frequency but when the frequency of
the incident wave is much higher than the plasma frequency, the scattered wave fre-
quency differs very little from the incident wave frequency. Similar to the frequency
and wave number matching conditions (see equation 5.13) we found conditions be-
tween the phases 6;,8; and &, (see equation 5.16) in the process of three-wave
interaction. Through SRS the clockwise polarized radiation can change into coun-
terclockwise polarized radiation and vice versa. In addition, circularly polarized
wave can change into a linearly polarized, a circularly polarized or an elliptically
polarized wave or vice versa. The SRS also mimics Faraday rotation but at a

tremendously enhanced rate.

A direct measurement of the growth rate cannot be done by a remote observer.
The e-folding time represents a characteristic time during which a significant change
in the degree of polarization, sense and rotation of plane of polarization takes place.

Therefore, the observed variability time should be of the order of or a few times the
e-folding time.

The features like a large change in rotation of polarization plane, sense reversal

and extremely rapid temporal changes would help to explain many observations,

for which, the existing mechanisms prove to be inadequate. Because of the very

strong dependence of rotation angle on plasma parameters via the growth rate, in

an inhomogeneous plasma medium the depolarization is a natural outcome. We

believe that the plasma process such as the SRS may be a potential mechanism for

the polarization variability in pulsars and quasars.

We have investigated the modulational instability of an EM wave with electro-
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static density fluctuations in an electron—positron plasma including the relativistic
mass variation. Tajima and Tanuiti (1990) investigated the non-linear interaction
of EM wave and acoustic modes in an electron—positron plasma, invoking the as-
sumption of quasi-ncutrality in the dynamics of plasma slow motion and ignoring
relativistic mass variations of charged particles. The relativistic mass variation of
electrons and positrons produce the non-linear wave equations (6.22 and 6.23) for
an EM wave propagating in the electron—positron plasma. The ponderomotive force
of the EM wave leads to the excitation of low-frequency density perturbations. The
modulational instability of an EM wave produces localized EM pulses. This is an
intrinsic process since it occurs in the source itself. The electron—positron plasma is
modulationally unstable for either linear or circular polarization. We believe that
a plasma process such as modulational instability is a potential mechanism for the
rapid variability and the production of micropulses in AGN and pulsars.

A strong magnetic field can also affect the collective processes. So it has to

be taken into account in future work with more realistic plasma and radiation

parameters.

COLLECTIVE PLASMA PROCESSES MUST BE INCLUDED IN THE

SCHEME OF UNDERSTANDING ASTROPHYSICAL PLASMAS.
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APPENDIX

A. PLASMA WAVES

A plasma supports electrostatic as well as electromagnetic waves due to long
range electromagnetic forces. The electrostatic waves are associated with charge
density fluctuations at characteristic frequencies determined by the electrons and
ions plasma parameters. In the absence of an external magnetic field, there are two
types of such plasma waves, one is of high~frequency known as (1) electron plasma

wave and other one is of low-frequency known as (2) ion plasma wave.

(1) The Electron Plasma Wave

This wave'is associated with an high frequency charge density fluctuations due
to the motion of the electrons. Since this is a high frequency oscillation, we can treat
the massive ions as an immobile (x; = 0) and uniform neutralizing background with
density ng. In the kinetic treatment and in the absence of external pump (Ea = 0),
we obtain from the equation (2.46), the dispersion relation for an electron plasma

wave:

14+ xe=0. (a.1)

When the thermal velocity of the electrons (ve) is much smaller than the phase
velocity (v = w/k) the electron plasma wave is undamped. Therefore, when w >

kv,, using the asymptotic form for x., (see equation 2.36), we obtain from equation

(a.1)

2o (14 3B L VE (Yl 0 (e)

W= 27w ) T (eAp)2 kv, \wpe (kve)2

Here, we make an approximation that wy./w = 1. Therefore, we have

VT Wi w7 _
(hpe)? Fu, P B (kve)2] =0. (a.3)

wz— — ——k2'u2+z
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To find the frequency and damping rate of electron plasma wave, we set w = w,—12I",
where w, is the frequency and I'. < w, is the damping rate. From equation (a.3),

we obtain

. 3. NZP w?
2 90w, — w — Ski? 4 Y pe [_ ]2, .
wy — 120w, — wy, 2k U€+z(k)\De)2k'Ue exp (o)’ 0 (a.4)

Separating real and imaginary parts, we have

wl=w?, + —gk%f (a.5)
_ VT Y% we
T = SoApe oo, exp[ (kve)2]' (a.6)

Note that, the frequency (w.) of electron plasma wave is essentially wy., the electron
plasma frequency, with a small thermal correction dependent on the wave number

k.

Substituting equation (a.5) into eqﬁation (a.6), we get

2 2
T - VT —a—)ffexp[~ “pe —§]
© 2 kve)? 2
2(kApe)? kv, (kve) (@)
T Wpe

- g
8 (khpe)® Pl 2(kApe? 20

where Ap, = v,/ \/iwpe is the Debye length of the electron plasma. Here, I, is
known as the Landau damping and it is significant when kAp. > 0.4, (see section

B).

(2) The Ion Plasma Wave

A plasma can support charge density oscillations at much lower frequency de-
termined by the ion inertia. To derive the dispersion relation for these oscillations,

we have to consider the motion of both electrons and ions.
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In the absence of the incident (pump) wave (E, = 0) from equation (2.46), we
obtain

I+ xe+xi =0. ((18)

When kv; < w < kv, the ion plasma wave is weakly damped and well excited.

Therefore, using asymptotic forms for x. and x;, we obtain

3 2
2, VT (Te> w w* 1
“ (k,\De) (1+“/_kve) pi T (EFApe) \T: ) v P [ (kvi)zJ =0. (a9)
Now, for w = w; — iI';, we have
w? ‘ VT Wy \ T.\ w? w?
—i2 S S 1".2(5) i ~o.
wi =i (kApe)? ‘”P’“(kxpe)z{(k%)“’i \T) T e"p[ (kvi)2]} 0
(a.10)
Separating the real and the imaginary parts, we get, the frequency
1 ~1/2
=wyusl+ —— 11
on{1+ ) (a.11)
and the Landau damping rate
VT oowi [wp  Tew w?
= | le Wi 12
b= By [kve T % eXp {- ko) }] (a.12)

of the ion plasma wave.

The spectrum of ion plasma oscillations extend from a maximum of the ion
plasma oscillation frequency wy; to zero. When kAp, > 1, or for short wave-lengths
A K 27wAp,, where A = 27/k, the frequency approaches a limiting value of w; =~
wpi, which is analogous to the frequency of the electron plasma wave oscillations.
Most of the considerations applicable to electron plasma oscillations apply to these
short-wave ion oscillations. However, if A is considerably larger than 27Ap, i.e.,

A > 27\ p, then the ion oscillations lose their similarity to the electron oscillations

and change over to ion—acoustic waves with dispersion relation

w; = kc,, (a.13)

where ¢, = \/kpT./M is the ion—sound speed.
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B. The Landau Damping

In a collision less plasma, the Landau damping is a natural phenomena by
which waves and particles exchange energy among themselves. It has applications
in other fields also. For example, in the kinetic treatment of a galaxy formation,
stars can be considered as atoms of a plasma interacting via gravitational forces.
Instabilities of the gas of stars can cause spiral arms to form, but this process is
limited by Landau damping.

To see what is responsible for Landau damping, we find the frequency w of the
electrostatic wave, in the absence of external pump (¢, = 0), from equation (2.33):

2
T Whe | Of
w:wpe(1+z§ kp2 [6{}} ~ ), (bl)

where v, = w/k is the phase velocity of the electrostatic wave. The Im(w) =T,
(see equation a.7) arises from the pole at v = v, in equation (2.33). This effect is
concerned with only those particles which have a velocity nearly equal to the phase
velocity of the wave. These particles travel along with the wave and do not see
a rapidly fluctuating electric field. Therefore, they can exchange energy with the
wave efficiently. Particles with velocity much lower than the phase velocity of the
wave merely move back and forth as the wave goes by and do not gain any energy on
the average. Similarly, particles moving much faster than the wave cannot exchange
energy with the wave. However, if the particles have almost the same velocity as the
wave, they can be caught and pushed along by the wave. In that case, particles gain
energy at the cost of wave energy. In a plasma there are electrons both faster and
slower than the wave. A Maxwellian distribution, however, has more slow electrons
than fast ones (see Fig. b.1). Therefore, there are more particles taking energy from
the wave than vice versa, and the wave is damped. As particles with v = v, are

trapped in the wave, f(v) is flattened near the phase velocity. As seen in Fig. b.2,
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the perturbed distribution function contains the same number of the particles but

has gained total energy (at the expense of the wave energy).

f(v)

I
1
|
0 Vo

Fig. b.1 Distortion of a Maxwellian distribution in the region v =2 Up can be

caused by Landau damping.

f(v)

Ll

0

Fig. b.2 A double-humped distribution and the region where instabilities will
develop.

One can conclude that if f(v) contained more fast particles than slow particles,
a wave can be excited. Equation (b.1) shows that for df,/0v positive, Im(w) is
positive at v = v, and such a distribution is shown in Fig. b.2. A wave can gain

energy and hence become unstable at the expense of the particles energy when its
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phase velocity is in the region of positive slope of the distribution function.

There are actually two kinds of Landau damping: the linear Landau damping
and the non-linear Landau damping. Both kinds are independent of dissipative
collisional mechanisms. Particles can be trapped in a potential well of the wave.
But linear theory can not explain the trapping phenomena. This can be seen from

the equation of motion

d?
me:it_:: = —eE(z). (5.2)

This is a non-linear equation, because to solve this exactly one has to find the value
of E(x) at the instantaneous position of the particle. Linear theory uses for x the
unperturbed orbit; i.e., # = z,+v,t. But when a particle is trapped in the potential
well of a wave this approximation may not be valid. When a particle encounters
a potential hill large enough to reflect it, its velocity and position are, of course,
greatly affected by the wave. In fluid theory, the equation of motion of an electron
plasma is
ov

Me [55 + (U.V)ﬁ] = —eF(z). (8.3)

Here the (¥.V)# term is non-linear. In linear theory one neglects (69.V)é¥ term
which amounts to using the unperturbed orbits. When particles are trapped, they
reverse their direction of travel relative to the wave, so the distribution function
f(v) is greatly disturbed near v, = w/k. This means that 86 f/0v is comparable to
O0f,/0v, and the term (§9.V)67 is not negligible. Hence, the trapping can not be
explained with the linear theory.

Collisionless damping and trapping of particles can take place when the wave
grows in amplitude and becomes non-linear. Once the wave reaches this stage its
amplitude fluctuates as the trapped particles bounce back and forth in the potential

wells. This is a non-linear Landau damping.
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C. The Ponderomotive Force

Intense electromagnetic waves in a plasma can couple with plasma waves via
charge density fluctuations. When a strong electromagnetic wave impinges on a
plasma, the plasma particles experience a non-linear Lorentz force since the electric
and magnetic fields are to be determined at the positions of the particles, which
move under the action of these fields. Using the concept of ponderomotive force we
can explain many non-linear effects in a plasma. To derive this non-linear force we
shall follow the method by Chen (1974), i.e., the single particle method.

Let E and B be the electric and magnetic fields of the electroma.gnetié radia-
tion. The motion of the electron in the presence of these fields is governed by

dv - 1, =
Me—> = —e[E(7) + S x B(7)). (e.1)

This equation is non-linear and it is exact only when we evaluate E and B at the
instantaneous position of the particle. The non-linearity comes from the &' x B term
and which is of second order. The other part of non-linearity, as we shall see, comes
from evaluating E at the actual position of the particle rather than at its initial

position.

We can expand the position vector and the velocity of the particle as

1

0 +: 71+ 79+ ..oy (6.2)

et
3

T=0,+0 + v+ .. (c.3)

Let E = E,(7) cos(wt) be the electric field of the electromagnetic wave. Using

first order terms in equation (c.1), we evaluate E at the initial position 7,

dv S,
me—&ti = —eE(7,). (c.4)
Integrating equation (c.4), we get
b = - ° E,(7,) sin(wt). (e.5)
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Integrating again we find

— € = Jy
7| = mEs(ro) cos(wt). (c.6)

Before we consider second order terms, we must expand E(F’) about 75, i.e.,
E(7) = E(7,) + [(F1-V) Ey (7o) Jr=r, + - (c.7)

From the second order terms in equation (c.1), we find

me%’;—? — _e[(67.V)EL(7) + %al % B.(7)]. (c.8)
Using a Maxwell’s equation
o 1dB,
VXES—-——Z a y (69)
we find
B.(7) = —i-v x B,(7,) sin(wt). (c.10)

Inserting equations (c.5), (c.6) and (c.10) into equation (c.8) and averaging over

time ¢ = 27 /w, we get

m<%22‘> - *:o.‘;n%[w:(a).vwl(m FB7) x (VX By(7)] = fvr. (c11)

Here, we have used ( cos?(wt)) = (sin®(wt)) = 1/2.

Using a standard vector identity, we obtain from equation (c.11)

- 62 9 __ 1 wzz;g 2/ = 12
far = “ Tt VB = —mﬁvﬂ; (72)- (c.12)

The force per cm? is given by

Fivp =nofne
2 (c.13)

—_ Y (Y7
= 8m2v(E (7)),
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where we have used E?(7,) = 2(E%(,)) and n, is the equilibrium electron density.
The ponderomotive pressure Ppo,q can be defined as

——————<E2(F")> : (c.14)

Pyond = (€~ 1) 8

Here, € is the dielectric function of the plasma, given by

4ne’

e=1-— (c.15)

mew?

A very important effect arises from Fyy is the electrostriction. The density of the
plasma no longer remains constant, but varies under the influence of the electro-
magnetic field pressure. Ponderomotive force is a mean force acting on each particle
caused by the wave pressure equal to —Vpong, with

62

Vpond = WIE(FJ)P- (c.16)

The electron density in the presence of this mean force is given by

n =n, exp{—pond/ks(Te + T})]

(c.17)
=n, exp(—|E[*/B),
where
4mew2k3 (716 + T‘z)
p= e

To first order in |F|?, we obtain from equation (c.17),

nzno(l - '-%—'2-> (c.18)

Substituting this expresion for n into equation (c.15), we obtain

] =(1 _ 47rnae2) 4 d7n, et |E|?

mew? mew?
1
=€linear + GNLlElZ (C 9)

=€, + 61IEI2.
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The relation between the refractive index n(w) of the plasma and dielectric function

€1s
n(w) =Ve
_ (c.20)
v/ € (w) + 6y, (W),
where
4
_ TNHE 9
677NL(w) - 2€0m3w4kB(Tc + Tz) IEI (C21)

is the non-linear part of the refractive index. Equation (c.20) shows that the non-

linear part of the refractive index is a positive term and

on

W>O.

The non-linear force, thus drives away the charged particles from the region of high

electric field to a region of low electric field (see Fig. c.1). A direct effect of Fyy, is

the self-focusing of radiation in a plasma.

Fig. c.1 Focusing of radiation beam in a plasma is caused by the ponderomotive

force.
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D. Collision Frequency

In a fully ionized plasma, collisions occur Between like particles (ion—ion or
electron—electron) and unlike particles (ion-electron or electron—ion). Generally,
the collisions between unlike particles are important because they are inelastic in
nature, whereas the collisions between like particles are almost elastic. Hence, we
consider a case in which an electron collides with an ion (see Fig. d.1) with charge

ze, where z is the atomic number.

ELECTRON

Fig. d.1 Propagation of electron in the ion field.

Assume that an electron with velocity ¥ undergoes deflection in the electric field
of an ion, which is at rest. Let b be the impact parameter and @ be the deflection

angle. The Coulomb force between the electron and the ion is given by

F=-Z"x (d.1)
r

The time duration during which the electron experiences the Coulomb force of ion
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is
b
t= —. d.2
: (42)
Change in the electron momentum (p = m,v) in this encounter is approximately

given by
: 2 2
pp~Ft=Ton 2 (d.3)

r?v  ruv

The angle 8 of scattering is related to the impact parameter via

mev?
cot(6/2) = —b{—z?[_' (d.4)

The differential cross-section do for scattering into an infinitesimal solid angle df2

is given by the famous Rutherford formula

9 2
g—% - [2mev2zsein(9/2)} ' (d35)
The cross-section o, for the momentum transfer can then be calculated by inte-
grating equation (d.5) over the solid angle with a weighting function (1 — cos9)
which represents the fractional change of momentum on scattering. Choosing 6,

as the lower limit of 6 and using dQ = 2w sinf df integrating equation (d.5), we

have
2

T 2
ze
=] (1—cosé 27 sin 8 d6
7 ,/g . (1 = cos )[Zmev2 sin?(0/ 2)} e
L, (d.6)
4 ze? ln[ 1 ]
=T mev? sin(@min/2)1

For 6,,;, < 1, we have
ze? \? 2
Tm z47r( ) ln( > (d.7)

mev2 emin

Let b,,;, be the minimum value of the impact parameter corresponding to Opmin.
Then from equation (d.4), we get

(d.8)



Using this expression, we get

ze? \2 bonasMev?
Oy ~ 47T<mev2) ln(—l-z-gl—-—) . (dg)

The logarithmic factor, in equation (d.9) is called Coulomb logarithm. The cross

section is seen to diverge logarithmically as ,,;, approaches zero. The origin of
the logarithmic divergence can be traced to those scattering acts which take place
with large impact parameters and thus with small scattering angles. In a plasma
medium the impact parameter is indefinite therefore Debye length is used as its

upper limit. The collision frequency is defined as

4drn,yet

InA, (d.10)

Vei = N0V = 53
miv

where 7, is the density of electrons. Substituting v = (kpTe/m.)'/2, we get

Vei = wpe(xgc—;)lnA. (d.11)

For most plasmas of interest, 5§ < InA < 20. Usually, it is taken to be 10, regardless
of the type of the plasma. If v.;/w,e < 1, then the plasma oscillations which arise due
to collective interactions of the charged particles can not be destroyed by large-angle
binary collisions between individual particles. In electron.plasma waves, electrons
oscillate in the filed of ions and hence wave energy gets transferred to ions or it can
be emitted as non-thermal bremsstrahlung radiation at the rate of v,;.

Similar to electrostatic waves, electromagnetic waves also experience collisional
damping in a plasma medium. If v, is the collisional damping rate of electromag-
hetic wave, then rate of energy loss from the electromagnetic wave (v,EZ2/87) must
balance the rate at which the oscillatory energy of electrons is randomized by the
electron—ion scattering, i.e., (V,E2/87) = (vemev:/2). Since v, = eEy/mow,, this

power balance gives

Wo

2
v, = (“’Pe) Vei. (d.12)



E. Propagation of Electromagnetic waves in an Inhomogeneous Plasma

In a plasma with mobile electrons and a stationary ionic background, an elec-

tromagnetic wave satisfies the following wave equation:
27 w2 —
VEE+ el =0 (e.1)

where E is the electric field oscillating with frequency w and € is the dielectric
function which for an unmagnetized plasma is given by: ¢ = 1 — wge/wz. Thus,
wpe = w defines the maximum plasma density to which an electromagnetic wave of
frequency w can penetrate.

Let us consider wave propagation in an inhomogeneous plasma, where the
spatial variations are all in the vertical z direction along which the wave propagates.

In the cartesian coordinates, the wave equation (e.1) becomes:

d’E, W?
_—d22 + —C-2—€(UJ, Z)E:z: =0 (62)
and
ew,z)=1— ﬂz—), (e.3)

where w? = 47n€?/m. Assuming that the electron density varies linearly with z,

1.e.,

n = ncr—,

L

where L is the scale length. One obtains:
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or
d’E,
dn?

~nE; =0, (e-4)
where
w? \1/3
v=(3z) D

The solution of equation (e.4) can be expressed in terms of the Airy functions as
(Kruer 1988):

E.(n) = cAi(n) (e-5)

For wL/c >> 1 and the asymptotic representation

Ai(—n) = \/7_:;71/4 cos (gn‘m - 7r/4) (e.6)
we-find
Eo(z = 0) = Bin {1 +exp{ - z(il—%)c—L- - g)}} (e.7)

where a = 2¢/m(wL/ c)l/GEinei*" and Ej, is the free space value of the incident

electric field and ¢ is a phase factor. Therefore,
wL\ /8 ‘
B =2 (L) B Al (.8)
and reaches a maximum value.
2 1/3
L
() =)
Ei C

The swelling of E occurs due to the standing wave formation [eg. (e.7)] and

the reduction in the group velocity as the dielectric function decreases. Also since

k = ew/c, the wavelength becomes longer.
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F. Effect of incoherence in the pump wave on instability.

Presence of temporal incoherence in the pump wave reduces the growth rate of

the instability. Consider a ion-acoustic wave driven by the incoherent pump with

frequency near w,.

Let pump be of the form
E, = E,a(t) cos(wt)é,, (f.1)

where E, is the electric field and a(#) is a stochastic variable with a zero mean
and a variance of unity. When the growth rate is much less than the ion-acoustic
frequency, the amplitude ( f ) of an unstable wave can be represented by terms of

the form
f = B expl, /0 a(t)dt'] (f.2)

Here ~, is the growth rate due to a coherent pump and § is a constant determined

by the initial conditions. If we assume that «(t) is Gaussian,

(=0 [ [a [[ar(aerae)], (3

where () denote an average. The effective band-width éw is defined via the auto-

correlation function

1 (oo}
= =[; dr(a(t)a(t—i—r)).

If 6w > -v,, then equation (f.2) gives

() = pe (20). (14)

bw
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Therefore the growth rate due to the incoherent pump is

2
’ 7
= =2, 5
V=52 (f.5)
Hence the growth rate is reduced by the ratio v,/éw.
Intensity of the pump can be distributed over the band-width 6w but the

resonance width of the instability is the growth rate. Hence when éw > v,, only

some fraction of the pump wave resonantly couples to any two given unstable waves.
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LIST OF SYMBOLS

velocity of light.
Boltzmann constant.
electron mass.

ion mass.

rest mass of electron or positron.
electron charge.

ion or positron charge.
electron density.

ion density.

positron density.
electron temperature.
ion temperature.
electron thermal velocity.
ion thermal velocity.
ion-acoustic velocity.

electron plasma frequency.

electron or positron plasma frequency.

ion plasma frequency.

Debye length of electron plasma.

Debye length of electron or positron plasma.

Debye length of ion plasma.

relativistic electron beam velocity.
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group velocity of electromagnetic wave.
angular frequency.

wavenumber.

electron plasma wave frequency.
electron plasma wave wavenumber.
electron susceptibility function.

ion susceptibility function.

poynting flux vector.

electron-ion collision frequency.
damping rate of electron plasma wave.
damping rate of ion plasma wave.
Oscillating Two-Stream instability.
Parametric Decay Instability.
Stimulated Compton Scattering.

Stimulated Raman Scattering.
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