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CHAPTER 1

INTRODUCTION

1. A historical review:

The virial equations in their simplest form have
been known for over two hundred years. As early as 1772,
the Royal Academy of Sciences in Paris published Joseph
Louis Lagrange's 'Essay on the problem ot three bodies!t,
in which he developed what is today called the Lagrange's
identity, or the scalar virial equation for a syétem of

three bodies (cf. Lagrange 1873).

For long, lLagrange's identity remained a special case
germane to the three body problem,., in the winter ot
1842-43 Karl Gustav Jacob Jacobi gemeralized Lagrange's
result te an N-body system (ct., Jacobi 1889), Jacobi's
tormulation closely parallels the present representation
ol the virial equation., In the same chapter he themn proceeds
to develop the criterion which today bears his name, The
Jacobi's criterion states that a system is unstable i1 the
total energy is positive, or in other woxrds if the kinetic

energy exceeds in magnitude the potential energy.

A little later, in 1851, Rudolf Julius Emmanuel Clausius
started a long study ipto the mechanical mature of heat
which culminated in what we Knoﬁ today as the t'irst clear
statement of the wvirial theorem: “the mean vis viva of the
system is equal to the virial' (er. Clausius 1870). The vis

viva was the term used in the nineteenth century for what



we call today the kinetic energy oi the system. The term
virial (from the Latin virias, the plural of yis and
meaning forces) was coined by Clausius to represent halt
the mean value of the moments of the forces acting on

: : / ! *\{:‘ e T .M'\m\';
the particles in the system (% / e A,

e

and can be identii'ied with the average potential emergy

ot the system,

Aithough the virial of Clausius has today lost much
ot its significance as a physical concept, the name has

become attached to the tneorem and its descendents.

Since these early fermulations the theorem has been
considerably developed in the following years. Henri
Poincare (1911) used a form of the virial equation to in-
vestigate the stability of structures in ditterent cosmological
theories. Paul Ledoux (1945) developed a variational form
of the virial equation to study stellar pulsations, Subrah-
manyan Chandrasekhar and knrico iermi (1953) extended

the virial theorem to include the presence oOf magnetic fields.

At the turn of this century Lord Rayleigh (1903)
formulated a generalization of the virial theorem in whiclh
we see the beginnings of the tensor t'orm of the theoreu.
Tois was later revived by fugene Newman Parker (1954) and
developed considerapiy by Chandrasekhar ana coworkers,
Using the virial equations and their variational forms,
Chandrasekhar and coworkers investigated the structure and

stability or ellipsoidal tluid masses (cf’. Chandrasekhar 1969).



Today the tensorial formulation of lLagrange's identity
exists not only for dynamical and thermodynamicai systems
but also for systems with velocity dependent I'orces,
viscous systems, systems exhibiting macroscopic motions
such as rotation, systems with magnetic fields, and even
systems which require both the special and general theories

of relativity tor tneir description.

Having reviewed brietfly the historical deveiopment
of the virial equations, we shail, in the next section

discuss their importance in stellar dynamies,

2, The wvirial equations in stellar dynamics:

The most direct approach to stellar dynamics is to
treat the stellar system as a collection of N mass points,
The equations oi motion of an individual point in one such

isolated cluster are

e

2 f - “ ,(ﬂ)‘
4t d (:¥; {/Q( l (1)

¥ " > i’ [N (3)
W) ekt (1.-.) \‘7 xioa e (o) _— i
m™ dx - ‘i e AL

where the Greek superscripts distinguish the N mass poants
while the Latin subsc¢ripts distinguish the Cartesian com~

ponents of the position and velocity vectors X , LI .



The wvarious conservation laws and the virial equations
are just moments of the equations of motion. For example
multiplying equation (1) by Xjﬂ and summing over all X
we get the virial egquations ot the ordex two (cf, Chandrasekhar

1964 ),

2

L Ly = a2l + Wijs (2)
< dt

where Ii.j ’ K,_J and NLJ are respectively the moment
of inertia, the kinetic emergy and the potential energy

tensors given by

L & ()

[ad
Ty =5y mx"x® Ky = - mouy uwy .

R
17
-

= (3)
h ' e \,L ’ ,5)
N'LJ’ = - G 5‘ e (- 2 /4,, - X ) .
‘1\...—‘ I‘!-" x.,/(‘\) — (i@) 3
A F {X- K J

)
Similarly, multiplying equation (1) by UL and
summing over both the superscript (¥ and subscript [

one obtains the law of energy conservation (cf. Chandrasekhar

1964 )

Kr W =E, ()



A complete description of the dynamics of the system
1s contained in the equations ot motion (1). The solution
of these equations are, however, cumbersome and one
'may not see the wood for the trees' in the accompanying
avalanche of numerical details, It is under these circum-
stances that the conservation laws and the virial equations
assume significance. Being moments of the equations of
motion, they represent basic structural relationships that
the system must satisfy at all instants of time, By studying
these equations one obtains the large-scale or global pro-—

perties of the systen,

The common procedure in such a stuay is to describe
tﬁe stellar system statistically by a density distribution
fD(x) - and to use equations (2) and (4) altering omnly the
definitions of ]1} ’ ng and th as sums to integrals

thus:

Ty = [ poc) xxy dx 5 K5 =4 [ pooauy s,
(5)
Wij = T Gfﬂ PO PIX) !K,LN.:A.‘J?SQQJ.'.L%. dx dx’s
vy Ix — x’|
where the integrations are effected over the entire volume

\/ of the stellar system.

Tt has been pointed out by Chandrasekhar & Lee (1969)
that the transition from the summation of equations (3)

to the integrals of eguations (5) is not strictly justified.



They however obtain the virial equations in a form similar

to equation (3) by integrating the Lioville's equation

for an ensemble of such systems, For a cluster in which

we can neglect close interactions, a simple approach,

adopted by Binney (1982) is to obtain these equations starting
from the collisionless Boltzmann's equation, The procedure
adopted in both these approaches is to first obtain the
equations of stellar hydrodynamics (the Jeans equation)-

viz, the equations of continuity and motion, The virial

equations are then obtained by taking the moments of these

equations,

The earliest use of the virial equations in stellar
dynamics was to study the masses in clusters of galaxies
from a knowledge of their sizes and velocity distributions.

When the system is in steady state, equation (2) reduces to
Ky = = Wi
(6)

The contracted version of this relation is

aK = =W,
where

— el
K= L Mut R W= -« @I .
ol o8



Here m , & and U* are respectively the mass, radius
and mean-square velocity of the cluster. The parameter
is a measure of the central concentration, From these

relations one obtains

M= Wa ,
2 G

and as ‘(Ii , O and & can be got from observations,

one obtains an estimate of the mass in a cluster., It is
such an analysis that has led to the conclusion that the
mass of a cluster of galaxies is faxr greater than what has
been observed in visable light (cf. Limber 1961 for a

review).

In recent years the tensor virial egquations have been
employed to study equilibrium configurations of ellipsoidal

galaxies (cf. Binmey 1982, also Chapter 3 of this work).

In these applications use has been made of the wvirial
equations only for systems in oxr near equiliibrium. However
it is important to realize that systems in a state of rapid
change, such as a star cluster in rapid dymamical evolution,
are also subject to the time dependent form (2) of the
virial equations. The tensors Ii.j and HLJ are expressible
in terms of the semiaxes of the system, and hence to employ
equation (2) to study dynamical evolution one requires an
additional system of relations that expresses the variation

of K'—J with time.



In their study of spherical star clusters, tor which
a single parameter, the radius (, describes the cluster,
Chandrasekhar and Elbert (1972) employ the contracted version

of equation (2) coupled with the equation of energy conser-

vation (4).

For a stuay of nomspherical clusters, however, we have
to employ equation (2) and the tensor equivalent of equation

(4), namely, the xrelation:

et st o 0 e

Q ,C.L__ Kij = -0 ;ﬂ BN' m ¢ (xc«u__XmJX ﬁ)_

PR 3
o L P
G >LLZ"’: e (P) ( ®_ (#))(XJ \%Jlﬁ)) (7)
) el o x(“) N ((”,
ap | .

which can be obtained by multiplying equation (1) by L&?,
and summing over all X ., The contracted version of (7)

is just the law of emergy conservation (&). Once again the
sums may be transformed into integrals. Equivalently a
similar relation can be obtained as tollows: One tirst
obtains the Jeans equation of the order two by taking moments
of the Boltzmann's equation, This is the relation that is
known in statistical mechanics as the heat transfer equation
(¢f, Clemmov and Dougherty 1969). By integrating this
equation over the volume V ome obtains the egquiwvalent of
equation (7). Ve obtain these equations in a slightly more

general context in Chaptexr 2.



The derivations of the wvirial equations discussed
above are for isolated stellar systems, When other
dynamical problems are considered these equations will
have to be reformulated starting from first principles.
It is, however, possible-as we shall show in chapter 2-to
derive these equations from purely kinematical considera-
tions starting with the equation of continuity in phase-
space: §ince the latter is valid for any collisionless
system, the equatioms derived would also be valid for any

such system,

In chapter 3 we employ the virial equations te study
the evolution of a cluster characterized by a spheroidal
distribution of matter and an isotropic distribution of
velocities. In chapter 4 we will relax the assumption of
isotropic velocity distribution. In chapter 5 we consider
a stellar system which was initially in steady state but
had its initial velocity distribution disturbed by an impul-
sive encounter with a passing perturber., The results are

éummarized in chapter 6.
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CHAPTER 2

THE VIRIAL EQUATIONS

3, Introduction:

In this chapter we derive the various equations that
we require, These equations will be derived from purely
kinematical considerations starting with the eﬁuation of
continuity in phase~space, and will apply to any dymamical
system, Besides the virial equations, they include an
expression for the rate of change of the kinetic enexrgy
tensor'KU « In section 6 we develop expressions for the

various tensors for an ellipsoidal mass distribution,

4, Definitiomns:

We consider a stellar system, a star cluster or a
galaxy, consisting of a large number, N, of stars assumed
to be mass points, The position, velocity and acceleration
of an individual particle, measured with respect to an

arbitrary (inertial or moninertial) frame of reference are

denoted respectively by
)(:(X,,X;,Xs)) U..—L:(u})(acg)us)ﬁ %:<Q’J5E}A19~5J (8)

and the coordinate in position-velocity phase-space by
Z (2,,21,,.., Zg) = (szﬁ 2y Wy Wy U3) = {>\< 3 {H,). (9)

Assuming that N is large, so that the phase-space distributionm



is evexywhere sufficiently dense, this representation for
the entire system can be thought of as a continuous Tluid,
lence the phase-density or distribution function

- - 7
jC(Z} t) -JCKX-) U_L, t) » defined such that the mass interior
to the phase volume (.Z)Z +df’) is given by (cf. Binney

1982,also Chandrasekhar 1960)

dM = f(Z,0)d7 = O, dx dis (o)

satisfiegs the equation of continuity (

of 3 W + Y 2 _
ot * ?:i BXPJ}/ P Fé:' &U.chg'b (11)

The wvarious macroscopic quantities can be defined in

9

terms of the distribution function, Thus the density at X

is given by

})(}"(,f) :J/{,Lf(:t‘f L) lU.; - (12)

where the integration is ef:fecied over the entire velocity
space ’(.L o Consider some qgantity with the value, per

unit mass,* %(2’1 f_') for a particle in state . . The mean
value, per unit mass, for all the particles at the position

P

X is given by

11

gox,t) = L foown gt du .

POGE) 4,
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while the value of the quantity for the entire system is
Q. :j (m,t) gLy dn s ] et aosl) du
- { >4y “L <1y ) J}vf) M) ) ? J ) (12")

Here ;_ represents the instantaneous phase-volume of the
entire phase-fluid while V denotes the volume in coordinate
space of the stellar system., In obtaining the last expression
in equation (14) we have effected an integration over the

entire velocity space f& y making use of equation (13).

Using equation (14) we can now defime the various tensors -

that we shall use (cf. Chandrasekhar 1969),

Masss

M= feden =]

PLx) Ax . (15)
\¢

Moment of inertia tensors:

1, -—f ) don Py X dx,
Jr ¥ (16)

Ilj - J ri“ Cs) Xk A :-’(v X)X X dx.

Momentum tensors:

Lo - |

, .
flz)yuwe dz =1 Pyt dx,
o
" y (17)
Loy = jr Fow) L lz =){’; Px) T X X -
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Kinetic energy tensor:

|

Kij = ._.J FL2) 300y A, Zl'i'j 2OR) UL U ds . (18)
vj
Tensor potential:

¢

Vi =6 [ b oy ) d
r

l>\\ S
- (19)
= G‘tJ P’y {Xi~ \’L)(X,-‘ ody
v } M- %]
Potential energy tensor:
Wy = J flz) Vi ool
= -1 J PUx) i (%) Ax s (20)
Q

The temsors .| ij ) l\‘@j) J&/"Lj and |Jij are
symmetric in thé indices { and | and contract to tne
scalar moment of inertia I, kinetic energy K, potential

{/ and potential energy W respectively. Further,

writing

= Wi+ ey (21)
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"~
where (L; represents the contribution to W, arising from

the peculiar motions o1 the particles, we get (cf. Binney

1982)

Kg = Ty + LTIy, (22)

where

11}

Ty = b [ f@ Tl dZ = L[ plo Wl dx,
r v

b}

TTij = j f(x) Uiy dw = f P Ll dx
r v '

The dual vector of i&ﬂ is the angular momentum of the

system

i (24)

Note that when rotating frames of reference are considered
this is the angular momentum as measured in the rotating

frame,

Beside these tensors we shall also reguire the moments

of the acceleration field:



&
it

[ ftm g dz = [ pox) g dx,
j{_ f(!’:) 81 X3 CIX = j‘ P(/\") ;L Xj A 3 (25)

o~

M v

L.
i

I
=
!

~fr,c(z) g U dz = L P(X) G Uy dX.
It is also easily seen that (cf. Chandrasekhar 1969)

j fizm) oV A =0,
r

(- X
[rem v dz = wy. (26)
r " ’Tj ::\', !

5. The macroscopic equations:

The virial equations and the other macroscopic equations
are most easily obtained with the help of the following

theorem:

Theorem 1: If (]z(%!t) is an attribute of an element of the

phase fluid then

p,n) 4y dw s

o

d J fla,t) g (i, ) Ao
abd

15

t dt (=7)
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dg. - ¢ "
Gh=glh+ Y Wy 4 g 9%, (28)

'"r
v
kR
7
>
By
o
uy
<
1\
[
-

is the total time derivative as we follow the element in its
motion through phase-space, and the integration is carried out

over r s the instantaneous phase volume of the phase fluid.

The proof is amalogous to that for the corresponding
theorem in hydrodynamics and follows from the equation of
continuity (11) which expresses the constancy of each element

of the phase fluid in its motion through phase spaces:

i
i
O

CL (z,t) o = d M
J ez x

(29)

By substituting various expressions for C]/ in equation

(27) we obtain the various macreoscopic equations.

Rate of change of the moments of inertias: With Ki’: X and

q/:‘. X1 Xj equation (27) yields

gy widz =4, (30)
=]

H

dlij - j{("r) e 2y 1+ X wg) duy = ilz:g + im -
d

T
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Rate of change of momentum: With % =z Wy and %: Wi X]

in equation (27) we obtain

ELJ;L = (z) g d%Z = Up »
L = [0y, : (32)

Ao [ 02 (v
dlui = jr flu){uwug +9 x)dn = 2Ky + Uyj + (5)

ckt

The virial equations: Combining equation (30) with equation
(32) and equation (31) with equation (33) we get the virial

equations of the orders ome and two respectively:

gﬁil; = WU >
dt (34)

d'Ty = 4 Ky + Uy + Uit)
dt? (35)

For an isolated stellar system with respect to an imertial

frame of reference, the acceleration is

%i = EZSL ) (36)
o Xt

and hence from the definitions (25) using the relations (26) we

obtain
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In this case the virial equations (34) and (35) take

their familiar forms

(38)

(39)

Virial equations of higher orders may be derived in a similar

fashion (cf. Appendix 2).

Rate of change of angular momentum: Multiplying equation
(35) by Ekﬂ and summing over all | and j we get the

expression for the rate of change of angular momentum

-}--;- )\ L e J:__‘ ( }- _:, f..jL ‘L " ":l \} T 'Z: é: h,‘:\ ‘L, Ui}j .
g db \ DA (40)
Since {4ﬂ is symmetric im the indices | and | , for am

isolated stellar system equation (40) is the law of conser=-
vation of angular momentum

fLL. .)\}._ = O .

r.it. ()4-1 )

Rate of change of the kinetic energy tensor: Setting in

equation (27) we get

2 Al = | A0y T g e = Hyp s g
For an isoclated non Totating stellar system using equation (36)

we obtain
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s

” B $08) Gu i Xyg-u) dz dw’
r lx Sn,l?o

(43)

- & [ flz) £02") (s “,,Lgb xJ)dL.clEz}
S I - X\J"‘

This relation may be compared with equation (7).
Rate of change of the potential energy: This is most easily

obtained using the following theorem:

Theorem 23 If 9 (7,7, t) is a two particle function of the

particles at 7% and {éﬁ' of the phase fluid then

4 ([ s 5 g0n, 2 dz ﬂfwmi‘“‘ Zu)
rr

is the time derivative as we follow the two elements in their
motion through phase-space. The proof is similar to that for

theorem 1.

Setting ‘.}/ ::‘_{ZL ] e we obtain
a  Ix~x'l
A = 567 A b X y) dm T

i‘ rr
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Combining this relation with the contracted version of
equation (43) we obtain the energy conservation relation

Tor an isolated stellar system (cf. equation 4)

@, / (47)
At

or equivalently

K +W=E, a constant. (48)

In this work we contine ourselves to isolated non
rotating stellar systems. However the gemeral expressions
obtained above apply to any stellar system and would be of

use when more general dynamical problems are considered.

The equations derived above can also be obtained by
taking the moments of the hydrodymamical (or Jean's equations

{(cf. Appendix 1),

6. The tensors for an ellipsoidal system:

The definitions and relations of sections 4 and 5 apply
to any stellar system, Of particular interest are ellipsoidal

configurations with density distributions of the form

pley = P (1-m)7, (49)
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with
mi= S X, (50)
};':.

Here X; are the coordinates in a Cartesian frame of reference
fixed at the centre of the ellipsoidal with the axes rested

along the body axes; (|| are the semiaxes of the ellipsoid

while ﬁ is the central density; ¥ 1s a nonnegative
parameter, increasing values of which indicate increasing central
concentration. The case 3 = 0 corresponds to the case of
homogeneous ellipsoids. Density distributions of the form (49)
have been used, for example, by Perek (1962) and Kerr & de
Vaucouleurs (1956) to describe the distribution of matter in

ellipsoidal galaxies,

The equidensity strata of density distributions of the
form (49) are similar to an concentric with'the bounding
ellipsoid., We can therefore use the results of Roberts (1962).

For the function . F()hu) we have

1
i

-

t pIE

o) = [ pomtiamt = £ (- m o0

and hence



M= TTa, a. a, / [Jn' T (v#1) ]
- - e -, 2
.Ii = O, (53)
- 4 e )
..[i,j = _;_ M oG {j (;J(‘ﬁ) 9 , (54)
Ni] = -a AR W8 AL Yy Yy (55)
’0 Q, “4y g N
where
¢» = 5. (56)
v +E
- sy e
Yilwy = 4. r(‘{* i) [(2243) (57)
2ur VT Tlve1) riv+ %)

and the A'L are the index symbols defined by Chandrasekhar
(1969)

o
AL = aa,a, } e " (58)
AR

with A = (4] 4wl s kg U .
!

The functions (l;(;,) ana ' () are measures of the ditterence
of the moment of inertia and the potential emergy tensors of a
distribution with the density parameter ), from that of a
homogeneous ellipsoid with the same mass and semiax;as. These
functions are listed in table 1 tor a few values of 3 , For a
spherical configuration with O, = 43 = A3% QU equation (55)

contracts to yield



-oen (59)

On comparing this with the expression -

W= o= 5 o,

PEY ot (60)

for a polytropic sphere of index YL (e¢f. Chandrasekhar 1939)

we see that spheres with indices ¥ = 1, 4, 12 and 55 have

23

potential energies in fair agreement with polytropic spheres of

indices )l = 1, 2, 3 and 4 respectively.

For a spheroidal system, axes ;= (i and Q. the index

symbols are given by (¢f. Chandrasekhar 1969)

Av= Ag = i uly) o Ind

L e a5 ’
(d \J
—— 61
Ay = 2. o 20y S(y) - (61)
Y o
where
Y (62)
and
skn”'VY Yy >0 (63)
i
VISR \ | Yy =0
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Table 1

Y ¢ () V() ¥ () JG) 1
0 1.000 1,00 : 1.00
1 0.714 1.19 1.0055
2 0.556 1.36 1,014
L 0,385 1.65 1.024
12 0.172 2.50 1.037
55 - 0.0435 5.03 1.050
G L5 e

Appendix 1 ~ Hydrodynamical equations

As mentioned in the introduction the wvarious macroscopic
equations of section 5 are moments of the hydrodynamical (or
Jean's) equations. In fact if we consider an arbitrary phase

volume y , the more general statement of theorem 1 is

Q.».t f $04) 40E) J -_f {(z) r&& d .
/ v 'K

€ Uy ) ¢ (a1)

Choosing 3 = Y s, the phase volume occupied by the stars within

an arbitrary volume V¥* we obtain

i[ g --f" dy dx du =[ 4. dx.
IRARERY U WP A

V¥ g
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Purther since f-‘>0 as WU;»® we also obtain

.

d (pods = ([ 3 o, 57 2 2 fq4)dx d
o{tjl_f § Vf;,F { 7 tq 4 %E‘ ﬁyyfﬂw‘”é} Mgwp}dx u
(43)

On comparing equation (A3) with equation (A2) and noting
that V* is arbitrary we obtain the general expression for

the hydrodynamical equations:

g 2 pam = pdy.
g—t{“%*i&j?% F 4 (Al)

pzi

~ K

O

A similar expression may be found in works on plasma physics
(ef. Delcroix 1965, equation 9,14) Equation (27) is merely

the integral of equation (A4) over the volume V,

With g = 1 and (; equation (A4) yields the equations of

continuity and motion

-a— + 3 g L, =0
st l %:, ox, [ g (45)
— o _— i S
DI v @m%] =P - o Ly -
P[ ot g;a "3 Xp | 81 %x OXp P (46)

Equations (30) and (31) are the moments of equation (A35) while
equations (32) and (33) are the moments of equation (A6)

(cf. Binney 1982).
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Setting i = (i) in equation (A4) results in

O p WUy + V4 pulugy P (g e W,
ot P B :

(a7)

which can be rearranged using equations (45) and (46) in the
form

P [ 2o Uity + ) W« ‘“"*} t) 2 p Wy,
Ct -i: o Xi ‘};.'.l q'.‘."Xr.

- o
~ v— -

3 I g - - I

- . . ~ - . -l :‘«u. Lr e .. -7 a)‘ ‘,~..,. ~

BB piyh, b Y 28 pU = P{ G vy T Ny J '
') -

:‘ f:) X b b :‘Q ¢ A J (A8 )

Equation (A8) is the equation of heat transfer in plasma
physics (¢f. Clemmow and Dougherty, 1969, equation 11-19),.
Equation (42) is the integral of equation (A7) over the entire

vohmerVV

Appendix 2: Virial equations of higher orders

The virial equations of higher orders camn be obtained
in a fashion amalogous to that adopted in section 5. Setting

7 =K N NG and 7’: X; Xj X X, in equation (27) we obtain
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b Tije = Lyje + Ljee

+ Lk;lj J

dt
%Tl Lijy = Lopee + Tyue + Ly Loyt o (49)
A
where
T2 | s x o

L ‘j{_ PR d s g = rj— XX Xuxgd 4 s
(.. o . ‘ (A10)
N IS R T R PT j fuaxgnonds o

“r ot .

t

are the moment of inertia and momentum tensors of the orders
three and four.

Similarly, with C[/ = Wi XX, and (,L: Wy Xy X, Xe in
equation (27), and using the definitions

KL};L. = __}__ j 7C Wi 4y Xy, Az KL];M’: = l’[;‘( by Wy Xy 7, A7y

W A _ S

. ) . B ) o0 (A1 1)
Ul)] h = g S ‘:}L /\:j )"\h A Z 5 UL)'J%\L P f f (3‘[. Xy }\k ,\‘ J AR

I Y

we obtain the relations

o /'. - . ,:,,' . ) . . .
’;‘.’\[i_ J"’:)J“ - Q \\LJ}E: "* - {\“\-;J 1' (“)t)‘_])\

(a12)
.‘.L «Li;}ig -

AUy . :
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which when combined with equations (A9) yield the virial

equations of the orders three and four

K ’, » y . * : - » -
.E'l_-i I'Lj;. = 4 Kij;h & i\;)‘,;x. ™ 4'Kkijj T Ug ik * UJ;&L + Uk;u >
A t? '

2 e
o Tijr= 4 Ko T 4 Kiget + 4 Kgopo+ 4 Keayig
dtz S J

‘. N R , .. 13 o e e .. A1
+ 4 }\Lk;li + 4 }\_}(;RL t UL;JP( 1 UJ,RU* UA.;HJ 1'Ur,~z‘,k-( 3)

For an isolated stellar system, observed from an inertial
frame of reference, on using equation 36, these equations 36,

these equations take the familiar forms

':‘1' 'tLE Tije = 2 Rigi+ 2Kp1 v a Rigp + Wigget Wik thyy
_}' ;-LZ‘ 1-{)}\‘L z R l\u;kq + 2 K']z)(f_ 4 W KkL’,:.j o K({ é'i

(a14)
.y \/¢ . Z- v 1 i L
o linge 2 Kygie + “LJ)M + NJ‘*}"L

" e } » . N
Py P+ Wiy + Wiesti



CHAPTER 3
ISOLATED SPHEROIDAL STELLAR SYSTEMS

I. ISOTROPIC VELOCITY DISTRIBUTIONS

7. Introduction:

Chandrasekhar and Elbert (1972 = Paper I) used the
tensor virial equations to study the dynamical evolution
of isolated homogeneous' spheroidal clusters with isotropic
velocity distributions. In this chapter we reexamine the
dynamical evolution of such isolated stellar systems, In
section 9 we discuss the case of a homogemeous spheroid

and in section 10 a heterogeneous spheroid.

8. The basic equations:

We consider an isolated cluster which is initially
spheroidal (either oblate or prolate) with semiaxes Qiand
a given total energy £. The system is govermned by the

virial equations (equation 39)

,Ld-.:.l_-”_{’ = AHn + in
2 dr?

L odi T e WK o+ W (64)
2 4t

From equations (64) we obtain the equilibrium condition

(c:t". Binney 1978)

Q,K” - QK&,B = \Nu! - }Nasl P (65)

29
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or

\IQT;I - QTZ%%) -+ (TTH - 1{33) = “«\]nj = Wyl . (66)

For a spheroidal system ILJ“\ - ‘VJSB} 3£ 0

and hence for contigurations in equilibrium

Ki # Kas

(67)

It may also be noted from equation (66) that either (7] - T;J
or ( TWXg - Tmf33) or both may be nonzero, It was

using this result that Binney (1978) concluded that ellip-
tical galaxies may be supported either by rotation or by

velocity anisotropy.

We now consider a spheroidal cluster in which the
velocity distribution always remains isotropic so that

(cf Paper I and Som Sunder & Kochhar 1984)

Ky = Ki = Ky = -“; K, (68)

and the expression (hS) for the total energy takes the form

E=K +aW, + Wss =constant (69)

The virial equations (64) become



!%,
=
i
s
m
!
|-
x
'

o
p s
&

~

L
2

dEX 3 3 3
(70)
L gil_as.; 2 F - & Wi o3 L Way
2 dt? 3 3 3

One can see from equation (65) that an ilsotropic
veloclity distribution is not consistent with the clustoer
being aspherical and in equilibrium, Ve unow discuss tle

dynamical evolution of such a cluster.

9. Homogeneous spheroids:

We first consider homogeneous spheroids, Choosing

our units of mass, longth and time such that

M=1, a =i (at t=0) , G =1,
(71)

we obtain from equations (5&)'and (55) the expressions

t

- a [p— . 2‘
Ly N ¢ P Las = Loah s

-

(72)

pno—

te Ay o of

L\Jn'-"'—:-:"-- L A,) L\133=—.§_ 4 P\3-

Introducing these exprossions into eyuations (69) one

obtains

31
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"N} .

dar = 4& +_!_.(.c_x.,_ AL+ 2 9y Ay, (73)
dt? 1A Oy ‘

LR / . : N
.ELE..% = 4Q + L4l AL Ay, (74)
o b *k s e/
where
Q = E / I l'\)’f.:j and Ne T - :"1:.. . (75)

-
J

LJois the potential energy of a sphere of wnit radius.
Introducing &he expressions (61) for A, and AS' equations

(73) and (74). reduce to the pair of equations

Q-

&
L
[}

G L G+ ..i_, £(5)> (76)

2
o dy 4 a da %‘UE =-4Qy +6'T\3C=e(‘d>’ (77)

Q.
=
k&l

where (cf Paper I)

£ (y) %/¢9+-@5ﬁsmn

2. (y) f-;— - 3) Sy 432;99_ﬂ-q S(y). (78)

The quantities O, , @ and ! defined here are related

to 2 , O and b  orf Paper I (equations 46, 47 & 50) by
z = a e} 1
=0 ) Opgpers = -, Epoperr = VAT L. (79)

4 Q&
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A& comparison of equatioms (75) and (76) with the corresponding
equations (48) and (49) of Paper I shows that the r.h.s.

of the latter should be multiplied by E/IEL. Thus equations
(48) and (49) of Paper I can be used only when E is positive,

They do not apply to systems with negative energies,

The equations (75) and (76) have been solved with the

boundary conditions

G =8y Y=y lar s dag o dy =o.

194 At At (80)
Ths results are discussed below,

Results:

In tho case of spherical systems, Y= 0O, equation (76)

is identically satisfied amd equation (73) reduces to

ajga a, (81)

which is identical witk equation (26) of Paper I for spherical
systems except for a factor 2 multiplying the r.h.s., which

results from a slightly different unit of time employed in

this case,.

{(81) are

48 was shown in'Paper I the solutions to equation
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for

b3}

g=0: L= iim{ .uu+&%ﬂ¢7]> (82)

o]

o
h4
O
Y
‘(

i+

. 5[ Vel ra - e =L cosh"(_?uj?ﬁ}”g‘?__y} ,(83)

va | SRR QG+

o
N
(®)
—
it
t.i.
I-—

. e "
LT T ) R & (s%@&si.‘)} (84)
7L 2( 26,71

(85)

From these relations it is clear that systems with
positive energy (Q} 0) expand and are eventually dispe:r:sed.
Those with negative energies (-1< @< O)Q#'—O-S) oscillate with a
period 77'/[/:'[ (- Q)B/Q ] and amplitude [J + —é—f . The case

==0,5 is that of equilibrium configurations, while Q@ = =1 is
the case when the initial kinetic energy is zZzero and in this

case the system collapses to a point after a time TT/-'Z\Q— .

Turning now to spheroidal systems, the results of Paper I
show that systems with positive energies expand and are eventually
dispersed., The behaviour of &; , is almost idemtical with
that given by equations (82) and (83), The initial oblateness
or prolateness is reduced as the system expands, Some oblate

systems may even become prolate as a consequence,
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We have integrated equations (76) and (77) for several.
negative values of Q. The results are illustrated in
figures 1=-3. TFigure 1 shows the behaviour of (Q, with time,
For a given Q +the curves are almost identical on the scale
of the graph and correspond to the solutions given by equations
(84) and (85)., The period of oscillation is TT/ [»fi’ (*@_)3/‘2 ]
and the amplitude is |2 +1/Q& 1.

Flgure 2 illustrates the behaviour of 9 for Q@ = ~0,25
and ~-0,50, In both these cases H oscillates with approximately
the period T]”!,/E ) (-G.j%_]. Initially oblate systems (50
become prolate (l:j (O) and then oblate again, Similarly

initially prolate systems become oblate and then prolate in a

time ~ T /L4 ¢ xzj‘l

The physical significance of these results is as follows:
The assumed isotropic velocity distribution corresponds in the
equilibrium state to a spherical distribution of matter.
Since the velocity distribution is constrained by assumption
to remain isotropic the mass distribution tends to sphericity.’
Since the equations do not allow for any damping, the system

oscillates between oblate (prolate) and prolate (oblate)

shapes,

In this context it is significant that Kormendy (1984)
suggests that bar like (prolate) structures in spiral galaxies

may evolve to lens shaped (oblate) forms.
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Figure 1.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

The evolution of homogeneous spheroidal clusters,
The ordinate is the semiaxis ¢, of the cilrcular
equatorial section and the abscissa measures time
in the units given by equation 71. The curves are
labelled by the values of Q to which they belong.
The curves are identical on the scale of the figure

for tlie various values of %, .
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(8)
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-0.4
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yr‘:.(,ﬁ('l yo:O yo=-0.9(12‘l’
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0.0 0.2 0-4 0-6 0-8 0.0 0.2 0.4 0.8

The evolution of homogeneous spheroids with zero initial

kinetic enexrgy (A) depicts the Lehaviour of the semiaxis
.\, and . while (B) the behaviour of the eccentricity

as the system evolves. The curves are labelled by the

values of 4 to which they belonf,

-



Figure 3A depicts the behaviour of' the two axes ({,
and Q3 for systems with zero initial kinetic energy.
It is seen that the smaller of the two axes (, and .
always collapses to a point., The behaviour of ¢ for
such systems (figure 3B) shows that the initial oblateness
or prolateness is emhanced as the collapse progresses,

This result is in agreement with those of Lin et al (1965).

10. Heterogeneous ellipsoids:

We now consider the dynamical evolution of a hetero-
geneous spheroid with the density distribution of the form

(cf. equation 49)

3 a »
" = — Y_ -}\: N
o0 =R [’ . ‘ai*;’j] (86)

We further assume that the form or the density distribution
continues to be maintained as the system evolves i.e, V

is independent of time.

We choose our units of mass, length and time sucn that

M=1 ., a=1 (ub tee) , & M (87)

)
A
(XD,



The relations for the moment of inertia and potential

energy tensors are (using equations (54) and (55) )

L= <. ay Yy Ay, a; qz(v); (88)

o
@) e 5 ot

Na == 0 A 0. W =2 gy Ay by, 89
0oy 'O J:

substituting these expressiomns into equations (64) and

making use of the fact that )} and hence (_?,(w) is (by

assumption) independent of time, we have

2R
Y e | .
Ccli:?-i' - { G * ?1; {.(H) Y (90)

2 <
ai Yo "Jx dy o —46Gu + {0 91
by A } l ‘\‘:*“_‘ J o jg\j)) (91)

ol
where the functions -f‘(u; and LH) are defined by the
relations (78) and Q is given by

Q = E/iWo) (9)
Wil We = ~3 V)

No is the potential energy of a sphere of unit radius with
the density parameter ) . Equations (v0) and (91) are

identical in form to equations (76) and (77) and hence the
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conclusions of section 9 also apply to heterogeneous

spheroids with isotropic velocity distributions.

Thus the dynamical evolution of heterogeneous spleres
is also given by equations (82) to (85). Similarly
heterogeneous spheroids with pqsitive energies also expand
and the behaviour of Q, is given approximately by equations
(82) ana (83). This expansion is accompanied by a decrease
in the asphericity. Also, heterogeneous spheroids with
negative energies oscillate both in size and eccentricity
with a period 2$TT//EIE (”ngﬁ‘j « The behaviour of
is given approximately by the expressions (84). Those
in%tially possessing zero kinetic emergy collapse. The
collapse is accompanied by an increase in the asphericity
so that an oblate spheroid tends towards a flattened disc

while a prolate spﬁeroid tends towards a spindle shape.

The time scales however are different for different

central concentration as a consequence of the presence of
the parameter V din the units of time chosen (equation 87)
so as to compare systems with different central concentrations
we represent by t;m the unit of time for a density parameter

Y . Also denoting by CQ‘”’ and Pcw the values of Q
and the period P for a system with the density parameter 3,
and since

L

. /'_(P.{z? R E (93)

5
e {w) .:}—,E';) 3 w(v)



we have for the period

()

P = PP v VB (94)

From table (1) it is seemn that (V) JCP(V)

varies very little over a wide ra.ngé of )/ and hence we
conclude that systems with the same negative value of E
oscillate both in size and eccentricity with approximately

the same period whatsoever their central concentration,

The amplitude of the oscillatien is given by

2+ 1 =
} Q(‘ﬁ) j

() }
As can be seen from this equation when (3 <"5 the amplitude

(95)

decreases with increasing ¥ , while it increases with

)
increasing D when Qﬁ’} -;:'2- .

42
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CHAPTER 4

ISOLATED SPHERCIDAL STELLAR SYSTEMS
I1. ANISGTROPIC VELOCITY DISTRIBUTIONS

1. Introduction

In chapter 3 we studied the dynamical svolution of
an isolated stellar system in which the velocity distribution
always remains isotropic. Velocity isotropy as observed in
gas clouds is the result of close interactions bstween the
particles constituting the system. As was seen in Chapter 2
stellar systems are better approximated as collisionless, in
which case, an anisotropic mass distribution will tend to
make the velocity distribution also anisotropic. 1In this
chapter we study the dynamical svolution of a cluster with

mass and velocity distributions which are both anisotropic.

12, The basic equations:

For an isolated stellar system the virial equations
of the order two in an inertial frame of reference (equation
39) are

1L "
i C’\E"J = \;ZKCJ +NL)-

}.
X clt (96)
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The equations for the rate of change of the kinetic

energy tensor (equation 42) are

Qd:__}gi' = Hyi * H’;"
it i o (97)

We consider ellipsoidal systems with demnsity distributions

of the form (cf. equation 49)

3 N Rl
(X) = [' - .&:} -
P 2 2" t; (98)

Here v is a positive parameter and the coordinate axis is
aligned along the body axis of the ellipsoid. We further

assume that the form of the system is non-rotating so that this

coordinate system is inertial.

With a view to evaluating the expression on the r.h.s.
of equation (97) we assume that the mean velocity is a linear
function of the coordinates:

- - [

Ui G X
R (99)

(cf. Chandrasekhar 1969, p.36). Inserting this expression

into the definitions for cCi,-p (equation 17) and using the

fact that ]:Lpiﬁ diagonal in the chosen frame of reference

we obtain

3
oo U X1 o = 7 ~ - - 100)
‘LL’} ‘fv P n x'l Ix b ?Lp 1#*.7 - ?/ij J:..U . (



45

From the relation (equation 31)

d Ly = Lo + Ly 101
T I Js ( )

and from the definition for the angular momentum (equation 24)

we obtain

3

Lyp + ds

J' j‘ . E (102)
i T Exji Ay

. - —

3]
=
‘\-‘:G—‘Tﬁ
L SN
o
~
[
“r

Hence making use of equation (100) we have

— ——

i 3
Yy = dij o 1. dTlp &5 + ;%“ R
wl

Ty ALy A 2. Ljj
(103)
Substituting this into equation (99) we see that
Wi = b, _«’;!- Iu xi + S_— Gl ROOXG
Iy oot i <Ly (104)

It will be noted that equation (104) is identical with
equation 44 of chapter 4 in Chandrasekhar (1969) for a homo-

geneous ellipsoid in which the form is nonrotating.

Substituting equation (99) into the expression detining
Fhﬂ (equation 25) and making use of the fact that the -

acceleration is given by (equation 36)
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g9, = oV

o XL (105)

we obtain, using equation (26), since Ni‘j is diagonal

Hyp = jv Px) %% U; ds = ). Yoo Wit = 9 Wi (106)

Since :IU and ‘JQ are always diagonal so is }<ﬁ and

therefore we have from equation (97) on using equation (106)

H;_}.] + Hjj;_ = C‘/JL N}_i_ + {1’,.” NJJ

3
= LY e )\k(kﬁ -Mi) 107
2 2—;, ! Lii L (1om)
= O (‘;'/"j-)”

From equation (107) 1t follows %t .c
tEaif ey, A =0 (Lfdl4K). (108)

Thus under the arnsumption that the mean velocity is a
linear fvmction of the coordinates, mo streaming motions can
exist in a nonrotating collisionless triaxial ellipsoidal
stellar system, For a spheroidal system axes q,= 0;and
however, A} = Ap = O s but Az may be nonzero, Under

these circumstances equation (103) can be rewritten as

. . 109
Cﬁ“ = L. el Ly 5LJ toEyy LA (109)



47

Using equations (103) and (106) the diagonal terms of

equation (97) vield

- of Py e - S " .
dky = Hyl= 9wy = b dln,

‘..,.",.( 110
i ' ST, A (110)

This expression can be integrated using equation (96), and

results in

Ki = L (c_ilu)a + Xi
8Ty \ dFb & L (111)

where the XL are constants of integration.

From the definition (23) of Ty and equation (99) and

(109) we get for a spheroidal system

2 2
Tu = L (‘iI'i v N (- Sw)
RN I, (112)
and therefore
Ki = Tu + & T
= I (gg;u)“ LA (-8 - L Thi . 1)
gL, dt %I,

The first term represents the kinetic energy of expansion .or
contraction; the second, the kinetic energy of streaming motionsg;

while the third is the energy of random motions.
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A comparison of equations (111) and (113) yields

a . o .
LAy (= 8u) + Ti Xy = Xio, o constant.
(114)
Since by the law of angular momentum conservation (equation 40)

A3 is a constant, we have

. a
Thi Tu= Xi Az (1= 6i3) , a constant. (115)
When no net Sofhtions exist in the system i.e, A3 is also
zero, equation (115) reduces to
(116)

TTu T = Xt 5 a constant.
Just as the virial equations can be obtained by taking

the moments of the equations of continuity and momentum

transfer, equation (116) may also be obtained by integrating

(after introducing the approximation (99) ) the equation
—— 3 - amtn : wae
0 TE, + T T, L uu-}» 2 p ;TG
=t 2 o= LU o P UL Uy S
P[ b Xy gl X}
(117}
e RN ==,  RTE

+ ji‘ 9‘1{ " h*h. +
b= R E BX,.
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over the volume V. E£quation (117) is the ‘heat transfer

equation', and is obtained by taking the second moment in
velocity space of the Boltzmann's equation (see chapter 2
appendix 1), In the case of spherical stellar systems the

scalar equivalent of equation (116)

TTIT.“ T I -(i::_-, (118)
follows from the law o1 energy conservation,

Introducing equation (111) into equation (96) we obtain

o &F “.

d.sz ) (,-._U;:)' PR T T S (119)
I(Z tl, t. . ) R

We use this equation to study the dynamical evolution of
spheroidal stellar systems, The constancy of the expression

for the total emergy (equation 48)

(120)

will serve as a check on the numerical integration technique.

For a homogeneous spheroid with axes LY ana .

choosing our units of mass length and time sucn that

P}
H
R
o

1=, s T Gy= 1 - (121)
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we get the expressions (cf. equations (54) and (55) with Y=o )

- ...|.:‘
I“‘Ill-'g'“'} I33‘.‘:_é_03

(122)

wu T WaL = - A A.) Ns‘j = -3 S‘é Ag
i A
3 ¢

S lw

Introducing these expressions into equation (119) we obtain

2 . . '
Qnﬁt « Coo-ox Y
d 2 2047 A yuy

1 v

d;9§ = ,_ﬁg . Ay

dt’ Ry A (123)
and from equation (120)

— " i \i; \‘ T .

E = *LI ] (‘-‘l"“; ol v S Gy J-—l LS04 (124)

16 AT \ H da % 5 4

where
(125)

Ci= 5¢ N
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13. Systems with zero initial kinetic enexgy:

In this section we investigate systems that have zero

kinetic energy initially, that is

ab Ft=0: K, = Ky = Kay =9

(126)
From equation (113) we then obtain, at L'=0
d_’l:‘{ = dlan= o o ‘,.";, .oda =0
db” ot " AR (127)
and also
Ay = 0 3 My~ Tigy = Ty =0
(128)

Also from (114) we conclude that (128) remains valid for all [ .
Thus the problem considered is the evolution of a pressureless
nonrotating system and is identical with the onme considered

by Lin et al. (1965 == Paper II),From (116) we also obtain

129
XL =0 or C’L::OV ( )

and hence equations (119) reduce to

i
!

p—“
o
>
o

r-r
x
W e
L
e
¥

(130)

Tl
LR
i
1
5 ;u
bl .
a1
>
[
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These relations it will be noted are identical with those

of Paper Il except for multiplyihg factors.

Resulits:

The results of mumerical integration of equations (130)

for various initial values of initial eccentricity

- r i . s ' )"'.-
\j_ ‘j(’ (Q_;;l\}h\..l) at L"'O) (131)

are presented in tigures 4 and 5.

In the spherical case these results are identical with

the analytical solution (equation 84 with Q = =1)

v e ) Nl
=1 [Ja,(a--u:) + 0 e («ﬁh") l
Ve (132)

In the spheronidal case, proceeding in a fashion similaxr

to that in Paper II we can obtain an approximate series solution:
o, = cost e

= L R DS B T O B T (L B ‘-"m;zﬁa'j}
= - ANC N NN Y (INT S B : A8 ‘
"40 ,L .- - AW [ 2

() . (133)
“.jj

v {»‘,’ (J) } \:-' -
§ =0 o= R e bty Lot Ty lrane

where the various coetficients are given by the following

sequence of relations
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AY = ST Sty

o o ot

rn) U‘)
Eoo= .3 3A, -3,
Lot - (134)
t2) () - .
A7 s mET I - e gy
Ju'\' L H--':'””,;. My, ;]
L T 8

() % | f2) {z)
LT o B [Ai-A, E_],

it ;! - 1))
e () & [:.

H

{

..E-‘:) : | &jx)]ﬁ. + 504) ) ‘,'_".'Un ZJZ/Z( 9 I ‘Ma] f}

The values of these coetficients for a few values of Y,

are listed in table 2,
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Table 2

Values for the coefficients in the expansion (133)

- N & %;: £ ém) _%x
0.9 1.826 0,200 0.316 -0.851 0,050

0.5 1.556 0.063 0,707 ~0,356 0,039
0.0 1414 0,0 1,0 0.0 0,033
~0.5 1.327 ~0,035 1.225 0,267 0,030
=0.9 1.276 ~0,062 1.378 O, 4h7 0,025

It is found that the series solution (equation 133) is

in very good agreement with the results of numerical integration.

It is seen from ' figure 4 that the smaller axis always
collapses to a point., In the case of spherical systems the
collapse occurs in timeTT/:{i. The Qollapse time is gggéter

atey
than this value for oblate spheroids while it is i:s; than this
value for prolate omes. The coilapse is accompanied by an
enhancement in the asphericity of the system (Figure 5). Thus
as a result an oblate spheroid approaches a thin disc whereas
a prolate one approaches a spindle shape. These results are

in qualitative agreement with those of chapter 3 but disagree

in quantitative details.
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The evolution of homogeneous spheroidal cluster with
anisotropic velocity distribution and zero initial kinetic

energy. The figure depicts the behaviour of the two

semiaxes Q, and 03 with respect to time measured in

the units given by equation (121).

The curves are labelled
by the values of O%

to which they belong.
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Figure 5,
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The evolution of homogeneous spheroidal clusters

with anisotropic velocity distribution and zero initial
kinetic energy. The ordinate Yy is a measure of the
eccentricity (e®) positive for oblate spheroids and
negative for prolate onés. The abscissa measures time
in the units given by equation (121), The curves

are labelled by the values of *\‘/o to which they belong.
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Both kinematic and dynamic effects are involved in the
above process (cf. Binney 1980). The kinematic effect is
that if during a collapse both short and long axes are shrink-
ing at the same pace, the short axis will go to zero before
the long one, thus causing the flattening to increase without
limit, The dynamical effect, which Binmey calls “self-tidal
distortion", is due to the fact that the shortest axis is
subject to the greatest acceleration towards the centre, As
a result it collapses faster than the longer axis leading

to even further enhancements in asphericity.

However if the initial pressure is even slightly nonzero,
it follows from equation (116) that even for a collisionless
system the pressure increases as the system contracts and this
in turn will stop the collapse. We study such systems in the

next section.

14 Systems with negative total energies

We now study systems with a.given initial eccentricity Y,
and a negative total energy £ . We further assume that the
velocity distribution is initially (1oca11y) isotropic so that

Ky = Kar = K at b=o.

)

(135)
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Note that the assumption is made only at the initial instant
and not throughout the evolution as in chapter 3, -We further
assume that the initial kinetic energy of mass motions is

zero i.e.
at t".‘.o ”1,"1 - ”,:n:{ = T‘E‘: 0 (136)

and Ay = O (137)

so that the entire kinetic energy is in the form of pressure
energy initially. By the law of conservation of angular
momentum (equation 41) A< remains zero as the system evolves

wvhile (112) yields

(138)

For a system with total emnergy [

-

and initial eccentricity

y, we obtain as using the relations (111) (120) (135) and {138)

C; - 4. [C\’ + 5«(‘ ‘Jc\).{'"

(139)
C"b '-:(!"‘ .L) <o
where
Q= /1] ith N - - B (150)

o' is the potential energy of a sphere of unit radius.
Equations (123) have been integrated for Q = -0,25, =0.50
and ~-0,75 for various values of 3  making use of the relations

(139), and the results are presented below,
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Results:

Consider first the case of Q = ~0.75 (figures 6 & 7).
For all the cases of Yy, considered K, < lH“[ initially

and hence the (1, axis contracts. This contraction is
accompanied by an increase in the pressure, which causes

the system to expénd once again, These oscillations have a
period P:x]T/[Jﬁ'C«Qij}tkwﬁ . The amplitude of the oscilla-
tion increases with decreasing Y, . In the spherical case
the behaviour is identical with that given by the analytical
solution (equation 84). The eccentricity 1§ (figure 7) also
decreases initially. At about %P however there is a steep
rise and a fall after which the system slowly returns to Y& U,.
The system does not however in general return to the exact
initial conditions after a cycle; the only exception is when

the system is spherical, Y, </ .

In the case when Q = -0.25 (figures 8 & 9), K. ~ iy
initially for all the cases considered and the o; axis expands
and then contracts in a period FR LJ """" {~ &) h O
In this case the amplitude increases with increasing !,

The eccentricity ! once again shows a double-wave behaviour

over the same period,

The case when Q =-0,50 (figures 10, 11) is that of
equilibrium when U», w 0. When Y, ”fv- @ however the (, axis
oscillates with a peried P i TI/[¥a (- Q):/RJ 2 &5 while
the eccentricity shows a double~wave behaviour, over approximately

the same period,
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The evolution of homogeneous spheroidal clusters with
anisotropic velocity distribution and negative total
energies, Case Q@ = =0,75. 7The figure depicts the
behaviour of the radius O; of the equitorial section
with respect to time measured in the units given by
equation (121)., The curves are labelled by the values
ol VQ to which they belong.
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Figure 7.
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The evolution of homogeneous spheroidal clusters with

anisotropic velocity distribution and negative total
energy. Case Q ==0.75. 7The ordinate Y is a measure
positive for oblate spheroids and
The abscissa measures time
The curves are

of the eccentricity,
negative for prolate ones.
in the units given by equation (121 e

labelled by the values of yo to which they belong.
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Figure 8., The evolution of homogeneous spheroidal clusters
with anisotropic velocity distribution and negative
total energy. Case Q = =0,25, The curves depict
the behaviour of the semiaxis Q, with time in the

same units as figure 6.
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Figure 9.

The evolution of homogeneous spheroidal clusters with

anisotropic velocity distribution and negative total

energies,

behaviour of thie eccentricity N

Case Q = =0,25,

same units as figure 7.

The curves depict the
with time in the
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Figure 10. The evolutiion of homogeneous spheroidal clusters

with anisotropic velocity distribution and negative
total energies. Case Q = =0,50. The curves depict
tlie behaviour of the semlaxis q; with time in

the same units as figure 6.
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t
Figure 11, The evolution of homogeneous spheroidal clusters with

anisotropic velocity distribution and negative total
enerpgies, Case Q = ~0,50, The curves depict the
behaviour of the ecceutricity Y with time in the

same unlts as figure 7.



66

In general when the total energy is negative, i.e. QLD
the O, axis execﬁtes tinite amplitude oscillation of period
P'::TT,*'[J';T (-a)*] + The eccentricity also shows a
double~wvave behaviour over this period, These results should
be compared with those of chapter 3, where the velocity
distribution has been assumed to be isotropic.

In the aniso-

tropic case the amplitude of the oseillation in @, depends
upon Y, , whereas in the isotropic case it is independent
of Yo . Secomndly,:Y shows a double-wave bebaviour, Also,

though Y oscillates, the syétem does not go from oblate to

prolate oxr from prolate to oblate as in the isotropic velocity

cage.

15, Systems with positive total energiest

We now consider systems with a given initial eccentricity
Y, and a positive total emergy F . Equations (123) have been
integrated for ( * /1y = 0, 0.5 and 1.0 and the results

are illustrated in figures (12) and (13).

Tt is seen from figure 12 that systems with positive
energies expand and are eventually dispersed, systems with
l&rggr energies expanding faster. When Y,= 0, the behaviour
is identical with the amalytical solution (equations 82 and 83)e
For the same Q, the more oblate the system (i.e. the greater
the Yo ) the faster it expands. The expansion is inmitially

accompanied by & rapid drop. in the eccentricity (figure 13),



3.0

8.0

+0.90

Pigure 12,

4.0 6.0 8.0

Phe evolution of liomogeneous spheroidal clusters

with anisotropic velocity distribution and positive
totul energies., The curves depict the behaviour
of the semiaxis Q, with time in the same units
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Figure 13.

2.0 40 6-0 8-0 10.0

The evolution of homogeneous spheroidal clusters

with auisotropic velocity distribution and positive
total energies. The curves depict the behaviour

ot the eccentraicity Yy with time in the same units
as rigure b, The curves are labelled by the values of
Q and Y, to which they belong.



i.e. both oblate and prolate system become more spherical,
The eccentricity then tends to a finite limit, The results
are in general agreement with those of Paper I and chapter 3,
However in the case of anisotropic velocity distributions,
an oblate (prolate) system remains oblate (p;-olate), unlike

in the isotropic case where the eccentricity may change sign

(Paper I).

16. Heterogeneous spheroids:

We now consider heterogeneous spheroids with demsity

distribution of the form (equation 49)

Ly
} *

~

e

poey = g [1- ¥ 2

KTy

-t

(141)

We assume that the form of the distribution tunction continues
to be maintained as the system evolves, i.e. ¥ is independent
of time., Choosing our units of mass, length and time such

that (cf. equation 87)

= = ab bro) ., & MG =20, 142)
M ‘ b) a; | {" ) ] Qp(“p} (

we obtain (cf. equations 54 and 55)

I}
Iy o= -é— a3 4)(») ; Ty, = -é— ay ¢,

(143)
Nn

1]

10 1S a

-2 1L Pf, ek Y H0GlAg
Ay

e o
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Substituting these expressioms in (119) and making use of

the fact that 3 and hence 4)(';:«) is independent of time

we obtain

p-lo
o
)
o
w

d t? 24} 2

‘ijﬁ& = ...C..ih - 3
Ed 2 a8 4

where

¢, = . .ff; P

L A
Cl, {"3
(144)
bk
—z s 0y
at
(145)

Equations’ (144) are identical with equatioms (123) and hence

the results of the earliexr sections also apply to hetero-

geneous spheroids,
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CHAPTER 5

TIDAL INTERACTIONS BETWEEN STELLAR SYSTEMS IN

HYPERBOLIC ENCOUNTERS

17. Imntroductions

Spitzer (1958) studied the changes in the energy of a
galactic star cluster in a hyperbolic encounter with a passing
interstellar gas cloud assuming that the stars in the cluster
remain stationary during the encounter (the impulsive approxi-
mation). Since then this approximation has been used by
several workers to study energy changes in spherical galaxies
due to a passing perturber (cf. Alladin & Narasimban 1982 for
a review). Gerhard & Fall (1983) using a version of the
tensor virial equation for a plane stratified gravitational
system, and the impulsive approximation, studied the energy

changes on disc galaxies due to tidal interactioms,

In this chapter we use tensor virial equations to obtain
the change that arise in the energy of a spheroidal stellar
system as a result of an impulsive tidal interaction. We also
use these equations to obtain the angular momentum transfered

to the system as a result of such an encounter.

18 Basic equations:
We consider a spheroidal stellar system with the axes
a; = Qg and Q3 , of mass M and demnsity distribution of

the form (cf. equation 49)
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R
2
p(x):p{x—i'xp] (146)
3 ":{;, 2
: p=1 b
where D is nonnegative parameter, and the coordinmates

Xi are with respect to a cartesian frame of reference with
origin at the centre of the spheroid and oriented along the

body axes.

We assume that the system is initially in steady state

so0 that
a ) N
C_i:.;..:FJ = .'U.L..I_‘J =0
ot at (147)

where the superscripts (:i.) imply that they are the initial
values of the quantities i.e. before the encounter, From the
equations (31) and (39) it follows that

(i) o
Li.;_] + o(:jjl =0

(148)
[y i
Kig r - é Nij) .

We now consider a perturber of mass M' rushing past the
system in a straight line with a velocity V and a pericentric
distance ﬁs . Without loss of generality we can choose our

X,- axis such that b lies in the X -Xj pFLane. We denote
by & the polar angle of [b , while ‘Y is the angle Vv
makes with respect to the X, -X; plane (figure 14). It follawé
that :
sine ~Cosy CO56
ﬁg: 0 ) <>: Siny .) (148)
coso cosy sine
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Pigure 1. Coordinate systel used to study encounter.
Tue eguitoriaul plume of the spheroid is the X, = Xy

plane while p lies in the X, - X3 plane and

has an azimuthal angle O . The velocity vector
v o is perpendicular to P

angle \J with the X,=~ X3 plane.

and makes an
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Fas
where m and % are the unit vectors in the directions

of [P and V¥ respectively. Note that

p-v =0
(150)

as is required by the assumption that the perturber moves

along a straight line,

Assuming that ﬂ) is large so that the tidal forces on a
star can be approximated to the first order in X/ p
where X is the position vector of the star, the change in
velocity of the star as a result of the encounter is (cf.

Gerhard & Fall 1983)

3
Auw(gﬁfﬂ"[ T oAb b o+ 00,) x ——x-]
| VP“*/ s ( F(.F A P) b i (151)

In the impulsive approximation, the stars remain motion-
less during the encounter and hence the moment of inertia and
potential energy tensors remain unchanged, i.e.

T (v 2 {e)
L] = i
tc i

Nq).r fo’

where the superscript (o) is used to indicabe the values of

the quantities immediately after the encounter. As a result

of the change in velocity (equation 151) the momentum and

kinetic emergy tensors change however, The change in the

momentum tensor is given by
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o)
aly = L IL,_) ff(é/,) UL X; dZ
=26 )| (2B b« 08,)T,; - 10
(VPQ)[‘EQ( F‘h l-) bJ J
=(a_,€3.£1f)[g_. Mad (1 y 8 ) doillen b v 08) 8] %)
O -

on making use of equation (151), and the expression (cf. equa-

tion 54)

Iy = . Ma} (1-y fia) P(v) &
5
(153)

The value of the kinetic energy tensor after the encounter

is

K L‘]

u

f)c( WP auf U+ awy) dz

t

KLJ +_.jf(utaulruj auh)dzj» J}AMLARJJZ (154)

Hence the change in the kinetic emnergy tensor, on using equa-

tion (151), becomes

’ A A ~ LL) t
A KLJ = —i— (.3._@.1.[:1- [g}(&%Pp"‘ VJOP)‘L P "' E: aP ”b'r V[ Vp)ﬁ;)}, L)J+ J:J,L)J ’

VR

4 ) - "
+2 faery 2 AN EY N R VRY )I‘ (155)
;z( v‘p'a [:[:a.( BBk D8 L

_ S (Q;?_L;? + ¥ ?)IPJ P}>+VJ PI(“‘f‘IL‘D
> akb, J
'
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Contracting this expression and making use of the expression

(148), (150) and (153) it follow that the change in the total

kinetic energy is

if

AK (.ecm [I"" -5 00, I

vV PQ‘ Pt

]

_L, QGI“T (H“t ¢(L)) - \4(!_ §§)J (156)

\ \ P
Since there is no change in the potential energy as a

result of the encounter (equation 152) the total change in

energy ALt AK and hence using equation, (156) we obtain

AE = ,‘ : ,}(XMC\; ¢(:u)[ s y (1~ cashy sin*e}] (157)

For a spherical system with the density distribution of
the form given by equation (146), the mean square radius

is given by

R s

e [,D(x yixldx = 2 dl gw)
I'T v 5 (158)

and in this case equation (157) reduces to the formula of Spitzer

(1958 equation 9)

HE = LM (é_lﬁz. H’ )~ R “"'c“L
v B

L]
Lo d

(159)
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From equation (152) and the definition of the angular
momentum (equation 24), we obtain, for the change in

angular momentum as a result of the encounter, the expression

5} i) \:é. : .
DAz N = AL = 2L € A
Ly |
= faaa N/ N IPLI L N ~
{%ffﬁu){.%.//a,‘ﬁzw)) y L KW ckzgcaFiF;+ g@)} (160)
VR - e=

or explicitly, using equation (149),
- / L \',[I } ¢ . ""r"i‘ ' .

v
N\ e I'd

»

¢ co ! . ».’3 _“w'l , . ’\"
LNy = (;':_;J—! >(”l.‘ R 4’("),/' I PRV }

vaELSE (161)
A,\3 WD

with

jci(\{ij(-)) = .»‘;u'[' VA o chli e

fn(%f‘) T OOLE LInE (s Sl oy ) (162)

The net angular momentum transfered to the system as a

result of the encounter is

, o o . . -t ‘/2.
AN = ( 1,’\(_,_L Sl ey ‘} 3?,"1 {, )

(163)

The angular momentum vector lies on the aquitorial (the Xp= X )

plane and its azimuthal angle is given by

@ = Tan™ (:L\’ (164)
/

!
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19 Changes in energy and angular momentum:

From equation (157) it is seen that the energy transfered,

Lk, varies

(1) directly as the mass M of the system,

(2) directly as the square of the equitorial radius A

(3) directly as the square of the mass M' of the perturber,

(4) inversely as the square of the speed V of the
pexturber,

(5) inversely as the fourth power of the impact parameter P,

(6) inversely as the density parameter Y , i.e. decreases

with increasing central oconcentration.

These results are identical with those of Spitzer (1958) for a

spherical system.,

From equation (162) it follows that the angular momentum
transfered, A .\ , varies

(1) directly as the mass M of the system,

(2) directly as the square of the equitorial radius ¢, ,

(3) directly as the mass of the perturber MY,

(4) dinversely as the speed YV of the perturber,

(5) inversely as the square of the il:;:pact parameter p,

(6) inversely as the density parameter 3 , i.e. decreases

with increasing central concentration.
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The angular depedence of , Af is given by the function

=ty [} - Cn:)',fn/ :“.'Li):"f') }
2 . {16%)

and that of AN by the function

(.

s e { Sy eesy s g ) (156)
These functions are graphically illustrated in figures (15) and

(16) and a few important cases we listed in table 3.

It is seen that /.- has the maximum value when the
collision is perpendicular to the equatorial plane by:xf/ 9::701)
and this value is independemnt of the eccentricity of the ellipsoid,
For other orientations of the collision A [ is less than this
value for oblate spheroids and greater than this value for
prolate ones., Thus the eﬁergy transferred is greater for a
sphere than for a disc, and greater for a spindle shaped

galaxy than for a sphere,

No angular momentum is transferred when the perturber
mover perpendicular to the equatorial plane. Encounters
with other orientations produce in the stellar system a rotation
about an axis lying in the equatorial plane., If the resultant
rotation is differential it would result in the formation of

wvarps in disc shaped galaxies.

Note that no rotations in the equatorial plane of the
system are produced as a result of an impulsive encounter,
However N~body simulations by Miller (1984) indicate that such

rotations may also result from galactic interactioms.
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Figure 15.

30 60 S0 120 150 180

The variation of AE with orientation of [p
and ¥ . The oxrdinate change in energy |
given by equation 165, while the abscissa

is the angle © defined in figurel 14,

The curves are labelled by the angle \F
(defined in figure 14).and the Y, to which

they belong.
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Figure 16. “The variation of Anwith orientation of b and V¥V .
The ordinate is the function given by equation (166)
while the abscissa and labels are as in figure; 1'5.
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Figure 17.
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The variation of A)M, and A Ny with the orientation

of’ |p and V¥V . The curves depict the behaviour

of the function f and f, defined by equation (162).

The abscissa and labels are as in figure 15.
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CHAPTER 6
CONCLUSIONS

20 Summary

The tensor virial equations have been developed and
used by Chandrasekhar and co-workers to study the equilibrium
figures of rotating gas clouds (cf. Chandrasekhar 1969),

In recenil years these equations have been used to study the
equilibrium form of ellipsoidal galaxies (Bimmey 1982).

This technique has been extremely useful in explaining the
recent observations regarding the shapes and velocity aniso-

tropies in elliptical galaxies,

It has been suggested by Chandrasekhar and Elbert (1972)
that the tensor virilal equations can be used to study the
dynamical evolution of stellar systems, They also outline
some elementary applications of this technique, In this thesis
we develop tlie necessary equations and apply them to other

problems in stellar dyanmics,

The usual procedure adopted to obtain the virial equations
is the following (Binney 1982): One first obtains the Jeans
(or nydrodynamical) equations by integrating the Boltzmann's
equation., The virial equations are then obtaimned by taking
the moments of these equations. The equations thus derived are
valid only for systems that satisfy the familiar Boltzmann's
equation, namely, isolated systems observed from an ine?ti%i,
frame of reference. When other dynamical problems are coh&
sidered one will have to repeat the analysis starting from

first principles.
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In chapter 2 of this work we suggest an alternative
approach for obtaining the virial equations from purely
kinematical considerations, We begin by assuming that the
system is collisionless and hence treat the phase-space
distribution for the system as a c;ntinuous Fluid described
by a distribution function f(x,wvt). The various tensors
required are then defined in terms of the distribution
function, The virial equations are obtained by taking the
moments of the six dimensional equati&n of continuity that
the distribution function must satisfy. The virials in these
expressions are expressed in terms of the acceleration field

5L . Being purely kinematical these relations are valid
for any (collisionless) stellar system, isolated or non-
isolated, and as observed from an inertial ox a.non—insrtial
frame of reference, When different dynamical problems are
considered we can obtain the required relations by merely
substituting for the acceleration, the forces that act on the

system,

In the same chapter we also develop a relation for the
rate of change of the kinetic energy tensor, This relation
is the tensor amalogue of the law of emergy conservation,
and is of use when the tensor virial equations are employed
to study the dynamical evolution of stellar systems. In the
final section of this chapter we use the results of Roberts’
(1962) to obtain expressions for the various tensors for a

heterogeneous ellipsoid,
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In an appendix to chapter 2 we also obtain by the same
technique the Jeans (or hydrodynamical)equations of various
orders., Besides the familiar equations of continuity and
motion we also obtain an equation which is related to the
heat transfer equation of statistical mechanies. The various
macroscopic equations discussed above are shown to be moments
of these equations, In particular the equation for the rate
of change of the kinetic energy tensor is obtained by taking
the zeroth order.moment of equation of heat transfer. In
later chapters, use is made of the virial equations of the
order two only. However in another appendix to chapter 2,

the virial equation of orders 3 and 4 are obtained for com-

pleteness,

In chapter 3 we reexamine the problem considered by
Chandrasekhar & Elbert (1972) of a homogeneous spheroidal
cluster with velocity distributions that always remain isotropic.
such systems are not in equilibrium, We show that the equations
of Chandrsekhar & Elbert can be used only when the energy
is positive., We derive the equations and solve them for
various megative values of the total energy and various
eccentricities., We show that such systems execute finite
amplitude oscillations both in size and between prolate and
oblate shapes., We then extend this amalysis to heterogeggous
clusfers and show that the period of the escillation is
independent of the central concentration and depends oniy on

the total energy of the system. As expected heterogeneous



systems with positive energies expand and are eventually
dispersed, The expansion is accompanied by a decrease in

the asphericity of the system.,

In chapter 4 we relax the assumption that the velocity
distribution always remains isotropic and comsider systems
in which this is true only initially. The equations derived
reduce, in the case when the initial kinetic energy to zero,
to those of Lin et al (196%) who study the collapse of a
pressureless gas cloud. In this case the collapse of the
system 1s accompanied by an increase in the preolateness or
oblateness. When the initial kinetic energy is non-~zero,
the initial pressure is nonzero and this pressure increases
as the system collapses, This stops the collapse and as a
result the system executes finite amplitude oscillations
both in size and eccentricity just as in chapter 3. However
a reversal from oblate to prolate or prolate to oblate
shapes as seen in chapter 3 is not observed,Systems. with
positive energies expand and are eventually dispersed.

The initial expansion is accompanied by a sharp decrease in

the eccentricity which then tends towards a finite value,

Tn chapter 5 we extend the work of Spitzer (1958) and
employ the temsor virial equations to study the ehanges in
the energy of a spheroidal cluster as & result of an impulsive
interaction with a passing pexturber. Besides the familiar
dependence of the energy change on the impact parameter and

velocity of the perturber (cf. Spitzer 1958 ) we show that =
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it also depends on the orientation of the encounter,
being a maximum when the orbit of the perturber is
perpendicular to the equatorial plans of the test cluster.
The energy change also increases with increasing prolate-~
ness, being 2 minimum for a disc shaped. system and a

maximum for a spindle shaped system.

When the test cluster is spherical there is no
change in the angular momentum of the system as a result
of an impulsive encounter. In chapter 5 we show however
that such a change could take place in the case of a
spheroidal cluster and tlis change increases with increasing
asphericity of the system. Such a change in angular

momentum could perhaps explain warps found in disc galaxies.

In the next section we will briefly survey certain

other problems that can be studied using this technique.,
21. Other applications of the virial equations:

The equations derived in chapter 2 apply to any stellar
system, We have restricted ourselves to simple dynamical
problems in this work. Several other problems could be

studied using this technique.

It would be of interest to study systems in which
rotation is important. The simplest case would be spherbi&éi
systems rotating about the a; axis. In this case equation
(123) would still apply and could be used to study how the
Presence of a nonzero A\, would effect the dynamical evolution

of the system.



The study of triaxial systems would also be of interest.
In this case the required equations can be obtained using

equation (39) and (42).

Yet another interesting problem that can be studied
using this technigue is the dynamical evolution of a star
cluster moving about the centre of the galaxy. The expres=—
sions for the acceleration of a star in the cluster can be
obtained from Chandrasekhar (1967)ﬂ Equations (35) and (42)
can then be employed to study the evolution of such a cluster.

Evolution of binary galaxies can also be studied in a similar

fashion.

Icke (1973) using a technique similar to that of Lin
et al (1965) has studied the collapse of a spheroidal gas
cloud in an expanding universe, As was pointed out in
chapter 4,Lin et al assumed that the pressure in the system
is zero. The virial technique permits a study of systems
with nonzero pressure and can be used to study the formation
and collapse of galaxies in an expanding universe when the

pressure is non 2ero.

The equuations of chapter 2 apply only to collisiqnless
systems, and are therefore imnappropriate to the study of
small clusters wherein collisions play a major rele. Similar
equations can be set up starting from the Lioville's equation
in 6N~dimensional phase-space and can be used to study the

evolution of star~clusters in which collisions are important.
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