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“Sir Isaac established the rules, Poincaré presented the challanges”.—Victor Szebehely

Abstract. This is a review article on the N-body problem. The development
of the qualitative methods regarding the various topics of Celestial Mechanics
are presented in a systematic way starting from the early researches of the
particular solutions and the new integrals of motion to the recent development on
the existence of periodic orbits, binary formation, escaping, KAM theorem and
Chaos.
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1. Introduction

The basic ideas of N-body problem were published in 1687 by Sir Isaac Newton
in his Principia. The limitations to his work was given later by Henry Poincaré,
who described the non-integrability principle as applicable to problems of three and more
bodies.

The only known analytical solutions of the N-body problem are the Euler and Lagrange
solutions that exist for any number of bodies and any mass ratios. Unfortunately these
solutions are very exceptional. We can also obtain solutions from one another by rotations
and by space-time translations. And the most interesting transformation is the scale
transformation :

If7, (), (i =1, 2, ..., n) is a solution of the N-body problem then k*7, (&%), (i = 1,
2,..., n)is another solution. In this case velocities are given by kv, (¢ /k%), energy integral
by h/k? and angular momentum by kC

The usual.quantative methods, both analytical and numerical, give information about
the dynamical system limited to the solution of interest and to a small vicinity. The accuracy
also decreases and disappears as the time increases.

This drawback'in quantitative methods has resulted in the progress of qualitative
methods. Although they give partial information, yet they are valid for very long

periods of time and generally for all time. We shall deal with these methods in
section 6.
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2. Statement of the N-body problem

To describe the motion of N-bodies which are moving under the Newtonian law of gravitation
is called the N-body problem. In mathematical language it means given the position vector
X, and velocity vector 5?0 at time ¢, to determine the position vector x and velocity vector
X at time ¢ i.e.

x; (¢, to, Xo, Xo)

x

X =% @, to, Xo» Xo) 20

It is quite natural to ask whether for any value of N or for any shape of bodies the
problem has been solved or not. Our answer is both No and Yes. The answer is No because
even for N = 2 we cannot describe the motion in the mathematical form (2.1). And the
answer is Yes, because for N = 2 we agree that the problem has been solved when the bodies
are either point-masses or spherical in shape though strictly not in the mathematical form
(2.1). The well-known solution is (figure 1)

y
P(E),(r,e),(x,y)
r e
K c > x

-~

Figure 1. The two-body problem.
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3. Motion of rigid bodies

Major contributors to this problem are Duboshin (1958-1960), Kondurar (1963-69), Hor
(1967), Holland (1969), Johnson (1969), Kinoshita (1970-1972), Hitzl (1971), Choudhry anc
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Misra (1974), Gaida (1974), Barkin (1975-1979), Bhatnagar (1977-1986), El-Sabouri (1978),
Mavraganis (1979). Duboshin (1958) has given the equations of motion in the form

£ _ou v ou s _ou
m; & = sy = —, my G =—,
agi anl aCl
: du  du sin ¢; , du
Aipi—-B;-C)gr,=[=—~-—cos 91)—1+—-cos¢i,
P ( @ (B\ui o0; sin 8, 06,
. du  du cosd; du .
B;qi-(Ci-Adn i=(———cos Oi)——L——smq)i,
-G P ay; db; sin 6, 09,
. ou
Cirn-Ai-B)pig=—
Di 4 30,
where
N
u=LY U, izk
20k

Ui x =fJ dm; %,

ik
p; = ; sin ¢; sin 6; + 6; cos 0; ,
gi =V; cosd; sin®; — 6; sin o,
r=V,cosb,+ ¢;,i=1,2, ., N=(n+1)
The order of the above equations is 12 (n + 1). These equations cannot be integrated as the

translational and rotational motions are coupled together and in general they cannot be

separated. However 10 classical integrals of motion do exist. In special cases more integrals
may exist.

(1) Rigid bodies are spherical :
‘ Dy g, r,=const,, 1 =0, 1, 2,....., n and u is independent o‘f Euler’s angles.
(ii) Rigid bodies are bodies of revolution
r.=const, i =0, 1, 2, ..., n and u is independent of Euler’s angle 0.

(ii1) A:f etc. neglected in u; where A_is equal to the distance between any element of ith
body and any element of kth body :

In this case translational and rotational motion are independent of each other.

(iv) Stationary Solutions : In the case of two rigid bodies a maximum of 36 stationary
solutions exist (table 1).

(y) Satellite case : This case has been studied in depth by Duboshin (1960). In his paper,
he has studied the problem of the motion of an artificial celestial body revolving
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Table 1

S. No. Nature of rigid No. of stationary Solutions

bodies solutions

1. Both triaxial 36 Lyi =1,2,.,6
(Bhatnagar 1986) j =12,.,6

2. Spheroid, triaxial 18 L; i =1,35
(Bhatnagar 1980) j =12 ..,6

3. Both spheroid 09 Lyi,j =1,35
(Bhatnagar 1972)

4. Spherical, triaxial 06 Lyi =1
(Kinoshita 1972) j =12,.,6

5. Sphere, spheroid 03 L+t ==L, Vi=j
(Kinoshita 1970) i,j =1,375

around a central planet and possessing rotational motion about its centre of inertia.
Under such preassigned assumptions this problem admits simple particular solutions
which serve practical interest. In these particular solutions, called regular motion,
centre of inertia of the body moves around the planet along a circular Keplarian Orbit
and the body preserves an invariable orientation relative to this orbit. Bhatnagar &
Usha (1986) have studied this problem under category (B) and results are given in
tables 1, 2 and 3 of their paper.

(vi) For the theory of the motion of several coupled rigid bodies about a fixed point, the
reader is advised to consult the book by Eugene Leimanis (1965).

4. Three body problem N =3

Major contributors are Euler and Lagrange (1772), Jacobi (1836), Hill (1878), Poincare
(1892-99), Whittaker (1904), Levi-Civita (1904) and Birkhoff (1915). In recent times, a lot
of work on three-body problem has been done by Marchal, Anosova, Hadjidemetriou, Zheng,
Yoshida H. and Yoshida B., Maciejewski, Henrard, Froschle, Lemitre, Nobili, Bhatnagar,
Sharma, Choudhry, Singh, Goldstein, Benest, Heggie, Brumburg, Valtonen, Orlov, Kiseleva
Contopoulos, Aarseth, Alladin, Miller, Wisdom, Message, Kovalevsky, Jupp, Deprit, Garfinkal,
Chazy, Giacaglia, Jefferys, Sundman etc. Chapters in books on Celestial Mechanics by
Plummer (1918), Charlier (1907), Moulton (1914), Brouwer-Clemence (1961), Danby (1962),
Mccuskey (1963), Pars (1965), Pollard (1966), Szebehely (1967), Tapley & Szebehely (1973)
give lot of information about three-body problem. There is a comprehensive review paper
on the three-body problem by Valtonen (1988).

4.1. Classifications of motions

Tapley & Szebehely (1973) have classified various types of motion and the same has been
reviewed in detail by Bhatnagar (1990). We may state briefly as follows :

3 3
When h > =0, [=eo , h=1L Z m; viz—U = 2 m; ri2 the motion could be
2i=1 i=1
hyperbolic-explosion; hyperbolic or parabolic orbits and hyperbolic-elliptic (binary). When
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h < 0 and I is bounded the motion could be either interplay or ejection or revolution or
periodic. When A .< 0 and I — <o, the motion could be hyperbolic-elliptic (binary) or
parabolic-elliptic (binary).

We may also observe that escape orbits are dense; interplay leads to escape or ejection
and repeated ejection leads to escape.

4.2. Escape conditions

In literature various conditions of escape or ejection are given. One can refer to these
conditions in the book by Tapley & Szebehely (1973) or the paper by Bhatnagar (1990).

4.3, Special solutions

Following are some of the important results regarding 3-body problem :

(a) Lagrang’s solutions : There are five well known Lagrang’s solutions—three collinear
L, (i=1,2,3)and two triangular L (i = 4, 5).

(b) Sundaman result : It states that three-body bounded motions with a non-zero angular
momentum cannot approach a triple collision.

(c) There are first 10 integrals; 6 from the motion of the centre of mass; 3 from angular
momentum and 1 from energy.
(d) Lower bounds of the semi-moment of inertia

3 2
Y, mr
i=1

can be given in terms of the integrals of motion.
(e) Chazy conjectures : Chazy has conjectured several hypothesis for the 3-body problem:
(i) For h > 0,¢ # 0, m, m,, m, (# 0) there exists 49 possible combinations of original
and final evolution. This is true even for large values of 4 and 7. -
(ii) For h < 0,c¢ # O there are nine possible modes of evolution including two oscillatory
types.
Chazy also conjuctured that 2 < O the motions of exchange type are impossible. The
alternative to this conjecture is the existence of a complex cantor set structure for the

1 =

Table 2
Three-body problem—final evolutions Conditions on Evolutions
< (angular of R (= sup ru)
momentum) or and r (= inf rh)
Class Type h (energy)*
Singular type Triple collision at ¢, c=0 Rand r ~(¢, — )**
Hyperbolic Hyperbolic type h>0 r~t
expansions Hyper-parabolic type h>0 R~t,r~m
Hyper-elliptic type h><0 r bounded
Parabolic Tri-parabolic type h=0 R~A r~#
expansions Para-elliptic type h<0 r bounded
Sub-parabolic Bounded type h<0 O<b <r<R<B< e
lim Sup R = o
Types Oscillatory type I h <0 Lim Inf R < e, r bounded
Oscillatory type II h<0 R bounded, Lt r inf = 0
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exchange motions. The second Chazy conjecture was challenged by (Schmidt 1947; Khilme
1961; Alexeev 1956) and a numerical example presented by Alexeev remained inconclusive.
However Szebehely (1975) computed a simple and symmetrical exchange motion for the
masses m, = 1, m, =m, = 2. The second Chazy conjecture remains partially true. According
to Marchal (1988) the final evolution of the three-body problem have been classified by
Chazy in 1922 with some minor improvements (table 2).

5. Restricted three-body problem

Statement : Two bodies revolve around their centre of mass in circular orbits under the
influence of their mutual gravitational attraction and a third body (attracted by the previous
two but not influencing their motion) moves in the plane defined by the two revolving
bodies. The restricted problem of three bodies is to describe the motion of the third body.

Euler was the first to contribute towards the restricted problem in 1772 in connection
with his Lunar Theories. His main contribution was the introduction of a synodic (rotating)
co-ordinate system resulting in what is called the Jacobi integral which was discovered by
Jacobi (1836). Implications of this integral are numerous. It determines the regions of motion.
Its application to Celestial Mechanics was first made by Hill (1878). Poincare and Birkhoff
are the pioneers in the qualitative methods of dynamics. Poincare’s.famous work in three
volumes ‘Methodes Nouvelles’ completed in 1899 was so new and origional that many of
its implications are still not clear. We give below some of the important results in regard to
the restricted problem.

(1) Stationary solutions : There are five well known Lagrangian’s solutions. Three
collinear and two triangular

(ii) Jacobi integral : The problem has a well known Jacobi integral

vi=2Q — ¢
where v is the speed of the infinitesimal mass and
l-p . p
—1 2 2 i ol
Q=1 *+y)+ - "
(iii) Curves of zero-velocity : (a) Curves of zero velocity are given by 2Q — ¢ = 0. They

are shown in figure 2, for ¢, > ¢, > c,. (b) When the infinitesimal mass moves in the vicinity

of either the first primary or the second primary, it cannot escape and is said to have the
"Hill Stability*.
(iv) Sundman inequality : We know the inequality in the form

2
c2+(ﬂ <4IU+h
dt

(a) for h 2 0, the inequality implies IU? 2 - c?h
(b) for h < 0, the inequality implies successively

c2<4l (U + h)
cth 2 4Ih (U + h)

IU? + ¢h 21 (U* + 4Uh + 4h*) =1 (U + 2h)? 2 0.
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These inequalities divide the zone of possible motion into three disconnected parts.
Such disconnection never happens whenever n > 3. This is the major difference between the
three body problem and more than three body problem.

(v) Oscillatory motions : Sitnikov- (1960) has studied the oscillatory motions of type I
in a symmetrical case of the restricted three-body problem. This study can be extended to
general 3-body problem. This type of motion has a measure zero in phase-space, whereas
the oscillatory motion of type II has a positive measure. Hadjidemetriou (1977) has studied
oscillatory motion of type II.

Asymptotic\c|rcl;

Figure 2. Curves of zero velocity in the restricted three-body problem.

6. Forn>=4

Major contributors are Elmabsout (1978, 1987, 1988), Bhatnagar and Monica (1986 a, b),
Palmore (1979), Wintner (1941), Macmillan and Bartky (1932), William (1938), Giacaglia
(1967).

(a) Elambsout (1988) has proved that for n > = 4, the configuration of relative equilibrium,
where the bodies are at the vertices of a regular polygon with n sides, exists if and only if
the masses are equal.

(b) Alexander Ollangren (1988) have studied the five-body problem under
certain conditions. It is observed that there exists 9 stationary solutions. The topology of
equipotential curves in the plane with 9 Lagrang’s points is given in figure 3. They
have observed that the central mass has a stabilizing effect on the motion of the 5th small body.

7. General N-body problem

As already stated, we can determine only 10 classical first integrals, 6 are due to the motion
of the centre of mass, 3 from the angular momentum and 1 from energy. Mathematicians
have been trying their best to find out new integrals but came out only with a negative
theorem.
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Figure 3. Topology of the equipotential curves in the xy-plane.

Theorem : No new integral of motion can be algebraic with respect to the velocities and
arbitrary with respect to position. However partial integrals do exist. For 2 > 0, I (= semi
moment of inertia) has one and only one minimum /_ along the solution of interest.
I_ = const., exists along a solution. This is a true integral of motion. For 4 < 0 this becomes
discontinuous.

Much information has been obtained about the N-body problem through the various
qualitative methods. They give the general information and various other properties which
are given below :

(i) General information

(a) Elambsout (1988) has shown that configuration of relative equilibrium where the N-
bodies submitted to the Newtonian mutual attractions are at the vertices of a regular polygon
with n sides, exists for n > = 4 if and only if the masses are equal.

(b) We have already stated Poincaré conjucture on periodic orbits, Chazy conjectures -
on original and final evolution and conjectures on the measure of oscillatory motions. Now
we give some other main conjectures.

(c) The conjecture regarding Euler solutions. We know if 4 is not known, the bounded
motion have still a lower bound of the semimoment of inertia ‘I’ very near to the limit of
Euler motion.

Conjecture : The elliptic Euler motions give the limit, even in the case of unequal
masses. We consider three given point masses and a given angular momentum. For the
corresponding bounded motion the greatest lower bound of I is I and it is I for elliptic
Euler motions. We know I, 2 I > 0. 9991_. The conjecture is that I = I for all mass ratios
and all angular momenta.

(d) The conjectures on the structure of the set of solutions in phase-space : (d.1)
The periodic orbits and the tori of quasi-periodic orbits are significant for the set of
solutions.
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(d.2) Between these solutions, and for given values of the integrals of motion, the
unbounded gaps are almost filled with open solutions. While the bounded gaps are almost
everywhere filled with’ chaotic solutions dense in the gap.

@ii) Classifications

The classification of final evolution in the case of N-body problem is very complex. Table 3
gives one such classification by Marchel (1988).

Table 3
N-body problem—final evolutions

Triple or multiple collision R - R,: 7 — 0

Singular types Infinite expansion in a bounded R — oo; r — 0
intérval of time

Super-hyperbolic expansion R/t — oo, r = 0

Hyperbolic expansions All;J =XJ + O (i%); 2 to n subsystems; R ~ ¢

n-parabolic type 2 = 0; R and r ~ %°

Parabolic and parabolic types, h<O
sub-parabolic types clusters, bounded R = 0(*%)
types, oscillatory r bounded
types elc...

The ergodic theorem (Halmos 1958; Marchal 1977) leads to another classification of the
solutions.

(a) The open orbits go from infinity, in phase space, to infinity (hyperbolic or parabolic
expansions, collisions, singular motions).

(b) The recurrent orbits have the Poisson stability property : They always come back
an infinite number of times into any vicinity of any past or future state and have thus
identical original and final evolutions without expansion to infinity.

(c) The abnormal orbits : These informations are of course insufficient for a complete
determination of the relations between original and final evolutions of given solutions.

(iii) Periodic orbits

We all are familiar with the famous statement of Poincaré regarding periodic orbits—*“The
periodic orbits are our best opportunity for the understanding of the three body problem”.
This conjecture can be extended to N-body problem. Hadjidemetriou (1988) has presented
an exhaustive review of periodic orbits which are of interest to Dynamical Astronomy and
their relation to actual systems.

According to Marchel periodic orbits have many advantages :

(a) Their existence can be rigorously demonstrated.

(b) They can be computed with any given accuracy.

(c) The knowledge of one period gives the full knowledge of the solution.
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(d) The families of periodic orbits are easy to follow step by step by the method of
analytical continuation and they are connected to each other by the phenomenon of ‘branching’.

(e) The unstable periodic orbits are the limit of asymptotic orbits while most of the first
order stable periodic orbits are, according to the Kolmogorov-Arnold-Moser theorem,
surrounded by families of tori of quasi-periodic orbits.

(f) The most interesting feature of periodic orbits remains the still undemonstrated
“Poincaré conjucture” : the periodic orbits are certainly dense in the set of bounded orbits,
they are thus a very efficient means of “exploration’.

Besides these according to Hadjidemetriou we have the following advantages :

(a) It is a very useful tool for the study of non-integrable dynamical system, because
they determine critically the structure of phase-space.

(b) The study of periodic orbits which are close to actual motions plays an important
role in the understanding of the general properties of such a system.

(c) The study of periodic orbits improves our knowledge as to why some resonant
motions are stable and attract motion in their vicinity, and why some resonances are avoided
(as in the case of the distribution of asteroids) ?

(d) The study of periodic orbit enables us to know more about the relations between
resonance and unstability, non-integrability and unstability.

(e) Through the study of periodic orbits, one can understand the role of other forces
(i.e. drag, tidal etc.) besides gravitational forces.

For a review of periodic orbits of the general N-body problem see Hadjidemetriou
(1981, 1984). Other studies regarding periodic orbits may be seen in Hadjidemetriou (1975
a, b), Broucke (1975), Henon (1974).

Periodic orbits in barred galaxies have been also computed by Contopoulos and
Papayanopoulos (1980), Contopoulos [1981 (b)], Papayanompoulos and Petrou (1983),
Contopoulos (1980), Van Albada and Saunders (1983), Pfenniger (1984), Athanassoula
et al. (1983) and Barbanis (1984). Periodic orbits with the characteristic of collision has
been studied by Bhatnagar (1969, 1971, 1972). Szebehely’s (1967) famous book gives a
fairly good idea about the periodic orbits. Poincaré has shown the existence of three kinds
of periodic orbits :

(a) e =0, i =0, e = eccentricity, i = inclination of the orbital plane.

(b)e=0,i#0.

(c)e=#0,i=%0.

(iv) Singularities and regularization

Major contributors to the problem of regularization are Thiele (1892), Painleve (1897), Levi-
Civita (1903), Burrau (1906), Sundaman (1912), Plummer (1914), Birkhoff (1915), Murnaghan
(1936), Szebehely (1952), Lemaitre (1955), Deprit and Delie (1962), Deprit (1963), Szebehely
(1967), Bhatnagar (1972) and many others.

Whenever there is a collision of two particles the force acting between particles
approaches infinity as the distance between particles approaches zero. Therefore at collision
equations of motion show singularities. The regularization of the equations of motion, thus,
becomes essential.

The regularization of the solution at collision can always be accomplished by introducing
the eccentric anomaly since the collision of two bodies in any problem can be regularized
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in this way. Szebehely (1967) has dedicated a full chapter on regularization in_his book
‘Theory of Orbits’. In some problems two or more singularities are required to be regularized
simultaneously. Transformations which regularize two or more singularities simultaneously
are called global regularization. In the famous problem of Trojan asteroids, both
Garfinkal (1970-74) and Bhatnagar and Beena (1993) have been able to regularize only one
singularity and it is conjectured that the second singularity caninot be reguiarized
simultaneously. In order to remove the singularity, new dependent and independent variables
are introduced : '

§ = flw), dt/dt = g (w).

The selection of f and g depends upon various considerations. The underlying principle is
to slow down the phenomenon by stretching the time scaie so that the approach of the actual
velocity to infinity can be handled.

The- Levi-Civita (1903) transformation is rarely used except in the restricted three-
body problem. An implementation for the planar three-body problem has been described by
Huang and Innanen (1983 b). Levi-Civita transformation of 2D has been extended to 3D by
Bhatnagar (1972), but this has a limited application as & the third co-ordinate has been
taken to the order of u the mass parameter. The generalization of Levi-Civita trans-
formation to 3D is not possible. This difficulty has been overcome by thé: famous KS
transformation (1964) by a formulation in 4D which contains a redundancy condition.
An example of a general two body regularization without co-ordinate transformation has
been described independently by Burdet (1967) and Heggie (1973). Sharma (1984) has
very successfully used KS transformation for studying the effects of Air-drag and
oblateness of earth on the motion of a satellite. Bettis and Szebehely (1972) have studied
some of the fundamental properties of the KS transformation. The KS transformation has
also been used by Peter [1968(a), 1968(b)] in the general three-body problem. A more
recent implementation of KS regularization for the general N-body problem employs an
improved version of the FP4 integration method, including energy stabilization (Aarseth
1985).

Multiple regularization : Waldvogal (1972) has used global transformation for the
planar problem with three non-zero mass points. The works of Zare and Szebehely (1975)
and Alexander (1986) are noteworthy. The regularization method for the N-body problem is
given by Heggie (1974). This beautiful formation uses KS regularization between each
particle pair and requires a total of 4N (N — 1) + 1 egs. in the local centre of mass frame.
The main advantage of global transformation is that no switching is needed and thus loss of
accuracy is avoided. Aarseth (1988) has given a review on integration methods for small N-
body systems (N < 25). Among the special methods described in some detail are two-body
regularization and multiple regularization. Besides this, a new general purpose code for
perturbed regularization is presented. -

(v) Stability

We come across the question of stability in regard to properties of singular points as well
as those of limit cycles for the former, the stability concerns the equalibrium; for the latter
it relates to stationary motion on a limit cycle.
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Definition : Singular point—Consider autonomous systems of two first-order equations

x = P(x, y)

y =0 (x, »)

A point (x,, y,) for which P (x,, y,) = Q (x,2y,) = 0 is called a singular point.
Definition : Limit cycle—The Qiffcrential equations

x. =P(x: )’), y' = Q(xl )’)

admit occasionally special solutions represented by closed curves in the phase plane which
we call limit cycles—a limit cycle is a closed trajectory such that no trajectory sufficiently
near it is also closed (figure 4).

\

2 =

Figure 4. Limit cycles.

But in general we are interested in variational equations of Poincaré and direct method
of Liapounov on stability. We now define most important types of stability:
(a) Suppose U(¢) is a solution of

x =f(tx,.,x)i=12 ..,n

U, (o) is said to be stable if, given € > 0 and ¢, 3 n = N(g, t))> any solution v(r) for which
lu, () — v, (¢l < M satisfies lu () —v(D)l <e V't > ¢,

(b) Asymptotic stability : If u(?) is stable and in addition lu(t) — v()l — 0 as ¢t — oo
then u(¢) is said to be asymptotically stable.

(c) Orbital stability : Suppose C is an orbit. C is said to be orbitally stable if given
€>0,dn >0>3if R is a representative point of another trajectory which is within a distance
n of C at time T then R remains within a distance € of C at time ¢ > T.

(d) Asymptotic orbital stability : If C is orbitally stable and in addition the
distance between R and C — 0 as t — o< it is said to be asymptotically orbitally
stable. Orbital stability requires only that the orbits C and C' (closed trajectories)
remain near each other whereas stability of motion (or of the solution) requires that in
addition, the representative points R and R' (on C and C' respectively) should also
remain close to each other. The analytic approach to the theory of stability is developed
from the variational equations. Various methods have been developed to reduce variational
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C

Figure 5. Orbital stability — stability of motion.

systems based on differential equation with periodic coefficients to those based on the
differential equation with constant coefficients or which is the same, on the constant solution.

The variational equation of an autonomous system based on a constant solution is of
the form

n
xi=2ai_|x_]) i=112""9n‘1
j=1

where a, are real constants. Its characterstic equation is

a,-h a, a,,
a, )~ h Ay
=0.
a., a, a —h

we can discuss the stability of the system with the help of the roots of the above equation
(called characterstic exponents).

If the characteristic exponents of the variational equation based on a constant solution
u(t)= E° of an autonomous system have negative real parts, the solution is asymptotically
stable. If at least one characteristic exponents has a positive real part, u(t) is unstable.

However if variational equation based on a periodic solution is a linear system
with periodic coefficients, the problem is more difficult. We can, sometimes, handle
such a problem by applying a theorem due to Floquet. The details of this method are
given by Minorsky (1969). The final result states that if the characteristic exponents of the
variational equation based on a periodic solution have negative real parts, the solution is
asymptotically stable. If one characteristic exponent has a positive real part, the solution is
unstable.

The second method of Liapounov is based on properties of definiteness of
certain functions associated with the differential system in such a manner that it is
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14 K. B. Bhatnagar and L. M. Saha

possible to ascertain whether the solution remains in a certain region or not. Four theorems
on stability based on the direct method are discussed in detail by Minorsky (1969).

(vi) Non-linear stability

It has been observed many times that the pattern of stability changes drastically when we
include non-linear terms also.

In some cases we can take a decision regarding non-linear stability on the basis of the
variational equation consisting of linear terms only. Consider the non-linear autonomous
system

ii= 2 Djj xj+Xi(x1 ,xn), (l":l, 2, ... ,n)
j=1

where p, are constants and X, are power series of at least second degree. Then we can decide
the non-linear stability of the point of equilibrium x = O from the characteristic equation
corresponding to

n
Xi= Y, PiX;
=1

If all roots A of the characteristic equation have Re (1) <0, the point x = 0 is asymptotically
stable whatever be the terms X .

However, if the characteristic equation does not have any root with positive real parts,
but has some roots with zero real parts, then the terms in X can be chosen as to have either
stability or instability. This is a critical case which requires specific investigation.

Non-linear stability of equilibrium points can also be decided by Amold’s Theorem
(1961).

Theorem : If (i) k,w, + k,w, # O for all pairs (k,, k,) of integers and (ii) determinant
D # 0 where o, o, are the basic frequencies for the linear dynamical system

D =det(a)ij=1273

2
b, =| 24 ij=1,2
Lol fi =1 =0

bi3=b3i=(——) ,i,=1,2
I,=0

i

b, =0

H=ol +ol,+', (A% + 2BII, + CL?) + ...
is the normalized Hamiltonian with I,, I, as the action momenta co-ordinates, then 0}1
each energy manifold H = h in the neighbourhood of equilibrium, there exist invariant tori
of quasi-periodic motion besides the manifold and consequently the equilibrium is stable.

The above theorem has been applied successfully in deciding the non-linear stability of
equilibrium points in some problems of Celestial Mechanics, Stellar Mechanics and Stellar
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Dynamics by Deprit & Deprit (1967), Bhatnagar & Hallan (1983), Bhatnagar & Usha (1992)
and Bhatnagar & Hallan (1992).

The chapter on stability in ‘Lectures on Celestial Mechanics’ by Siegel and Moser
(1970) is extremely illuminating and no reader on stability can afford to miss it.

(vii) Ergodic theory

In general, ergodic theory is the study of transformations and flows from the point of view
of recurrence properties, mixing properties, and other global dynamical properties connected
with asymptotic behaviour.

Consider a Hamiltonian system

_OH o __OH ;_12 .. n.

4i ,
l op; oq;

If we are given an initial condition and such equations can be uniquely solved then the
corresponding solution gives us the entire history of the system.

Suppose x is a point in phase-space representing the system at a time #,. Further suppose
T (x) denotes the point of the phase space representing the system at time ¢ + f,. From this
we observe that T is a transformation of phase-space and, moreover, T, = id, T,,, =T, > T,.
Thus (T,: t € R) is a one parameter or group of transformation of phase-space. In dynamics
one is interested in the asymptotic properties of the family {7}.

Most of the work so far can be categorized into one of the four following types :

(a) Measure theoretic : Here one deals with a measure space X and a measure preserving
transformation 7 : X — X.

(b) Topological : Here X is a topological space and T : X — X is a continuous map.

* (¢) Mixture of (i) and (ii).

(d) Smooth : One considers a smooth manifold X and a smooth map.

The ergodic theorem (Halmos 1958, Marchal 1977) can be applied to the N-body
problem and leads to another classification of the solution.

(a) The open orbits go from infinity, in phase space, to infinity (hyperbolic or parabolic
expansions, collisions, singular motions). «

(b) The recurrent orbits have the Poisson property : they always come back an infinite
number of times into any vicinity of any past or future state and have thus identical, original
and final evolutions without expansion to infinity.

(c) The abnormal orbits : These remaining orbits are infinitely rare (set of measure zero
in phase space); they correspond to the ‘complete capture’, to the asymptotical motions, etc.
The recurrent orbits are sometimes divided into bounded recurrent orbits (positions and
velocities forever bounded) and oscillatory recurrent orbits. The informations are of course

insufficient for a complete determination of the relations between original and final evolutions
of given solutions.

(viii) KAM Theorem

We observe coherence and chaos in real systems. While Toda Lattice (one-dimensional
chain of masses coupled by forces which vary exponentially with the separation of masses)
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is an example of complete coherence and a hard sphere gas complete chaos. Most systems
lie somewhere in between and as we vary some parameter of the system, say energy parameter,
both types of behaviour can be exhibited. This dual behaviour can be understood through
KAM (Kolmogorov, Arnold, and Moser) work.

Suppose we have an integrable system with N degrees of freedom. Then its trajectories
in the 2N-dimension phase-space lie on n-dimensional surfaces in the phasé-space. These
n-dimensional surfaces are called KAM surfaces. If we perturb such a system thereby making
it non-integrable, the perturbation induces resonance zones locally in the phase-space which
make the system chaotic in the region of the resonance zones. As the perturbation grows
these resonance zones overlap and destroy KAM surfaces. When all KAM surfaces are
destroyed, the trajectories are free to wander throughout the region of phase-space and the
entire region becomes chaotic.

(ix) Quasi-periodic
In non-linear mechanics, it is possible in many cases to establish the existence of-integral

manifolds which have the property of asymptotic attraction of nearby trajectories. Consider
the system

x =X (x,¢) . . ... (1.1
where x = (x, x,, ..... ,x), X =X, X, ..., X ) are vectors of an n-dimensional Euclidean

space and € a small parameter. Under certain conditions it is possibke to establish the
existence of the invariant toroidal manifold

x =x (0),

o=, 9, s 0) .. (1.2)
for the system (7.1)

In that case the system (7.2) reduces to the following equations on the torus

ﬂ:
o v+f(4,e) .. (13)

vV =(vV,V, ..., V) and f (¢, €) is a periodic function. Under certain conditions the manifold
(7.2) has the property of asymptotic attraction of the trajectories of any solution of equation
(7.1) not lying on the torus.

The Poincaré-Denjoy theory deals with one dimensional case. Equation (7.1) becomes

D -vifo+0)
dr

4 _g,
dt
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According to this theory, the behaviour of the solution on a two-dimensional torus is
characterized by the rotational number Q. If (i) Q is irrational, then the solution on the torus
is quasi-periodic, and (ii) Q is rational, then the solution is periodic. The rotational number
Q is the ratio of the basic frequencies ®, and ®, of the system (figure 6).

Figure 6. 2-Torus-quasi-periodic motion.

It has not been possible so far to investigate the general case of the manifold of
higher dimensions, i.e. when the equations on the torus are reducible to equations of the
form (7.3) '

(x) Integrals of motion

Consider the system
X =X (%, Xy, X,), i = 1, 2, ..., n, which has the solution

x =u ().

We define integral of motion by the differentiable function F(x,, x,, ..., x.) on a domain
D of the phase-space, and not constant on any open set such that

F(u(£), uf0), ..., u(f)) = const.

Integrals of motion give us lot of information about the system even though we may fail to
obtain all the integrals of motion. In the case of restricted three-body problem, we can
specify regions of motion through Jacobi integral.

(xi) Existence and uniqueness

The properties of existence and uniqueness play a very important role in understanding
various dynamical systems. '

The theorem of Cauchy regarding the existence and uniqueness of a solution
of a differential equation is well known. It not only guarantees the existenc of solutions
with prescribed initial conditions, but it asserts that the initial conditions determine
the solution uniquely, even though we may not be able to solve the differential equation.

We use, in general, any of the following four methods for showing the existence of
periodic orbits :

(a) Method of analytic continuation,

(b) Process of Fourier coefficients,

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993BASI...21....1B&amp;db_key=AST

3BASI T TS D ABG

rt

18 K. B. Bhatnagar and L. M. Saha
(c) Application of fixed point theorem,
(d) Method of power series.

These methods are discussed in detail by Szebehely (1967)

(xii) Chaos

_In the past thirty years classical mechanics has undergone a tremendous change. New ideas

and techniques have been developed to understand the mechanism by which systems can
undergo a transition from regular to chaotic behaviour.

The phenomenon of chaos was discussed by Poincaré, and re-discovered by Lorenz and
Henon with modern computers. In literature we find this phenomenon with different names :
(a) Erratic motion, (b) semlergodlc or completely ergodic motion, (c) stochastic motlon and
(d) random orbits.

Here we are concerned only with deterministic systems leading to undeterministic
phenomena.

Definition : Almost all bounded motion with at least one positive Liapunov charactcrlstlc
exponent (LCE) is chaotic:

LCE= Lt L
I e ¢t

W; = eigenvalues.
Suppose there is a dynamical system

dX - AX + O(X).
dt
We have the following important results :
(a) All LCE < 0, = x(¢) — It. point
(b) One LCE, = 0, others < 0 = x(f) — It. cycle.
(c) pLCE = 0, others < 0 = x(f) — It. p torus.
(d) One or several LCE > 0 = x(¢) — strange attractor
The last is the dissipative version of chaotic motion. Now, we discuss some predictive
criteria or conditions for chaos.
(a) Non-linear systems : A chaotic system must have non-linear elements or properties.
A linear system cannot lead to chaos.
(b) Random input : A small change in the initial conditions may change regular motion
to chaotic motion.
(c) Phase-space : Chaotic motions have orbits in phase-space which never close or repeat.
(d) Fourier spectrum : Initially there is a dominant frequency component
®,. If subharmonics frequency spectrum w/rn appears, Chaos is likely to appear (figure 7).

N

0 W/ w

Figure 7. Fourier spectrum of chaotic motion.
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(e) Poincaré map : Definition : If x =x@),y = x (tn), then the points (x, y ) is a
Poincare map if ¢ is choosen according to certain rule (figure 8).

Figure 8. Poincaré map.

If the Poincare map does not consist of either a finite set of points or.a closed orbit then
the motion may be chaotic. The appearance of fractal patterns in the Poincare map is a
strong indicator of chaotic motion.

(f) Period doubling : We start with a periodic motion. Then as we vary an experimental
parameter, A, say, the motion undergoes a bifurcation or change to a periodic motion
the period of which is double that of the previous motion. As we change A further, again
we come across another bifurcation or change to another periodic motion the period of
which is again doubled. Feigenbaum (1978-82) discovered a marvellous result. He showed
that the critical values of A at which successive period doubling occurs obey the following
rule : ' '

7\'11_ 7\'n—l

A'1'L+l - 7\'n

Lt

n oo

=0 =4.6692016

This process accumulates at a critical value of A after which the motion becomes chaotic
(figure 9).

(g) Quasi-periodic to chaos : Suppose ®, and w, are the basic frequencies of the
motion. We know that (i) if w /@, = rational, the motion is periodic, (ii) if w /w, = irrational,
the motion is quasi-periodic. Such motions are imagined to take place on the surface of a
torus where Poincaré map represents a plane which cuts the torus. We often get chaotic
motions when quasi-periodic torus structure is broken up as the system parameter is broken up.

(h) Intermittancy : It has been observed that sometimes there are long periods
of -periodic motion with bursts of chaos. This phenomenon is called intermittancy.
As we vary the experimental parameter the chaotic bursts are more frequent and
longer.

(1) KAM surface : We have seen earlier that when all KAM surfaces are destroyed the
trajectories are free to wander throughout the regions of phase-space and the entire region
becomes chaotic. ‘ '

(J) Lyapunov exponents : Chaos in deterministic systems implies a sensitive
dependence on initial conditions. This means if two trajectories start close to each
other, they will move exponentially away from each other after sometime. Through this
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Figure 9. Bifurcation diagram for equation X, + 1 = X* from Grebogi, Ott & Yorke (1982f).

property a criterion for chaos has been developed in terms of Lyapunov exponents (LE)
(Wolf er al. 1985). This review by Wolf et al. contains two computer programs for
calculating LE.

We define LE

N
e ¥ g )
IN — o k=1 dy (t-1)

where d, measures the initial distance between two starting points and d their distance at
time z. If A > O the motion is chaotic. If A < O the motion is regular. Schuster (1985) has
calculated A in a given example.

(k) Some examples in celestial mechanics and stellar dynamics : (i) Ignoring small tidal
effects, motion of a planet seems to be quasi-periodic type. (ii) Motions of galaxies and star
clusters are of open type and they are continuously loosing some stars. (iii) Motion of a
comet is either open or quasi-periodic or temporary chaotic. (iv) Rotation of Hyperion is
chaotic. (v) Kirk-Wood gap may be due to chaotic motion.

(1) Picture in phase-space : In conservative and analytic problems, the general phase-
space picture is as follows :

(1) Reduction is achieved by integral of motion.

(ii) After utmost reduction, we have either periodic or quasi-periodic solutions.

(iii) Between these periodic or quasi-periodic solutions the holes of infinite measure are
filled with open solutions while the holes of finite measure are filled with chaotic solutions
which are dense in the holes.

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993BASI...21....1B&amp;db_key=AST

3BASI T 12U DD IB

rt

N-body problem 21
N-Body Problem (10 Integrals)
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Figure 10. The types of motion in the N-body problem.
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(iv) Temporary chaotic motion is extremely developed in nearly closed holes.
(v) Statistical methods give excellent results when applied to chaotic motions.

Flow chart of N-body problem

Figure 10 shows the flow chart of the N-body problem according to Anosova (1988). This
gives the types of motion in the gravitational N-body problem.
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