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Abstract

In this study I use partial frequency redistribution (PRD) functions to examine their effects on
spectral line formation in spherically symmetric and expanding atmospheres of cool giant and
supergiant stars. Primary aim of this investigation is to bring out the differences between the
emergent spectral line profiles resulting from PRD and complete redistribution (CRD) under
the influence of various physical parameters characterizing the atmospheres of cool giants and
supergiants. The appreciation of this aspect will be important for quantitative analysis of
stellar spectra and for computing model atmospheres of such stars.

In a scattering process, both the direction and the frequency of a photon may change. These
changes are described by partial frequency redistribution functions. There are following four
categories of redistribution functions: Case I, zero line width, denoted by R;. It does not
apply to any real line; demonstrates the effects of Doppler redistribution alone to an observer
in the laboratory frame. Case II, radiation damping in the upper state and coherence in
the atom’s rest frame, denoted by Ryr. It applies to resonance lines in low density media.
Case ITI, complete redistribution in the atom’s frame, denoted by Ryrr;. Case IV, subordinate
line redistribution between two broadened ‘states, denoted by Ry. It applies to non-coherent
subordinate line scattering. Complete redistribution is a limiting approximation which implies
that there is a ‘complete reshuffling of atoms in their excited state in such a way that there is
no correlation between the frequencies of the incoming and the scattered photons.

The assumption of CRD has been widely used in earlier works on line transfer because it
not only simplifies the numerical solution of the transfer equation but also provides a good
approximation to reality in those media which are dense enough to support high collision rates.
However, in the extended and tenuous atmospheres of cool giants and supergiants where low
densities (and hence low collision rates) prevail, CRD is not expected to yield accurate emergent
spectral line profiles. Moreover, in the wings of strong resonance lines, the scattering is nearly
coherent. This leads to a deviation of the line profiles from those calculated in accordance with
the assumption of CRD. Therefore, a natural recourse to the application of partial frequency
redistribution can lead to more accurate line profiles.

Over the last two decades, considerable progress has been made in using partial frequency
redistribution functions to study the spectral line formation in idealized stellar atmospheres.
Most of these studies are limited to the assumption of plane-parallel geometry and/or the
absence of velocity fields. These assumptions are unrealistic because the real atmospheres of
cool giants and supergiants expand and are geometrically extended. There are only few papers
in literature which have taken into account both the spherical geometry and the expansion
effects to study PRD effects on emergent line profiles in idealized atmospheres. These studies
employ either Ry or Ry;. Ry has usually been represented by CRD. Some studies have been
done to model the spectral lines formed in the expanding chromospheres of red giants using
Rpr. So far, the combined effects of sphericity and velocity fields on the differences between the
solutions resulting from Ry and the CRD have not been explored. As an important feature
of the present work I make a detailed comparative study of the PRD effects of R;,



Rrr and Ry on the spectral line formation in the atmospheres of cool giants and
supergiants taking into account both the sphericity and the expansion effects.

In order to achieve the above mentioned goals, I adopt a two-pronged approach. In the first
approach, I consider parameterized stellar atmospheres to explore the influence of different
physical parameters on the differences between the solutions due to PRD and CRD. These
include the atmospheric extent, expansion velocity and the thermalization parameter (which
gives the probability of collisional destruction of photons) . The solutions considering idealized
models serve as a preliminary step to solutions of actual stellar atmospheric problems by
providing an insight into the basic physical phenomena.

In the second approach, I adopt computed model atmospheres (temperature and electron
number density distributions) of red giants and supergiants. From these models, the line optical
depth and the thermalization parameter is computed at each depth point in the atmosphere
to study the frequency redistribution effects on some actually observed spectral lines from the
stars of the same type. This is an important study as it brings out the model dependence of the
differences between the partial frequency redistribution and complete redistribution solutions.

For all cases, I solve the equation of transfer in the frame work of discrete space theory of
radiative transfer using Peraiah-Grant method. '

In the first parametric study I examine the effects of angle-averaged Ry and Ry on emergent
flux profiles in static spherically symmetric stellar envelopes. I write the equation of transfer
for spherical symmetry in the rest frame for a two-level atom. Initially, to bring out the
effects of geometrical extension alone, I neglect velocity fields. I assume a constant value of the
thermalization parameter and set Planck’s function equal to unity throughout the atmosphere.
I neglect the background continuum. In this study I show that the effect of spherical extension
is much more on the emergent flux profiles resulting from Ry than on those resulting from Ry
when the damping parameters of the lower and upper levels of an atom are comparable. The
effect of Ry (as compared to CRD) on emergent flux profiles increases by making the lower
level sharper than the upper level. This effect is further enhanced by increasing the spherical
extension.

In the second parametric study I go a step further to include the effects of expansion
velocity in order to explore the combined effects of sphericity and expansion on the emergent
flux profiles resulting from Ry and Ry, as compared to CRD. I consider an atmosphere having
geometrical extension and small velocity of expansion which is characteristic of the atmospheres
of cool giants and supergiants. I assume that there is no background continuum; set Planck’s
function equal to unity and choose a constant value of the thermalization parameter at all
depths in the atmosphere. In this study I show that there are substantial differences between
the emergent flux profiles resulting from PRD (R;; and Ry) and CRD.

In the third parametric study I investigate the PRD effects of Ry;r alone on the emergent
line profiles in an expanding spherically symmetric stellar atmosphere. This is because, the
limiting case of complete redistribution is usually taken to be an adequate representation of
Rpr in radiative transfer problems to study the spectral line formation in stellar atmospheres.



However, the combined effect of sphericity and macroscopic velocity cannot be estimated a
priori. I consider only low velocity regime which is appropriate for the atmospheres of cool
giants and supergiants. I treat this problem in the rest frame formalism. In this work I
established that the differences between the emergent mean intensity profiles resulting from
CRD and Ry are much smaller in expanding spherically symmetric stellar atmospheres than
reported previously for plane-parallel atmospheres.

As a next important step in this investigation, I adopt computed model atmospheres of red
giants and supergiants to explore the PRD effects (as compared to CRD) on some observed lines
(e.g. SiII). I use the temperature structure and the electron & hydrogen number densities from
the given models to compute the line optical depth and the thermalization parameter at each
depth point in the atmosphere. Model values of the radii and the atmospheric extensions are
used. I solve the line transfer equation using R;r and CRD to compute the emergent spectral
line profiles. This study shows that the differences between the results due to PRD and CRD
are highly model dependent. The results of non-chromospheric models show a departure of
~ 10%; where as the results of chromospheric jmodel of a-Orionis show enormous departures
of PRD results from those of CRD.

Finally, I summarize the results of this study along with its achievements and limitations.
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Chapter 1

Introduction

The title Atmospheres of Cool Stars is very broad. No single study can cover all its aspects.
This investigation focuses on one of the most important aspects of the subject : effects of
partial frequency redistribution functions on the spectral line formation. Spectral
lines carry a wealth of information concerning. the medium in which they form. The line
spectrum can be used to obtain accurate empirical models of stellar atmospheres, complete with
such quantities as temperature, gas pressure, chemical composition, gravitational acceleration,
velocity fields. With the advent of observations from balloons, rockets and satellites, great
improvements have been made in the quantity and quality of stellar spectroscopic data. The
availability of highly accurate line profiles has enhanced the importance of partial frequency
redistribution in the process of spectral line formation.

1.1 Motivation

In the process of scattering in spectral line formation, an atom is excited from one bound level
to another by absorbing a photon, and then decays back radiatively to the original state, with
the emission of a photon. Very often, in the works on line transfer, it is assumed that the
photons are completely redistributed over the line profile. This assumption has been widely
used because, it not only simplifies the numerical solution of the transfer equation but also
provides a good approximation to reality in those media which are dense enough to support high
collision rates. However, in the extended and tenuous atmospheres of cool giant and
supergiant stars where low densities (and hence low collision rates) prevail, CRD is
not expected to yield accurate emergent spectral line profiles. Thus, it is necessary to
consider the redistribution of photons by employing partial frequency redistribution functions,
which describe the scattering process precisely. Moreover, in the wings of strong resonance
lines, the scattering is nearly coherent. This leads to a deviation of the line profiles from those



calculated in accordance with the assumption of CRD. Therefore, a natural recourse to the
application of partial frequency redistribution (PRD) can lead to more accurate line profiles.

1.2 Brief definitions of partial frequency redistribution
functions

In a scattering process, both the direction and the frequency of a photon may change. These
changes are described by partial frequency redistribution functions. There are following four
categories of redistribution functions: Case I, zero line width, denoted by R;. It does not
apply to any real line; demonstrates the effects of Doppler redistribution alone to an observer
in the laboratory frame. Case I, radiation damping in the upper state and coherence in
the atom’s rest frame, denoted by Ryr. It applies to resonance lines in low density media.
Case ITI, complete redistribution in the atom’s.frame, denoted by Rj;r. Case IV, subordinate
line redistribution between two broadened states, denoted by Ry. It applies to non-coherent
subordinate line scattering. Complete redistribution is a limiting approximation which implies
that there is a complete reshuffling of atoms in their excited state in such a way that there is
no correlation between the frequencies of the incoming and the scattered photons.

1.3 Objective

This study investigates the effects of partial frequency redistribution (PRD) functions Ry,
R;1r and Ry on spectral line formation in spherically symmetric and expanding atmospheres
of cool giant and supergiant stars. Primary objective of this investigation is to bring out
the differences between the emergent spectral line profiles resulting from PRD and complete
redistribution (CRD) under the influence of various physical parameters characterizing the
atmospheres of cool giants and supergiants. As an important feature of this work a
detailed comparative study is made of the PRD effects of Ry, Ryir and Ry on the
spectral line formation in the atmospheres of cool giants and supergiants taking
into account both the sphericity and the expansion effects. The appreciation of this
aspect will be important for quantitative analysis of stellar spectra and for computing model
atmospheres of such stars.

1.4 Review of the related work

Five decades have passed since Heney [27] discussed about the frequency redistribution of
radiation including both the natural broadening and the Doppler motions of the radiating
atom. Other early discussions on this subject are found in the works of Holstein [28], Unno



[69], Sobolev [67] and Warwick [76]. It was Hummer [31] who derived the redistribution
functions for two level atomic model. He defined the term redistribution function R(+/, n'; v, i)
as the probability that a photon having initial frequency ¢/ and direction n’ will be absorbed

leading to the re-emission in the l.me of a (v,7i) photon. He then defined the following four
redistribution functions :

1. For the cases of zero line width in the atom’s frame; denoted by R;.

2. For radiative damping of the upper level only; denoted by Ry;.

3. For radiative and collisional damping of the upper level only; denoted by Ryyy.
4. For radiative damping damping of both levels; denoted by Rjv.

Hummer derived angle-independent redistribution functions for the cases of isotropic and dipole
phase functions. He also discussed the symmetry properties of redistribution functions. In
subsequent radiative transfer calculations, isotropic angle-independent redistribution functions
have found maximum use. At this point it i§ worth mentioning that, Heinzel [23] pointed
out that Hummer’s [31] Ryv function is erroneous because it is derived from an incorrect
expression for scattering in the atomic frame. In the same paper Heinzel [23] derived a new
redistribution function Ry for resonance scattering of subordinate lines assuming that both
levels are radiatively broadened. Later, Heinzel and Hubeny [24] generalized this redistribution
function to include collisional broadening of both the upper and lower levels of the atom.
Jefferies and White [33] examined the validity of the CRD approximation and found that
in the line core the photons are completely redistributed whereas in the wings scattering is
nearly coherent. On this basis they proposed an approximation known as partially coherent
scattering. Kneer [35] pointed out that this approximation is neither normalized nor symmetric,
and he proposed a modified form of the partially coherent scattering redistribution function.
Subsequently, Basri [9] found that partially coherent scattering cannot account for Doppler
diffusion in the line wings, which can be important for low density atmospheres. Therefore,
he argued that it is required to use exact forms of redistribution functions in order
to achieve accurate radiative transfer solutions. Ayres [5] proposed a revised form of
partially coherent scattering which includes the role of Doppler diffusion. Jefferies and White
also called attention to the lowering of the line profile in the inner wing which occurs as the
scattering in the wing is taken to be nearly coherent. They noted that this lowering can be
caused in isothermal atmospheres by taking scattering to be coherent in the line wing, or in
a chromosphere if the whole line line is formed in CRD. Therefore, a proper understanding
and treatment of spectral line formation in the line wings is essential for determining the
temperature structure in a stellar atmosphere.

Hummer [32] presented the first detailed solutions of the radiative transfer equation including
PRD to go beyond the schematic partially coherent scattering approximation of Jefferies and
White [33]. He used planar geometry, constant properties of the medium, two-level atomic
model and angle-averaged Ry and Ry for isotropic phase function. He showed that the emer-
gent intensity due to Ry in the line wings can be substantially lower than the CRD solutions.
Vardavas [71, 72, 73] studied the effects of angle-averaged and angle-dependent Ry, Ryr and



Rj1 on spectral line formation in planar geometry for static and moving media. Peraiah [51]
described the numerical solution of the transfer equation in spherical geometry based on the
discrete-space theory of radiative transfer. He presented a computer code and the solutions of
transfer equation in the rest frame using PRD functions R; and Rj;. Peraiah [52] used Ry
to investigate its effects on spectral line formation in spherically symmetric and expanding
stellar atmospheres. Rangarajan et al. [60] studied the effects of stimulated emission on ra-
diative transfer with PRD functions Rrr and Ryyr in plane-parallel geometry. The combined
effect of Ry and non-coherent electron scattering on polarized resonance line transfer in plane-
parallel geometry was examined by Nagendra et al. [46]. Mohan Rao et al. [44] employed
Domke-Hubeny redistribution matrix and used a combination of Ry; and Rjir to study the
polarized line transfer with collisional redistribution in a plane-parallel atmosphere. Nagendra
[47] also used Domke-Hubeny redistribution matrix to study PRD effects on resonance line
polarization in spherical atmospheres. Collisional redistribution effects on line polarization in
spherical atmospheres were investigated by Nagendra [48]. Mohan Rao et al. [45] explored the
effects of Ryr, Ryrr and Ry on source functions (St) for plane-parallel and isothermal stellar
atmospheres and showed, that, for a purely séattering medium with frequency independent
incident radiation, the frequency dependent source function S;(Ry) lies below Sr(Ryrr) but
above S(Ryr) in the line wings. Singh [65] examined the combined effect of sphericity and
expansion velocity on the differences between the emergent mean intensity profiles resulting
from Ry and CRD.

Vernazza [74] showed that the flux and shape of the solar La line could be matched by a
parameterized PRD calculation in which the core is computed with CRD assumption and the
scattering in the wings was taken to be 93% coherent and 7% CRD. Omont, Smith and Cooper
[49] made quantum mechanical calculations to derive the redistribution function for resonance
lines. These results led Milkey and Mihalas [40] to propose a PRD computational scheme in
which they solved the coupled equations of radiative transfer and statistical equilibrium using
the Vernazza, Avrett, and Loeser (VAL) [75] solar model. They arrived at three important
results: 1) A fully self-consistent PRD calculation using depth-dependent coherence fractions
computed from the broadening rates is feasible; 2) The computed line wings lie between the
CRD and pure coherent scattering limits and are similar to the 93% coherency calculations
of Vernazza [74]; and 3) A proper inclusion of PRD effects in the wings of La is needed to
compute electron density properly. In a subsequent paper Milkey and Mihalas [41] were able
to match the shape of the observed La profile by including a depth-dependent line profile
function. Roussel-Dupré [62] pointed out a major problems in the method of Milkey and
Mihalas [40, 41]): the Omont et al. [49] redistribution function used by them is not valid for
the La wings. Next, Milkey and Mihalas [42] applied their PRD method to the resonance
line of MgII treating each transition as a two-level atom. They showed that the line source
function behaves like pure coherent scattering case, while in the line core it is independent of
frequency and slightly above the CRD case. Milkey, Ayres, and Shine [39] examined the effect
of gravity on the shapes of Mgl lines. They found that 7, rr(7s000) increases systematically
with decreasing gravity. Ayres, Linsky and Shine [6] and Ayres [4] used this result in trying
to explain the Wilson-Bappu effect.



Shine, Milkey and Mihalas [64] applied cross-redistribution formulation to a five-level, five-
transition Call ion. They assumed HSRA model and several microturbulent velocity distri-
butions. Their results provided strong evidence that the PRD approach includes much of the
essential physics of the scattering processes, and in principle, PRD effects can account for many
discrepancies between the line profiles calculated assuming CRD and the observations. Shine,
Milkey and Mihalas [64] also considered the gravity dependence of the Call lines with results
in qualitative agreement with the results of Milkey, Ayres, and Shine [39]. Milkey, Shine and
Mihalas [43] then included the full angle and frequency dependence of redistribution during
the scattering processes in an observer’s frame formulation. They found that angle-dependent
effects are negligible for the Call line in a homogeneous solar chromospheric model, but these
effects could be important for an inhomogeneous medium like the real solar chromosphere.

Parallel with solar modeling, the development of chromospheric models for late-type stars based
on the matching of observed and computed PRD profiles has taken place. Ayres and Linsky
[7] constructed first such model to match Call K line of @ Boo (Arcturus, K2 III). They could
obtain a good agreement to the shape of the inner wing and flux of the profile. In subsequent
papers various authors who extended this work to derive atmospheric models for giant and
supergiant cool stars are: Kelch et al [34] fitted K line of Call and h & k lines of Mgll using
plane-parallel geometry, static medium for a Aur (G5 III), 8 Gem (KO0 III) and o Tau (K5 III);
Baliunas et al [8] using plane-parallel geometry, static medium fitted the same line as Kelcl
et al. [34] for A And (G8 III-IV) and a Aur (G5 III); Eriksson et al. [15] used plane-parallel
geometry, static medium and fitted MgII K line for 8 Cet (G9.5 III) star; Basri et al. {10]
fitted Call K, MgII K lines using plane-parallel static medium for A Dra (G2 II-Ib), ¢ Gem
(G8 Ib) and o Ori (M2 lab) stars; Basri et al. [10] fitted the same lines using plane-parallel
geometry and circulation pattern for # Dra (G2 II-Ib); Avrett and Johnson [3] used plane-
parallel geometry, static medium to fit MgIl K line for N-type Carbon stars; Drake [14] used
spherical geometry with winds to fit Mgll K line for a Boo (K2 III) star. In this list, except
Basri [9], all other papers have neglected velocity fields and atmospheric extension.

As appears evident from the review presented above, considerable progress has been made in
using partial frequency redistribution functions to study the spectral line formation in idealized
stellar atmospheres. But, most of these studies are limited to the assumption of plane-parallel
geometry and/or the absence of velocity fields. These assumptions are unrealistic because
the real atmospheres of cool giants and supergiants expand and are geometrically
extended. Moreover, these studies employ either Ry or R;;. Ryyr has usually been represented
by CRD. So far, the combined effects of sphericity and velocity fields on the differences between
the solutions resulting from Ryr,Ry and the CRD have not been explored in a comparative
way. It is this gap which this study tries to fill up.



1.5 Layout of the presentation

In order to achieve the above mentioned goals, we adopt a two-pronged approach. In the
first approach, we consider parameterized stellar atmospheres to explore the influence of
different physical parameters on the differences between the solutions due to PRD and CRD.
These include the atmospheric extent, expansion velocity and the thermalization parameter
(which gives the probability of collisional destruction of photons) . The solutions considering
idealized models serve as a preliminary step to solutions of actual stellar atmospheric problems
by providing an insight into the basic physical phenomena.

In the second approach, we adopt computed model atmospheres (temperature and electron
number density distributions) of red giants and supergiants. From these models, the line optical
depth and the thermalization parameter is computed at each depth point in the atmosphere
to study the frequency redistribution effects on some actually observed spectral lines from the
stars of the same type. This is an important study as it brings out the model dependence of the
differences between the partial frequency redistribution and complete redistribution solutions.

The work is presented in seven chapters.

e In chapter one, the need to study the partial frequency redistribution effects on the
spectral line formation in the atmospheres of cool stars is discussed. Against this back-
ground, relevant literature on the use of various partial frequency redistribution functions
to study the spectral line formation in stellar atmospheres is reviewed. The chapter is
concluded with the layout of the presentation.

e In chapter two, the solution of equation of radiative transfer in the frame-work of the
discrete space theory of radiative transfer using Peraiah-Grant formalism is described.

¢ In chapter three, the effects of angle-averaged Ry and Ryr on emergent flux profiles in
static spherically symmetric stellar envelopes is examined. The equation of transfer for
spherical symmetry in the rest frame is solved for a two-level atom. Initially, to bring
out the effects of geometrical extension alone, velocity fields are neglected. A constant
value of the thermalization parameter is assumed and the Planck’s function is set equal
to unity throughout the atmosphere. The background continuum is neglected. This
study establishes that sphericity enhances PRD effects. It is also shown that the effect
of spherical extension is much more on the emergent flux profiles resulting from Ry than
on those resulting from Ry when the damping parameters of the lower and upper levels
of an atom are comparable. The effect of Ry (as compared to CRD) on emergent flux
profiles increases by making the lower level sharper than the upper level. This effect is
further enhanced by increasing the spherical extension.

¢ In chapter four, a step further is taken to include the effects of expansion velocity in
order to explore the combined effects of sphericity and expansion on the emergent flux
profiles resulting from Rjr and Ry, as compared to CRD. An atmosphere having geomet-
rical extension and small velocity of expansion is considered which is characteristic of the



atmospheres of cool giants and supergiants. It is assumed that there is no background
continuum; Planck’s function is set equal to unity and a constant value of the thermal-
ization parameter is chosen at all depths in the atmosphere. This study shows that there
are substantial differences between the emergent flux profiles resulting from PRD (Rir
and Ry) and CRD.

¢ In chapter five, the PRD effects of R;;7 alone on the emergent line profiles in an expand-
ing spherically symmetric stellar atmosphere are explored. This is because, the limiting
case of complete redistribution is usually taken to be an adequate representation of Ryrz
in radiative transfer problems to study the spectral line formation in stellar atmospheres.
However, the combined effect of sphericity and macroscopic velocity cannot be estimated
a priori. Only low velocity regime is considered which is appropriate for the atmospheres
of cool giants and supergiants. This problem is treated in the rest frame formalism. In this
work it is established that the differences between the emergent mean intensity profiles
resulting from CRD and Ry are much smaller in expanding spherically symmetric stellar
atmospheres than reported previously for pplane-parallel atmospheres.

o In chapter six, as a next important step in this investigation, computed model atmo-
spheres of red giants and supergiants are adopted to explore the PRD effects (as compared
to CRD) on some observed lines (e.g. Si II). The temperature structure and the electron
number density from the given models is used to compute the line optical depth and the
thermalization parameter at each depth point in the atmosphere. Realistic values of the
radii and the atmospheric extensions of cool giants are used. The line transfer equation
is solved using Ry and CRD to compute the emergent spectral line profiles. This study
aims at examining the model dependence of the differences between the results of PRD
and CRD.

o Finally, in chapter seven the highlights of the present work are summarized and possible
directions for further study using partial frequency redistribution functions are indicated.



Chapter 2

Solution of the line transfer equation
using Discrete Space Theory

2.1 Introduction

The equation of radiative transfer, which describes the transport of radiation through a
medium, is one of the essential equations in the stellar atmospheric research. This equa-
tion incorporates the physical properties of the medium and its solution provides insight into
the behavior of the internal and emergent radiation field. It is an integro-differential equation
and this feature increases the complexity of obtaining the solution depending upon the physics
of the problem. It is not possible to solve this equation analytically for numerous astrophysical
problems and so there exist several numerical methods to obtain the solution of the transfer
equation. Amongst the notable methods, and the one used in this investigation is based on the
Discrete Space Theory of Radiative Transfer. This method has two-fold advantages:

1. The solution obtained can be subjected to rigorous numerical analysis to enable one
to predict in advance the most economic finite difference mesh for a problem.

2. The abstract mathematical structure is capable of generalization to other geometries.

This chapter describes the basics of the Discrete Space Theory and the solution
of line transfer equation based on this theory.

2.2 Discrete Space Theory of Radiative Transfer

The earliest reference to the Principle of Invariance, which is a special case of the Interaction
Principle, is found in a paper by Stokes [68] in which he obtained difference equations for
reflection by a pile of identical glass plates. However, it was Ambartzumian [2] who introduced
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the Principle of Invariance into the radiative transfer theory. Chandrasekhar [13] extensively
used these principles to calculate the reflection and transmission functions. The classical
statement of the Principle of Invariance can be stated as: The law of diffuse reflection of
an infinitely homogeneous plane-parallel scattering medium is invariant with respect to the
addition or subtraction of layers of arbitrary finite optical thickness to or from the medium.
The Principle of Invariance is a consequence of the Interaction Principle and is essentially
a statement of energy conservation in any medium. Redhefer [61] and Preisendorfer [59] wrote
the Interaction Principle without the internal source terms. Grant and Hunt {19, 20] included
the internal source terms and developed a numerical method to solve the transfer equation
in inhomogeneous plane-parallel media. Grant and Peraiah [21] developed the solution of
radiative transfer in spherical systems in the frame work of the Discrete Space Theory. This
method has been applied to several case of extended and expanding stellar envelopes.

Peraiah and Grant [57] presented a numerical method to obtain diffuse radiation in the ex-
tended atmospheres of supergiant stars. This method is an extension of the discrete space
theory of Grant and Hunt [19, 20] and has béen widely used to study the spectral line for-
mation in moving and extended atmospheres of supergiant stars. It has the following distinct
merits:

o It is a highly accurate method for computing the internal as well as emergent radiation
in the presence or absence of the internal radiation sources.

o It offers great flexibility to include a large number of physical processes that occur in
stellar atmospheres.

¢ It is numerically stable and gives physically meaningful solutions.

In general the following steps are taken to obtain the solution

1. The medium is divided into a number of cells whose thickness is less than or equal to
the critical thickness (7). The critical thickness is determined on the basis of the
physical characteristics of the medium. 7..; ensures stability and uniqueness of the
solution.

2. The integration of the transfer equation is performed on the cell which is a two-
dimensional grid bounded by [rn, rata] X [#j-1/2, 4j+1/2], Where

j
Bit1/2 = chv J=412,...J
k=1

where c; are the weights of Gauss Legendre quadrature formula. -

3. These discrete equations are compared with the canonical equations of the interaction
principle and to obtain the transmission and reflection operators of the cell.

4. Lastly, all the cells are combined by star algorithm and obtain the radiation field.



The medium can be divided into shells whose thicknesses are larger than 7., but integration is
done only on cell and star algorithm is used to obtain the transmission and reflection operators
of the shells by adding the cells (star product).

Further, a closer look at the Interaction Principle, the Star Product and the Calculation of
radiation field at internal points is presented, following Peraiah [56].

2.2.1 Interaction Principle

The interaction principle relates the incident and emergent radiation field from a medium of
given optical thickness. It permits us to set up exact difference equations for both reflection
and transmission coefficients for radiation field. These coefficients are exact and can be used
in the calculation of radiation field in the finite layers.

Figure 2.1 shows a shell of optical thickness with incident and emergent intensities. It is
assumed that specific intensities U} and U, are incident at the boundaries n and n+l
respectively of the shell with optical thickness 7. The symbols with signs + and - represent
specific intensities of the rays travelling in opposite directions. If 4 represents the cosine of
the angle made by a ray relative to the common normal (in the spherical case, y is the angle
made by the ray direction with the radius vector) to the stratification in the direction in which
n increases. That is,

Uf{Un(p) :0<p<1 (2.1

and

Ug{Un(-p) :0<p<1 (2.2)

U} represents the specific intensity of the ray travelling in the direction y and U, represents
the specific intensity of the ray travelling in the opposite direction. A finite set of values of
Bpit1< <m0 < gy < p3 < fa...pm < 1) is selected

Un(y11)
U = U"(:“’) (2.3)
U, n(l‘m)
and
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U*(n)

transmitted

and reflected + _—
Output contribution

intensities from

intensity internal sources

U*(n+1) | E*(n+1)

Figure 2.1: Schematic diagram showing a spherical shell with incident and emergent intensities;
E~ or E* denotes contribution from internal sources.
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Un(—p1)

Un("l‘z)

Ut = 2.4)

Us ("I‘m)
are m - dimensional vectors on Euclidean space.

® The incident intensity vectors are U} and U,,.

o The emergent intensity vectors are U, and U},,.

The emergent radiation field will have the contributions from the internal sources say,
X+(n +1,n) and £~ (n,n + 1) corresponding to the output intensity vectors U},; and U
respectively.

Certain linear operators are assumed which reflect and transmit the incident radiation namely,
t(n +1,n)t(n,n+1),r(n,n +1) and r(n + 1,n). These operators are calculated based on the
physics of the medium. Then the output intensities are written in terms of the transmitted
and reflected input intensities together with the internal sources as

Uty =tn+1,n)Uf +r(n,n+1),U; + 2 (n+ 1,n) (2.5)

Us =r(n+1L,n)UF +t(n,n+1),Uz + E(n,n +1) (2.6)

The introduction of the internal source terms namely,Z¥(n + 1,n) and T~ (n,n+ 1) is due to
Grant and Hunt [19]. The relationship given by equations 2.5 and 2.6 is called the Interaction
Principle. This can also be written concisely as

(Uf:: ) = S(n,n+ 1)( [il_‘-:l)+2(n,n+1) (2.7)
where
st = (10T Hentd)) @9

2.2.2 Star Products

If there is another shell with boundaries (n+1,n+2) adjacent to (a,n+1), interaction principle
for this shell can be written as

12



+ +
(U’l"")=S(n+1,n+2)(gﬁ+1)+E(n+1,n+2) (2.9)
n+l n+3

where S(n + 1,n + 2) is similarly defined as in equation 2.8. If one combines the two shells
(n,n+1) and (n+1,n+2) then the interaction principle for the combined shell is written as,(for
the thickness is arbitrarily defined)

Udia Ur
e | =8mn+2)| 2 |+E(n+1n+2) (2.10)
n n+2
Redheffer [61] calls S(n,n + 2) the star product of the two S-matrices S(n,n+ 1) and S(n +
1,n + 2); and S(n, n + 2) written as
S(n,n+2)=8(n,n+1)*Sh+1,n+2) (2.11)

Equation 2.11 is obtained by elimination U},, and U, from equations 2.9 and 2.10. The r
and t operators for the composite cell are written as

tn+2,n) = tn+2n+ 1[I —r(n+2,n+1)r(n,n+ 1) (n+ 1,n) (2.12)
tn,n+2) = tnn+)I—rinn+)r(n+2,n+1)]"t(n+1,n+2) (2.13)
r(n+2,8) = rn+ln)+tn,n+ DI -r(n+2,5+)r(n,n+ )] Ir(n+2,n+1) (2.14)
r(n,i+2) = r(n+1L,n+2)+in+2,n+ 1[I ~r(nn+r(n+2,n+1)]"r(n,n+1) (2.15)

and

E(nn+2)=A(nn+1;n+2)T(n,n+ 1)+ A'(nin+1,n+2)8(n+1,n+2) (2.16)

where I the identity matrix and

tn+2,n+1)[I-r(n,n+1)r(n+2,n+1)]"? 0 ) (2.17)

Alnntlin+2) = ( tr,n+ r(n+2,n+ DI —r(n,n+ r(n+ 2,2+ 1)]7 [

I t(n+2,n+1)r(nn+1)[I~r(n+2,n+1r(n,n+1)] ) (2.18)

A(nin+1,n+2) = ( 0 t(n,n+ 1[I —r(n+2,n + Dr(n,n + )]
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and

B(n,n+1) = ( E;(f(:,i’:*l')z) ) (2.19)

Similarly, Y(n + 1,n + 2) is defined.

To obtain physical interpretation of 2.12 the operator inverse is expanded in a power series.
For example,

tin+2,n) = i te(n +2,n) _ (2.20)
ti(n+2,n) = t(n+2,n+1)r(n,n+1)x (2.21)
r(n +2,n +1))*t(n + 1,n) (2.22)

n
The k™ term, tx(n + 2,n) may be recognized as diffuse transmission from n to n + 1, diffuse

reflection from the layer (n, n+1), k times in succession and finally diffuse transmission through
(n+1,n+2). Thus ¢{(n + 2,n) is the sum of contributions involving scattering of all orders
k=0,1,2,...00. A similar interpretation can be given for other operators.

This operator acts on intensities to the right and gives the contribution to U},; from U}.

If S(a) is written to designate the cell, then

S(a*B) = S(a)x 5(B) (2.23)

where a* 3 denotes the region obtained by putting the two cells « and 8 together. If the cells
are homogeneous and plane parallel then

axfl=fxa (2.24)

In general, the star multiplication is non-commutative. However, star multiplication is asso-
ciative. For adding several layers o, 3, 7. ..

Sllax(Bxy)x..)] = S[(a*xB)*y*x..] (2.25)

If the medium is homogeneous and very thick then one can use what is known as doubling
method (see van de Hulst [30]). For example,

S(2Pd) = S(2F1d) » S(2°-'d), (P =1,2,3,...) (2.26)
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which means that we can generate the S-matrix for a layer of thickness 2Pd in P cycles starting
with S(d) rather than in 2F cycles of adding the S(d)’s one by one. If P = 10, then only a
fraction 10/21° ~ 10~? of the computational work is needed to add 21° layers of thickness d.

2.2.3 Calculation of Radiation Field at Internal Points

One expects the reflection and transmission operators to be non-negative on the physical
grounds that intensities are always non-negative. This condition will be satisfied only when
the optical thickness of the shell is less than certain value called the critial size or 7. If
the optical thickness r of the shell in question is larger than the 7., then we can divide the
shell into several subshells whose r is less than the 7. and then star algorithm is used to
calculate combined response from the subshells whose total thickness is T'. If, for example one
need the radiation field at internal points in the atmosphere, one will have to divide the entire
medium into as many shells as needed and calculate the radiation field at the N points in
the medium. One can write down the interaction principle for each shell and solve the whole
system of equations (see Grant and Hunt [18]).

Figure 2.2 shows the atmosphere in which to calculate the internal radiation field. The atmo-
sphere is divided into NN shells (homogeneous or inhomogeneous) with A and B as the inner
and outer radii. The solution U}, and U, (for any shell between shell 1(at B) and shell N
at A are obtained from the relations

Uty = r(Ln+ 1)Uy + Vi) (2.27)
Uy = tn,n+ 1)U, +V n+1/2 (2.28)
with the boundary conditions Uy, = U~ (A).

The quantities 7(1,n + 1), V%, and V,3, are calculated by employing the initial conditions
r(1,1) = 0 and Vi}, = U*(b). The computation is done by the following recursive relation

r(l,n+1) = r(n,n+1) +t(n+1,n)r(1,n)[ —r(n + 1,n)rl,n] " t(n,n +1) (2.29)

‘,n.‘:-‘l/Z = t(n + 1) n)‘/nt'l/z + ZT‘"(n + 1,71) + R,.H/g):"(n,n + 1) (2.30)
r:l—‘l/Z = r(n +1, n)v:t.l/g + Tn+1/22_(n,n + 1) (2.31)

where
t(n+1,n) = t(n+1,n)I—r(l,n)r(n+1,n)]"? (2.32)
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Diffuse radiation field

=N+1

U+(N+1 ) U-(N+1 )

Figure 2.2: Description of the diffuse radiation field in a spherically symmetric atmosphere.
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r(n+1,n) = r(n+Ln)[I-rQ,n)r(n+1,n)™? (2.33)

Repyrija = #n+1,n)r(1,n) (2.34)
Tatrjza = [{—r(n+1,n)r(1,n)]? (2.35)

and
t(n, n+ 1) = Tﬂ+1/2t(ﬂ,n ~+ 1) (2.36)

To calculate the radiation field at the internal points one proceeds as follows:

1. Divide the mediurm into a number of shells (say N) with N+1 boundaries as mentioned
earlier.

2. Start calculating the two pairs of reflection and transmission operators
r(n+ 1,n),r(n,n +1),{(n+1,n) and {(n, n+1) in each shell (if the optical thickness
in each shell is larger than 7. then apply star algorithm to use doubling procedure
if the medium is homogeneous). _

3. With the boundary condition that r(1,1) = 0 and V{} 172 = u¥(b) and the r and ¢

operators mentioned in subsection 2.2.2, compute recursively r(1,n + 1), V¥ 72 and
t(n,n + 1) given in equations 2.29 to 2. 30 from shell 1 to shell V (i.e.from B to A in
figure 2.2).

4. Next one sweeps back from A to B (see figure 2.2) calculating the radiation field given
in equations 2.27 & 2.28 with the boundary condition U, = U~ (a).

One has to retain the operators r(1,n + 1),t(n,n + 1), VX, and V3, ; for each shell that
are calculated in the steps 2 and 8 above until one starts calculating thc radiation field from
A. (The storage of these operators will not increase the memory of the machine required for
computations. The operators can be stored on a magnetic disc and can be recalled whenever

necessary. The operators can be removed from the disc or tape so that the disc or tape can be
used to store fresh data).

If the surface at A is reflecting, we can write

U =ralUfn (2.37)

where rg is the reflection operator. For a totally reflecting surface rg = I. Therefore, we have

Uf_,=[I-r(1, N + l)r'c;]‘lV,;,"*_I/2 (2.38)

from which one can calculate Uy, from equation 2.37. Rest of the calculations follow equations
2.27 and 2.28.
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2.3 Solution of the line transfer equation

This section deals with the method to calculate the spectral line profiles using the Discrete
Space Theory technique. The description given here follows from Peraiah [52, 53, 54].

In order to describe the method to solve the line transfer equation with partial frequency
redistribution functions and velocity fields, a two-level line transfer problem in non-LTE case
in an extended spherical medium is considered. The equation of line transfer in such medium
is given by

p2lr) | 1o HET) - i+ 8o,y S (o ir) ~ Hmnr)] (239)

and for the oppositely directed beam,

- — 3 T, —
o) | 12O T) _ g 4 e, —priS(a, o) — Lz, )] (240)

where I(z,p,r) is the specific intensity at an angle cos™'u(p € (0,1)) at the radial point r
and frequency (z = (v — 1p)/A,, where A, is some standard frequency interval). f is the ratio
/K of opacity due to continuous absorption per unit interval of z to that in the line. The
source function S(z,+u,r) is given by,

¢|(.’l:, *u, T)Sz(:l:, xu, r) + :BSC(T)
B+ ¢(z’ *pu, T)

where S;(z,+pu,r) and S.(r) refer to the source function in the line and in the continuum
respectively. The line source function is given by

S(z, xtp,r) = (2.41)

Si(z, £u,r) = E(%-;TE’)-S [_: dz’ /:1 R(z, xp; ', u)I(z', u')dy' + eB(r) (2.42)

where ¢ is the probability per scatter that a photon will be destroyed by collisional de-excitation;
S, and B are the continuum source function and Planck function, respectively; and ¢(z, £u,r)
and R(z,+u;z’,y') are the profile and partial redistribution functions. The profile function ¢
is given by

4 / / R(v, i/, 7)d/dY = ¢(v) (2.43)

Equations 2.39 and 2.40 are solved by using the source functions defined in equations 2.41
and 2.42 together with the appropriate redistribution function and following the procedure of
integration described in Peraiah & Grant [57] and Grant & Peraiah [21]. This gives
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Mp (Ut = U) +pe (AU 2+ A;U.-T,.ﬂ/z] + T41/3(B+ $idns1/3U 12 =

1
Tnt1/2(PB + €i)n+1/2Bny172h + 3 Tn+ /200 +1/28in41/35 = _18in41/2(BB)TR[UFY + U ']"” +1/§249)

Similarly, for the opposite-directed beam,

Mm (Ua'?n+1 - U-'Tn) + pe [A:uU.'-,-ﬂﬁ/a + A;U(,t.-;-l/:] +Tat172(B + ¢i)ﬂ+112UiTn+1/2 =

1 -
Tat1/2(P8 + ‘¢i)n+1123:|+1/2" + "2'rﬂ+1/2°'n+1/2¢|‘.n+1/22;!'=-1ai,n+1/2(hh)Tb vr+vU ]..'"+1/‘2.45)

where

U -?,Ln+1 = 47""3‘+1 I(Zi, +Hmy Tnt1),
¢ft.i,n+1 /2 = $(2i, +bims Tnta /2),
R}:s:i.’,n+1/2 = R(-”’i: +l‘m- 1 Tify ity +"‘:n; Tnt1/2;

the A’s are the curvature matrices; p. is the curvature factor; and

:;+1/2 = 4"”':+1/2Bw
c = [Cnénil,
M, = [tndmi]; (2.46)

in which the u’s and c’s are the roots and weights of the angle quadrature. The quantities ¢~
R, etc. are to be similarly understood. The index n + 1/2 refers the average over the shell
with boundaries r, and rn;1, and { and #’ are the indices corresponding to the frequencies of
the incident and scattered photons.

We can define coefficients Wiy;ny1/2 as
(6iWk) = aint1/26; (2.47)
where the subscript k is
(4,7))=k=j+(G@-1)L1<k<K=1J

with I and J being the total number of frequency and angle points, respectively.
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Let
= [Ut,Uf

Wn' Y 2n 31”

;+1/2 [‘Dkk']n+1/2 =B+ ¢ )n+1/25kk'
n+1/z = (Pﬂ + €¢k )n+1/2 +1/25w,

UETT

where T denotes transpose, and rewrite equations 2.44 and 2.45 as
M[U:H - U+] + P [A+ n+1/3 +A” n+1/:] + "n+112¢n+1/2 n+1/32—
Ta41/3%41/3+ 5 ~ [roée” W], npU+UF R +U™+UT] )0 (2.48)

and

MU; - U;+1/2] — pe[ATU 412 T AT, +1/2] + Tn1/2bn 41730041 2=
Tat1/2%ns1/2 + E[ra¢¢ Wl lUN+U 40U~ +U7] L0 (2.49)

The average intensities U, +1/2 in the above equations are replaced by the following relations
(Grant and Hunt {18])

(I— Xn+1/2)U: +Xn+1/2U:+1 = U:+1/2 (2.50)
(I = Xan/2)Uy + XnpappUy = at+1/2 (2.51)

with X = 17 for diamond scheme. Then by comparing the resulting set of equations with
those in the canonical form of Peraiah & Grant [57]

+
Ut ) 2 () rwne D) (B ) (B ) ew
U; r(n+1,n) t(nn+1l) ntl n+1/3
we obtain two pairs of reflection and transmission operators, namely, ¢(n + 1,n), r(n,n + 1),
r(n+1,n) and t(n,n + 1). The expressions for these operators are given below.

The cell operators are:

t(n+1l,n) = Gt [AYA+gv7¢7],
t(n,n+1) = GHAD+gTg"]
rin+1,n) = G Vg +[I+ AtA),

r(n,n+1) = Gt gt [I+A™D] (2.53)
and the cell source vectors are:

Z:j|-+1 1= Gt [A+3:+1 /2t 9+—A_3:+1 /2]7n+1/2
G A s s+ gAY, PALCYEY

nt1/2
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where

il

[1- g+-g—+]—1’
[I-gtg* 1,
1
5 Tn+1/1 AtY,
1
E'rn+1/2 ATY,,
1
M — §Tn+1/2Z—,
1

M — '2“Tn+1/2 Z+,

1
M+ §Tn+1/2Z+]—1,
1
2

1
Q:H/n - 50(R++W++)n+1/2 + pA+/Tn+1/27

M + Tn+1fnz—],_1,
- 1 —— oy r—— +
n+1/3 EU(R W )n+1/2 - pA /Tﬂv+1/2a
1 _
(PA+/Tn+1/2) + EU(R_"'W +)n+1/27

1
—(PA—/Tu+1/2) + -2—0(R+"W+"),,+1/2,

= 1l—¢

and [ is the unitary matrix.

These operators describe the radiation field in a moving medium and, therefore, all four redis-

tribution functions

are not equal and have to be calculated at each radial point of the medium. However, if
the medium is static and partial redistribution is considered, then, by the symmetry relations

(Hummer [31)]), we have

R(z, +up; z', +4')
R(z, +p; 2, —p')

Furthermore, if one considers a static medium with complete redistribution, then all four
redistribution functions that evaluate the scattering integral reduce to approximately $¢T,

R(z,+pu;2’',p) (= B*),
R(:L’, +I‘;II, ’—’-") (= R+—))
R(z)—ﬂ'; zla /") (= R—+)a
R(zv —H; zla _"") (= R——)

R(zv"'ﬂ;zli —“’); R*™* =R~
R(zs—ﬂ;z's +u'); R*-=R"*
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where ¢ is the profile function and T is the transpose of the vector. Consequently, the form
of the quantities Z,,Z_,Y,,Y_,etc, given above will be reduced to those given in Grant &
Peraiah [21]. ‘

'To obtain a stable solution one must choose an optical depth 7n41/2 in each cell, given by

e £ 2oAL
3(@F — SRETWET)

(2-54)

Tat+1/2 S Terit = MING

for the diagonal elements of the matrices A* and A~, and for the off-diagonal elements we
must have

-; o R Wit
Af

] (2.55)

(P/T)n41/2 < min, [min.,m,,,_n

Condition 2.56 is difficult to satisfy, which imposes a severe restriction on the size of the
curvature factor to be used in each cell to obatin non-negative r and t matrices. From the
inequalities set out in 2.55 and 2.56 above, it is clear that the medium of interest should be
divided into a number of shells and relations (5.1) to (5.4) of Peraiah & Grant [§7] should be
used to calculate the diffuse radiation field at any point in the medium. However, it is time
consuming to use a large number of shells and subdivide each shell so that the curvature factor
p is small enough to facilitate the use of the doubling algorithm described in Peraiah [50] and
the star algorithm of Grant & Hunt [19, 20].

If the shell is halved p times, the star algorithm is repeated p times, and in this event the

curvature factor p,, and the optical depth 7,, for the subshell are given in terms of p, and 7,
of the shell

P N 277 )1 —p, (27 —27P)],
Tee = To27%,
2 2 l 1 90002, 1 1
= RUL-p(K+3)+ (K + 5k + )] (2.56)

where p,, corresponds to a subshell approximately midway in the shell and p, is the curvature
factor for the whole shell, defined as

Pa = Ar [rout (2.57)

T,» being derived on the assumption that the optical depth in the whole shell is uniform. p,, is
taken to be the mean value for all subshells, which introduces error, and to reduce this error
one must divide the shell into finer subshells that are small enough not to introduce serious
errors. ¥ is the mean radius of the subshell; R is the outer radius of the shell in terms of the
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inner radius of the medium; and K = 2-! — 27?. The relations set out in 5.57 are derived on
the basis of equation (30) of Grant [17].

To conserve flux, one must ensure that the scattering integral given in equation 2.42, and the
corresponding discrete equivalent given in the last brackets of equations 2.44, 2.45, 2.48 and
2.49 are calculated exactly. For this purpose, the redistribution functions R**, R*~, etc., must
be normalized to the machine accuracy so that, when there is pure scattering in the medium,
conservation of flux can be checked easily (see Peraiah & Grant {57]). This can be achieved
through the identity

K K
% > D (RESWEYWEY + RpgWptWa™) =1 (2.8)
P=1Q=1
where
AiRpq
Wpq = aic;,a; =
hq ™ qu.—_l Rpq Aic;
and

(PQ)=5+(+1)J

and also by relation (4.3) of Peraiah & Grant [57].

The method described above has been used to solve the line transfer equation in
the following chapters.

23



Chapter 3

Effects of angle-averaged Ry and Rjj
on emergent flux profiles in a static
spherically symmetric stellar
atmosphere

3.1 Introduction

The influence of partial frequency redistribution (PRD) is expected to become more pronounced
in the extended atmospheres of supergiant stars because of low densities. Therefore, in this
chapter, the dependence of the emergent flux profiles on the form of the angle-averaged partial
redistribution functions Ry and Ryy is examined for spherically symmetric stellar atmospheres
in a comparative way.

Scattering by a resonance line, that is broadened by radiation damping is described by the
partial frequency redistribution function Rjr derived by Hummer [31]. This redistribution
function is strongly coherent in the line wings leading to the lowering of line profile outside the
- Doppler core (Hummer [32], Vardavas [73]). Vardavas [71, 72, T3] studied the effects of angle-
averaged and angle-dependent R, Ry and Rzrr on spectral line formation in planar geometry
for both static and moving media. Peraiah([51, 52]) studied the effects of partial frequency
. redistribution on spectral line formation in both static and expanding spherically symmetric
stellar atmospheres using angle-averaged Ry and Ry;. Rangarajan et al. [60] studied the effects
of stimulated emission on radiative transfer with PRD functions Ry and Ryrr in plane-parallel
geometry. Milkey & Mihalas [41] used a combination of Ry and Ry to study Solar Lyman-o
line profile. .

Redistribution of photons in angle and frequency due to scattering in subordinate lines is given
by Ry (z',7; z, ) in the notation of Heinzel. Here =’ and z represent the frequency displace-
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ment from line center (in units of Doppler width) of the incident and the scattered photons
respectively; fi’ and i@ give the directions of the incident and the scattered photons respectively.
Heinzel [23] derived the correct form of angle-dependent laboratory frame redistribution func-
tion (LFR), Ry, for radiatively broadened upper and lower levels of the atom. This LFR was
extended to include collisional broadening of the levels by Heinzel and Hubeny [24]. Hubeny
and Heinzel [29] solved the transfer problem using Ry for isothermal plane-parallel (both finite
and semi-infinite) atmospheres. Mohan Rao et al. [44] examined the effects of Rrr, Rryr and
Ry on source functions (S ) for plane-parallel and isothermal stellar atmospheres and showed,
that, for a purely scattering medium with frequency independent incident radiation, the fre-
quency dependent source function Si(Rv) lies below Sp(Rirr) but above Si(Ry;) in the line
wings.

All the works cited above (except Peraiah [51, 52, 55, 56]) are limited to planar geometry. The
assumption of a plane-parallel atmosphere holds good only when the density scale-height in
the atmosphere is small compared to the radius of the star. But, many stars, in particular the
supergiants are known to have extended atmospheres; in the first approximation it is assumed
that such stars are spherically symmetric. These stars are known to have low gravities leading
to low densities in their extended outer layers where the PRD effects are expected to to be more
pronounced (Basri [9]). In this study it ¢s shown, the effects of Ry on emergent fluz profiles
are shown for the first time in comparison to the effects of Ryr and Ry considering spherically
symmetric stellar atmospheres. The appreciation of these effects will be of relevance to the
problems of spectral line modeling in stellar atmospheres and also to the modellers of stellar
atmospheres.

3.2 Equations and computational procedure

The line transfer equation for a two-level atom in spherical symmetry is written as follows

(Peraiah [52], Singh [65])

Ol(z,tp,r) , 1= p? 0l(z, dpr) _ K18 + ¢()][S(z, r) — I(z, £p,7)] (3.1)

4 or r ou

where + stands for the oppositely directed beams of radiation, I(z, £u, r) represents specific
intensity of the ray making an angle cos™'u (g € [0,1]) with the radius vector. f = xc/m
(continuum to line opacity). ¢(z) represents the profile function, given as

4= [ z" Riry(«,2)ds’ (3.2)

where R;r(z’,z) and Ry (z',z) are the angle-averaged partial frequency redistribution func-
tions. Here, z’ and z represent the frequency displacement from line center in units of Doppler
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width of the incident and scattered photons respectively. The profile is normalized as
+00
f dzg(z) = 1 (3.3)

-—00

In the transfer equation (equation 3.1), S(z,r) is the total (line plus continuum) source function

which is written as
§(z, r) = 2E5UE:7) + B5:(r)

’ 8z +
where S, is the continuum source function set equal to 1 in this computation. Si(z,r) repre-

sents the line source function, which , for a two-level atomic model, is given by the following
expression

(3.4

Sizr)=2— [ ‘:’ Ruw(e', z)J(@')dz’ + eB(r) (3.5)

l—e¢
é(z)
where J(z') denotes the frequency-dependent mean intensity and eis the probability per scatter
that a photon is destroyed by collisional de-excitation written as

_ Ca
Can + Anfl — C-"’P(:k%!)]'l

¢ (3-6)

where Cy; is the rate of collisional de-excitation from level 2 to 1, Ag; is Einstein’s spontaneous
emission probability for transition 2 — 1, A is the Planck’s constant, v is the photon frequency,
k is the Boltzmann’s constant and © is the temperature.

Under the assumption of complete redistribution, the line source function is written as
+c0o
Si(r) = (1 —€) / #(=)J(=)dz' + eB(r) (3.7)
where ¢(z) is taken to be a Voigt profile with damping parameter a.

The line source functions written above for PRD (equaticn 3.5) and for CRD (equation 3.7) are
valid for a two-level atomic model; whereas the simplest model needed to study subordinate
line formation is a three-level atomic model. The reason for using a simplified two-level atomic
model in this study is that, since we are interested in a comparison between radiative trans-
fer solutions with three redistribution functions rather than in solving any specific transfer
problem, we neglect the transition 3 « 1 (which provides an extra channel for destroying
and creating photons in the subordinate line 3 «~ 2). Although this is a rather unphysical
assumption that amounts to neglecting the terms Aas,;, Cs and Qg (rate of elastic collisions),
it is suitable for our purposes. Under this assumption the line source function for a three-level
atomic model reduces to a line source function for a two-level atomic model.

3.2.1 Angle-averaged redistribution functions

In this study, an idealized stellar atmosphere is considered assuming it to be isothermal, static,
spherically symmetric and extended. The outer layers of this extended atmosphere will be
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tenuous, where the scattering processes will be important. Also, the radiation field will be
anisotropic and one should ideally use angle-dependent form of redistribution functions. How-
ever, in the present study, the angle-independent (or angle-averaged) redistribution functions
have been used. Although, by doing so, one loses information about the angular effects on
emergent flux profiles, still, one is fully accounting for the frequency redistribution effects,
which affect crucially the photon escape-probability, and hence the thermalization process.
Therefore, by using angle-averaged redistribution functions, one accounts for critical aspects
of redistribution process and sacrifices information only in an area of secondary importance.

The angle-averaged Rz has the following form (Mihalas [38])

r+u

Ry, z) = 73 /L:;_sl e [tan™1(=

) — tan=(Z =) du (3.8)

where T = maz(|z|,|z'|) and z = min(|z|,|z’]) ; a is the damping parameter.

Ryr envisions an atom having a sharp lower level and a radiatively broadened upper level.
The above expression has been derived assuming isotropic phase function. Figure 3.1 gives
the plot of the emission probability (Rrr(z’,z)/#(z’)) at frequency z per absorption, when the
absorption is at frequency z’. Damping parameter ¢ = 2.0 x 1073,

It is seen that a photon incident in the line wing has a high probability of being re-emitted
in the line wing. Thus Rj; is strongly coherent outside the line core. This property has
implication on the line wing emissions from strong resonance lines.

The angle-dependent Ry is given by the following expression (Heinzel [23])

1 6 z+2' @

I - B = — —

Ry(z' i z,i1) = Py [H(a,.sec2 —-——-——2 secz)
x H(a; cscg z- 5 csc-—)+ Ey(<', z, )] (3.9)

where 8 is the angle between the incident (') and the scattered (fi) photon directions. a; and
a; are the damping parameters of the lower and upper levels of an atom respectively. The
function Evy is given by

Ey(<, z,0) = :’;‘_’1‘%{_@ Re [ e (e 4 ) At (3.10)
where
6 0 ]
A(t) = D(z+ tcos-z- + a.-sec-i) - D(z + tco.s-2-) (3.11)
!
z = (a;— ifiz-a—:—)secg (3.12)
w = ¢ +a;—iz (3.13)
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Figure 3.1: Plot of the emission probability (Rrz(z’, z)/¢(z)) at frequency z per absorption,
when the absorption is at frequency z’. Damping parameter a = 2.0 x 1073, D.Mihalas, Stellar
Atmospheres, Chapter 13, p429.



’

w = ¢;+a;—iz’ (3.14)
D(w) = H(p,q)+iK(pq) (3.15)
w = p—iq (3.16)

Here H(p,q) and K(p,q) are the Voigt functions which are computed using the method of
Matta & Reichel [37]. The angle-averaged expression for Ry is obtained by

Ry(z',z) = 8n? ‘/: Ry(2',z,0)sinfdl (3.17)

This function is computed using a highly accurate computer program developed by Mohan Rao
et al. [44] based on the method described by Heinzel & Hubeny [25]. It is derived for an atom
having lower and upper levels broadened by radiative broadening, The emission probability
Ry(z',z)/é(z') due to this redistribution function has been plotted in figure 3.2 with damping
parameters a; = a; = 1073,

It is seen that a photon absorbed in the line vi'ing has a high probability of being emitted at
the line centre as well as in the wing. This is unlike the emission probability of Ryr where, if
a photon is absorbed in the line wing, it has the least probability of being emitted at the line
centre. Also, Ry is less coherent than Ry in the line wing.

3.2.2 Choice of depth points N

The stellar envelope is divided into N depth points of equal radial thickness. These N depth
points bound N —1 spherical shells, each of equal radial thickness. n is the depth point counter
that is taken to be increasing inwards and

1<n<N (3.18)

The outermost shell is bounded by n = 1 and n = 2; the innermost shell is bounded by
n=N-—1and n = N. T is the total optical depth of the atmosphere taken to be 104.
We set N = 75 in these computations. In selecting the value of N = 75, the dependence
of the emergent flux profiles on this parameter has been investigated to ensure the accuracy
of results. In order to find out which value of N is suitable for this study, test runs were
made with N = 10, 25,50,75 and 100 and the emergent flux profiles were compared. Figure
3.3 shows the emergent flux profiles due to CRD, R;; and Ry for various values of N using
exponential opacity distribution.

Figure 3.4 shows similar plots for power law r—? opacity distribution.

These plots show the sensitivity of the emergent flux profiles to the number of depth points
N. Tt is seen that there is a lot of difference between the results due to N = 10 and N = 25.
This difference decreases for higher N = 50 and finally vanishes for N = 75 and 100. This
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Figure 3.2: Plot of the emission probability (Ry(z’,z)/¢(z')) at frequency z per absorption,
when the absorption is at frequency z'. Damping parameter a = 2.0 x 10~%. See P.Heinzel,
1981, JQSRT, 25, 483.
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Figure 3.3: Sensitivity of emergent flux profiles to the number of depth points N using expo-
nential opacity distribution.
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implies that, the resulting profiles are quite sensitive to the value of N < 50, and insensitive
to the change in N beyond N = 50. Therefore, for the parameters used in this study, N = 75

" is a suitable value.

3.2.3 Optical depth laws
For spherical atmospheres of fixed total optical thickness T', the optical depth variation (7(r))
in the atmosphere at radial points r is allowed to vary using

1. exponential opacity distribution, and

2. power law opacity distribution.

Both these laws are appropriate for spherical geometries: the former being more realistic for
static media; latter for constant velocity winds. Let us define R, to be the radius of the
stellar photosphere. Further, let R, = 1 to bg¢ the unit of length scale. Then, the extent of
the atmosphere is defined in units of R, = 1. The atmospheric extent has been denoted by
a variable R. For example, R = 1 leads to plane-parallel approximation and B = 50 will
mean that the atmosphere extends as far as 50 times the photospheric radius of the star. For
plane-parallel cases the optical depth per layer is taken to be equal to be 2I'/N (see Kunasz
& Hummer [36]). For extended atmosphere the following laws have been used.

From the definition of optical depth, we have

r(ra) = R k(r)dr (3.19)

where k(r) is the opacity and r, is radius ( in units of R.) at the depth point n.

Exponential opacity distribution
For an exponential opacity distribution, following expression is adopted in this study

k(r) = koe=-D (3.20)

In this equation, a is a constant which controls the steepness of opacity variation. It is taken
- to be 0.1 in this study; k, is a constant which is evaluated by integrating the equation 3.20
over whole radial length i.e. between r; and rx, and setting the left-hand-side equal to 7'. It
is found to be

k, = T(e~*@®D -1)? (3.21)
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Using the above relations, the optical depth of a shell bounded by n and n+1 has the following
form

T(rat1) — 7(ra) = T(e""(R'l) - 1)"1 (c""("’"l) - e"’("‘“"l)) (3.22)

Power law opacity distribution

For a power law opacity distribution we have (see Kunasz & Hummer [36])

k(r) = kor™ (3.23)

where m = 0,2, 3. In the present study we set m = 2. k, is a constant evaluated by integrating
equation 3.20 (as done for exponential opacity distribution) over the whole radial extent of the
atmosphere. It written as (with m = 2)

k,=T(1-R) (3.24)

The optical depth of a shell bounded by n and n+ 1 is given by the following expression

(rni1) = 7(ra) =T = B7) 7 (ropy = 72) (3.25)

It is seen that for exponential opacity variation, the matter is far well spread out in the
atmosphere, whereas for r—? opacity distribution where the matter is concentrated in the
innermost shells.

Following are the boundary conditions used for the transfer equation

Ut (z,7=0,p)=0 and Uy, (z,7=T,p)=0 if ¢>0 (3.26)
Uf(z,7=0,p) =0 and Up(z,7=T,p)=1if €=0 (3.27)

where
Ur::t (z,7,p) = dmriI(z, p, £7(rn)) (328)

I(z, p,7(r,)) being the specific intensity. + specifies a ray directed towards the bottom of the
envelope (1 = T), and - specifies a ray directed out of the envelope. The Planck’s function has
been set equal to 1 throughout the medium.

The above equations have been solved using the discrete space theory method
described in chapter 2 of this thesis.
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Figure 3.5: Optical depth variation versus depth points in a spherically symmetric atmosphere
having R = 50. n = 75 denotes the innermost boundary and n = 1 denotes the boundary of
the outermost layer of the atmosphere.



3.3 Results

The results are presented for two sets of calculations. In the first set, the exponential opacity
distribution given above is used and in the second set 1/r? variation of opacity given by
equation 3.23 (by setting m = 2) is used. In each of these sets there are two subsets of
calculations. In the first subset, the damping parameters for computing Ry are a; = a; = 10™3
for the lower and upper level of the atom respectively, and in the second subset a; = 10~* and
a; = 10~3. The corresponding damping parameter for computing Ryr and CRD is taken to be
a = a; + a;. Thus, for the first subset a = 2 % 10~ and for the second set a = 1.1 x 10~3. For
convenience, the first set is called as 'model A’ and the second set as ‘'model B’. Also, the first
subset is named as ’model a’ and the second subset as 'model b’. Using this nomenclature, the
combinations are called as models ’Aa, Ab, Ba or Bb’.

Several test runs were made in order to ensure the accuracy of this code besides checking the
dependence of the accuracy of results on NN as described earlier (figures 3.3 & 3.4) This code
is able to reproduce the same line profiles as given by Kunasz & Hummer [36] in figure 8 of
their paper and those given by Hubeny & Heinzel [29] in figure 2 of their paper. Moreover,
flux conservation is maintained to an accuracy of the order of 10~? in double precision for a
purely scattering medium i.e. when € =0 (Peraiah [56}).

First, the results using exponential opacity distribution are presented. Figure 3.6 gives the line
source functions of 'model Aa’.

The upper set of curves is for a plane-parallel atmosphere R = 1 and the lower set is for an
extended atmosphere with R = 50. The line source functions Sz for the extended atmosphere
lie much below those for a plane-parallel atmosphere. This is the effect of atmospheric extension
which increases the effective escape probability of photons; and the major effect of increased
photon escape is to decrease Sz. From this figure we see that for a plane-parallel atmosphere,
the line source function due to CRD always lies below those due to PRD. This is not the case
for extended atmosphere where Sz due to CRD lies above those due to PRD for z > 4. Also,
it is seen that for R = 50, Sz due to Ry always lies between Sz due to CRD and Ryy. It is
not so for a planar atmosphere where Sz due to Ry lies above both Ryr and CRD for z > 4.5.

Figure 3.7 gives the emergent flux profiles corresponding to the source functions given in figure
3.6.

An important result clearly seen is that in transition from a plane-parallel to an extended
atmosphere the effects of Ryr and Ry are significantly enhanced (note the log scale). It is also
seen that the flux profile due to Ry is much more affected than that due to Ry. The emergent
flux profiles for R = 50 follow the variation of the corresponding line source functions of figure
3.6, whereas it is not so for a plane-parallel atmosphere. The emergent flux profiles due to Hyr
and Ry lie below those due to CRD because both Ry; and Ry are coherent in the line wings.
Emergent flux due to Ry lics even below that due Ry because in the line wings Ryr is much
more coherent than Ry (see figures 3.1 & 3.2).
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Figure 3.6: Emergent line source functions for the parameters shown in the figure.
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Figure 3.8 gives the results of 'model Ab’. In this case, the lower level of the atom has been
made ten times sharper (for Ry); from a value of a; = 1073 to a; = 1074,

There is a considerable change in the Sz curves due to Ry as compared to the curves given
in figure 3.6. The values of Sz due to Ry have moved closer to the values of Sz due to Ry
but have moved away from those of CRD. Thus the differences between the results due to Ry
and CRD have increased. This is the consequence of making the lower level sharper and thus
moving towards a condition for a resonance line where a; tends to zero.

Figure 3.9 gives the emergent flux profiles corresponding to the source functions shown in figure
3.8.

First by looking at the plots for R = 1, it is seen that an increase in the ratio a;/a; from 1 in
figure 3.7 to 10 in this case, has increased the departures between the emergent flux profiles
due to Ry and CRD. This result is in qualitative aggrement with the result of Hubeny &
Heinzel [29]. In the line wings, the profiles due to Ry are closer to the profiles due to Ry
than they were in figure 3.7. As mentioned abdve, this is the consequence of making the lower
level sharper. Another noteworthy point is that these departures are enhanced by going from
plane-parallel case (R = 1) to an extended spherically symmetric envelope having R = 50.

Now, the results using power law r~2 opacity are presented.

Figure 3.10 gives the results for 'model Ba’. Significant differences between the results of this
figure and the corresponding results of figure 3.6 are not found, except that for B = 50 case
the Sz curve due to Ry lies closer to that of Ry just outside the line core. Also in this figure
R = 50 curves are much flatter than the corresponding ones in figure 3.6. This must be the
effect of changing the opacity structure from exponential to r~? form.

Figure 3.11 gives the emergent flux profiles corresponding to the source functions in figure
3.11. By comparing this figure with figure 3.7, the difference in the profile shapes for R = 50
are clearly seen. This is the effect of changing the opacity structure. But more noteworthy
is the point that in the far line wing the departures between the PRD and CRD profiles are
the same as for exponential opacity distribution. Therefore we can say that in the far wings
of the emergent flux profiles, whereas the atmospheric extent is responsible for the departures
between the solutions due to PRD and CRD; opacity structure is not. It only changes the line
shape for the kind of atmospheres considered here.

Figure 3.12 gives the results of 'model Bb’. As compared to the results of figure 3.10, the
. line source function due to Ry lies closer to the Sz due to Ry;. As in figure 3.8, this is again
the consequence of making the lower level of the atom sharper by a factor of 10. As seen in
figure 3.10, the curves for R = 50 are flatter than the corresponding curves (figure 3.8) using
exponential opacity distribution.

Figure 3.13 gives the emergent flux profiles corresponding to the source functions given in
figure 3.12. The effect of Ry is seen to be significantly enhanced as was the case in figure
3.9. Although the shape of the emergent profiles for R = 50 is conspicuously different from
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Figure 3.8: Same as fig. 4a but for ¢;/a; = 10.
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Figure 3.9: Emergent flux profiles corresponding to the line source functions of fig
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Figure 3.10: Same as fig.3.6 but for r—? opacity distribution.
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Figure 3.11: Emergent flux profiles corresponding to the line source functions of fig.3.10.
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Figure 3.13: Emergent flux profiles corresponding to the line source functions of fig.3.12.
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Table 3.1: Flux ratios showing the departures between the emergent fluxes due to PRD and
CRD at z = 4, for different values of atmospheric extension R. R = 1 represents plane-parallel
appro:uma.tlon, whereas i > 1 represents an extended and spherically symmetric atmosphere.

These results are for a;/a; = 1,10

a;fa; =1 ajfa; =10
1 - ) [ F=(C s s
R F'(CR‘D) Fy(Rpr F;DI;;{U F’(CR'D) %‘U)_ %%%gl
1 | 0.154E4-00 | 0.221E+401 | 0.122E+01 | 0.120E+400 | 0.261E+4-01 | 0.215E+401
5 | 0.517E-01 | 0.351E+01 | 0.141E+01 | 0.339E-01 | 0.407E+401 | 0.306E+-01
10 | 0.290E-01 | 0.397E+01 | 0.146E+01 | 0.185E-01 | 0.456E+01 | 0.331E-+01
50 | 0.691E-02 | 0.488E+01 | 0.153E+01 | 0.422E-02 | 0.547E+401 | 0.375E4-01
100 | 0.440E-02 | 0.500E+01 | 0.154E+01 | 0.267E-02 | 0.558E+01 | 0.381E+01
Téble 3.2: Same as above but for z = 6
a;fa;=1 . a;/a; =10
T 5 [C T (CRD F;[CRD
R | Fz(CRD) —Hﬁ“ﬁf —;Lm—f:’ft’o F.(CRD) ‘F%TII, — »
1 | 0.987E-01 | 0.146E+402 | 0.152E+401 | 0.674E-01 | 0.242E+02 | 0.623E+01
5 | 0.249E-01 | 0.510E+02 | 0.173E+4-0t | 0.153E~01 | 0.730E+402 | 0.847TE+01
10 | 0.134E-01 | 0.681E+02 | 0.176E+01 | 0.817E~02 | 0.921E+02 | 0.879E+01
50 | 0.298E-01 | 0.104E+02 | 0.178E401 | 0.178E-02 | 0.126E4+03 | 0.915E+01
100 | 0.187E-02 | 0.112E+02 | 0.179E+01 | 0.112E-02 | 0.132E+03 | 0.918E+01

the shape of corresponding profiles given in figure 3.9, the differences in the far wing between
the PRD and CRD profiles do not seem to be different. Thus again, the change in opacity
structure does not change the departures between PRD and CRD in far wings.

In order to further elucidate the above effects, the following three tables are presented. These

tables give the ratios of the emergent fluxes due to CRD to the corresponding emergent fluxes

due to PRD (R and Ry), indicating the departures of the results of PRD from those of -
CRD at r = 4,6 and 8 for different values of the atmospheric extension R. Along with these

ratios, CRD results are explicitly tabulated so that the ratios can be unravelled. Because the

emergent flux profiles due to PRD and CRD are nearly the same in the line core (z € [0, 3]),

and most of the departures are in the line wings, we chose to present the emergent flux ratios

only for z = 4,6 and 8 in these tables. As defined earlier, R = 1 denotes the plane-parallel

approximation, whereas, R > 1 denotes extended spherically symmetric atmospheres.

Tables 3.1, 3.2 and 3.3 gives the results at z = 4, z = 6 and at z = 8, respectively. The
comparison is shown for the ratios a;/a; = 1 & a;/a; = 10. The effect of Rys is clearly more
than the effect of Ry ,both as a function of z and R. The given flux ratios are seen to increase
much more sharply in going from R = 1 to 5 than in going from R = 5 to higher values,
especially for Ry; cases tabulated here for £ = 6 and z = 8. Thus the geometry of the system
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Table 3.3: Same as above but for z =8

a;fa; =1 a;/a; =10
n [FCRD) | S T BT [ FORD [ gl | i
1 | 0.653E-01 | 0.149E+03 | 0.166E+01 | 0.417E-01 | 0.330E+03 | 0.857E+01
5 | 0.144E-01 | 0.706E+03 | 0.179E+-01 | 0.868E-02 | 0.957TE+03 | 0.960E+01
10 | 0.764E-02 | 0.815E+403 | 0.180E+4-01 | 0.458E-02 | 0.100E+04 | 0.968E-+-01
50 | 0.166E-02 | 0.789E+03 | 0.181E+01 | 0.988E-03 | 0.876E+03 | 0.973E+01
100 | 0.104E-02 | 0.781E+03 | 0.180E4-01 | 0.602E-03 | 0.860E+03 | 0.972E+401

plays an important role for resonance line transfer in the far wings (z > 6). At frequencies
z = 4 and 6 the departures between PRD and CRD results keep on increasing from R =1 to
100, but at z = 8 the maximum departure occurs at R = 10 for R;r and at R = 50 for Ry for
the physical parameters considered in this study. It is obvious from the results for the ratio
a;/a; = 10, that the departures between PRD and CRD results are considerably more than
those in the case where a;/a; = 1. Increase in R enhances these departures in the same trend
as when a;/a; = 1.

3.4 Conclusions

The effects of angle-averaged Ry in spherically symmetric stellar atmospheres are investigated
in comparison to the effects of angle-averaged Ry and complete redistribution approxima-
tion. This study establishes that for static and isothermal atmospheres, the partial frequency
redistribution effects are significantly enhanced in transition from a plane-parallel to an ex-
tended spherically symmetric stellar atmosphere. In a comparative way, it has been shown
that sphericity affects the solutions of Ryr more than the solutions of Ry. The effect of Ry
on the emergent flux profiles increases substantially by making the lower level of the atom
sharper. This effect is found to get further enhanced in transition from a plane-parallel to an
extended atmosphere case. These differences between the emergent flux profile due to PRD
and CRD do not seem to vary by altering the opacity distribution in the atmosphere, at least
for the exponential and r—2 forms used in this study. In the line wings, the departures between
the results due to PRD and CRD increase much more rapidly for small atmospheric extensions
than for larger extensions.
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Chapter 4

Partial frequency redistribution effects
of Ry and Rj; in expanding spherically
symmetric stellar atmospheres

4.1 Introduction

In the last chapter, we presented the comparative partial frequency redistribution effects of Ry
and Rrs on the spectral line formation in spherically symmetric static stellar atmospheres. In
this chapter, we examine the same problem by including a constant velocity of expansion.
In the previous chapter, the velocity fields were neglected in order to estimate the effect of
sphericity alone. This chapter shows the combined effect of sphericity and velocity field,
using the partial frequency redistribution functions Ry and Rjj, in comparison to the effects of
the assumption of complete redistribution (CRD). Thus this study inspite of being parametric,
goes a step closer to a realistic situation of extended atmosphere and velocity of expansion.
The atmosphere in assumed to be inhomogeneous and isothermal.

Mohan Rao et al. [45] examined the effects of Ry, Rrrr and Ry on the line source functions
using planar geometry and static isothermal atmosphere. They showed that, for a purely
scattering medium with frequency independent incident radiation, the frequency dependent
source function Sz(Ryv), lies below Sp(Rrrr) but above Si(Rrr) in the line wings. Singh [66]
investigated the comparative effects Ry, Ry and CRD on the emergent flux profiles, using a
spherically symmetric and static stellar atmosphere. Hubeny & Heinzel [29] solved the transfer
problem using Ry and Ry for isothermal finite and semi-infinite atmospheres. Besides these
few works, it is difficult to find a comparative study in literature involving Ry, Ryr and CRD.
Therefore, in this chapter, we present, for the first time, a comparative study of the partial
frequency redistribution functions Ry, Ry; and CRD showing the combined effect of sphericity
and velocity fields.



As highlighted in the previous chapters, this study is an interesting study of astrophysical
relevance, because the PRD effects are expected to be pronounced in the extended atmospheres
with low surface gravities. The physical parameters used in this study are characteristic of the
atmospheres of cool giants and supergiant stars. '

4.2 Equations and computational procedure

H 2’ and z are the frequency displacements from line center, in units of standard Doppler
width, of the incident and scattered photons respectively, seen in the rest frame, then, the
corresponding frequency displacements, seen in the fluid frame at radius r, are

X' =2'+V(r)u (4.1)
X=z+V(r)u (4.2)

where p(€ [0,1]) is the cosine of the angle between the radius vector and the direction of
propagation of the radiation, + stands for the oppositely directed beams of radiation, and
V(r) gives the macroscopic velocity at radius r. In this chapter we assume that the
atmosphere expands with a uniform velocity, i.e., we neglect velocity gradient
across the atmosphere. This kind of situation may arise in circumstellar shells where one
can neglect the velocity gradients by assuming a constant wind velocity.

The equation of line transfer in spherical symmetry, rest frame and for a two-level atomic
model is written as (Peraiah [52], Singh [65])

ol(z,+u,r)  1-—p28I(z,xp,r)
+
or r Ou
where =+ stands for the oppositely directed beams of radiation, I(z, +u,r) represents specific

intensity of the ray making an angle cos™u (u € [0,1]) with radius vector at the radial point
r. ¢(z, kpu,r) represents the profile function, given as

tu

= Ki[8 + ¢(z, p, D)[S(z, £p, ) — I(z, £p,r)] (4.3)

Oz, tpu,r)=¢(X,r) = /+°° Riv(X', X)dX' (4.4)

-00

where angle-averaged partial frequency redistribution functions R v(X’,X) bave been stated
and explained in the previous chapter (see equations 3.8 & 3.9 and figures 3.1 & 3.2).

Redistribution function Ry is derived for subordinate line scattering and assumes an atom
having both the upper level and the lower level broadened by radiative and collisional damping,.
R;r envisions an atom having a sharp lower level and a radiatively broadened upper level.
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'S(z,+p,r) is the total (line plus continuum) source function which is written as

¢(X, r)Si(z, 2p,r) + BS.(r)
#(X,r)+8

S(z, p,r) = (4.5)

where 3 = K./K; (continuum to line opacity, S, is the continuum source function set equal to
1 in this computation. S(z,+u,r) represents the line source function, which is given by the
following expression

1 1—¢

Sl = 5 3oy

+oco +1
[ de [ W Ry (X, XN k,r) + () (4.6)

where ¢ is the probability per scatter that a photon is destroyed by collisional de-excitation.
The procedure to compute ¢ for the chosen resonance lines has been given above in section 5.3.
Under the assumption of complete redistribution, the line source function is written as

1—c¢
2

s(r) =275 [ “:‘: e [ “:1 du(X,r)I(z, 2p,7) + €B(r) (4.7)

where (X, r) is taken to be a Voigt profile with damping parameter set equal to the sum of
the damping parameters (for R;; and CRD) of the upper and lower levels of an atom causing
subordinate line scattering.

The normalization condition for the profile function at each radial point is

[ d(X,r) =1 (4.8)

(= ~]

In a differentially expanding medium, due to the presence of velocity gradients, on has to
compute, at all radial points all the four redistribution functions appearing in the scattering
integral viz

Ruyv(z' + V(r)p, ¢+ V(r)u)
Ry (e’ — V(r)p,z — V(r)p)
Ripv(z' + V(r)u, z — V(r)p)
Ry (2’ = V(r)p, z + V(r)u)

in order to evaluate the diffuse radiation field (see chapter 2 & Peraiah [52, 55)).
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Figure 4.1: Emergent flux from an expanding atmosphere having the velocity of expansion
V =1 in units of thermal velocity; R = 1 denotes plane-parallel case and R = 30 denotes the
extended atmosphere having an extension 30 times the stellar radius (set equal to 1).
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Figure 4.2: The effect of expansion velocity V = 1 in comparison to static case V' = 0 for an
extended atmosphere R = 30.
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Figure 4.3: The effect of increasing the atmospheric extension from R = 30 to R = 100 for an
atmosphere with constant velocity of expansion V = 1.
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In this work since we assume a constant expansion velocity, we do not have velocity
gradients across the atmosphere. This assumption is valid for expanding circumstellar shells;
and reduces the computational time of the Ry and Ryr matrices enormously. The above written
redistribution functions are computed at one depth point in the atmosphere, and the other
corresponding redistribution functions at other depth points are equal to these. As is known
from the works of Bernat [11] Sanner [63] and several other authors, the ratio of expansion
velocity to the turbulent velocity for cool giants and supergiants lies between 0.5 and 2.0.
Therefore, in this study for all the cases the value of this ratio has been chosen to be equal to
1.0 at all depth points of the atmosphere. The envelope is divided into n shells, n = 1 defines
the outermost shell and n = N defines the innermost shell. The total optical depth,T", of the
medium has been set equal to 10*. The total number of shells have been taken equal to 25
in this study. The sensitivity of the results for static cases has been discussed in detail in the
previous chapter section 3.2.2. Because at this stage, we are interested only in the departures
between the solutions due to various redistribution functions, rather than modeling any specific
spectral line, the choice of N = 25 is justified. '

[

Ideally, for moving media calculations, one should use angle-dependent redistribution functions,
because the frequency-angular coupling effects could be important in anisotropic radiation field.
By employing angle-averaged redistribution functions, we have neglected the angular effects
(which are of secondary importance to this study) but have fully accounted for frequency
redistribution effects. Also, it has been shown by Vardavas [73] that for planar geometries and
differentially expanding medium, the differences between the results due to angle-dependent
and angle-independent redistribution functions are below 10%. Moreover we have considered
only constant velocity of expansion leading to the absence of velocity gradients, therefore, it is
justified to use angle-independent redistribution functions.

Following boundary condition has been used for the transfer equation

U+

n=1

(z,4) =0 and Uy,(z,p4) =0 (4.9)

where

UZ(z,p) = 4rril(z,p) (4.10)
I(z,p) being the specific intensity. + specifies a ray directed towards the bottom of the
envelope (7 = T'), and - specifies a ray directed out of the envelope.

To solve the line transfer equation the discrete space theory method described in chapter
2 of this thesis has been used.



4.3 Results

Figure 4.1 shows the differences between the PRD and CRD results for a plane-parallel and
extended atmosphere expanding with a constant velocity of ¥V = 1 (in terms of thermal ve-
locity). The differences are substantial for both the cases. Closer look at the profiles
shows that the differences are slightly more for the extended atmosphere. Recalling the results
of the previous chapter, we know, that sphericity enhances the PRD effects. It is also known
from earlier works (e.g. see Hempe [26]) that increasing velocity decreases the PRD effects. In
the present case, where both extension and velocity is present, the effects cancel out and the
differences remain more or less the same for R =1 and for R = 30.

Figure 4.2 shows the effect of introducing a constant wind velocity V' = 1 (in thermal-velocity
units) into an extended atmosphere R = 30. Asymmetry in the profile shape introduces
enhanced departures between corresponding PRD and CRD results just outside the line core
z = +3. Overall differences remain significant.

Figure 4.3 shows the effect of increasing the extension from R = 30 to (over three times)
R = 100. Differences are still found to be substantial. Another effect well known effect of
increasing the extension is seen in this figure. The central absorption becomes shallower. This
is because the effective emitting area increases in the line core by increasing the atmospheric
extent.

4.4 Conclusion

The role of partial frequency redistribution functions Ry and Rjr on the emergent flux profiles
has been presented in a comparative way. Extended atmosphere and constant wind velocity
has been assurned. It is shown by this study, that for the parameters used here, the effects
of partial frequency redistribution are substantial for all cases discussed here. These results
cdearly demonstrate the importance of partial frequency redistribution functions in spectral
line formation in the atmospheres of cool giant and supergiant stars.



Chapter 5

Effects of angle-averaged R;j; on
spectral line formation in expanding
spherically symmetric stellar
atmospheres |

5.1 Introduction

After having explored the combined effects of sphericity and velocity fields on the spectral line
formation, using partial frequency redistribution functions Ry and Ry, we now consider the
redistribution function Ry;; alone. The motivation behind doing so is the following. Most
often the limiting case of complete redistribution (CRD) is taken to be an adequate repre-
sentation of the partial frequency redistribution (PRD) function Ryyr in radiative transfer
problems to study spectral line formation in stellar atmospheres. The works of Finn [16] and
Vardavas [71, 72] have shown that for plane parallel (static and moving) stellar atmospheres
the differences between the emergent intensities due to Ry;r and CRD are below 20%. But,
with the advent of very high resolution stellar spectroscopy (resolving power ~ 105 — 2.10%),
highly accurate line profiles (e.g. for bright giants and supergiants see Sanner [63] are avail-
able, therefore, even small differences between CRD and PRD profiles could be important in
a quantitative analysis of stellar spectra e.g. in stellar winds and mass loss phenomenon in
gants and supergiants (Hempe [26]). Also, the combined effect of sphericity and macroscopic
velocity on these differences cannot be estimated a priori.

So far, there is no paper in literature showing the effects of Rz alone on spectral line for-
mation in spherically symmetric and differentially expanding stellar atmospheres. Therefore,
this paper has considered a parametrized spherically symmetric and differentially expanding
stellar envelope to study the effects angle-averaged Rr;ron spectral line formation. Line trans-
fer equation has been solved in the rest frame of the star assuming two-level atom model.

56



This work we have also examines the behaviour of emergent mean intensity profiles (J;), the
source function (S) and the emergent flux profiles (F,) as a function of atmospheric extension
(b/a =outer/inner stellar radius), maximum velocity of expansion (4) and the thermalization
parameter (¢). The results are in aggrement with the earlier known results of Kunasz and
Hummer [36] and Mihalas [38]. The mean intensity profiles due to Ryryr(2’,z) and CRD are
compared. Here 2z’ and x are the frequency displacements from the line centre in Doppler units
of the incident and scattered photons respectively.

5.2 Basic equations and computational procedure

If z’ and x are the frequency displacements from line centre, in units of standard Doppler
width, of the incident and scattered photons respectively, seen in the rest frame, then, the
corresponding frequency displacements, seen in the fluid frame at radius r, are

X'=z £V(r)u (5.1)
X=z£V(r)u (5.2)

where p(€ [0,1]) is the cosine of the angle between the radius vector and the direction of
propagation of the radiation, + stands for the oppositely directed beams of radiation, and
V(r) gives the macroscopic velocity at radius r.

The line transfer equation for spherical geometry in the rest frame for a two-level atom model |
has the following form (Peraiah citeperlb)

OI(z,xp,r) | 1 — p?dI(z,£u,r)
n +
or r op
where =+ stands for the oppositely directed beams of radiation, I(z,+u,r) represents specific

intensity of the ray making an angle cos™*u (u € [0, 1]) with radius vector at the radial point
r. ¢(z, £u,r) represents the profile function, given as

+ = Ki[B + ¢(z,£p,r))[S(e, £p,7) — I(z, £p,7)] (5.3)

+00
$(a,tur)=d(X,r) = [ Rin(X', X)dx’ (5.4)
where angle-averaged partial frequency redistribution function Ryr7(X’,X) has the following
form (Mihalas [38])

X +u X —u

Rr(X', X) = x=5/2 /ooo[tan"l(
X+u
a

) — tan™(
X

)
—)]du (5.5)

x [tan™( -

) — tan™(

where a is the damping parameter set equal to 10~2 in this calculation. S(z, L, r) is the total
(line plus continuum) source function which is written as
&(X, r)Si(z, £p, 1) + BS:(r)
S(z, tp,r) = 52 > 5.6
(z l‘:r) ¢(X,1‘)+ﬂ ( )
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where 8 = K. /K (continuum to line opacity, S, is the continuum source function set equal to
1 in this computation. S(z,+u,r) represents the line source function, which is given by the
following expression

1 l—¢ [t
2 ¢(X ; f‘) -00
where € is the probability per scatter that a photon is destroyed by collisional de-excitation
written as

Ca

— 021 + A21[1 —_— ezp(“k—};”)]—l (5.8)

where Cy; is the rate of collisional de-excitation from level 2 to 1, A3, is Einstein’s spontaneous
emission probability for transition 2 — 1, A is the Planck’s constant, v is the photon frequency,
k is the Boltzmann’s constant and 8 is the temperature.

+1
Si(z, 2p,r) = dz’ /_1. dp'Rerr(X, X)I(2’, £p,7) + €B(r) (5.7)

€

Under the assumption of complete redistribution, the line source function is written as

1 ;— € [_‘*‘0" dz /—:1 d‘p¢(x, r)I(z, T4, r) + eB(r) (5-9)

where #(X,r) is taken to be a Voigt profile with damping parameter set equal to 1073,

Si(r) =

The normalization condition for the profile function at each radial point is

[ dmg(x,r) =1 (5.10)

o0

In a differentially expanding medium, due to the presence of velocity gradients, on has to
compute, at all radial points all the four redistribution functions appearing in the scattering
integral (equation 5.9) viz

R(z'+ V(r)u,z + V(r)p),

R(z'— V(r)u,z — V(r)n),

R(z'+ V(r)u,z — V(r)u) and

R(z' — V(r)u, z + V(r)n)

in order to evaluate the diffuse radiation field (Peraiah [52, 55])

In this work, a linear velocity law given in Peraiah [52] has been used, which gives a radially
increasing velocity, with minimum velocity (V,) at the innermost boundary and maximum
velocity of expansion (V;) at the outer boundary of the stellar envelope. The envelope is
divided into n shells, each of equal radial thickness, n = 1 defines the outermost shell (= 0)
and n = N defines the innermost shell (r = T). Total optical depth (T) of the envelope
has been taken to be 10® and we have set N = 10 in these computations. Optical depth
(7) through the envelope varies as r=3. V; has been set equal to 1 and 2 in units of mean
thermal velocity of the gas. Rest frame calculation is limited to low expansion velocities due
to numerical difficulties. Following are the boundary conditions used for the transfer equation

Ui (2,7 =0,u) =0 and Uy, (z,7=T,p)=0 if ¢>0 (5.11)
Ut (z,7=0,p) =0 and Un(z,7=T,u)=1 if e=0 (5.12)

58



0.24 , §

[ T
0.23 |+
0.22
0.21 F
w
0.20 +
£ ]
0.19 Hf /& o |
0.18 ya |
CRD e
0.17 o | | |
0 200 400 600 500 —

Figure 5.1: Source function .S versus optical depth 7 through spherically symmetric a.1-:1d differ-
entially expanding envelope having b/a = 5, 50; V; = 0, 1; and T' = 10°. Corresponding CRD
results are shown by dotted (....) lines.

where

UE(a,7,1) = 4wr21(z, p,7(ra)) (5.13)

I(z, u, T(rn)) being the specific intensity. + specifies a ray directed towards the bottom of the
envelope (7 = T), and - specifies a ray directed out of the envelope. The Planck’s function has
been set equal to 1 throughout the medium. Flux conservation has been maintained accurate
to the order of 10~ in double precision for purely scattering medium i.e. when € = 0 (Peraiah

%))

To solve the above equations the discrete space theory method described in chapter 2 of this
thesis has been used.
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Figure 5.2: Emergent mean intensities J; in the line versus z, corresponding to source functions
of figure 1. £ = (v — 14)/w ; w being standard Doppler width.

5.3 Results

Figure 5.1 gives the run of the source function S as a function of optical depth 7 through a
spherically symmetric and differentially expanding envelope where ¢ = 8 = 107°. We recover
the known results that the increase in velocity and extension suppresses the source functions.

We also see that the effect of expansion velocity is more at larger extension. The source
functions due to CRD are less than those due to Ryyy.

Figure 5.2 gives the mean intensity profiles J corresponding to the source functions shown
in figure 1. We see that at any given velocity of expansion the mean intensity in the line is
lower for larger extension. The profiles are asymmetric for V4 =1 (expressed in mean thermal
velocity of the gas). More important is the result that the difference between the CRD and
Ryp profiles is below 5% near the line centre and negligible at the wings. This is much smaller
than reported for planar geometries by Finn [16] and Vardavas (71, 72}.
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Figure 5.3: Emergent line flux F, versus z at V; = 1; e = § = 107% b/a = 1 (plane-parallel
atmosphere), 5, 50 and 7' = 103.

61



CRD oo e=8=10
BOUND=0
A =) ——
=20 .,-’! \ Vb 9 i -
—2.2 -
=
A
o
°
—-2.4 - -
~2.6F _
I 1 | L |
-6 -4 -2 0 2 4 6
X

Figure 5.4: Emergent mean intensity profiles J versus z for a spherically symmetric enveloﬂpe
having extension b/a = 50 ; expansion velocity V; = 0 (static case) and 1; and e = § = 10~

In figure 5.3 emergent flux profiles are shown for a differentially expanding (Vs = 1) envelope
at different values of extension. Emergent line flux from a plane-parallel (b/a = 1) atmosphere
is considerably higher than from spherically symmetric extended (b/a = 5, 10) atmospheres.
Again, the known result is recovered that higher the extension, lower is the emergent line flux,

In figure 5.4 a comparison is made between the emergent mean intensity (J:) proﬁles' due
te CRD and Ry for a static (V; = 0) and differentially expanding Ve = 1) sp-henca.lly
symmetric envelope having extension b/a = 50 and € = § = 10~%. Although, the differences
between CRD and Ry profiles are slightly more than what they were in fig. 2 where a lower
value of € = 8 = 10~% was used, still, the differences are within 5%, again, much lower than
those reported for planar geometries by Finn [16] and Vardavas [71, 72].

Figure 5.5 shows the effects of ¢ and 8 on emergent flux (Fy) profiles due to Ryyz for a static
and differentially expanding spherically symmetric and extended envelope. 1t is found that the
profiles have deeper absorption depths and more asymmetry at lower value of ¢ and 3. The
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same is also true for CRD as shown by Kunasz and Hummer [36].

54 Conclusion

The differences between the emergent mean intensity profiles due to complete redistribution
and angle-averaged Ry are found to be much smaller in spherically symmetric and differen-
tially expanding stellar atmospheres than those reported for plane-parallel (static and moving)
atmospheres.



Chapter 6

Partial frequency redistribution effects
on observed resonance lines using
model atmospheres of cool stars

6.1 Imntroduction

After considering the parameterized atmospheres of cool stars in the previous chapters, this
chapter employs realistic computed model atmospheres of late type giants and
supergiants to study PRD effects on some of the observed spectral lines. The
spectral lines chosen for this study are the three strong resonance lines Si II 21818, C II A1335
and Ba II M4554. Out of these, the first two spectral lines have been observed in the cool
supergiant star a-Orionis, spectral type M2 Ia-Ib, with very high resolution from the Hubble
Space Telescope (see Carpenter et al. [12]) using the Goddard High Resolution Spectrograph
(GHRS). The observed high resolution profiles of Ba I A4554 have been presented by Sanner
[63]. The motivation behind this study is that PRD effects are ezpected to become important in
the estended tenuous atmospheres of cool giants and supergiants. This is an interesting study of
astrophysical relevance because it shows the model dependence of the differences between the
results due to PRD and CRD in observed spectral lines. The knowledge of these departures

could be useful to the modellers of stellar atmospheres and for quantitative analysis of the
stellar spectra.

As mentioned in the review of the related work (section 1.4), several researchers have made
attempts, with varying degree of success, to model the chromospheres of late-type stars based
on the matching of observed and computed PRD profiles. Most of these works have neglected
velocity fields and atmospheric extension. In the present study both the atmospheric extension
of the chromospheres and velocity fields have been taken into account. This study aims
at highlighting the differences between the solutions of PRD and CRD and the
dependence of these differences on the adopted model atmospheres.
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6.2 Adopted model atmospheres

In this study two kinds of model atmospheres of cool giants and supergiants have been adopted

o atmospheres without chromospheres; and

o atmospheres with chromospheres.

The atmospheres without chromospheres have been taken from Plez [58]; and to study PRD
effects in atmospheres with chromospheres, the extended chromospheric model of a-Orionis
(M2 Ia-Ib) given by Hartmann and Avrett [22] has been adopted.

The model atmospheres without chromospheres are the spherical opacity sampling models for
M-giants and supergiants (Plez [58]) covering the range 3000 K < T.;; < 4000 K, —0.5 <
log(g) < 1.5 for 1, 2 and 5 Mg. These assume hydrostatic equilibrium, spherical symmetry,
LTE and homogenelty Out of these given models the models having the following parameters
have been adopted in this study:

1. Te;y = 4000K;logg = O;M/My = 1.0; R/Rg = 166.0; and logl = 3.804.
(Tets,9, M, R and L are the effective temperature, surface gravity, mass, radius and
luminosity, respectively).

2. T.ss = 3000K;logg = 0; M/My = 1.0; R/ Ry = 166.0; and logL = 3.304.

The run of the gas pressure P,, the electron pressure P, and the temperature T for the first
mode] has been plotted in figure 6.1, and the same parameters for the second model have been
plotted in figure 6.2. Hereafter we will call them as modell and model2. These parameters
have been plotted against the variable n which is the depth point counter in the atmosphere.
n = 1 refers to the outer most boundary and n = 25 refers to the innermost boundary of the
atmosphere.

The main difference in the two adopted models is that modell is cooler (T.yy = 3000 K),
than the model2 (T.;; = 4000 K). This choice has been made to study the effect of different
temperature structure on the differences between the CRD and PRD results. Modell and
model2 do not have chromospheric temperature structure.

The third model atmosphere, hereafter model3, chosen for this study is the extended chromo-
spheric model of the supergiant star a-Orionis {popularly known as Betelgeuse, spectral type
M2 Ta-Ib, given by Hartmann & Avrett [22]. This model has been constructed by a desire to
explain cool winds observed from a wide variety of gaints. The authors have used a schematic
wave-driven wind theory to compute the density, temperature and velocity structure of the
wind. The run of the hydrogen number density ng em™3, the electron number density n, cm™2
and the temperature T' have been plotted versus z = r/R, in figure 6.3. z = 30 refers to the

66



3 - I 1 17 T LA L l T 1 LR § ] T 1 1 7 l T 17 ]
. T(10° K) ]
2 —
1F : -
0:_ "‘--lg.g. P, dyne/cm"‘_i
C N ]
-1 :-— -:
C +J]
-2 — ..E
o =4
~ ]
-3 :\ < ___
- ~ =
SN ]
-4 :‘ ~ ~ -—:1
r S \log P, dyne/cm? ]
- ~ -
~ -
-5 t— ~ - ]
= ~ 1
- \ -
- ~ -
_6 -:- ~ < ‘_-‘
L ~ ~ .
_ RN 3
7L T,=3000K ~
- log g=0 3
_a C 11 i i [ 1 | I | 1 l i 1 1 1 l L 1 ) i 1 1 L. L 7

25 20 15 10 5

n

Figure 6.1: Modell: Variation of the gas pressure F,, the electron pressure P, and the tem-
perature T inside the adopted model atmosphere (Plez (1992)).
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Figure 6.3: Model3: Chromospheric model of a-Orionis (Hartmann & Avrett (1984)).
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pint 30 stellar radii away from z = 1. In this model stellar radius, R, = 1350 Rg and stellar
m&BS, M‘ _ IOM@-

horder to compute the emergent flux profiles using the above model atmospheres, one requires
to solve the equation of line transfer; and to solve the transfer equation one needs to compute
the thermalization parameter € and the line center optical depth 1o, at all the radial points r

iside the atmosphere. In the next three sections, it is explained that how one proceeds to
whieve that.

6.3 Calculation of thermalization parameter ¢

The thermalization parameter ¢ is defined as the probability per scattering that a photon will
be destroyed by collisional de-excitation. As seeq in earlier chapters, the line source function
has two terms, the first term with coefficient (1 — €) is the noncoherent scattering term, (see
equation 3.7), followed by a thermal source term ¢B,. The line source function will depart
from being a Planckian (B,) if ¢ # 1. In such cases the assumption of local thermodynamic
equilibrium (LTE) does not hold. In virtually all situations of astrophysical interest, € << 1
in regions of line formation. Only very close to the photosphere, one finds that € — 1, and
only in such regions the condition of LTE prevails. Thus, when € << 1, the noncoherent
scattering dominates the line source function, and the partial frequency redistribution (PRD)

effects should be important. The expression to calculate the thermalization parameter at radial
point r is written as

e(r) = Culr)
021(1‘) + Agl[l — exp [i%?)-]]_l

(6.1)

where Clg; is the rate of collisional de-excitation from level 2 to 1 at each radial point r, Ag; is
Einstein’s spontaneous emission probability for transition 2 — 1, k is the Planck’s constant,
% is the line center frequency, k is the Boltzmann’s constant and T'(r) is the temperature at
ndius r. In this study, Cy(r) and T'(r) are depth dependent. T'(r) at each depth is taken

from the respective model, and Cyy(r) is computed from the following expression given by Van
Regemorter [70]

Cai(r) = 20.6023 N.(r)\/Te(r) ({%%) (6.2)

where IV, (r) is the electron number density (cgs units) at radial point r, taken from the respec-

tive model at each depth point, AE is the energy of the transition and k is the Boltzmann’s
constant. The function P(ﬁ%) is interpolated from table 2 of Van Regemorter [70].
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Figure 6.4 shows the variation of thermalization parameter ¢ versus depth point counter n for
Ba IT X 4554, plotted for modell (T.;; = 3000 K) and for model2 (T.ss = 4000 K).It is seen
that € < .25 < 1 in the outer layers of modell and model2. In these regions the noncoherent
scattering dominates the line source function.. '

Figure 6.5 shows the variation of thermalization parameter ¢ versus the atmospheric extent 2

for C IT X 1335 and Si I A 1818, plotted for model3 (a-Orionis). From this plot it is clear that

for 2 > 1, € << 1. This is the effect of the chromospheric temperature structure and the large

extension of the atmosphere. For most of this atmosphere, the situation is highly non-LTE.

II:I principle, as compared to modell and model2, the effects of non-coherent scattering will be
ger.

6.4 Calculation of line center optical depth 7y

another important ingredient required for solving the line transfer equation is the line cen'r:er
optical depth r,. The expression to compute the line center absorption coefficient at radial
points r in the transition between levels ¢ and j is written as

_ /R N fs(1 = L) 63)

MeC Avp(r)

X (T)

Consider a shell bounded by radii r and r + Ar. If we assume that x,, does not have a steep
variation through this shell of thickness Ar, then 1o(r) will be given as

10(r) = Xw(r) X Ar (6.4)

where

m. = 9.1094 x 10~%g
c = 2.9979 x 10%m/s
= 1.3807 x 107 *%erg/deg(K)

are the mass of an electron, speed of light in vacuum and the Boltzmann's constant respective.ly;
N; is the number density of absorbers in level n computed by solving the Saha’s ionization
equation and assuming solar abundances taken from Allen [1]; f;; is the oscillator strength for
the transition between i and j; 14 is the line center frequency; Avp(r) is the Doppler width,
which is written as '
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Avp =2 2kT(r) (6.5)
[ my

vhere m 4 is the mass of the particular atom.

Using the expressions given above, the line center optical depth is calculated for Ba II A 4554,
CII A 1335 and Si IT X 1818. To study PRD effects in non-chromospheric atmospheres given
by modell and model2, Ba II A 4554 has been chosen. The line center optical depth structure
Fhroush the atmosphere of modell (T.;y = 3000 K) and model2 (Tis; = 4000 K) is plotted
in figure 6.6. It is seen that To for model2 is higher than it is for modell. This is because
of higher temperatures there are more number of singly ionized barium (Ba II) atoms in the
atmosphere of model2.

Figure 6.7 shows the variation of line center optical depths C II X 1335 & Si IT A 1818 versus
the atmospheric extension z in the chromospheric atmosphere of a-Orionis (model3). It is seen
that ) of C II X 1335 remains significantly above the unit optical depth and drops to 75 = 1
at large extension z ~ 20. This structure will have a bearing on the emergent flux causing a
deep absorption self-reversal. The 7o variation of Si IT A 1818 exhibits a plateau with 75 =~ 10
it 2z~ 11 slowly falling to a value of 7o & 1 at z =~ 18.

6.5 The equation of line transfer

With the thermalization parameter € and the line optical depth o computed, one goes ahead
to solve the equation of line transfer. Since strong resonance line are chosen for this study, the
Partial frequency redistribution function function Ryr(a’,z) given by equation 3.8 and plotted
in figure 3.1 of this thesis, is appropriate and has been used. This redistribution applies to an
atom having radiation damping in the upper state and coherence in the atom’s rest frame. The
results due to Rys(z’,z) are compared with the results due to complete redistribution (CRD)
approximation.

Here, =’ and z are the frequency displacements from line centre, in units of standard Doppler
width, of the incident and scattered photons respectively, seen in the rest frame. Then, the
corresponding frequency displacements, seen in the fluid frame at radius r, are

X =2 +V(r)p (6.6)
X=z+V(r)u (6.7)

where u(€ [0,1]) is the cosine of the angle between the radius vector and the direction of
Propagation of the radiation, + stands for the oppositely directed beams of radiation, and
V(r) gives the macroscopic velocity at radius r.
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The eq'uation of line transfer in spherical symmetry, rest frame and for a two-level atomic
nodel is written as (Peraiah [52], Singh [65])

iFBI(:c, +u, r) I p? 0I(z, tp,r)

or r A = Ki[B + ¢(=, L4, r)][S(zi tpu,r) - I(z, tu, r)] (6.8)

'Where.;t stands for the oppositely directed beams of radiation, I (z,xu, r) represents specific
intensity of the ray making an angle cos™'u (4 € [0, 1]) with radius vector at the radial point
r. ¢(z,+p,r) represents the profile function, given as '

8@ tpr) = dX,r) = [ :” Ru(X’, X)dX' (6.9)

where angle-averaged partial frequency redistribution function Rz;(X’, X) has the following
form (Mihalas [38]) i

z+u T—~u
a ) an ( a

)du (6.10)

Ri(z',x) = =3/ /::_’ e “[tan™(
2 .

where Z = maz(|z|, |z’]) and £ = min(|z|, |2]) ; a is the damping parameter.

Ry envisions an atom having a sharp lower level and a radiatively broadened upper level. The
above expression has been derived assuming isotropic phase function. Figure 3.1 of this thesis
gives the plot of the emission probability (Ryi(z',z)/#(z’)) at frequency z per absorption,
when the absorption is at frequency z’. Damping parameter a = 2.0 x 103,

S(x, +u,r) is the total (line plus continuum) source function which is written as

o(X, 1)Si(z, 24, 7) + BS(r)
S, )+ P (6.11)

Sz, tu,r) =

where 8 = K,/K; (continuum to line opacity, S is the continuum source function set equal to
1in this computation. S(z,+pu,r) represents the line source function, which is given by the
following expression

1 1—¢ +oo

St(z, :f:p, 7') = Em o

+
dz’ j_ W Rr(X', X)I(&, ,7) + €B(r) (6.12)

where ¢ is the probability per scatter that a photon is destroyed by collisional de-excitation.
The procedure to compute ¢ for the chosen resonance lines has been given above in section 5.3.

Under the assumption of complete redistribution, the line source function is written as

77



1—-¢
2

5ir) =22 [ o [T dug, (e, ) + €BE) (6.13)

where ¢(X, r) is taken to be a Voigt profile with damping parameter set equal to 1073,
The normalization condition for the profile function at each radial point is

[ aag(x,r) =1 (6.14)

As explained in the previous chapters, in a differentially expanding medium, due to the presence
of velocity gradients, on has to compute, at all radial points all the four redistribution functions
appearing in the scattering integral (equation 5.12) viz

Rir(2' + V(r)p, z + V(r)n)
Ryr(' — V(r)p,z = V(r)n)
Ry(z' + V(r)p,z = V(r)p)
Ru(z' = V(r)p,z+V(r)p)

in order to evaluate the diffuse radiation field (see chapter 2 & Peraiah [52, 55]).

In this work, a linear velocity law given in Peraiah [52] has been used, which gives a radially
increasing velocity, with minimum velocity (Va) at the innermost boundary and maximum
velocity of expansion (V) at the outer boundary of the stellar envelope. For the model3, one
could have computed the ratio of expansion velocity to the turbulent velocity from the values
given in the table 2 of Plez [58]. Tt has not been done as the values of expansion velocities given
are larger by a factor of two to three. Asis known from the works of Bernat [11] Sanner [63] and
several other authors, the ratio of expansion velocity to the turbulent velocity for cool giants
and supergiants lies between 0.5 and 2.0. Therefore, in this study for all the models the value of
this ratio has been chosen to be equal to 2.0 at the outermost layer and decreasing towards the
bottom of the atmosphere according to the linear velocity law mentioned above. The envelope
is divided into n shells, each of equal radial thickness, n = 1 defines the outermost shell and
n = N defines the innermost shell. The total number of shells have been chosen according to
the number of depth points given in the respective model atmospheres adopted for this study.
The line center optical depth is computed as explained in section 5.4. Following boundary
condition has been used for the transfer equation '

Ut (z,p) =0 and Uyp(z,s) = Bu(T(n=1) (6.15)

where
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UZ(z,r,p) = 4nr3l(z, 4, 7(rs)) (6.16)

I(z,p,7(rs)) being the specific intensity. + specifies a ray directed towards the bottom of
the envelope (r = T'), and - specifies a ray directed out of the envelope. B, (T(n = 1) is the
Planck function at line center frequency vp and at temperature T at n = 1.

To solve the line transfer equation the discrete space theory method described in chapter
2 of this thesis has been used.

6.6 Results

In this section, the emergent fulx profiles due to partial frequency redistribution function
Ry1(z', z) are presented in comparison to those due to the assumption of complete redistribution
(CRD), in order to show the departures between the two.

First the results due to the formation of Ba II A 4554 in non- chromospheric models, modell
and model2, are presented. Figure 6.8 shows the emergent flux profile of Ba II A 4554 using
modell having T.s; = 3000 K. The profiles due to PRD (Ryz) and CRD hardly differ from one
another, except for negligible departure in the far wing on the red side.

Figure 6.9 shows the emergent flux profiles of Ba Il X 4554 using model2 having Tz = 4000 K.
We see = 10% differences between the profiles due to PRD and CRD. As compared to figure
6.8, the departures between PRD and CRD are more in this case because the star is hotter
and that leads to more number of singly ionized Ba atoms.

Figure 6.9 shows the emergent flux profiles of Ba II ) 4554 using model2 having T.ry = 4000 K.
We see & 10% differences between the profiles due to PRD and CRD. As compared to figure
6.8, the departures between PRD and CRD are more in this case because the star is hotter
and that leads to more number of singly ionized Ba atoms. This can be seen from figure 6.6,
where throughout the atmosphere, the line center optical depth of Ba II is more for the hotter
star. Thus, for this line, hotter the star, more will be the differences, with the upper limit
being decided by the ionization potential of barium.

Figure 6.10 shows the emergent flux profiles of Si IL A 1818 due to PRD and CRD in the chro-
mospheric atmosphere of a-Orionis. - These profile exhibit enormous difference in the wings
between PRD and CRD profiles. This is a collisionally dominated line and exhibits the typical
absorption self-reversal. One can clearly see how the assumption of CRD can lead to signif-
icantly different (and erroneous) results. The assymetry in peaks is due to the presence of
velocity fields. One can also notice that, as expected in the line core, there are no differences
between the results due to CRD and PRD.

Figure 6.11 shows the emergent flux profiles of C II A 1335 from the chromospheric atmosphere
of a-Orionis, due to PRD and CRD. One immediately notices the striking differences between
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Figure 6.8: Emergent flux profiles of Ba II A 4554 for model1l.
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he results due to PRD and CRD in the line wings. Also as compared to the Si II profiles, the
a_-baorption in the line core is much deeper. Again, one can see that how much lowering of the
lme‘ profile in the wings of this strong resonance line takes place by employing partial frequency
redistribution function Ry;. This is becausethis function is strongly coherent in the line wings.
In the process of quantitative analysis of stellar spectra, these substantial differences between
PRD and CRD can lead to incorrect temperatute structure and hence incorrect estimates of
the quantities dependent on temperature. It can be emphasized, on the basis of these results,
that for line modeling and for computing synthetic spectra of chromospheric atmospheres of
cool giants and supergiant stars, the assumption of complete redistribution should be relaxed.

6.7 Conclusion

':!‘he study of the differences between CRD and PRD emergent flux profile of strong resonance
lines Ba IT X 4554, Si II ) 1818 and C IT ) 1335; from the atmospheres of cool giant and super-
giant stars has been presented. Atmospheres with chromospheres and without chromospheres
have been considered. The differences between PRD and CRD are found to be highly model
dependent. For non-chromospheric type atmospheres, the overall differences between the PRD
and CRD profiles of Ba I A 4554 are within 10% for the hotter star having Tefs = 4000 K, and
negligible for cooler star having Tiss = 3000 K: For the chromospheric model of cool super-
glant star o-Orionis (M2 Ia-Ib), there are substantial differences between the PRD and CRD
results for Si IT ) 1818 & C II A 1335 emergent flux profiles. On the basis of these results, it
is recommended that the assumption of CRD should be relaxed for quantitative analysis
of spectra of cool gaints/supergiants having chromospheres.



Chapter 7

Concluding Remarks

7.1 In retrospect

In the last six chapters we reported on the effects of partial frequency redistribution functions
on the emergent flux profiles against the background of relevant literature. The availability of
high resolution spectral data from satellites like the Hubble Space Telescope, EUV Explorer
and many others is making this an important area of study for the accurate quantitative
analysis of spectra. This thesis is presented as a modest contribution to the efforts in that
direction.

Besides "true absorption”, scattering of radiation is one of the important physical processes
in the stellar atmospheres. In very extended and tenuous atmospheres of cool giants and
supergiant stars, where the rates of collisions are low, scattering of photons is the dominating
factor in transport of radiation. Early works on radiative transfer assumed that scattering is
either strictly coherent or that the photons are completely redistributed over the line profile.
Neither of these limits is achieved exactly in stellar atmospheres, and it becomes necessary to
use partial frequency redistribution functions. Due to the difficulties in tackling the scattering
integral employing exact partial frequency redistribution functions, the numerical solutions of
the transfer equation had to wait till modern times with their effective computational tools.
The progress of studies in this direction is now rapid with varying degrees of success. It is
important to be aware of the departures of the emergent flux profiles due to partial frequency
redistribution from those due to complete redistribution.

This thesis is an attempt to locate the various gcenarios in the atmospheres of cool stars, where
the effects of partial frequency redistribution functions Ryr, R and Ry (as compared to
CRD) could be important and to present these effects in a comparative manner using spherical
geometry. The study using parameterized stellar atmospheres provides an insight into the
role of single or combined effects of physical variables like the atmospheric extension, velocity
fields and the thermalization parameter. The study involving realistic model atmospheres and
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observed strong resonance lines is an important step further in investigating the role of partial
frequency redistribution functions on spectral line formation in cool giants and supergiants.

The present work

The assumption of complete redistribution is expected to fail in extended stellar atmospheres
where low gravities and hence low collision rates prevail. In this thesis, with a clear objective of
bringing out the departures between the solutions due to PRD and CRD in various situations
in the atmospheres of cool giants and supergiants, the understanding has been developed in
stages, starting with spherically symmetric static atmospheres, then including the velocity fields
and finally considering realistic temperature and density structures to explore PRD effects in
observed resonance lines. This systematic approach has resulted in considerable success in
generating useful information and enhancing the understanding of the PRD effects on spectral
line formation in cool giant and supergiant stass.

o Chapter one explains the need to investigate this problem and presents the layout of
the thesis. :

e Chapter two, describes the solution of equation of radiative transfer in the frame-work
of the discrete space theory of radiative transfer using Peraiah-Grant formalism.

¢ In chapter three, the effects of angle-averaged Ry and Rj; on emergent flux profiles
in static spherically symmetric stellar envelopes have been examined. The equation of
transfer for spherical symmetry in the rest frame is solved for a two-level atom. Initially,
to bring out the effects of geometrical extension alone, velocity fields have been neglected.
A constant value of the thermalization parameter has been assumed and the Planck’s
function is set equal to unity throughout the atmosphere. The background continuum is
neglected. This study establishes that sphericity enhances PRD effects. It has also shown
that the effect of spherical extension is much more on the emergent flux profiles resulting
from Rj; than on those resulting from Ry when the damping parameters of the lower
and upper levels of an atom are comparable. The effect of Ry (as compared to CRD) on
emergent flux profiles increases by making the lower level sharper than the upper level.
This effect is further enhanced by increasing the spherical extension.

e In chapter four, a step further is taken to include velocity of expansion in order to explore
the combined effects of sphericity and expansion on the emergent flux profiles resulting
from Rj; and Ry, as compared to CRD. An atmosphere having geometrical extension and
small velocity of expansion is considered which is characteristic of the atmospheres of cool
giants and supergiants. It is assumed that there is no background continuum; Planck’s
function is set equal to unity and a constant value of the thermalization parameter is
chosen at all depths in the atmosphere. This study shows that there are substantial
differences between the emergent flux profiles resulting from PRD (R;; and Ry) and
CRD.



¢ In chapter five, the PRD effects of Ry;; alone on the emergent line profiles in an expand-
ing spherically symmetric stellar atmosphere are explored. This is because, the limiting
case of complete redistribution is usually taken to be an adequate representation of Ryr
in radiative transfer problems to study the spectral line formation in stellar atmospheres.
However, the combined effect of sphericity and macroscopic velocity cannot be estimated
a priori. Only low velocity regime is considered which is appropriate for the atmospheres
of cool giants and supergiants. This problem is treated in the rest frame formalism. In this
work it is established that the differences between the emergent mean intensity profiles
resulting from CRD and Ryyr are much smaller in expanding spherically symmetric stellar
atmospheres than reported previously for plane-parallel atmospheres.

e Chapter six presents the study of the differences between CRD and PRD emergent flux
profile of strong resonance lines Ba II A 4554, Si II A 1818 and C II X 1335, from the
atmospheres of cool giant and supergiant stars. Atmospheres with chromospheres and
without chromospheres have been considered. The differences between PRD and CRD
are found to be highly model dependent. In non-chromospheric type atmospheres, the
overall differences between the PRD and CRD profiles of Ba II A 4554 are within 10% for
the hotter star having T.ss = 4000 K, and negligible for cooler star having T.sy = 3000
K. There are found to be substantial differences between the PRD and CRD results for
Si II X 1818 & C II A 1335 profiles computed using the chromospheric model of cool
supergiant star a-Orionis (M2 Ia-Ib). On the basis of these results, it is recommended
that the assumption of CRD should be relaxed for quantitative analysis of spectra
of cool giants/supergiants having chromospheres.

...and its limitations

Although the foregoing achievement is significant, still we must look at the limitations of the
currently achieved success, particularly with a view to plan future line of action. In the present
phase of work, we were eager to"explore the frequency redistribution effects on the spectral
line formation in the atmospheres of cool giants and supergiants. Even within the scope
of employing exact forms of the redistribution functions Ry, Rrir and Ry, small velocity
fields, atmospheric extension, use of computed model atmospheres to examine PRD effects on
observed resonance lines of Ba IT A 4554, Si II X 1818 and C'II X 1335, we restricted ourselves
in many directions. For instance, we considered only angle-averaged redistribution functions
in this study. By doing so, we accounted fully for the frequency redistribution effects but
sacrificed information on angular effects, which could be important when the radiation field is
anisotropic. We assumed a two-level atomic model for all cases of study. .Thus we neglected
extra channels of excitation or decay. But since only strong resonance lines are considered, we
could afford to neglect this aspect. We did not take up the modeling of these observed lines,
but aimed at highlighting the differences between the PRD and CRD results using realistic
model atmospheres. We did not adopt the velocity structure given by the model atmospheres,
but employed a linearly increasing velocity field. The value of this velocity field matches the
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values derived from the observational data. Considering the uncertainties in the model values,
it is justified to employ the velocity structure used in this study.

7.2 In prospect

Further possibilities for exploring the partial frequency redistribution effects on spectral line
formation are many and most of them can be handled by the techniques developed and em-
ployed in the present work. Some of these are listed as follows:

1. The radiation field in the tenuous atmospheres can be anisotropic where the angular
effects on the emergent profiles could be significant. This would require the use of angle-
dependent partial frequency redistribution functions.

2. Keeping in mind the availability of very high resolution spectroscopic data for stellar
atmospheres the assumption of an isolated line may fail. One has to consider the use of
multilevel radiative transfer employing angle-dependent redistribution functions derived
for multilevel atoms.

3. Modeling of chromospheric lines must relax the assumption of complete redistribution, and
exact angle-dependent forms of redistribution functions should be employed. Attention
needs to be devoted to the study of the combined effects of partial frequency redistribution,
velocity fields and the geometry along with other physical phenomena.

Some of these questions have been partially resolved, but much work remains to be done before
a completely satisfactory understanding of spectral line formation in the presence of partial
redistribution effects is achieved.

A journey of thousand miles begins with a single step.
— Chinese proverb
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