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1: Introduction

1.1. Prologue

The observed universe contains structures at different scales. At the same time it
also exhibits a remarkable level of uniformity as regards the large scale properties.
It has been a challenge to explain both these features in a consistent theory. The
conventional wisdom attempts to do so in the following manner: We begin with
a uniform universe with very small irregularities; then gravitational instability is
expected to enhance these irregularities, eventually forming the currently observed
structures. .

The present review discusses several aspects of this picture of structure forma-
tion. The emphasis, throughout, is on theoretical aspects and physical basis for the
models rather than on the detailed observational features or detailed examination
of particular models. Many of the concepts are also developed in a self contained
manner. This has made the review somewhat more pedagogical than is usual for a
review of this type, but has the advantage that a non-expert astronomer or physicist
will be able to understand and appreciate the contents. In order to keep the arti-
cle pedagogical and within reasonable size, we have to make a ruthless selection in
the topics: for example, we have not discussed the following important topics : The
infrared astronomy satellite (IRAS) redshift survey and its use in probing both the
large scale velocity and density fields, structure formation theories involving isocur-
vature perturbations or seeds from the early universe like strings and textures or non
gravitational processes like explosions and radiation pressure.

We begin in this part with a discussion of the smooth universe. The linear theory
of perturbations is spelled out in part 2 and its applications in part 3. Nonlinear
evolution is taken up in part 4. The relevance of the high redshift universe to galaxy
formation is discussed in part 5. The review ends with a consideration of the origin
of d¢nsity perturbations and some concluding remarks.
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Galazy formation 3

1.2. The parameters of the smooth universe

The evolution of the universe, like that of several other physical systems, is described
by a second order differential equation. Such an evolution can be uniquely specified
by specifying two independent constants at any chosen instant of time. One may:
choose these constants to be : (a) the mean energy density p present in the universe
and (b) the expansion rate of the universe, parameterised by the Hubble ‘constant’
Hy; both p and Hy, of course, correspond to the values measured today.

It is convenient to parameterise Hy by the relation ’

Ho = 100h kms™! Mpc™! ‘ (1.1)

Observations determine h to be in the range 0.5 < h < 1, the uncertainty being due
to the difficulty of measuring distances to remote galaxies. Given the value of Hy,
one can immediately construct several other-physical quantities of interest. Since Hy
has the dimensions of (time)~!, we have

timescale = Hy' = 3.1 x 10'"h !sec = 9.8 x 10°h~!yr

\ 1.2
lengthscale = cHy ! = 9.3 x 10*"h~*ems = 3000h~Mpe. (12)

Equally importantly, we can construct a parameter with the dimensions of mass
(energy) density:

. . 3H? -29p2 -3
critical density = p. = —= = { igg : ig%zh- E:/‘Tm‘:’ (1.3)

87G
[Here, as well as in what follows, we will set ¢ = 1]. The significance of this value of the
density will shortly become clear. It sets the scale of densities at which gravitational
attraction significantly affects the Hubble expansion.

Since Hg defines a natural scale for mass density, it is convenient to measure the
mass density of the universe in terms of p.. We will denote this ratio by the generic
symbol Q and add subscripts - like Qp (baryons), Qg (relativistic particles), Qnr
(non-relativistic particles), €, (photons) etc. - to denote various contributions. In
general, Q; = (pz/pc)-

The observational status of the value of 2 is not very certain. The following
claims have been made in the literature: (for a review, see Binney & Tremaine 1987
Chapter 10; Trimble 1988; Peebles 1986) (i) Mean density in solar neighbourhood gives
about 0.003h~! (ii) Studies based on the Magellanic stream and timing arguments
in local groups give a higher value of about 0.06h~! (iii) Mass density in groups of
galaxies contributes about 0.16 and that in large clusters give about 0.25. (iv) The
Virgocentric fall also suggests a mass density of 0.25. (v) Lastly the constraints from
primordial nucleosynthesis imply a constraint on the baryonic contribution to mass
density: Q5 = (0.014 — 0.026)h~2; or if we take 0.5 < h < 1, we get 0.014 < Qp <
0.104. (authors differ somewhat on the upperbound on Q2 and the cited values are
in the range 0.1 to 0.2; see Kolb & Turner 1990)

Two features stand out in the above estimates if they are all correct. There seems
to be a tendency for Q to increase with the scale over which it is measured. (This
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conclusion is somewhat tentative and quite controversial.) If one uses gravitational
effects occurring in a system of size L to measure 2 then we will miss out on matter
distributed smoothly over sizes significantly larger than L; thus if the universe has
significant fraction of mass distributed smoothly over scales larger than, say 50 Mpc,
we can still reconcile the above observations with 2 = 1. Secondly, the observations
are just marginally consistent with a fully baryonic universe with Qp =~ 0.2 if (and
only if) h = 0.4. Thus these observations alone, probably, do not rule out a completely
baryonic universe (yet!).

Several popular models for the early universe (the so called ‘inflationary models’)
predict that Q for the universe must be unity (to a high degree of accuracy). This
suggests that the dark matter in the universe should be nonbaryonic. If we assume
that the dark matter is made of ‘weakly interacting massive particles’ (‘WIMP’s) then
one can broadly classify them depending on their mass as ‘Hot’ or ‘Cold’ dark matter.

Candidates for dark matter with a mass m, $100eV are called ‘hot’ dark matter
or HDM in short. This terminology arises due to the fact that such particles have
large random velocities and in fact are still relativistic when galactic mass scales are
first encompassed within the horizon scale (see below). A typical example of HDM is a
massive neutrino with mass m, ~ 30eV. At the other extreme dark matter candidates
with small random velocities are called ‘cold’ dark matter, CDM in short. Possible
candidates include WIMPS with m;~1GeV, axions or primordial black holes. As we
shall see structure formation proceeds very differently depending on whether the DM
is hot or cold.

We may summarise the observations as indicating

Q = Quotal > 0.2; 0.011 < Qp < 0.21; QA% =2.5x 107° (1.4)

Note that €, is contributed mainly by the microwave background photons while Qg
includes contributions from all massless species of particles; for example, if there are
3 massles$ neutrino species then Qrh? = 4.31 x 10~%. This can be seen as follows:
For any relativistic particle species —z with temperature Ty, the energy density will
be given by the relation:

2 4
—_ L 4 __ g_-l' -34 ‘ Tz -3
pe = 9:.3:T2 = (%) 4.8 10 (——2_75K) gem (1.5)
The g-factor is given by the relation
ge = gspin (Tz/Ty)*  (bosons) : (1.6)
: Zgepin(Tz/Ty)*  (fermions) _ :

For a relativistic soup consisting of 3 species of neutrinos and photons, the total
g-factor will be

7 (T.\* 42 [ 4\*3
‘gtota|—2+3X2X§X(E) —2+§(H) _336 (17)

where we have used the fact that (7, /T,)3 = (4/11), a relation derived in standard
texts in cosmology. This implies that pg = (3.36/2) p, ~ 1.68p,, as advertised earlier.
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Taking the MBR-temperature to be 2.75K, we can also determine the number
density of photons to be n, = 422(T,/2.75K)3cm~3. The ratio between the number
densities of baryons and photons will then work out to be

("—B) = 2.68 x 1073(Qph?%) (1.8)

Ny

1.3. The Friedmann model of the universe

Observations suggest that our universe is homogeneous and isotropic at sufficiently
large scales. Such an idealised universe can be described - in Einstein’s theory of
gravity - by the metric (Friedmann 1922, 1924) ~

ds? = dt® — a®(t) [dx® + f?(x)(d8? + sin? 0d¢?)] (1.9)
where the function f(x) is determined by the value of @ = Qqtal

siny (for Q> 1;‘closed’)
Fx) =< x (for © = 1; flat’) (1.10)
sinhxy (forQ < 1;‘open’)

The function a(t) is called the scalefactor. It describes the dynamical evolution of
the universe and its specific form can be determined using Einstein’s equations, if the
matter content is known.

Several important conclusions can be drawn from the form of the metric in (1.9),
even without knowing the form of a(t). We list below some of these results:
(i) The action for a free particle moving in this metric is given by

A= —m/ds: —m/dtm (1.11)

where v2 = gap:i:"i'p is the three- velocity measured with respect to a coincident

observer moving along a worldline x = constant. Such observers, sometimes called
fundamental, play an important role in cosmological models. Since the action is
independent of x, we have the conserved momentum

_ 0L _ mgqpi”
Pa=sm= ;e (1.12)
which in turn implies that
P.pe = p? — o8 m?y? constant
e ) Rl (1.13)

In other words the magnitude of the 3- momentum decreases as a~! due the expansion.
If the particle is nonrelativistic, then v oc P and the “peculiar” velocity a|(dx/dt)|
itself decays as a(t)~! during expansion.
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(ii) By a similar analysis, one can conclude that the wavelength of light is ‘redshifted’
during expansion: A o a(t); w &< a~!. It is convenient to define the redshift z(t) by
1+ z(t) = {ao/a(t)).
(ii1) It follows from the previous result that the Planck spectrum retains its form
during the expansion of the universe if we rescale the temperature-parameter 7', ap-
pearing in the spectrum, by the law T' o a~1. The net energy density of the relativistic
particles, pr oc T will fall as a—* under expansion of the universe.
(ivy The Hubble constant is related to the expansion factor by the relation H = (a/a)
evaluated at present.

Let us now turn to the question of determining the form of a(t). Einstein’s
equations reduce to the following set in this case:

. G f47 4

i=-— (Ta ) (p+3p) (1.14)
1., G (4r ;3\ _k
58" — ( 30 )p_ constant = 5 (1.15)

where p is the pressure. [They are cast in a form which is easy to remember in terms
of a Newtonian picture but we warn the reader against elevating the mnemonic to a
derivation]. In the second equation k is +1,0 or —1 depending on  is greater than,
equal to or less than unity. These two equations can be combined to give

d 5 dd ’
d—t(pa y=— = (1.16)

which determines the function p = p(a) if the equation of state p = p(p) is given.
Consider matter sources for which p = wp with some constant w [e.g. w = % for
radiation and w &~ 0 for non- relativistic matter]. Integrating (1.16), we find that
p o a~3(1+w). in particular,

Praa X a~ % pnpox a3 (1.17)

Equation (1.17)shows that, in the past when a(t) was smaller, p,q4 would have dom-
inated over matter [even though, at present, prqsd < pNR]. Let t = teq denote the
epoch at which prag = pnRr, With prag > pyg for t < t.,. Clearly,

ap _ QNR

= 2. 4(Qh2)64 )
aeq On 2.32 x 10%( )é (1.18)

(14 2ze) =

where we have used the notation 6 = (T'/2.75K) and assumed that Qg is contributed
by photons and 3 species of massless neutrinos. At the time ¢t = t.,, the temperature
of the universe will be

Teq = Tnow(l + 2¢4) = 5.5(2h%)eV (1.19)

(If only photons contribute to Qg, z¢q = 3.9 x 10* (Qh2)6* and T., = 9.24(Qh%)eV ]
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The epoch t = t.; is quite close to another important epoch in the history of
the universe, denoted by t4... At very early times, the temperature of the universe
was much higher than the ionisation potential of atomic systems; thus matter would
have existed in a fully ionised form of positively charged nuclei and free electrons. As
the universe expands and cools more and more electrons will combine with nuclei to
form bound neutral atoms. The epoch t = t4.. typically denotes this instant. More
precisely, we may characterise this epoch as the time at which the mean-free-path
of the photons is of the order of the scale length (“size”) of the universe. Once this
happens, photons will effectively decouple from the rest of the matter and will move
freely through the universe, experiencing negligible collisions.

Detailed calculation (see e.g. Jones & Wyse 1985; Kolb & Turner 1990) shows
that the value of t4.. (or, equivalently, z4.. and Ty..) depends weakly on Qg and can
be fitted to the form :

Q ; 0018 Q
(1 + zgee) & 1100 | =22 ~1100; 1< — < 100. (1.20)
Qp Qp

We will take z4. = 1100 for the purposes of calculation; this corresponds to Tg.. =
0.26eV. These calculations also show that a small fraction of matter remains ionised
well after ¢4¢.; the surviving, asymptotic fractional ionisation is given by the formula,

3(Qh2)1/2 ( Zdec )12.75

X.=24 -
<10 A7) \ 1000

(1.21)

We can now return to the task of determining the form of a(t). The above analysis
shows that p & a4 for t < t., while p < a=3 for t > t.;. The explicit solutions
to (1.15) are complicated and are not of much use. These solutions, however, can
be approximated very well by the following analytic expressions: For definiteness,

consider a universe with > 1. For 2 less than about 30 or so, a(t) is implicitly given
by

a(z) = ao(1+2)"! = Hy'(Qo — 1) ¥(1 + 2) 7}

_ Qo -1 Qoz—Qo+2 2(90 - 1)1/2(902 + 1)1/2
Hot(z) = 2(Q — 1)372 [°°S ( Qo(1 + 2) ) - Qo(1 + 2)

(1.22)
while for larger z, a(t) is given by

Hegt = (-2%/_3) [(a"—q - 2) (a“: + 1) i 2] (1.23)

Here aeq = ao(l + zeg)™! = Hg (0 — 1)~3(1 + 2z¢)~! and H., = H(teg) is the
Hubble ‘constant’ at the epoch corresponding to z.4. Putting a = a., in (1.23) gives
the relation Hegteq & 0.553. H., itself can be estimated from HZ, = (87G/3)[2p.Q(1+
zeq)3]. So the explicit value of .4 is given by

teg = 3.4 x 10'°(Qh?)~2sec (1.24)
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In fact, for 2 larger than about 100 or so, one can use much simpler expressions

t { 1.7(a/aeq)®/?; a>> a.q(matter dominated) (1.25)

teg 1.3(a/acq)?; @ < aeq(radiation dominated)
Near t = t.q, we need to use (1.23). All these results can be easily derived by
inspecting the various terms in (1.15). These expressions also show that a(t) oc !/2
in the radiation dominated phase and a(t) o t*/3 in the matter dominated phase, for
larger redshifts.

In the above discussion, it was assumed that Q2 > 1. For discussion of the early
universe, it really does not matter whether 2 is less than or greater than unity.
However, if @ < 1, then the right hand side of (1.15) will dominate over pyg for
z < (1 —2Q)Q7!; such an epoch is called “curvature dominated” and will be of
importance in the theory of structure formation to be discussed later. Using the
value of t.,, we can compute the explicit value for t4... We get:

taec = 5.6 x 10'2(Qh?) % sec (1.26)

1.4. The length scales of the universe

Consider two fiducial locations in the universe - say, the positions of two well-separated
galaxies, one located at the origin and the other at (7,6, ¢). The coordinate distance
between these two points will be a constant (r) as long as the galaxies have no peculiar
motion. However, due to the overall expansion of the universe, the proper distance
between these two points will keep increasing;:
: a(t)

proper distance = I(t) = <_a:_) lo o< a(t) (1.27)
In other words, all proper distances in the universe scale with the expansion factor;
hence they grow as t3 in radiation dominated (RD) phase and as t2/3 in the matter
dominated (MD) phase. More realistically, they grow as t" with 0.5 < n < 0.66.

The dynamics of the expansion, on the other hand, is determined by another
length scale, called the Hubble radius:

du(t) = (g)_l (1.28)

which is proportional to t-if a(t) o< t”. It follows that the Hubble radius grows at a
faster rate than the proper distance. This length dy(t) is typically the size over which
physical processes operate coherently. Given the cosmological evolution of the model
- that is, the function a(t) - we can uniquely determine dg(t). Consider, for example,
the Hubble radius at t.,. Using (1.24) and the relation H.4t.;, ~ 0.553, derived in the
previous section we have

dr(tey) = (Heg)™! = 1.85 x 102} (k%)™ 2cms (1.29)
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A region with size dg(t.q) at t = t., would have expanded by the factor [ag/a(te,)] =
(14 2¢4) fromt = t.4 till today. Therefore, the proper size today for that region-which
was as big as the Hubble radius at ¢t =, - will be

leg(now) = dp(teg)(1 + z¢g) = 13Mpc(Qh?)~? (1.30)

This size, of course, is much smaller than the Hubble radius today: dy (today)
~ 3000h~! Mpc. This length scale will play an important role in future discussions.

Reversing the above argument, we can draw an important conclusion: Consider
a region of proper size A today [with A < dy (today)]. As we go back in time, this
(proper) length will shrink as a(t) oc t" with n < 1; but the Hubble radius of the
universe decreases faster, as t. Therefore, there will be some time t = tepter (A) in the
past, when the proper size of this region will equal the Hubble radius of the universe.
For t < tenter(}), the proper size will be bigger than the Hubble radius. It is usual to
say that ‘the length scale A enters the Hubble radius’ at ¢ = tepter(A). This feature is
illustrated in fig. 1.1.

It follows from the earlier analysis that a length of Ay = 13Mpc(Qh?)~! enters
the Hubble radius at ¢t = t.,, the time of transition from RD-phase to MD-phase.
Smaller regions (A < A.q) will enter the Hubble radius earlier, in the RD-phase while
larger sizes (A > X.q) will enter later, in the MD-phase. Given the explicit form of
a(t), we can easily compute the time tenter(A) by solving the equation

() () @)

This leads to the following result:

3
26 x 107 (@) () s A> Ay

2
6.1 x 108 g1/24;%/3 ('1N+pc') ;sec A < Agg

tenter(’\) = (132)

The factors g and g, take into account the contribution of various particle species
(relative to a spin-zero boson) to the energy and entropy densities of the universe
respectively; they do not change the results appreciably except at very early phases
of the universe when T' > 1GeV or so. The numerical values in these expressions are
different because we have scaled them to 1Mpc; they, of course, match at A = A.,.
Given tenter, One can also compute the temperature of the universe at that epoch. We
get:

-2
948eV(Rh?)! () 1 A> e

-1
63V 0}/ 9772 (5hz) 5 A< ey

Tenter(

(1.33)

It should be noted that, in the above formulas, A refers to proper distance today.
Since proper distances scale with expansion, it is somewhat an inconvenient descrip-
tion [e.g. it is difficult to visualize which physical processes are important at proper
sizes of 100 kpc at a redshift of 70, say]. It will be more useful to parameterise length
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time

L(t) a 172

L) <dy(t)—>

L(t)=du(t)—> : -

L(1)>dy (Hh—>

t=0

Figure 1.1. The Hubble radius and a wavelength entering the Hubble radius.

scales by some quantity which does not change with expansion. The amount of non-
relativistic mass M (), contained inside a sphere of proper radius (A/2),

4r A2 " wnfl A\

will be such a quantity. As the universe expands, A o a(t) while pyr o a~3 keeping
M(X) constant. Thus we can specify A by just quoting the equivalent mass associated
with it; and, we don’t have to specify when this quantity is measured.

The previous formulas for tenter and Tepter can be easily reexpressed in terms of
M rather than A. A region containing a mass

M., = M(Xeg) = 3.2 x 101 Mp0%(QR?%)~2 (1.35)
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will come into the Hubble radius at ¢t = t.,. Smaller regions will enter earlier and
larger masses later. The relation

1.1 x 105(QA2)~1/3(M/10'2Me)~%3; M > M.,

(1 + Zenter) = { 1.41 x 105(Qh2)1/3(M/1012M®)—%; M< M,

(1.36)

gives the redshift at which a region containing mass M enters the Hubble radius.

Notice that the quantity M/)) is computed using the smoothed-out density of
the homogeneous universe. According to (1.34), a typical galactic mass (~ 10 M)
will correspond to a proper size of about 1 Mpc; actual galaxies are much smaller
because they ceased to expand with the cosmic medium sometime in the past, and
are now dominated by self-gravity. This fact, of course, is irrelevant to the scaling
arguments given above which deal with a (hypothetical) smooth universe.

We conclude this section with a comment on another important length scale in
cosmology, viz. the horizon size= Suppose for a moment that a(t) = agt” withn < 1
for all t > 0. Then, a photon can travel a maximum coordinate distance of

v dz 1 ti-n
r(t) = /0 a(z:) = a0 _(1 — ) (1.37)

which corresponds to the proper distance.
h(t) = a(t)r(t) = (1 — n)~ 't (1.38)

This differs from the Hubble radius (a/a)~! = n~'t only by a‘constant factor of
order unity. This has led to considerable confusion in nomenclature with several
publications calling the quantity Hubble radius dg(t) as “horizon” [and, sometimes,
even attributing to it the causal properties of the horizon !]. Notice that dg () is a
local quantity and its value at ¢ is essentially decided by the behaviour of a(t) near
t; in contrast, the value of h(t) depends on the entire past history of the universe. In
fact, h(t) depends very sensitively on the behaviour of a(t) near t = 0 - something
which we know nothing about! [If a(t) o< t™ with m > 1 near ¢t = 0, then h(t) is
infinite for all ¢ > 0!]. Thus, when h(t) and dg(t) differ widely, it is the latter quantity
which is usually relevant.

2: Linear theory of perturbations

2.1. Growth of inhomogeneities - general comments

If there were no inhomogeneities in the universe, then we would have no difficulty
in explaining that observation! However, since our universe contains galactic and
other structures, it is necessary to modify the formalism of part 1 to account for these
inhomogenities.

Since galaxies provide a convenient unit in the cosmic mass ladder, it is natural
to begin by asking how they are distributed in the Universe. Are they distributed
randomly or do they cluster in any significant manner?

To answer such a question reliably one needs a good survey of the universe
giving the coordinates of galaxies in the sky. Of the 3-coordinates needed to specify
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the position of the galaxy, the two angular coordinates are easy to obtain. There
exists today several galaxy catalogues, containing the angular positions of galaxies
in particular regions of the sky, complete up to a chosen depth. The APM Galaxy
survey has about 5 x 108 galaxies out to a-depth of 600h~! Mpc; the Lick catalogue
has about 1.6 x 10® galaxies and depth of 200h~! Mpc; the IRAS catalogue has more
than 14000 galaxies which are prominent in the infrared band; these are few major
catalogues available today. If we know the redshift z of these galaxies as well then
we can attribute to it a. line-of-sight velocity v = z¢. If we further assume that this
velocity is due to cosmic expansion, then we can assign to the galaxy a radial distance
of r = H;'v. This will provide us with the galaxy position (r, 8, $) in the sky.

The main difficulty in completing the survey lies in obtaining telescope fime
to make a systematic measurement of redshifts for the galaxies which are members
of a catalogue. We know the redshifts to only about 30,000 or so galaxies [out of
millions which exist in catalogues] and the largest systematic survey - the centre for
astrophysics (CFA) survey - has only 9000 redshifts or so. The recently completed
(partial) survey of IRAS galaxies has improved the situation somewhat; in a decade
or so, the observations will be in far better shape.

Even the limited amount of data we have today points to a perplexing pattern
in galaxy distribution. The single most useful function characterising the galaxy dis-
tribution is what is called the ‘two-point-correlation function’: £gG(r). This function
is defined via the relation

dP = 7%(1 4 £ga(r1 — r2))d®r1dr, (2.1)

where dP is the probability to find two galaxies simultaneously in the regions (ry,r;+
d3r,) and (r; + d®r;) and 7@ is the mean number density of galaxies in space. The
homogeneity of the background universe guarantees that égg(ri,r2) = €ga(r1 — r2)
and isotropy will further make £gg(r) = €gg(|r]). From (2.1) it follows that £gg(r)
measures the excess probability (over random) of finding a pair of galaxies separated
by a distance r; so if £gg(r) > 0, we may interpret it as clustering of galaxies over
and above the random Poisson distribution.

Considerable amount of effort was spent in the past decades in determining
£cc(r) from observations. These studies show that

fec(r) = (m)_l i (2.2)

in the range 0.1h~! MpcSr< 20h~!Mpc. (Davies & Peebles 1983; Peebles 1980). This
simple power law has been a challenge for theoreticians over the ages!

Nearly ten percent of all galaxies are found in rich clusters containing anything
from hundred to thousands of galaxies. It is also possible - using the catalogues of rich
clusters, like Abell catalogue which contains 4076 clusters - to compute the correlation
function between galaxy clusters. The result turns out to be

cc(r) = (%h—fIME)—LS (2.3)
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suggesting that clusters are more strongly correlated than the individual galaxies. If
firmly established, this result implies that, the visible matter does not faithfully trace
the mass distribution of the universe. Unfortunately, écc(r) is not as well established
as £ and hence one has to be cautious in interpreting results which depend on écc.

In recent years, researchers have also resorted to less quantitative - but more
appealing - diagnostics to demonstrate clustering of galaxies. Several recent surveys
present striking visual patterns in the redshift-angle space. The patterns are con-
sistent with the interpretation that the universe contains several voids of size about
(20h~1 to 50h~1)Mpc. The CFA slices, in fact, suggest that the galaxies are concen-
trated on sheet like structures surrounding nearly empty voids. (Bachall et al. 1983;
DeLapparent et al. 1986; Giovanelli 1982; Koo et al.. 1986; Strauss et al.. 1988)

More recently, a redshift survey of randomly selected sample of 2163 galaxies from
the IRAS catalogue has been completed, allowing one to construct the density field
of the universe upto about 140h~'Mpc. Preliminary investigations of the clustering,
based on this survey, indicate that density field of the universe has lot more power
on large scales than anticipated before (Rowan-Robinson et al.. 1990; Saunders et al.
1990). This conclusion is also confirmed by the measurement of 2-dimensional angular
correlation function of galaxies based on the machine scans of 185 UK Schmidt plates
covering more than 2 million galaxies. (Maddox et al. 1990)

The conventional wisdom tries to account for the observed matter distribution
in the universe in the following manner: We assume that, at some time in the past,
there were small deviations from the homogeneity in our universe. These deviations
grow due to gravitational instability over a period of time. As long as these deviations
are small, we can linearise the equations and study the growth of these perturbations.
Once the deviations from the smooth universe become large, we have to use different
techniques to understand the non-linear evolution. Lastly, we have to develop some
physical mechanism capable of generating the initial inhomogenity. In this part of
the review we shall study the linear regime.

One can attempt a linear perturbation theory along the following lines: (i) Per-
turb the metric g;x(z) and the source T;x into the form (gix + 69ix) and (Tix + 6T ).
The set (gix,Tix) corresponds to the smooth background universe, while the set
(69ik, 6Tix) denotes the perturbation. (ii) Assuming the latter to be ‘small’, we can
linearise Einstein’s equations to obtain a second-order-differential equation of the form

L(gix)ogix = 8Tix (2.4)

where £ is a linear differential operator depending on the background space-time (iii)
Being a linear equation, it is convenient to Fourier transform the variables and obtain
a’'separate equation fi(k)ég(k) = 0T(x) for each mode labeled by a wave vector k. (iv)
Solving this equation, we can determine the evolution of each mode separately.
There is, however, one major conceptual difficulty in carrying out this pro-
gramme. In general relativity, the form (and numerical value) of the metric coef-
ficients g;x (6r the stress-tensor components T;;) can be changed by a relabelling of
coordinates z' — z*. By such a trivial change we can make a small 6T}; large or
even generate a component which was originally absent. Thus the perturbations may
grow at different rates — or even decay! — when we relabel coordinates. It is nec-
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14 T. Padmanabhan and K. Subramanian

essary to tackle this difficulty before we can meaningfully talk about the growth of
inhomogenities.

There is a simple way of handling this problem for modes which have proper
wavelengths which are much smaller than the Hubble radius. The general relativistic
effects due to the curvature of the space-time will be negligible at sizes far smaller
than the Hubble radius. In such regions, there exists a natural choice of coordinates in
which Newtonian gravity is applicable. All physical quantities can be unambiguously
defined in this context. (see e.g. Weinberg 1972; Peebles 1980) As we will see, such a
Newtonian analysis provides valuable insight into the behaviour of inhomogenities.

The trouble with the above idea is that the proper wavelength of any mode will be
bigger than the Hubble radius at sufficiently early epochs. We saw i . the last section
that any proper length A (as measured today) with A <« H;! today would have
entered the Hubble radius at some time t.,¢.-()) in the past. Newtonian analysis can
be used to study a mode labeled by A only for times ¢ > t.nter(A), when the mode
is well within the Hubble radius. Thus, the early evolution of any mode needs to
be tackled by general relativity and the coordinate ambiguities again rear their ugly
head.

There are two different ways of handling such difficulties in general relativity and
both have been tried out in the cosmological context. The first method is to resolve the
problem by force: We choose a particular coordinate system and compute everything
in that coordinate system. If the coordinate system is physically well motivated, then
the quantitics computed in that system can be interpreted easily; for example, we
will treat 6T to be the perturbed mass (energy) density even though it is, of course,
coordinate dependent. The trouble with this method is that one cannot fix the gauge
completely by simple, physical arguments; the residual gauge ambiguities create some
headache. X

The second approach 1s to construct quantities — linear combinations of various
perturbed physical variables — which are scalars under the coordinawe transforma-
tions. (Bardeen 1980). Einstein’s equations are then rewritten as equations for these
gauge invariant quantities. This approach, of course, is manifestedly gauge invariant
from start to finish. However it is more complicated than the first one; besides, the
gauge invariant objects are quite wierd and possess no straightforward interpretation.

In principle, therefore, the perturbation theory should proceed in two steps: (i)
Given a mode A, we know t.nter(A). For t < tenter(A), A > dy we use a general
relativistic perturbation theory to evolve ép)(t) from some t = t; to t = tenter(A). (ii)
For t > tenter(A), A < dy and we can study the evolution of §p) using Newtonian
theory.

It turns out that most of the results can be understood in terms of simple scaling
arguments. Therefore, we will first discuss a simplified analysis of perturbation growth
in the next section. A more rigorous — and sophisticated — analysis will be presented
in section 2.3.

2.2. Suppression and growth of perturbations

The material content of the smooth universe has three main components —
baryons (pp), darkmatter (ppar) and relativistic matter like photons (pr). To char-
acterise these sources, we specify the equations of state for each of them connecting
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the pressure p, of component z with the density p,. We usually take ppy = pp = 0,
when matter is non-relativistic and pg = -;—pR, In studying the perturbations individ-
ually, we can set:

a .
6Pmatter = (_a_P) 6Pmatter = (E) 6P = 02(6P)matter
matter P (25)
6pp = fsﬂ 6pR = P_R 5pR = 1)2 6pR
© \épr PR &

In general, there is no relation between (6p)matter and (6p)r. Any fundamental theory
explaining the physical origin of fluctuations will, however, provide such a relation
(In the absence of such a theory, we may simply assume this relation). Inflationary
models, for example, predict that

4
6PR = ( PR ) 6Pmatter (26)

3pmatter

This is equivalent to the statement that

3
6( T ):6( R ):0 2.7)
Pmatter Pmatter

[we have used the relations pgr o T*, ng o« T3]. Since the entropy of the radiation
also scales as T, the above relation keeps the relative entropy constant; it is usual to
say that such fluctuations are adiabatic.

Having fully characterised the fluctuations, we can study their evolution. Con-
sider first the situation in which the wavelength A of the perturbation is much larger
than the Hubble radius dy. Since processes like pressure, viscosity etc act at scales
much smaller than dy, they do not affect the evolution of the super-horizon-modes.
Even though a rigorous study of such a mode requires general relativity, the final
result can be obtained by the following trick (Zeldovich & Novikov 1983):

Consider a spherical region of radius A(> dy) containing matter with a mean
density p;, embedded in a k = 0 Friedmann universe of density po (with p; = po + ép;
§p small and positive). It can be shown that the inside region is not affected by the
matter outside and evolves as a k = +1 Friedmann universe. Therefore, we can write

1. 8xG 8rG a a
2 _—. = em— . 2 o —— - = —o . preg -—1 .
Hi + ) 3 Pu Hy AL (Ho ao'Hl al) (2.8)

We will compare the perturbed universe with the background universe when thesr
ezpansion rales are equal; i.e. we compare their densities at a time ¢ when H, = Hj.
We then get

8#xG o
5 (P-p)= 7 - @29
or 6 3
P1— po P
LS R P . 2.10
( Po ) po  87G(poa}) (2.10)
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In general, if Ho = H,, at some time, then ag # a; at that time. But, if (6p/po) is
small, then a; and ao will differ by only a small quantity and we can set a; = a¢ in
the right hand side of (2.10). This allows one to find how (6p/po) scales with a. Since
po < a—* in RD-phase and pp & a=3 in MD-phase, we get

bp a? (RD phase)
(7) x {a (MD phase) (211)
Thus, the amplitude of the super horizon miode always grows; as a? in RD-phase and
as a in the MD-phase. [It is possible to prove this result rigorously using general
relativity. Our choice of comparing p; and pp when H; = Hj corresponds to choice
of gauge].

Consider now what happens to this mode when it enters the horizon and be-
comes a subhorizon mode. (A < dy). There are two processes which can prevent its
amplitude from growing.

The first one is the familiar pressure support. If the pressure distribution of
matter can readjust itself fast enough - i.e. if sufficient pressure can build up before
gravity crushes the perturbed region under its own weight - then the pressure will
prevent gravitational enhancement of the' density contrast. The condition for this is

{timescale for the pressure readjustment } < {timescale for gravitational collapse}

(2.12)
That is

tpressure & —/————— = — < = freefall time = tcojapse- (2.13)

wavelength A
vel.dispersion v

a-

This condition for stability implies that growth is suppressed in modes with wave-
lengths ) less than a critical wavelength A; ~ v(Gp)~% It is conventional to define
this “Jeans length” with an extra /7 factor:

Ay =T e, (2-.14)

If the universe contains only one species of particle, then the v and p will both
correspond to that species. In a multi-component medium, v will be the velocity
dispersion of the perturbed component (it is the perturbed component that provides
the pressure support), but p will be the density of the component which is most
dominant gravitationally (it is this component which is contracting the perturbation;
think of the atmosphere above earth where gas pressure works against the earth’s
gravity). In general, of course, these two components will not be the same.

The pressure in a baryonic gas is essentially provided by collisions. But in the
DM-component, the collisions are usually quite ignorable. The “pressure” support
in a collisionless system arises from the readjustment of orbits. In both the cases,
however, the timescale tpressure is set by the velocity dispersion, v.

There is a second process which can prevent the growth of perturbations. This
occurs when (i) the perturbed species is not the dominant species (which governs
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the expansion rate) end (ii) the dominant species is smoothly distributed. (Mezzaros
1975). Suppose that tgay for the perturbed species (say, DM) is indeed less than
tpressure; thus the condition A > A; is satisfied and pressure cannot prevent the
collapse. But suppose that we are in a RD-phase, when the expansion timescale
tegp ~ (G’pdominant)"% ~ (GpR)'§ is smaller than tgay. Then the universe will be
expanding too fast for the collapsing region to condense out. We have here a situation
with tezp < tgrav < tpressure; that is,

1 1
7= =<
v Ger ~ VGppm

It is rapid background expansion rather than pressure support which prevents the
growth.

If neither of these processes are operational, then the amplitude will grow. It
is clear that the second process will prevent growth in all subkorizon modes in the
RD-phase. Thus, in RD-phase, only superhorizon modes grow and they grow as a?
(see (2.11)). In the MD-phase, for all A 3> A;, we can ignore pressure effects; thus
the analysis leading to (2.11) is valid even for subhorizon modes with A > A; (i.e
for dg > XA > A; as well). So we conclude that, for all A > Ay in the MD-phase,
the amplitude grows as a. Modes with A & A; also grow, but in a more complicated
manner (because of pressure corrections).

We can now put all the pieces together and study the life of a perturbation
with wavelength A. The relevant scalings are shown in fig. 2.1. Suppose that this
mode (with proper wavelength A o a) enters the Hubble radius in the RD-phase at
SOme @ = Qenter- Let us consider the perturbations in DM-component at different
epochs first. For DM, the velocity dispersion v ~ 1 when the particles are relativistic
(a < a,,) and decays as v ox a~! when the particles are non-relativistic (a > anr;
see the discussion in section 2.2.) Since pgom = pr for a < a.y and pgom = ppm for

e | >

(2.15)

. - . -1 -1 -1
a > a.q, the quantity pdoén will scale as py 2 =pp? o« a? for a > a., and as p 2 o

-4

Ppir X a®/? for a > a.q. Combining, we find that, for dark matter,

a2  a<ap,

v
Pdom 01/2 Geg<a

There are 3 essential stages in the evolution of a mode which enters the Hubble

radius between a,, and a., [as we shall see later, these are the modes most relevant

to astrophysics]:

(a) Stage 1 (@ < Genter): The wavelength of the perturbation is bigger than the
Hubble radius; from our earlier discussion we know that

(%)aaz \ (2.17)

(b) Stage 2 (@enter < @ < @eq): The wavelength is inside the Hubble radius and
bigger than A;; so, pressure support cannot stop the collapse. However, the
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- log(length) —

v

=1/2 2 -1/2 3/2
Pdom ~a I Paom~

2
Phase A . X > d, ( GR analysis predicts growth-,3<Ic1 )
Phase B | A < d, 5 %ominunt>PDM(Very weak growth)

Phase C . X\ <d, ; Growth;dda

Figure 2.1. Jeans length for dark matter.

dominant component driving the expansion is radiation, and since pr > ppm
the tezp < teollapse- Thus, rapid expansion prevents the growth of perturbations
in this stage:

(67‘0) = constant. (2.18)

(c) Stage 3(a.y < a): The wavelength is inside the Hubble radius and bigger than
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Aj; further pgom now is ppas itself. Neither process described before can prevent
the growth. For A 3> A; (so that pressure corrections are ignorable), the growth

is as described by (2.11):
6p)
— | xa 2.19
g o
It is conventional to present the above results in terms of a quantity called Jean’s

mass. s
47 /\]
My=—p|— (2.
: 3,,(2) (2.20)

where p is the component under discussion. Since ppy o a~* for a < an, and
ppm x a3 when a > a,,, we see that

2

a- a < any
Mj « { constant an, < a < aeq (2.21)
a'% Gy <a

The mass inside Hubble radius My is similarly defined to be

2

e d 3 a a < apy
My = TPDM (TH) (0 ¢ a Anr < @ < Qeq (222)
a3/? Geg < a

The perturbation, of course, has a constant mass M (). All the previous 3 stages can
be reexpressed in terms of these masses, as shown in fig. 2.2.

Let us next consider the perturbations in the baryonic component. Since baryons
and photons are tightly coupled for @ < age., the pressure and density of the baryon-
photon soup is well correlated. Let ag, be the epoch at which pg = pp; usually, ap,
< @gee. For a < ap,, PR > Pg and pr > pg; so

8P\ P Pr+Ps Pp 1
vzz(_):_z_z_z_ a< ap, 2.23
ap p PrR+pPB  pPrR 3 g (2.23)

For ap, < a < agec, baryons are still -coupled to photons maintaining pressure equi-

librium (P = Pr + Pg = Pgr) but the dominant density is p = pg + pr = pB.
So

vV~ —x —xa apr < a < Qgec (2.24)

For a4.. < a, baryons are decoupled from photons and there is no pressure equilibrium.
The v? « (Pg/pp) now is just the velocity dispersion of Hydrogen-Helium gas. So

v x a”? Qgec < @ (2.25)

Notice that, at decoupling, v? drops from (Pr/pg) to (Ps/ps). Since Pp
nrkT while Pg < ngkT with (ng/np) ~ 10® > 1, this is a large drop in v? and -
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My @ 3P

M\ [——/----- -~ .

2 -
a Qenter 372

| 1 >
Qnr Qeq

Figure 2.2. Jeans mass for dark matter.

consequently - in A;. Ay and M are shown in fig. 2.3, 2.4. By repeating the previous
analysis, we can see that,

5;7 a? a < Genter
bp = (—) X § constant QAepter < @ < Qdec (2-26)
P/B a Qgec < @

The last part deserves closer analysis. Notice that perturbations in DM can grow
from a., onwards while perturbations in baryons grow only from agec. During the
time from aq to agec, the perturbations in dark matter would have grown by a factor

2dec > 91QR2 (2.27)

Qeq

When the baryons decouple, their pertubration will feel the perturbed gravitational
potential of dark matter and will be driven by it. (We may say that the baryons “fall
into” the potential wells created by the DM). This implies that ép will grow rapidly
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Figure 2.3. Jeans length for baryons.

for a short time after a4 and will equalise with the value of épys ; after that, both
6p and épps will grow as a.

Throughout the above discussion, we have assumed that the background universe
is a high density universe with Q close to unity. If, instead,  is small (say @ = 0.1)
then we have to worry about another additional complication. To see this, consider

the evolution of the scale factor for a k = —1 universe. We can rewrite the Friedmann
equation as

a? 87G 1

— =2 — 2.28
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M(X)

L1 | |
Oenter Oeq Jpr Qdec

Figure 2.4. Jeans mass for baryons.

The matter density falls as a—3 while the second term on the right hand side, the
curvature term, falls only as a=2. So it is possible for the curvature to have dominated
over matter at and aftér some epoch in the past. The two terms on the right will be
equal in magnitude at a redshift z, where

871G (1 + 2.)° = S +2) (2.29)
3 a§
or, ~
3 11 11 1
+z) =g G o~ Hi0ad ~ (5 - 1) (2.30)

[In arriving at the last step we have used the relations p, = (3H2/87G) and a5 ? = H3
(1—2).). Such a transition to curvature dominated universe could have occurred in the
past (z, > 0) only if Q < 0.5; for example, if @ = 0.2, z. ~ 3. If this transition occurs,
then the growth of perturbations stops at z.. Tnis suppression occurs for the same
reason as the suppression in the radiation dominated phase: the expansion, dominated
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by a smooth a2 term, is too rapid for the growth of perturbations: tezp < teollapse-
Thus, in a low density (2 < 0.5) universe there is no growth of perturbation after

z = z,.
2.3. Aspects of general relativistic perturbation theory

We shall now take up the issue of perturbation growth in the general relativistic
phase, i.e. when the perturbation scale is bigger than the Hubble radius. Though the
actual derivation of the perturbation equation is complicated, the final result can be
easily stated and understood physically. We will therefore, skip the derivation and
discuss the final result. (The essential growth laws have, anyway, been derived by a
different route in the last section. A full derivation in a particular gauge is given in
Appendix 2.1 and 2.2).

Consider a perturbation, labeled by a wave number k, in the linear approxima-
tion. The second order differential equation governing the growth of the amplitude
can be written as

2 . 2.9 .\ 2
P, (9 @, (kazzu) @a=n1(2) Qu (2.31)

where the various quantities have the following physical meaning:

gauge invariant variable related to the
Q4 = { density contrast of the specieslabeled by A; (2.32)

A could be baryons, dark matter or photons

2 — (BPA ) _ ‘sound’ speed at which pressure readjustments (2.33)
A7 \0pa/) ] cantake placein thespecies — A .
functions of ¢, which can be specified (2.34)
QA pa =\ . .
4rHa in terms of the background matter.

Each of these quantities deserves comment.

We mentioned previously that, in general relativity, it is necessary to either
choose a specific gauge or to deal with gauge invariant quantities. The dependent
variable Q4 is a gauge invariant scalar related to the density contrast (6p/p)a = 64
in the species labeled by A. In general, this quantity has no simple physical meaning;
however, one can choose a coordinate system in such a way that

Qa=(@pa). (%p),. = (a%pa)a (2.35)

This is a convenient relation for interpreting Q 4.

In the adiabatic scenario, the velocity dispersion v4 decides the relation between
perturbed pressure and perturbed density. Notice, however, that the label A can also
include the relativistic component; in that case, v4 ~ 1, the speed of light.
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Lastly, the variables u4, a4 are quantities which depend on the equation of state
of the background matter. For the single component medium we are considering these
turn out to be:

A= 204wy (2.36)

asp =21+ g—vi) (2.37)

where w = (p/p) and v = (p/5).

The specific form of these functions, of course, is crucial in deciding the behaviour
of 64 as a function of a. Notice that, if (P/p) is a constant, then these functions reduce
to constants independent of time.

To understand the growth (or suppressnon) of Q4’s it is better to rewrite (2.31)
in the following way:

d? Cod Ic2

where H = (a/a). The first term in the right hand side always dampens the growth,;
this is purely an effect of expansion. [The expansion rate (a/a), of course, is con-
tributed by all matter in a multicomponent medium. If the dominant, smooth com-
ponent is not the species A under consideration, then the damping due to expansion
can suppress the growth; this is what happens in radiation dominated or curvature
dominated phases).

The second term represents the conflict between pressure support and gravity.
This term will act as a ‘restoring force’ and prevent growth if (ignoring the numencal
factor p4)

a®’H? < k%3 (2.39)
Since H? = (8Gpdominant/3) and k% = (27/))? we can write this as

(Aa) _ Aproper < L A<y =

v

v v VGp' VvGp
which is precisely the condition tpressure < fcollapse discussed before. In a single com-
ponent medium, we have only two terms on the right hand side. The first term (ex-
pansion) always dampens the growth; the second term (pressure-gravity) may assist
the growth or suppress it depending on the values of A and A;. [In the multicom-
ponent medium, Q4 will be driven by the species with largest value for (u@); the
restoring force, of course, comes from k?v% term.]

Let us look at the solutions to this equation in some simple cases. To do this,
it is better to choose a gauge such that Q = (pa®)6. By substituting this relation,
carrying out the differentiations, and using (1.16) , we can write down the equation
satisfied by é; we find that

(2.40)

; oz SH? . k?
6+ [2-32w—v*)Hé - —(1 — 6v% + 8w — 3w?)é = ——3v 28 (2.41)
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Galazy formation 25
where H = (@/a), w = (p/p) and v? = (p/p), and we have suppressed the subscript
A. Since d 4 4

i P H(a)az (2.42)

we can now change the independent variable from ¢ to a in the above equation, leading
to

d?6 dé k2v?
2 —_ _ =
e o5+ Aada + (B + H2a2) 0=0 (2.43)
where 9 3
A= 5(1 - 5w + 2v%); B = -3 [1 - 6v% + 8w — 3w’ (2.44)
In the radiation dominated case w = v? = (1/3), giving A = 0, B = —2; the equation
becomes s 12,2
2 v —
amﬂ'(m—Q)é—o (245)
while for matter dominated case w = v? = 0, giving A = (3/2), B = —(3/2); then
the equation is
d’6 3 dé k*v? 3
2_ —_— — —— — — —_ .
¢ da2+2aa,'a+<Hza2 2)6 0 (2.46)

These equations have fairly simple solutions. Consider first the modes for which the
quantity (k2v?/H?2a?) is far less than unity. Then the equations become

a2 —26~0  (RD — phase)
3 (2.47)

a2’ + -iaé' - %6 ~0 (MD - phase)

The solutions can be written down by inspection; the growing modes are

_ [ a® (RD — phase)
6= { (MD — F;)hase) (2.48)

These results were obtained earlier by a different method. The condition that
(k?v?/H%a%) < 1 selects modes which are bigger than the horizon in the RD-phase
and bigger than the Jean’s length in the MD-phase.

In the opposite case, (k2v?/H2a?) > 1, the amplitudes do not grow but oscillate
as a wave. In the RD-phase the equation becomes

d2é k2y?
Ea—z + ?{—2'1—45 >0 (2.49)

Notice that H2 o« p oc a~* in the RD-phase, making the coefficient of § a constant.
The solution is therefore

_ . kv _ . dH(a)
§=expt (Haz) a=-expt [m | (2.50)
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26 T. Padmanabhan and K. Subramanian

which oscillates rapidly because dy > Apny. [We have set v x~ 1, which is valid in
RD-phase].
In the MD-phase, we can rewrite (2.46)as

d*6 3d6  k?

Using the fact that H?a® = constant and v?> o a~! and changing the independent
variable to z = a!/2, we get

d?6 2dé w2 _ 9 _ 4k29y?

wmtrmt =0 Y =qma (2.52)

where w is a constant. This equation has the solution § oc 2™ with n ~ [(-1/2) % iw]
for w > 1. This means that

§=1"Y8exp (i%“’ht) (2.53)

which is a slow decay int he amplitude.
2.4. Aspects of Newtonian perturbation theory

If A < dp, then the perturbations can be analysed by Newtonian theory. The
non-relativistic, Newtonian limit of (2.41)can be easily obtained by setting w =~ 0;v =
0 in that equation. Using further the fact that H? = (87Gp/3) we get

. 2 . k202
(SA + 706‘4 + GI;A 6,1 = 47rGPA6A (254)

Since there are no gauge ambiguities, one can keep the density contrast é as the
dependent variable and t as the independent variable.

If there is more than one species populating the universe, then the right hand
side of (2.54) contains contributions from all the perturbed species; the equation gets
modified to

~

b4 = Z 47Gppbp (2.55)
all B

. 1 - 2,2
6_4+2‘1—a($,4+kv‘4

a?

The structure of (2.55) is quite similar to that of (2.31); there is one term giving
dilution due to expansion (2(15/a), one representing pressure support (k2v?/a?)é and
the driving force due to the gravitational field of all perturbed matter (47G ) pé).
All the qualitative considerations mentioned in the previous two sections can be easily
seen to hold in this case as well.

As an illustration of Newtonian limit of the perturbation theory, let us consider
two situations mentioned in 2.5: (a) Suppression of épar- growth in RD-phase and
(b) Rapid growth of ép just after tg4...

Consider a mode with A\; <« A < ly in the RD-phase. Since A\;j < A, we can
ignore the pressure support. Further, in the right hand side of (2.55), we ignore ég
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because < 6g >~ 0 at subhorizon scales (A < ct) due to rapid oscillations in (2.50).
Then we get

. % .

bpm + £'5DM = 4nGppmépm -(2.56)

where the background universe is governed by the equation

a’?  8rG, o em
= "3 PR+ pDM) (2.57)
Introducing the variable £ = (a/a.;) and using (2.57) in (2.56), we can recast the
equation in the form

d?6 ds
dDzM +(2+32)=2M _35py;  z= — (2.58)

dz

2z(1+z)
T

The growing solution to this equation can again be written down by inspection:

bpm =1+ g:c (259)
In other words épar = constant for a < a., (no growth in the RD-phase) and épp o a
for a > a., (growth proportional to a in the MD-phase). Thus éppr does not grow
in the RD phase even though A > A;.

This statement, however, needs to be qualified. The above equations - and infact
all perturbation equations considered so far - are second order differential equations
having two linearly independent solutions. A general solution can be found only when
two 1nitial conditions are given. We have been avoiding this problem so far by just
choosing the “growing” solution as the solution to the equation. (This procedure
is justified as long as we are not interested in any transient phenomena.). In this
particular case a proper analysis will require matching both é and é at the instant
t = tenter- This would force us to choose a linear combination of solutions during the
epoch fenter < t < t.q rather than the purely growing mode given above. It turns out
that such a more complicated analysis changes the result only slightly: The modes
can grow very weakly - in fact, logarithmically - during the period tenter < t < teq.
(see e.g. Peebles 1980).

Finally consider the perturbation in the baryon-dark matter system just after
decoupling. This is governed by the equations

. 2 .

bpm + ';6DM = 47rG'(p363 + PDM‘SDM) ~ 4rGppmbp M (2.60)
. 2.
op + -0—53 = 47rG(p363 + PDM‘SDM) ~ 4rGppmbépm (2.61)

where we have used the fact that, just after agec, ppm 6pM > ppbép. Equation (2.60)
represents the growth of perturbations in the DM- component. From the previous
analysis we know that it has the solution

épm = (constant)a = aa (2.62)
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(This can also be verified directly by using the facts that a oc t(2/3); p oc t~2). Substi-
tuting this in (2.61), we can rewrite it as

da \al’? da da Ea (2:63)

[where we have again used the relation a o< t2/3 ). This has the growing solution
a
b5 « (a — @) = pp(a) (1~ ;) (2.64)

where « is a constant. This solution shows that bp — bprp fora > a, even if bg = 0
at some a = a = ag4e. (say). In other words, baryonic perturbations “catch up” with
DM perturbations after the decoupling.

2.5. Free sireaming in collisionless dark maitter

In the discussion of perturbations so far, we have taken the matter content of
the universe to be an ideal fluid. This approximation breaks down for wavelengths
smaller than a particular critical value. At smaller wavelengths, all power is drained
away by certain dissipative processes which we will now discuss.

The physical origin of dissipation is different in baryons and dark matter. In
baryons, it arises due to the coupling between radiation and matter, which we will
study in section 2.9. In collisionless dark matter, the dissipation occurs due to a
process called ‘free streaming’ which we will discuss in this section.

If the dark matter is made of weakly interacting particles, then they do not
feel each other’s presence via collisions (unlike an ordinary gas where collisions are
significant). Each dark matter particle, therefore, moves along a geodesic in the space-
time. Perturbations modify the space-time metric and - consequently - the geodesic
orbits. One can study the response of dark matter particles to such perturbations
by invoking an “effective pressure” and treating darkmatter as an ideal fluid. Such
an approximation is valid only for sufficiently large wavelengths. At small scales,
the “free”, geodesic motion of the particles will wipe out any structure, because
the particles can freely propagate from an overdense region to an underdense region
equalising the densities. (Bond et al. 1980, Peebles 1982, Bond & Szalay 1983).

Let Ips(t) be the proper distance which a darkmatter particle can travel in time ¢
in the background space-time; and let A(¢) be the proper wavelength of a perturbation
at time ¢t. Then all modes, for which lpg(t) > A(t), will suffer due to free streaming.

We know that A(t) o a(t); so we only need to compute [ps(t) to compare the two.

This can be done as follows: The proper distance traveled by a particle in time ¢ can

be written as
v(t'

tes(t) = aft) [ 2

[Since adz = vdt defines the proper velocity v(t)]. During 0 < t < t,,, the dark
matter particles are relativistic and v ~ 1; since a(t) o< t'/2, this gives

t gy 1/2 1/2 1/2
Ips(t) =“/ dt (tl-> = a(t) [2t ! ] =% xa® (fort<t) (2.66)
0

1
Qnr t Qnr

(2.65)
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Fort < t,, <teq, voxa~! and we get

zps(t)=['—”—“ﬁ+ t id “’"] at)

nr ¥ tl
a tnr a( ) ( ) (2-67)
2y, 2, a 2Upra
= + In a= nr,t < teq)
Qnr Anr Anr Anr
For t > t.q, a(t) o t/3. So
] t 4/3
Irs(t) = frslleg) / = (t_q) dt'] a(t)
a a2, \ t
L feo T s (2.68)
_ 2tnr aeq 3tnr aeq
=2 <1 +In am) + P~ (1 1/2)] a(t)
Thus we find that
lrs(2) (2tnr/a2,)a = (2t/a) t<tnr
T = (2tnr/ans) [1 + In(a/an,)] thr <t <teg (2.69)
a (2tnr/ans) [% +1n aeq/an,)] teg Kt

We have to now determine the range of wavelengths for which the condition A(t) <
Ips(t) is satisfied; or equivalently, the range for which (A\/a) < (Irs(t)/a). At t < t,,,
Ips ~ dy(t) the Hubble radius, (A/a) < (Ips(t)/a) ; during (t., < t < t.q), (Irs/a)
grows logarithmically; for ¢ > t.,, (Irs/a) grows still more slowly and saturates at
the value

Ars = Ips(to) = ( )(2t,,,)( +1In “e") (2.70)

Anr
Since this is the largest value of Ipg, all proper wavelengths A > Apg will survive the
process of freestreaming.

A simple minded derivation of the above result for Aps is as follows: When
the dark matter is relativistic, it travels with the speed of light and covers a proper
distance of (2t,,) by t = t,,. This distance corresponds today to the length (2t,,)
(ao/anr), which is identified as the freestreaming scale. Notice that this analysis gives
the correct result upto a numerical factor.

To obtain numerical estimates, we need to identify the epoch t,,. We may take
this to be the time at which Tpy = (m/3) where Tpy is the temperature of the
DM-species and m is the mass of the dark matter particle. The temperature Tpys, in
general, will not be the same as the radiation temperature T = T because the dark
matter could have decoupled early. If npys is the number density of DM- particles

then the quantity ,
Tpm\ _ npm
( T ) = (2.71)

is conserved during the expansion. Further,
npMm mn. npM nNpmMm -9
o = (251) = () =0 (i) (3) v eom
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Tom 3 npm Qpumh? m -1
—_—) = | =)= 2.73
( T ) ( n. 30 (lkeV) (2.73)
Using this relation and the numerical values (which can be easily derived from the
expressions derived in Part 1).

anr _7( m \~! (Tpym
o 10 (lkeV) ( T )

-2 2
tar = 1.2 x 107 (ll::V) <T1;,M) sec. (2.74)

(22) = (o) @2 ()

giving

one finds that

1 /(T 4 -4/3
Ars ~ 40Mpc (Qpuh?) ™! (TD—;“> = 0.5Mpc (Qparh?)*’? (%) (2.75)

+ This result is of extreme importance. It shows that the length scale below which
perturbations will be wiped out, Apg, is essentially decided by the mass m and temper-
ature Tpas of the dark matter. If, for example, the dark matter is made of neutrinos
with m = 30ev, (Tpa/Tr) =~ 0.71 and Q,h? ~ (m, /91ev) then

-1
Ars =~ 28Mpc ( 3’(’)‘;) (2.76)
This contains a mass of
-2
Mps ~ 4 x 10 ( 3’(')‘;,) M (2.77)

Thus, in a universe with neutrino as dark matter, perturbations at all lower mass
scales (M < Mps) will be wiped out; there will be very little small scale power.

If, one the other hand, the DM-particle is much heavier with, say, m ~ 1keV,
ijuh2 ~1, then

Aps & 0.5Mpc_( 1keV) (2.78)
containing only a mass of
Mps ~ 6 x 10°M. (2.79)

In this case, power at scales above 10°M( or so will survive dissipation due to free
streaming. In general, a heavier dark matter candidate will let the power survive at
smaller scales. The above discussion is summarised in fig. 2.5.

2.6. Collisional damping in the photon-baryon system

The damping of perturbations in the photon-baryon plasma occurs for a different
- and somewhat simpler - reason. At t < t4.., photons and baryons are very tightly
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(a) Dark matter

/2
o M

~

-2
3.3x10'Y Mg (2h%)

MeszH( feq)

M
FS _ 23, My -4
=05 (155)

2 M -4
1.5x10° Mo(Qh% ) (—==-)

100 ev
ALTL LY VT URARRNAN

MFS=MH(fn r )

Free streaming wipes out
Perturbations

Onr Oeq

Figure 2.5. Free streaming of dark matter.

coupled due to Thomson scattering. The proper length corresponding to the photon
mean free path at some time ¢ is

1
Xeneo

I(t) = ~ 1.3 x 10¥°emX (1 + 2)3(Qph?) ! (2.80)

where X, is the electron ionisation fraction. For wavelengths A < I, the photon
streaming will clearly damp any perturbation. But, actually, the damping effect is
felt at even larger scales because of the following reason. (Silk 1968).

Consider a time interval At in which a photon suffers N = (At/I(t)) collisions.
Between each collisions it travels a proper distance [(t), or - equivalently - a coordi-
nate distance [I(t)/a(t)]. Because of this random walk, it acquires a mean-square -
coordinate displacement:

1)2_ At 2 At

(Az)2 =N (; == ' (2.81)
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The total mean-square coordinate displacement of the photon before decoupling is

tdee gt 3taecl(taec)
2 = 8y = Staec!taec) .
= [ i = Pt D

which corresponds to the proper distance

2 2 2 3 2 Q 12 2\—32
I‘, =a (tdec).’t = gtdecl(tdec) >~ (35MpC) E (Qh ) 4 (283)

If we assume that baryons are tightly coupled to photons before t4.., it follows that
baryons will be dragged along with photons. Then all perturbations at wave lengths
A < I, will be wiped out. This wavelength corresponds to a mass

O 3/2
Ms = 6.2 x 1012M, (5—) (RR2)~5/1 (2.84)
B

No baryonic perturbations carrying mass below Mg survives this damping process.
(see fig. 2.6)

(b) Baryons

-1/72
M, (g, ) ... 2.6x10"7 M(22B/Q)(2h?)
r
Q, 372 -5/4
6.2x10'2M°(§‘;) (h2)
MSilk | TITTITR TR
Silk damping wipes out
perturbations
q-¥2
1 1 ]
Jeq Qgr Qdec

Figure 2.6. Silk damping for baryons.
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It is easy to determine the scale dependence of I, and Ms. For t < t.q, | ~ @3
t ~ a? giving Is ~ a®? and Ms ~ a®?; for t > toq, | ~ a3, t ~ a®/? giving Is ~ 119/4
and Mg ~ a!3/4,

Notice that this process occurs mainly around ¢ =~ t4e.. At t < tgec, Is is very
small while for ¢t > t4., baryons do not follow the photons. It should also be clear
that Is > I(t4ec) because tge > I(tgec); thus the effect is felt at scales far larger than
the mean free path.

The mean free path of the electrons l .. =~ (n-YO')_l is much smaller than the
lphotons = (ne0)~ ! because n, > n.. Hence any damping due to the ra.ndom walk of
electrons will be subdominant to the effects considered above.

2.7. The processed final spectrum

We have now assembled all the ingredients to evolve an initial power spectrum
at some t = t; < t.q to a final value at t > t4... As usual, it is better to consider dark
matter and baryons separately; we will discuss DM-spectrum in this section and the
baryonic spectrum in the next.

Let 6, (t;) denote the amplitude of DM-perturbation corresponding to some wave-
length X at the initial instant ¢;. To each A, we can associate a wavenumber k or mass
M; accordingly, we may label the perturbation as dpr(t) or éx(t),as well, with the
scalings M ~ A3; k ~ A~1. We are interested in 6,(t) at some t > tge..

To begin with, free streaming will wipe out power at all scales smaller that Apg
corresponding to a mass Mps. So we have the first result:

6M(t) ~0 (fOl‘ M < Mps;/\ < /\ps). (285)

Consider next the range of wave lengths Aps < A < A,y. These modes enter the
horizon in the radiation dominated phase; however, they do not grow until ¢ = t,.

Therefore, for these wavelengths 6x(teq) = éx(tenter). After matter domination, they
grow as the scale factor a. Therefore

Sm () = Spr(tenter) (ai) (for Mps < M < Mcg;a > aeq) (2.86)
eq

Consider next the modes with A,y < A < Ay where Ay = H~1(t) is the Hubble
radius at the time ¢ when we are studying the spectrum. These modes enter the Hub-
ble radius in the matter dominated phase and grow proportional to a after entering
the matter dominated phase. So

a

631 (t) = 61 (tenter). ( ) (for Moy < M < My) (2.87)

Qenter

This may be rewritten as

61 (1) = b0 (o) (2 ) () (2.88)

Qenter Aeg
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2/3

enter 1t follows

But notice that, since Zenter is fixed by the condition Adenter ~ tenter ~ At
that tenter ¢ A3. Further (@eq/aenter) = (teq/teme,)2/3 giving

2 2/3
Beq \ _ (Rea) _ (M
(aenter) B ( A ) B ( M ) (2.89)

Substituting (2.89)in (2.88), we get

Sae () = o (Lemer) (5A—")2 (i) ,

M, 3 1 g
= 6M (tenter) ( Mq) (;—)
eq

comparing (2.86)and (2.90)we see that, the mode which enters the Hubble radius after
teq has its power decreased by a factor M ~2/3,

Finally, consider modes with A > Ay which are still outside the Hubble radius at
t and will enter the Hubble radius at sometime tepter > t. During the time (¢, fenter),
they will grow by a factor (@enter/a). Thus

(2.90)

6,\(tenter) = 6A (%) (291)

or

53) = b3 temer) (2 = swttaner) (22) " (L) 0500 9

Qenter M eq

[The last equality follows from the previous analysis]. Thus the behaviour of the
modes is the same for all A > A.,. We can state the final result as follows: (see fig.

2.7)
0 A< Aps

8x(t) = Ox(tenter) (a) : AFPs < A < Agg
O (tenter) (-“—) ('\—A’-) Aeg <A

Geq

or, equivalently

0 M < Mps
6M(t) - 6M(tenter) (a) MFS <M< Meq

(2.93)
2/3
6M(tenter) (:Tq) (M_A;i') Meq <M
Thus the spectrum at late times is completely fixed by the amplitude of the
spectrum when it enters the Hubble radius. Of course, we can relate §(tenter) to 6(t;)
for some t; < tepter; but it is much more convenient to use é)(tenter) to characterise
the fluctuations.

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992BASI...20....1P&amp;db_key=AST

2BASIC D700 DR

rt

Galazy formation 35

| A Neq
A 2 Negq

X >dy

3/2
(K SK)H_

|
' |
| |
1 |
| |
i {

I
|
|
|
I
I
I
l
1

Oenterl!) Oeq  Onow

Figure 2.7. Growth of perturbation amplitudes for different modes.

2.8. Harrison-Zeldovich spectrum

The specification of 8x(Zenter) - OF, equivalently, the specification of 6, (¢;) at some t;-
is a fundamental, unsolved, problem in cosmology. Any complete theory for structure
formation must specify this function based on some physical considerations. In the
absence of such a theory, we will have to make some reasonable assumption for this
quantity, and compare the results with observations.

Notice that the symbol 8, (enter) actually stands for the function 8(), t) evaluated
at t = tenter (A). Thus 6)(tenter) = 6(A, tenter(2)) = F(A), some function of A . The
simplest choice for this function is a powerlaw which is examined in the literature in
great detail. In this model, we take

Sx(tenter) = AN o k™% ox M/3 (2.94)

It immediately follows that

0 (A(/\Fs;M<MF5)
() = bpr(t) ox { A* ox M3 (APs <A< Aeq; Mps < M < M)  (2.95)
A2 o Mo/3=% (g < \; M., < M)
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We will see in the later sections that the quantity which is physically relevant is the
“power-per-octave” in the perturbations:

0 (M < Mps)
k316K ()% oc M~ épr(1)|? ox { M22/3-1  (Mps < M < M) (2.96)
M2el3-% (M, < M)

At the time of entering the Hubble radius, this quantity has the dependence (use
(2.94))

(K218 %)=t e 0 K372 o M27371 (2.97)

This expression shows that the value'a = (3/2) is somewhat “special”. If a > (3/2),
then k3|6x|? will have more power at large M (at the time of entering the Hubble
radius); if @ < (3/2), then most of the power will be concentrated on small scales. For
the special value of a = (3/2), neither small or large scales dominate. Such a spectrum
(called scale-invariant spectrum or ‘Harrison-Zeldovich spectrum’) (Harrison 1970 ;
Zeldovich 1972) is indeed predicted by inflationary models. It is, therefore, usual to
take a = % In such a case

0 (M < MFps)
kalék(t)lz = { constant (Mps < M < M.,) (2.98)
M-3 (Mg < M).

Most of the power is in the region Mps < M < M,,.

We have parameterised the spectrum by the form of §(k,t) at t = t.nter(k). One
can also specify the same function by the power law |¢S(k,t)|2 x k™ at a givén time
t. It is easy to verify that the index n is related to @ by n = (4 — 2a). The scale
invariant ( Harrison - Zeldovich) spectrum a = (3/2) corresponds to a value of n = 1.

The actual shape of the spectrum depends crucially on the ratio

MFps

€q

— na (_Mm \7*
= 0.05(Qh2) (1 : Oev) (2.99)
If neutrinos with m = 30ev constitute the dark matter then (Mrs/M,q) = 4(2h%)*
which is around the range of unity. Thus the spectrum will have a relatively sharp
peak around Mps. If, on the other hand, the dark matter particle is heavier (say 1
MeV or so) and makes Mps < M,,, then the spectrum will be relatively flat between
MFps and M,,. (see fig. 2.8).

In this context, it is important to point out an extra complication: The flatness
of the spectrum between Mps and M., is a direct consequence of our assumption that
the modes which enter Hubble radius before M., start growing only after t.,. As we
mentioned before, this result is not strictly true; there is a small growth in the interval
tenter <t < teq. Because of this reason the spectrum will not be completely flat for
Mps < M < M., but will be sloping gently downwards. Thus the CDM spectrum
will have : (1) maximum power around Mpg (ii) a slow, gently sloping spectrum from
Mps to M., and (iii) a steep M~% fall after M,,. .

As time goes on, this spectrum just grows in proportion to a(t). Once § becomes
of order unity at some wavelength, the linear perturbation theory fails around that
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Figure 2.8. The processed spectrum.
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wavelength. For HDM, the scale with mass M &~ Mpg reaches nonlinearity first. Fur-
ther evolution, involving pancaking, fragmentation etc will generate power at smaller
scales. For CDM, the smallest scales M ~ Mpg reach non- linearity first; however,
since the spectrum is relatively flat for Mps < M < M,,, there is lot of “cross talk”
between the various scales. In other words, larger and larger scales go nonlinear fairly
quickly and “fall on top of” smaller scales. These non-linear proceses will be discussed
in a later section.

The situation for baryons is somewhat analogous. To begin with, the collisional
damping wipes out all power in the scales M < Mg, so that we only need to consider
M > Mg. These perturbations too do not grow until tg4..; i.e.

65{(” = 6hl(tenter) (fOI‘t < tdec) (2100)

Just after decoupling, the baryonic perturbations start growing. At this epoch, they
are driven by the dark matter perturbations which would have been growing since
teg. Therefore

(A, t) = épm(A,t) (fort 2 taec). (2.101)
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This analysis, of course, works for all A at which 8pas(A,2) is significant. In
CDM, this range is fairly wide - say, from 108 Mg to 10'*M. Baryonic perturbations
are now generated at all these scales even if they were originally absent; i.e., even at
scales below Mg = 10'2M(, in which Silk damping wipes out the power, this process
regenerates the power. In HDM, the situation is somewhat different: The épar (A, 1)
is concentrated on a narrow band around Mps ~ 10'*Mg and the above process only
generates baryonic power in that region. At M < Ms =~ 1012M_, all power is lost
due to collisional damping. In the window (1012My to 10'3My), there can be some
small amount of baryonic power surviving from the early epochs; but they are not
enhanced by the dark matter. Thus in HDM scenario, most of the baryonic and dark
matter power is concentrated around M ~ Mpgs ~ 101 Mg for t > tgec-

Further evolution of baryons is complicated by the fact that they can radiate and
cool. This will be discussed in detail in Part 4.

2.9. Gaussian random fields

The entire approach described so far is based on the separation p(x,t) = p(t)
[1+ 8(x,1)] of the density into a mean density and the fluctuation. In this equation
x stands for a particular location in space. It will be rather preposterous to expect
that any theory will be able to predict the value of p - or, equivalently the value
of 6 - at some specific point x in the universe. Neither will observations determine
p(x,t) at any single, specific location. The question, therefore, arises as to which
- essential properties of §(x,t) are to be fixed by the theory - and are directly relevant
to observation. To attack this question it is more convenient to concentrate on the
Fourier transform

6k = 6¢(t) = / 6(x,t)e* *d3x (2.102)

[since the rest of the discussion will focus on a fixed time, we will omit ¢t and wirte
6k(t) as éx]. The complex number é; can be separated into an amplitude and phase:

8k = \/|0k|? exp idx (2.103)

We will show that the amplitude [6;|? is most directly accessible to observation.

To see this consider a simple question regarding the distribution of matter in the
universe: How much excess matter (over the average) do we expect in a typical region
of radius R in the universe? This question is statistical in nature. If we divide the
universe into spheres of radius R then we will expect to find each sphere to contain
different amount of mass M. All that we are really interested in is the probability
distribution P(M, R)dM that one randomly chosen sphere will have mass in the range
(M, M +dM).

Such a probability distribution P(M) can be equally well characterised by the
moments of the distribution. In general, for an arbitrary P(M), we have to specify
an infinite number of moments; but if P(M) is sufficiently simple, then the number of
non-zero moments may be only a few. A particularly important statistic will be the
rms value in M: [< M2 > — < M >2]%, which can be directly related to the Fourier
transform 6 (t) of 8(x,t). To do this we use the concept of “smearing”, or window
function. A window function is a non negative, dimensionless, function W(r) with
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the property that W(r) = 1 for r < R and W(r) = 0 for » & R [a Gaussiun with
a standard deviation of R will be quite ideal]. Such a function defines an effective
volume

Vw = / r’W(r)dr ~ O(R?) (2.104)
0
Now consider the quantity
d3r
fw(x) = /_f(x +r)W(r)— (2.105)
Vw

for any function f(x). This defines an average value for f, at x, with an averaging
taken over a typical region of size R3 centred at x. In particular the excess mass in
a sphere of radius R, centred at the point x, will be

3
6Mp(x) = / PE(x +y)W(¥)dy = 7 / bWy ek * (‘;W‘)‘:,) (2.106)
From this we get
. N |
(67M) = wMAZE% ! v12 / §(x + y)5(x + 2)W(y)W(z)d’yd’z  (2.107)

To obtain the mean value of this quantity we average it over a large volume V; we
get

2 2S5 3x 3 3
< (%) >= < [bMr(x)” > =z /d d’k dp 51:5"'W;Wpe'(k_p)x
w

M Mp (27)3 (27)°
/ d3k |6k |?|Wi|?
(2m)3 |4

=/ dkAZ(k)lwkl

(2.108)
where 35, 2
k|6
A} = :
E = oy (2.109)
is the dimensionless power spectrum. If we take W(r) to be a gaussian
w r
: = _ 1
(r) =exp ( 5 R?) (2.110)

> and |6x|2 = Ak™, the above integral can be evaluated to give
SM\> A (n+3
it =T 2 = —1 .
<M)R 5 ( 5 )A(k ) (2.111)
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Using the relation M o« R3 o« k=3 we can also write this in a form which we use later
in part 4

2
(5—1‘{) x M~(n+3)/3, (2.112)
M R

Similar results will be obtained for other window functions. Thus the mean-square
fluctuation in mass over regions of size R will be determined by the value of AZ_p.
[This is why the quantity k3|6;|? was given special significance in the previous section).
It is also easy to see that

2 oo 3 2 oo
< 6%(x) >= (67)’1)_ = l/ dk k715 =/ ﬁ& (2.113)
0 0

1% k  2n2? ETF

Thus A2 measures the contribution from the octave around wavenumber k to the
fluctuation in the density contrast.

In these expressions, we have interpreted the symbol < ... > as the volume
average over a large size V in the universe. It is possible to provide an alternative
interpretation which is extremely useful. Let us suppose that the phase ¢, of each
mode é; is a random variable distributed uniformly in the interval (0,27) thereby
making 0y itself a random variable. In that case we can define the mean values by

averaging the phases over the interval (0,27). Writing the sum over modes in a
normalisation volume V as :

1 ) 1 . 1
5 — _} :6 ikx _ § ' idk)tk.x. 2 =_16.1° 2.114
(x) V . ke ——'\/‘7 - (ake )e y Iakl V | kl ( )
it follows that

1 . :
<b(x)>=— Zake’k"‘ < et >=0
vV 4
) | | : (2.115)
< 6% (x) > = v Zaka;e'(k‘p) * < el(Pu=9s) 5= v Z lak|?
kp k

Since the number of eigenmodes in the interval (k, k + dk) is (V k2/272)dk, we get

© kap? [P dkk3lag)? [ dk
2 — —_ — 2
< 6%(x) >_/0 dk—— _/0 e _/0 —A (2.116)

which is precisely the result obtained before. In other words, we can either interpret
the averages as spatial averages or as an average in an ensemble of §;’s (with each
realisation being given by the choice of phases ¢;. for all k). The latter approach is -
often more convenient.

The manner in which we have defined the ensemble average (viz. uniform averag-
ing over the phases ¢, taken as independent random variables ) makes 8; a “Gaussian
random variable”. It can be easily verified that all moments of é; can be expressed
in terms of the second moment.

< 685 >= o} (2.117)
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For such a gaussian random variable, the probability that a particular set of values
for the amplitudes will be realised is given by

_ 1 _l&
P[{ék}]_IkI\/2—7r0'k Xp 0'% (2118)

In the continuum limit, this is equivalent to a Gaussian law for the density function
8(x). The probability that the density contrast is described by a function é(x) is
given by

P[6(x)] = N exp —% / dPxd?y6(x)G(x — y)é(y) (2.119)

where G(x —y) is a given function. This is completely equivalent to saying that
each of the modes é; [obtained by Fourier transforming é(x)] acts as an independent
random variable; the amplitude of é; is specified completely but the phase of é; is
randomly and uniformly distributed. All the previous results can be obtained from
such a description.

The rms fluctuations computed above constitute the second moment of the prob-
ability distribution. If the probability distributions were gaussian distributions, then
the second moment, along with the mean provide a complete description of the distri-
bution. If that is the case, then we expect the probability P(M, R) that a randomly
spaced sphere of radius R will contain a mass M to be

12 (M — M)?
P(M) = = 2.12
(M) (215%,) xp 253, (2:120)
with 2
M= 4—;'-}23-; s2, =M (‘%’I) =T A%k = R™Y) (2.121)

Similarly, the probability that the mean fractional excess density is § at some point
is given by the distribution

1 52 , [Pdk. .,

Whether these distributions are gaussian or not depends on the processes which
generate the distribution. Inflationary models favour gaussian distributions but other
processes can give raise to non-gaussian probabilities.

For a given R, the results of the averagings described above are pure numbers.
They do not tell us anything about the spatial coherence of the density distribution.
Such information is provided by the two-point-correlation function. This quantity is
defined to be

Tk sefrerer 2.123
o leel (2.123)

In other words, the correlation function is the Fourier transform of the power spec-
trum.

£(r) =< b(x +1)8(x) >=
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We conclude by deriving a simple relation between (6 M/M)? and £(r). Consider

R
Ja(R) = /0 E(r)ridr =~ 4% / E(r)W(x)dr (2.124)

where W (r) is a window function with range R. Then

V d3k w [0k |2k3
Ja(R) I kle ~_[| k| ]
k=R-

3 2
R3 (27)3V 47 | 272V (2.125)
—A*k =R
3
On the other hand, we saw earlier that
6M 2 ~ 2 -1
57a ~A‘(k=R"") (2.126)
R

Combining these two relations, we get

(61\]:1/!),z = 3J;2(3R) 47rR3 / §(r)r*dr. | (2.127)

In other words, the average value of the correlation function in a region of size R
is directly related to (§M/M)? at that size R and hence to the quantity A? at that
scale.

3: Applications of the linear theory

3.1. Normalisation of the perturbation spectrum

The analysis in the previous sections used a density perturbation spectrum which
is a power law, 6y = Ak~ at the time of entering the horizon. Most inflationary
models predict the value a = 3/2; however, these models do not give a consistent
value for the amplitude A. The value of A depends crucially on the model chosen for
inflation [and the most natural models predict an absurdly high value for A].

Since we do not have a unique, acceptable prediction for A, it is necessary to
consider it as-a free parameter and fix its value from observation. This task - which
goes under the name “normalising the spectrum” - turns out to be quite non-trivial.

To fix the value of A, we should work out some observable effect which depends
on A and compare it with astronomical data. Two simple observations discussed in
the last section can be used for this purpose. -

The first one concerns the distribution of excess mass in random spheres of radius
R, and uses the result:

(%4) . ~ AA(k = R7Y) (3.1)

Detailed analysis of Cf A - survey shows that (M /M) ~ 1 at R = 8h~*Mpc. This
can be used to determine A.
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Alternatively, one can use the relation between J3(R) and (6 M/M)g derived
earlier: )
SM\° _ 3J3(R)
M), R
The study of galaxy-galaxy correlation function allows one to determine the right-
hand-side directly:

(3.2)

_ [ 270h=3Mpc?; (at 10h~Mpc)
Ja(R) = {600h_3Mpc3; (at 30h=*Mpc) (3.3)
This gives
MY\ 09 (at10h~'Mpc) (3.4)
M/, 7 1025 (at 30h~1Mpc) ’

suggesting that a scale of about 10h~!Mpc separates the linear regime from the one
which has already gone non-linear. The values of (§M /M) given above, of course,
fixes the value of A. (Huchra et al. 1983; Davis & Peebles 1983).

There are two difficulties with the above approach which must be mentioned.
Firstly, in order to normalise the spectrum reliably, we should use the value of R at
which linear theory is valid. Since £, ~ 1 at 5A~'Mpc, R has to be significantly
greater than 5h~'Mpc. But at these large scales, survey estimates are not very
reliable [for example, in the above equation, the value at 30h~*Mpc much less reliable
compared to the 10h~1Mpc estimate.]

Secondly, our astronomical observations use galaxies as tracers of mass distribu-
tion. This assumption could be in error if - for example - galaxies formed preferentially
at the high peaks of a random distribution. Such peaks would be clustered a lot more
than the original mass distribution. The simplest - ad hoc - assumption regarding
such a “biased galaxy formation” will be to take

(6p/p)galaxies =b (6p/p)mass (35)

where b is some constant. Once we accept biasing, observations do not directly de-
termine A but only the combination Ab.

It would be, therefore, nice if we could use some other theoretical consequence -
which does not take galaxies as tracers of mass - to determine A. Two such conse-
quences, viz. the induced anisotropies in CMBR temperature and the peculiar motion
of galaxies provide one with a glimmer of hope. We will discuss these. effects in the
next two sections.

3.2. Anisotropies in CMBR temperature

The observed temperature of the CMBR is expected to show fluctuations because
of (at least!) five different reasons: (i) Since our galaxy has a peculiar velocity with
respect to the cosmic frame, we expect the CMBR photons to show a dipole anisotropy
with respect to our direction of motion. (Fortunately, such an anisotropy has been
observed!) (ii) We receive CMBR photons from a redshift of about 103. If this ‘last
scattering surface (LSS)’ had a gravitational potential varying in space, then the
photons reaching us from the crests and troughs of the potential wells would have
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undergone different amounts of redshift - leading to a temperature fluctuation. (iii)
Just as our galaxy has a peculiar velocity, the matter on the LSS can have different
amount of peculiar velocity with respect to us in different locations of LSS. This will,
again, lead to temperature fluctuations across the sky. (iv) The radiation field on
LSS might have an intrinsic density fluctuation g which will, of course, lead to a
temperature anisotropy. (v) Lastly, the processes- which take place between z = 103
and z = 0 can generate (or suppress) temperature fluctuations. These processes
include gravitational lens effects, reionisation or inverse compton scattering by hot
intergalactic gas.

Though all these processes produce temperature anisotropies - usually denoted
by (AT/T) - they operate at different angular scales and have different magnitudes.
This allows one to consider them separately.

To begin with, the peculiar motion of our galaxy produces an anisotropy

ATT ~ vcosf (3.6)

where v is the peculiar velocity and # is measured with respect to the direction of
motion. Such an effect has been detected; our local group is found to be moving with
a velocity of 600 £ 50kms~! towards the directions o = 11*, § = —25°. In studying
T(6,¢) in the sky, we will, hereafter, subtract this motion by going to the cosmic
frame.

The rest of the processes can be conveniently separated into those which operate
on large scales and those which produce (AT/T) at small angular scales. A useful
separation of scales into large and small can be arrived at in the following manner.
In the linear theory, a density perturbation at wavelength A will induce a AT at the
same scale A. It can be easily shown that, in a Friedmann universe, a length scale A
at redshift z will subtend in the sky an angle 6(A) where

aoz\ Qo " A
() ~ — ~ 3. h)| — fi 1 .
W= (35) Frus@n (g) Gxe>n 6D
Therefore, the Hubble radius dy(z4ec) at decoupling subtends an angle
-1
~ 0nq1/2 [ #dec 2
8(dy) ~ 0.87°0} (—1100) | (3.8)

which is about one degree. Thus temperature fluctuations at scales larger than a
degree are caused by density fluctuations at wavelengths bigger than the Hubble
radius at decoupling. In other words (AT) at 6§ > 1° (‘large’ angles) directly probes
the superhorizon scale modes which are still in the primordial state, unaffected by
“dirty” astrophysical processes.

At these scales, the second effect - usually called Sachs-Wolfe effect- dominates.
If #(x,tqec) is the gravitational potential on LSS, then we expect (AT/T) ~ ¢; a
rigorous, general relativistic, analysis gives the result (Sachs & Wolfe 1967).

() = gétmtaed == ~g6e0p00 [ #3220 o
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Notice that, as long as linear theory holds § o a(t), p ox a=3 so that the last expression
is independent of time. We can conveniently evaluate it at the present epoch; using
= (87Gpo/3) and Fourier transforming 8(x,t) we get

(AT’{) = 2(221:)3/ e (3.10)

where x now points to the LSS and has a length |x| = 2H; ! which is the distance to
the horizon. Since |x| is fixed, (AT/T) is essentially the function of the angles (8, ¢)
on the sky. It is, therefore, best to expand (AT/T) as

oo {
AT— ZZ aimYim (9, @) (3.11)
1=2 m=

Using the previous expression for (AT/T) and the inversion formula for spherical
harmonics, it is straightforward to show that

HE [ dk

< lamm|* >= 2=

7= 10 *lai(k2)]” (3.12)

where g; is the spherical Bessel function. Taking |6x|?= AV k™ we get

AHZ* T(3-n) T[(2+n-1)/2)

<laml* >= = S A T 15 = m)/2]

(3.13)

Notice that A? o (AM/M)% ~ (k3[6k|®)k=p-1 ~ AR~("13); 50 < |aym|? >V/? x
(AM/M) evaluated at R = H;'. Thus, the CMBR anisotropy at large angles directly
proble (AM/M) at horizon size today.

Taking n = 1 (which corresponds to @ = 3/2) and using a spherical window
function to define (AM/M), we get

< lagm|® >= —(HoR)4 (61\1:[4)}2 (3.14)

[Forn=1,(6M/M)?> x R~("+3) o R~4; so the right hand side is indeed independent
of R as it should be]. We may use the value (M/M) =~ 0.25 at R = 30h~*Mpc to
obtain

< lagm|? >}2~2x 107° : (3.15)

Observations suggest that this value is less than 10~* at 90% confidence. Theory and
observations are consistent but do not provide us with any extra information.

Our original expression (3.9) also shows that, the r.m.s. fluctuation scales with
the angle as:

AT\? 1 {,\ +§ o gt (A< dn)
/2— . 2/1.3/2 ~ & H
( T ) ( k) )a_ 00_% () > [ ) ( )
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For a = %,
62 (for small 6; 8 < 1°)
T {constant (forlarge 6;6 > 1°) (3.17)

This clearly shows why the Sachs-Wolfe effect dominates on large scales.

Let us now consider the contributions to (AT/T) at smaller scales. To begin
with, one must notice that (AT/T) at very small scales are going to be wiped out by
the finite thickness of LSS. Decoupling is not an instanteneous effect, but has a width
- in redshift space - of about Az ~~ 80. (Jones & Wyse 1985) This width corresponds
to the comoving scale of Al ~ 15Mpc and a subtended angle of A8 = 8’. The photons
we see could have originated anywhere within this thickness of LSS; in other words,
we are only capable of observing quantities averaged over a size of about 8 in the
sky. Any (AT/T) at smaller angular scales will be washed out.

Between the angular scales 8’ and 1°, the dominant effect is the intrinsic fluctu-
ations in the radiation field itself. If the fluctuations are adiabatic, then we would
expect

<£) { 5(60B/pB)A (baryonic universe)
o(2)

T (%)Y (6ppm/ppm)a  (with dark matter) (3.18)

[Thus the dens1ty perturbation at wavelength A translates into the angular scale
8(\) ~ 34.4" (Qh)(A\/1Mpc)]. Putting in the numbers, we get, for the baryonic

universe AT N
AT 10720 (2=1,h=05) |
( T ) B {10‘“ (@ =0.1,h=0.5) (3.19)

and for the models with fermionic dark matter

AT 10-48 (Q =1,h= 0'75)
(_T_) B { 10-4° (Q=0.2,h=0.75) (3.20)

This is to be compared with observational bounds on (AT/T) which are all in the
region of 10~5. The RELICT experiment has set a constraint (AT/T) < 1.6 x 10~°
at @ 2 3%; (Strutkov et al. 1987; Klypin et al. 1983) the OVRO measurements give
(AT/T) < 1.5 x 107° at § = 7.15; (Readhead et al. 1989) the IRAM experiment
gives (AT/T) < 2.6 x 10~% at § ~ 11’ (Kreysa et al. 1989) and from VLA one has
the bound of (AT/T) <2x10~*for 16" < 6 < 18". The most recent measurements,
from COBE, gives (AT/T) < 4x 1075 at § = 7°. (Smoot et al. 1991) There has been
several other attempts - some of which even claimed a detection initially - but these
values seem to be the most reliable. We see that the baryonic model is completely
ruled out while dark matter models are still consistent with observations.

The angular profile of small scale anisotropies is complementary to that of the
Sachs-Wolfe effect. From (3.18) we see that

/\0—3/2 ~ 90—3/2 A<d

giving, for a = 3/2, the dependence:

{constant (6 <1°
or >~

s @ > 19) (3.22)
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The two remaining processes which affect (AT/T) at small angular scales are
the peculiar velocities on the LSS and astrophysical effects which take place between
z = 103 and z = 0. Of these, the effects due to peculiar velocities are usually
subdominant to the intrinsic anisotropics discussed above [and can be calculated by
methods to be discussed in the next section]. The astrophysical effects cannot be
taken care of in a unified way but need separate, detailed, modelling.

One such effect which deserves special mention is the process called ‘reionisation’.
In the thermal history of the universe we have adopted, the material in the universe
has become neutral for 25103 and never .become a plasma again; that is why our
LSS is at z =~ 103, Suppose, however, that the medium got reionised - and became a
plasma again - at some intermediate redshift, z;,,. If this is the case, then LSS comes
much closer. Any primordial (AT /T) will get wiped out at angular scales which are
smaller than the horizon size at zj,,. From (3.8), we can see that a value of zj,, = 10
will wipe out fluctuations below 9° or so.

This result emphasises the importance of anisotropy measurements at large angles
(8 > 1°). The absence of temperature fluctuations at small scales could be due to
various effects (including reionisation) which cannot be entirely ruled out; but most
of these effects cannot wipe out the large scale anisotropies.

3.3. Peculiar velocity field

In our study of density perturbations we concentrated on the evolution of 8(t).
But such a non-zero é; must induce a peculiar velocity field v(x,t) to ensure local
conservation of mass. From the Fourier transforms of continuity equation, Euler
equation and the Poisson equation

. ik
6); = E(t—).Vk(t) (323)
d - )
Et-(avk) — tke*br —tkdy =0 (3.24)
47Gpo -
Pk = — 7rk2po a“d; (3.25)

it is fairly easy to show that, the velocity field v(¢,x) arising from the component v
which is parallel to k, is given by

vix) = (305 91 ) (115799 (3.26)

where V¢ is the peculiar acceleration field generated by the perturbed potential

¢(t,x) = —Ga? P—l’é—(}tl’—t)dax' (3.27)

|x — x|

[Naively speaking one would have expected v =~ gtyny; this is essentially what the

above equation implies]. If we are in a Q@ = 1 universe, § o« a and the prefactor

(adé/éda) in (3.26) becomes unity. However, for a general , this factor is a slowly

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992BASI...20....1P&amp;db_key=AST

2BASI T 1120 11 1P

rt

48 T. Padmanabhan and K. Subramanian

varying function of Q. For all models with Q < 1, one can approximate this factor as

(Peebles 1980):

dlné 0.6
dlna = (3.28)
Taking Fourier transforms, we see that
A bp
)= Q9° (—) 3.29
( ))\ H0_1 0 PN ( )

If (6p/p)» decreases more rapidly than A~! [or, equivalently, (6p/p)s falls more
rapidly than M ~1/3/ as it does in Harrison-Zeldovich spectrum), then the contribu-
tion from large scales will be negligible, justifying the Newtonian approach we have
adopted.

The relation (3.26) is extremely significant. It shows that the peculiar velocity
field of any class of test particles directly probes the underlying mass distribution. If
the peculiar velocities of a large sample of galaxies can be measured - thereby providing
v(x, to) - then the divergence of this field will immediately give the underlying mass
distribution. Given some independent data on mass distribution (say, from galaxy
surveys) one can test the consistency of the theory as well as fix the value of Q%6 [or,
rather, the value of Q06 if a biasing parameter is invoked).

From (3.26) one can also compute the rms value of peculiar velocity averaged
over a region of size R:

vZ(R) = % < (/ v(r+ x)W(x)dax)2 >

_H} (dlné 2/°° 18 PIW 2 (3.30)
~ V \dlna/ J, 272V}
x R—(n+1)

for a spectrum with |6;|?> o< k™. [The above expression shows that the relevant
integrand here is |6¢|> o< (AZ/k3) rather than (A2/k) which occurred in the rms
values of density distribution. Thus peculiar velocities are more sensitive to larger
scales than the density distributions]. For n = 1, v’(R) o« R~!; putting in the
numbers, and using the J3 normalisation discussed in Sec. 3.1, we get

o(R) ~ {200kms-1(R/25h-1Mpc)-lh-5/3 (HDM) (3.31)

160kms~1(R/25h~Mpc)~1h~3/% (CDM)

Though the peculiar velocity field of the galaxies is an important diagnostic, it
is not an easy quantity to measure. If the actual velocity of a galaxy, located at the
position r is v, then the ‘peculiar’ velocity is defined to be

Vpec =V — Hor (3.32)

The only peculiar velocity which can be measured reliably is that of earth with respect
to the isotropic MBR background. Correcting for known motions, it is estimated
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that our local group is moving with a velocity of 650 & 30kms~?! in the direction of
(11.2 £ 0.04hr, -7 £+ 0.05 degrees).

The gravitational acceleration due to a distant mass falls as (M/r?); the flux
of radiation from that source also decreases as (L/r?). Therefore, if (M/L) is a
constant, we should be able to obtain the direction of peculiar acceleration from the
distribution of sources. This study has been done for optical and infrared sources.
The direction of acceleration obtained in this manner agrees reasonably with direction
of motion determined by MBR anisotropy. This acceleration seems to originate within
40h~'Mpc.

To compute vp.. for distant galaxies, we need an estimate of r, which is in-
dependent of redshift. Several such measures have been suggested and used in the
literature for this purpose. Imitial studies led to controversial claims in the literature.
[The quoted values for < vZ,, >!/? ranged from 300 km s~* to 10*kms~! (Rubin et
al. 1976; Hart & Davis 1982; Collins et al. 1986; James et al. 1987)]. More recently
a redshift-independent relation, D, o 0'8/3, where D, is a suitable defined isophotal
diameter and o¢ is the central velocity dispersion, was used to estimate distances.
When applied to a sample of about 400 ellipticals with a redshift depth of 0.02 (i.e.,
for Hr < 6000kms™"), this method yields a large value < v2 >!/2~ 600 + 100kms~!
on a scale of about 50h~!Mpc. The direction of motion is consistent with previous
observations. (Lynden-Bell et al. 1988)

More recently; the IRAS redshift survey was used to map the velocity field.
(Rowan-Robinson et al. 1990) Two conclusions are suggested by these investigations:
(1) It appears that, the peculiar velocities are bigger than what was predicted by
simple models. (2) The peculiar velocity of our local group seems to be generated
mostly from matter contained within a region of 100h~Mpc or so.

It seems safe to claim that our models predict values which are smaller than the
observed ones. This, in fact, is the most serious challenge faced by the theory at
present.

Lastly, one may use (3.26), evaluated at ¢t = t4.. to compute the anisotropies in
CMBR induced by peculiar velocities of matter on the LSS as (AT/T) ~ (v/c)Lss-
This gives values which are slightly subdominant to the intrinsic variations discussed
earlier. The angular dependence of this effect, however, is quite different:

or ~ (K326,)k™ ~ X212 ~ g2=1/2  (forsmall 6)

iy (3.33)

A\

if @ = 3/2. Most of the contribution comes from the region near 6 ~ 1°.
4 : Non linear evolution

In the previous sections we have been considering the linear growth of density
fluctuations and possible observational probes of the linear theory. However the real
world of galaxies is highly non linear, in the sense that the density contrasts between
galaxies and the background Universe are much larger than unity. How does one
connect the linear theory with this highly non linear Universe ? One possible route
which has generally been adopted is to do N - body simulations with a large number
of particles interacting via gravity. Another way is to make simple but nevertheless
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non-trivial models of the non linear evolution. In most of this section we follow this
latter route.

We begin in the next section with possibly the simplest nontrivial discription of
nonlinear evolution, the spherical model. The power of the spherical model lies in the
fact that at very little computational cost, one can estimate properties of ‘nonlinear’
bound objects which form as a result of gravitational instability. We then discuss an
important class of theories of galaxy formation, the hierarchical clustering theories.
We consider the scaling laws and the mass functions which obtain in such theories.
Another route for examining non linear evolution, particularly in the context of top-
down theories of galaxy formation, is via the elegant approximate solution proposed
by Zeldovich. We examine the Zeldovich approximation in section 4.4 and its recent
extension by Gurbatov, Saichev and Shandarin, the adhesion model, in the following
section. Any discussion of nonlinear evolution would be incomplete without mention
of the important results from N- Body simulations. In section 4.6 we outline the main
results of such simulations, concentrating on two specific theories, the Cold DM and
the Hot DM theories of structure formation. The rest of part 4, is concerned with
trying to elucidate how some general properties of galaxies arise. What sets galactic
mass scales 7 How does the galactic angular momentum arise ? How do disk and
elliptical galaxies form and what decides if a given protogalactic cloud becomes a disk
galaxy or an elliptical ?

4.1. The spherical model

In the spherical model one assumes that the matter distribution and the geom-
etry of the universe are spherically symmetric about a point, which we can define to
be the origin of our co-ordinate system. It is also customary to assume that matter is
described by a pressureless fluid. If one wants to study the evolution of density per-
turbations in a Friedmann- Robertson Walker (FRW) universe, one will also demand
that far away from the origin the matter density and the geometry become uniform. It
is remarkable that there exists an exact solution of the Einsteins equations describing
such a spherically symmetric Universe (see below). For most purposes however, we
do not need to use this solution. This is because we mostly deal with the situation
where the density perturbation é on a given physical scale [ is very much smaller than
unity, when the perturbation enters the horizon ( { = dy). And becomes comparable
to unity, only long after by which time { << dy. In this case the non linear evolution
can be adequately studied in the Newtonian limit.

In this limit, as we described in Appendix 1, geometry can be described com-
pletely by using a ‘Newtonian’ potential ¢ (cf. equation Al.2), which satisfies the
standard Poisson equation

V3¢ = 47Gp. (4.1)

Also the evolution of matter is governed by the standard Newtonian continuity and
Euler equations (A1.4 and Al.5). In particular for a pressureless fluid the euler
equation reduces to

d?r
dt?

where r is gives the position of the fluid particle.

= -V¢, (4.2)
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To begin with consider the Newtonian limit of a FRW Universe which we dis-
cussed in Appendix 2.1. In this case the potential ¢ is given by equation (A1.3)

1, a
6= bi(t,1) = ()l (43)
a
The fluid equations integrate to give (see appendix 2.1)
d .
r=a(t)x; v= d_: = %r = H(t)r; p(t) = pp(t) x a™3 (4.4)
From the Poisson equation, V3¢, = —3i/a = 47Gp,;. So one gets the equation of
motion for a
, " 4r
a= ——Tpr(t)a. (4.5)

Substituting for p, from (4.4) this integrates to

—_— 0 2 (4.6)
or the standard equation for the background Universe

G+ = T 2y, (&7

where p; is the density when the scale factor is a;. Also the equation of motion for a
fluid particle can be rewritten using (4.5) as

d?r _ AnGpe(t), _ GM,
:it—z_ = —(——3——)1‘ = — 3 r, (48)

where we have defined M}, the mass contained in a sphere of radius r = |r|.

Now suppose the density around the origin differs from the background density
pb, at an initial time ¢;, by a small spherically symmetric perturbation ép(r,t;), that
is '

p(r.ti) = py(t:) + 6p(r, 1) =-po(ti)(1 + 6i(r)). (4.9)

Here é; is the initial fractional excess density contrast. We will also suppose that at
an initial time ¢;, the perturbed region moves a velocity H;r + v;(r), where H;r is the
hubble velocity of the region and v;(r) the peculiar velocity. In the Newtonian limit
the effect of the perturbation is to add to ¢, a term §¢ such that d(6¢)/dr = GEM /2,
where 6 M is the excess mass over and above M;, contained within ». We can then
use (4.2) to work out the evolution of such a perturbed region.

For this consider a spherical shell whose radius is r; at the initial time ¢;. The
proper radius of the shell »(t) obeys the equation of motion (4.2) , that is

d’r/dt? = ~-GM/r?, (4.10)

where 4
M = pi(5rd)(1+6), (4.11)
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and

3 ) / 6:(r)4nr2d (4.12)

is the average value of 8§ within r;. Let us assume that the perturbed density is such
that shells with different initial radii dont cross as they evolve. This implies that M
is constant. Then the first integral of equation (4.10) is

1(dr)"— G—M—E (4.13)

41rr

where E is a constant of integration. The sign of E decides if a given mass shell will
expand for ever or eventually decouple from the expansion and collapse. If £ > 0,
then from (4.13) we can see that # will never become negative, and the shell will
expand for ever. On the other hand for £ < 0, as r increases 7 will become 0 and
then negative, implying a collapse.

It is simple and instructive to derive the condition on the density perturbation
for such a collapse to occur. For this consider (4.13) at the initial time t;. Since
the shell has a peculiar velocity v; in addition to its Hubble velocity H;r,, we have
r; = Hiri + vi(r;), at time t;. So

Ki=—|, =213 (4.14)
Further we have
M
(GT)|¢ G—pb(t )r2(1 + & )= I-I2 2Q (1 + 6; ;) (4.15)

where €2; is the initial value of the density parameter 2 for the background smooth
Universe. Then
H 2 -
E = [Q (1 +( ))2 - (1+&)). (4.16)
We see that for the shell to collapse eventually one must have (1 + &) > Q7 '(1 +
v;/H;r;)?, or in otherwards satisfy the condition

&> Q7M1+ 2_1. (4.17)

Hori)
This condition is easier to satisfy for a larger ; and smaller v;. If v; were zero or
negative then any overdense region with é§ > 0 will eventually collapse in a closed or
flat FRW universe, although at later times for smaller overdensities. On the other
hand in an open universe with ; < 1, the overdensity has to be above a critical value
for collapse to ensue. If §(r;) for example is centrally peaked, only shells within a
critical initial radius r.. such that 5,-(1'”) = Q;’l(l + v;/H;r;)? — 1 will be able to
collapse.

Using the fact that E is a constant of motion one can also derive the maximum
radius which a bound shell attains. ¥or this note that at the radius of turn around
Tm, we have 7 = 0 and so

H22

E=-GM/r,, = —(r )=

m

LO:(1+5). (4.18)
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Comparing this expression for E with the one given in (4.16) we get

Tm _ (1+3,') _ (1+Si)
T 6 - 1970+ (vi/Hir))2=1]] ~ D (4.19)

where we have defined the quantity D for later convenience.

Let us now consider the motion of the shell in more detail for the case £ < 0,
when the shell is bound. The solution to equation (4.13) for E < 0 is given in a
parametric form by

r=A(l —cosf), t=B(0—sinb)+t; A®=GMB? (4.20)

where A and B are constants related according to the last equation in (4.20) and
i is a constant of integration. The parameter 6 increases with incresing ¢, while r
increases to a maximum value before decreasing to zero. We see therefore that the
shell enclosing M, initially expanding with the background Universe, slows down,
reaches a maximum radius at 6 = = before turning around and collapsing. The epoch
of maximum radius is also referred to as the epoch of ‘turnaround’. As we mentioned
earlier, at turnaround, dr/dt =0 and r = ry,.

The constants A, B and t can be fixed in a straightforward way by using (4.19)

We have at 0 = , )
D

r(T)=rm=2A=r;

(4.21)

Therefore .
A= —(146). 4.22
(1+5) (1.22)
Further using A3 = GM B?, given in (4.20) and the expression for M from (4.11) we

have _
14 6;

B = W (4.23)
The constant of integration £ can be related to the initial conditions as
t=1t; — B(6; —sin¥;) (4.24)
where 6; is the initial value of 8 given by
ri = A(1 — cos 6;). (4.25)

Note that the expressions for A and B derived above differ from those given in Peebles
(1980) beyond the leading order in §;. This is because Peebles (1980) derives A and B
by matching with linear theory. Such a procedure will only give the constants correct
to the leading order in é;, whereas in our derivation of A and B no such restriction
need be placed. Of course since §; is generally assumed to be small compared to unity,
this correction has little effect in practice.

The equations (4.20) with the constants A, B and f fixed by (4.22) , (4.23) and
(4.24) give the complete information about how each perturbed mass shell evolves.
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And we can use these equations to work out any interesting characteristic of a spherical
perturbation. One such characteristic is the evolution of average density and the
average fractional excess density contrast §(r,t) within each mass shell. Since M is
constant for each mass shell the average density within it is simply

M IM
(3r3) 47rA3(1 — cos )3

A(t) = (4.26)
In the special case when the initial density enhancement is homogeneous, the above
average density is also the actual density. The density profile of such a constant density
sphere is often referred to as the ‘top hat’ profile, for obvious pictorial reasons. To
work out the time evolution of §(r, ), one also needs to know also how the background
density evolves. For this one has to solve equation (4.7) describing the evolution of
background Universe.

We consider here only the simplest case of a flat Universe with k = 0. The other
casesof k = 1 and k = —1 can be examined in a similar fashion and the corresponding
results can be found in Peebles (1980). One must note that theoretical prejudice about
the early universe also favours the k£ = 0 model, so the simplest case may also be the
most relevant. When k = 0 the solution to equation (4/7) is given by

1
67Gt?

Dividing the average density p(r,t) in equation (4.26) by the background density in
(4.27) we get for the average density contrast

axt?3; py(t) = (4.27)

p(r,t) - _ 3M _ 6xGB?[(f —sinb) +t/B)?
po(t) L+o(nt) = FEyERe (1 — cos )3 '

where we have used the relation between t and 6 given in equation (4.20) . Since
A3 = GMB? |, from (4.20) , we then get

(4.28)

9[(6 —sinf) +1/B)?

6= 2 (1—cosb)?

~1. (4.29)

It is interesting to examine the behaviour of the average density contrast in the
limit of small (¢ — %) or equivalently §. We have from (4.29) and (4.20)

_ 362 12 303
So for small 6 _ 3 of
= 380 5)2/3 (4.31)

20 -9
For a flat Universe we have ; = 1 and also H; = 2/(3t;) from (4.27) . So to the
leading order in the perturbed quantities (4.23) becomes

3 t;

T4 (5, - 3t,-v,-/r,-)3/2

(4.32)
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and (4.24) reduces to .
P= (2 4 2l (4.33)
N5 T 10 '

Using these expressions for B and t in (4.31) we have

3t;v; 9t;v;

2r;

5=-( )2"3(<S -t ( @i+ o) (4.34)

Here we have assumed that ¢ is large enough so that ¢ can be neglected compared to
t in (4.31) , but at the same time small enough so that small # approximation can
be made. We see from the above that we have recovered the linear theory result for
a general spherical density perturbation, including the decaying mode ( compare for
example with Peebles (1980)).

We, henceforth, assume with Peebles (1980) that é; is so small compared to unity
that it suffices to retain only the leading terms of §; in A and B. We will also assume
that initially the perturbation expands as the background universe, that is v, = 0 and
ignore the decaying mode by setting { = 0. We then have

TS 3t;
A= —;B= ——= 4.35

261 4513/2 ( )
These constants can also be conveniently expressed in terms of the comoving radius
z = a(to)ri/a(ti) and the average fractional density excess inside the shell measured
at the current epoch, assuming linear growth &y = (a(to)/a(t;))(36,/5) ( see (4.34) ).
Here to denotes the present epoch. From (4.35) we then get

A=_3_’ﬁ_-B=(

3)3/2 3t
1060’

D (4.36)

Collecting all our results together, the evolution of a spherical overdense region
can be summarised by the following equations :

r(t) = 2%(1 —cosf) = 13—}:0(1 ~ cos f)

t= 463/7(0 sinf) = (3) 7 (6 — sin#)
0
— sin §)?
Bt = P 3T (4.37)

where the last equation is just a rewritten form of (4.29) , with ¢ = 0.
The above analysis can be easily extended to work out how the density contrast
profile evolves with time. From the conservation of mass we have

p(r(t))drridr = p(r;, t;)Anridr; (4.38)

{
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Dividing by the background density we have

p(r,t) _ p(ri,ti)
po(t)  pu(ti)

dinr;

(G (4:39)

Here we have used the fact that the background density py o< =2 for a flat cosmological
model. All the terms except the last one in (4.39) are easily evaluated from the
equations for r and ¢ above. From (4.37) we can write

dlnr dIné; sin @ do
dlnr; _dlnr.-+(l—cos0)dlnr.- (4.40)
The equation connecting ¢ with 6 gives
do 3(6 —sinf) dln &
= 4.41
dlnr;  2(1—cosf)dlnr; ( )
and from the definitiomn of é;
dlng,- _ (6; - 51)
T = 3 5, (4.42)
Putting these results together we have for the evolution of the density profile
1 o 2 _ [} 3
p(r,t) [9(8 — sin8)%/2(1 — cos §)°] (4.43)

po(t) — 1—=3[(8:/6:) —1][1 — (3sin6(# — sin8)/2(1 — cos §)?)]

In this equation we must keep in mind that both # and r; are implicit functions of r
and t through (4.20) .

Let us now derive some useful consequences of the spherical model. To make
rough estimates it suffices to deal with average values of the relevant parameters.
Ofcourse in the case of a top hat density profile, where the initial density perturbation
is constant within a radius r; and zero outside, one may replace the average excess
density contrast in what follows by the actual value of §. The first interesting set
of parameters one can derive are the properties of the spherical perturbation at turn
around. Putting = 7 in the equations (4.37) one gets the redshift z,,, the proper
radius of the shell r,,, and the average density contrast within the shell at ‘turn around’

om, to be

(1+2m) = 1062
I 3z
™7 58,
- _ 9 2
(SIn=1+8n = o~ 556 (4.44)

After the spherical overdense region turns around the evolution equations (4.37)
predict that it will continue to collapse until a time corresponding to § = 27 when all
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the mass collapses to a point. However long before this happens our approximations,
that matter is distributed in spherical shells, and that random velocities of the par-
ticles are small, are expected to break down. Shocks in the case of gas and ‘violent
relaxation’ effects in the case of collisionless particles are expected to convert part of
the potential energy at maximum expansion into ‘random kinetic energy’ until the
virial theorem 1is satisfied. After virialisation of the spherical mass contained within
a collapsed shell one expects the potential energy P.E = —2(K.E), where K.E is the
kinetic energy. This implies that the energy £ = P.E + K.E = —K.E. At maximum
expansion all the energy was in a potential form and so £ =~ —3GM?2/5r,, where we
have approximated P.E by that relevant to a constant density sphere. One can then
define a ‘virial velocity’ v and a characterestic ‘virial radius’ i, for the mass by

2 2
kE=MY _ _p_3M (4.45)
2 5rm
and \

_PE= 3GTM = 2(K.E) = Mv? (4.46)

This gives ,
v = (6GM/5r;,)"/? (4.47)
Tyir = Tm/2- (448)

The time when a fluctuation collapses to a virial equilibrium is also of interest. A
rough estimate of this collapse time t.0y, is given by the time corresponding to § = 2.
From equation (4.37) , tcou and the redshift of collapse z.on are given by

teon = w(r3 J2GM)'/? (4.49)

(1 + zeou) = 60/1.686 (4.50)

One can also estimate the mean density of the collapsed object to be

m

P = (—=)3pm = 8pm =~ 44.8ps(tm) =~ 170ps(tcon) = 170p0(1 + zcon)®,  (4.51)

r
Tvir
where pg is the present cosmological density. Finally for any gaseous component one
can estimate a ‘virial’ temperature T,;, from 3pgq;kTyir /2p = pga,v2/2, where pgq;,
is the gas density, p is its mean molecular weight and k is the Boltzmann constant.
This gives

Tyir = pv®/3k (4.52).

It is useful to put in typical numbers for the various quantities derived above.
Apart from the cosmological parameters, essentially two unknown parameters have to
specified. We choose these to be the mass of the over dense region M and the present
linearly extrapolated fractional average density contrast §o. We then get

po = 4.55 x 1073°Qh2,gem™3
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z = 1.52M12Q= 130 ¥ Mpe

to = 4/3 x 10*°hg, yr

914 -
Tm = 2Tyir = —_Mllz/ahsozlakp.c

bo
teon = 2.19t0/83/?
_ 1/371/2,1/3 -1
v =76.4M,576,' "hsg kms
Tyir = 1.4 x 108, M 102’ K
6o = 1.062(1 4 z;n) = 1.686(1 + zcon) (4.53)

Here €2 is the density parameter which is unity for the flat Universe, hso the Hubble
constant in units of 50kms~!Mpc~! and M, is the mass in units of 10'2M. Further
all the equations except the first two in (4.53) assume the universe to be spatially flat
with £ = 0.

We can use the above to estimate the typical parameters of collapsed objects once
we are given &g, say from assumptions about the initial density fluctuation and their
subsequent evolution (Part 2 and see also below). Alternatively to get some rough
idea one can specify the collapse redshift. For example if objects with M = 102Mg,
typical of galaxies collapse at a redhift of say 2, then one gets ryi, = 90kpc, toon =
2.5 x 10%r, v &~ 132kms—!, T};, ~ 4.1 x 10°K and a present day density contrast of
the galaxy ~ 4.6 x 103.

We note the power of a simple model like the spherical model in being able to
extrapolate linear theory to get some idea of the properties of ‘non linear’ bound
objects which form.

We end this section with a discussion of the mesmerisingly simple general rel-
ativistic solution for a spherical density inhomogeneity in the FRW universe. The
derivation of the metric, for such a spherically symmetric spacetime, with the matter
in the form of a pressureless fluid, is given in Peebles (1980). It turns out that one
can put the metric in the form

dz?
- k(z)z

ds? = dt? - aX(z,1)[ 2((";’)')2 — £2(d6? + sin d¢?)] (4.54)

where a(z,t) is a space dependent expansion factor, and k(z) a space dependent
curvature constant. It should be pointed out that the metric can be written as above
only as long as mass shells at different values of z do not cross ; a condition which will
be satisfied at least by density distributions where p decreases monotonically with z.

‘We also note that the above metric reduces to the standard FRW metric if a and k are

independent of z . The Einsteins equations give the time evolution of the expansion
factor a(z,t) and the matter density p(z,t) as

@’ +k(z) _ C _ 87Gp(z,1) (az)’
a? T a3 3 a

(4.55)
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where C is a constant. Here (4.55) is actually two equations, one giving the evolution
of a and the other that of p. If p and hence a and k are independent of z these
equations reduce to the standard equations for a FRW universe given by (4.7) .

This pleasantly simple generalisation of the homogeneous Universe model offers
considerable insight in to the way a spherical overdense or underdense region behaves.
Equation (4.55) tells us very simply that how a mass shell at a comoving radius z
evolves is completely specified by the local value of the curvature constant k. If at
some z, k(z) > 0, the corresponding mass shell will expand for ever, while if k(z) < 0
it will turn around at some stage and collapse.

One may wonder how the local value of k depends on the density distribution ?
To elucidate this connection we first rewrite (4.55) as follows.

Cz3
2 _ 12,2
k(z)z® = Py a’z (4.56)

This can be cast in a more familiar form by defining
re = a(z,t)z

and O

T
M, = CTel
From (4.54) the area of a sphere with constant = and t is given by 4ra?z2. Sor. = az
is a measure of the radius of such a sphere. Also we have using (4.57) and (4.55)

(4.57)

oM.  3Cxz?
or. — 2G(az)

= 4mpr? (4.58)

So M.(z) is a measure of the effective mass within a sphere at z. Using these quantities
the equation for k(z) becomes

ke)e? = 2[CMe _ i (4.59)
Te 2
We then see that the local value of ¥ depends in a non local manner on the density
p(z,t), in the sense that it is the density integrated within a sphere that appears in
the expression for k(z).

We are now in a position to conceptually understand the evolution of all the
different types of spherical density perturbations that may arise in the FRW Universe.
We give below two examples ; other cases can be analysed in a similar way. Consider
the case when k(z) is positive for £ < zg , is zero at zy and goes to a constant negative
value, say —1, far away from the origin. One way of realising such a situation, which
can be seen from (4.59) is to embed a density hill centered around the origin, in an
open FRW Universe and also start of the universe expanding uniformly. Ofcourse the
density hill has to be high enough, compared to the background density in the open
Universe, to make k positive near the origin. From the evolution equation (4.55) we
can infer that, the region z < zo will eventually collapse, while the region z > z;
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will expand for ever. Hgfe we see quite clearly that condensation in a local part of
the universe does not alter the global topology of an open FRW universe. Similarly
one can think of how to make expanding voids in a closed univese. In this case one
demands that k(z) < 0 for z < zo, say and positive elsewhere. This situation can
be realised for example, if there is a deep enough density valley in a closed universe.
The region within z¢ will keep on expanding, where as the region outside will initially
expand slower and eventually recollapse. Infact at some stage an expanding shell
may meet a recollapsing shell in a caustic. At this stage our metric will break down.
Such expanding voids have been considered by many authors as an interesting way of
generating structure.

4.2. Hierarchical clustering theories and scaling laws

It is often customary to assume that the fractional density contrast é(z) = (p(z) —
pb)/ps is a statistically homogeneous, isotropic, gaussian, random field. We discussed
the properties of such fields in Section (2.9). We saw that all the information about
such a field is contained in its power spectrum P(k). We also worked out there the
fractional excess of mass § M/ M in a sphere of radius r, containing on average a mass
M. We showed that § M /M is normally distributed with mean zero ( < éM/M >= 0)
and a standard deviation

o(M) = (< (§M/M)? >)1/2 = C x M~(3+m)/8 (4.60)

Here we have assumed a power spectrum in the form of a power law P(k) o k™, and
C is a constant to be fixed by matching the fractional mass excess on some scale to
the fractional galaxy number excess, including any possible ‘biasing’ (see section 3.1).

From the definition of the fractional mass excess, one can easily recognise that
it is the same as the 6y used in the spherical top hat model above; except that in
the previous section 8y was thought of as a fixed number rather than a normally
distributed random variable. Taking a particular sphere which has b0 = vo , where
v is the number of standard deviations above the mean of the density peak, and
substituting it into equations (4.53) we can express all physical quantities in (4.53) in
terms of just the mass of the over dense region. This also gives various laws of how
these quantities scale with the mass. We get

teoll OX V—3/2M(n+3)/4

p o LIV (n+3)/2
Poir OC Ty 0 v~ LM (" 18)/6
v o V1/2M(1_n)/12
Toir o yM-1)/6 (4.61)

In fact simpler scaling arguments using linear theory also give the same scaling
laws and it is instructive to outline these. One first notes that § grows as t2/3 in
a k = 0 model. So at any time 6§ o« t?/3¢(M) o t2/3M~(3+n)/6. One asumes

that the fluctuation turns around when é = 1, that is t%?nM'(a*'")/s x 1. So
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tiurn O teont o< (MBHm)/6Y3/2 — pg(3+n)/4  The density p o py(tiurn) X tr2, o
M~(3+7)/2 the radius ryiy & rm < (M/p)!/3, the virial velocity v oc (GM/r)/2 and
the virial temperature T,;, o< v2. One easily sees that the scaling laws in (4.61) are
reproduced. However the ultimate justification for the assumptions made above and
any quantitative estimate of the parameters has to come from a specific model like
the spherical model.

For n > —3, o decreases with increasing M and equation (4.61) then shows that
on the average smaller masses turn around and collapse earlier than larger masses.
Structure then grows by the gradual separation and recollapse of progressively larger
units. As each unit condenses out it will in general be made up of a number of smaller
condensations which have collapsed earlier because of their higher initial density con-
trast. A hierarchical pattern of clustering then builds up which has been compared
and indeed identified with the hierarchical pattern seen in the distribution of galax-
ies (see Peebles 1980). White and Rees (1978) have argued that as a larger mass’
collapses its substructure is rapidly erased by the merging and tidal diruption of the
smaller masses it contains. In this case the evolution of structure will be self-similar
in time with a characteristic clump mass M.(t) which grows in time according the
first equation in (4.61) , that is as

Ma(2) o £4/049) o 8/(n+3) (4.62)

For much larger masses than M,(t), the fluctuations will still be in the linear regime
; on scales comparable to M,(t) structure will be turning around and collapsing and
will show a hierarchical pattern ; while on mass scales much smaller than M.,(t)
structure will be smoothed out by non-linear relaxation effects (White 1982). Also
as White (1982) notes the above picture will only be valid for n < 1. This is because
for n > 1 the specific binding energy o v? in (4.61) decreases with M. In this case
smaller masses have larger binding energy and cannot be dirupted as the larger mass
collapses.

This hierarchical pattern of clustering will of course not hold for n < —3. This
is because the spectrum would have to be cut-off above some wavelength A, so as
to have a covergent o(M). And then the dominant effect would be due to density
fluctuations of size of order A, since these collapse on the average at the same time (
for n = —3 ) or before (for n < —3) smaller scales. At the other extreme of large n,
as we discuss in section 4.6, it may be that one can use the above scaling laws only
forn<1

Recall from Part 2 that in no theory is the post recombination power spectrum
a pure power law. So the above scaling laws can only be applied piecewise, over mass
scales where P(k) can be described by a rough power law. For example in Cold Dark
Matter theories, the effective n &~ —2 on galactic scales. In this case one sees from
(4.61) that M oc v*, a relation which reproduces the observed Faber- Jackson and
Tully-Fisher relations of Elliptical and Disk galaxies respectively, assuming reasonably
that M o L , the luminosity. For a more precise comparison one can use the spherical
top hat model in combination with the actual CDM power spectrum, and plot M vs
v? for various v. Such a plot is given in figure 4 of Blumenthal et al. (1984), where
they also plot the observed points for different types of galaxies and clusters. It turns
out that the CDM theory indeed fares very well on these mass scales.
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4.3. Mass functions

Gravitationally bound objects in universe, like galaxies, span a large dynamic range
in mass. Let f(M)dM be the number density of bound objects in the mass range
(M, M+dM) [usually called the “mass function”] and let F(M) be the number density
of objects with masses greater than M.

Since the formation of gravitationally bound objects is an inherently non-linear
process, it might seem that the linear theory is of no use to determine F(M). This,
however, is not entirely true. In any one realisation of the linear density field ég(x),
(filtered using a window function of scale R), there will be regions with high density
[i.e. regions with ég > 6. where &, is some critical value slightly greater than unity
say]. It seems reasonable to assume that such regions will eventually condense out as
a bound object. Though the dynamics of that region will be non-linear, the process
of condensation is unlikely to change the mass contained in that region significantly.
Therefore, if we can estimate the mean number of regions with é, > é. in a gaussian
random field, we will be able to determine F(M).

An approximate way of achieving this is as follows (cf. Press & Schechter 1974)
: Let us consider a density field §g(x) smoothed by a window function Wg of scale
radius K. We have seen earlier that the probability that this field will have a value §
at any chosen point is

1 ] 82
P69~ | (~ma) .
where . ,
(R 1) = | GO WER) (4.64)

[To be precise we should always write o%(R,t) since 62 o t*/3 in the matter domi-
nated phase; we will suppress this time-dependence when it is not likely to cause any
confusion. We have also set V = 1]. As a first approximation, we may assume that
the region with 6 > &, (¢,%;) (when smoothed on the scale R at time t,) will form a
gravitationally bound object with mass M o pR3 by the time ¢t [The precise form of
M — R relation depends on the window function used; for a step function M = (47/3)
PR3 while for a gaussian M = (27)3/?pR3). Here 6.(t,1;) is the critical value needed
at time t; so that 8. ~ 1 by the time t. For a flat universe, if we use linear theory to
extrapolate the fractional excess density contrast, é.(¢,t;) = (t./t)*3. Therefore, the
fraction of bound objects with mass greater than M will be

F(M) = /6::,:.) P(6, R,1,)d6 = \/LQ_”T};T)/:O exp (--2%) ds
= lerj"c (——6c(t'ti) )
2 V20(R,t;)

where er fc(z) is the complementary error function. The mass function f(M) is just
(OF/0M) and the (comoving) number density N(AM,t) can be found by dividing this
expression by (M/p). Carrying out these operations we get

N(M,t)dM = — (%) (;—JW (‘%) (%%) exp <— 2‘232) dM  (4.66)

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System

(4.65)



http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992BASI...20....1P&amp;db_key=AST

2BASIC D700 DR

I'I_

Galazy formation 63

Given the power spectrum |6 |? and a window function Wx one can explicitly compute
the right hand side of this expression.

There is, however, one fundamental difficulty with the equation (4.65). The
integral of f(M) over all M should give unity; but it is easy to see that, for the
expression in (4.65),

/0 " HMYdM = /0 " dF = % (4.67)

This arises because we have not taken into account the underdense regions correctly.

To see this difficulty clearly, consider the interpretation of (4.65). If a point
in space has § > 6. when filtered at scale R, then that point should correspond to
a systemn with mass greater than M(R); this is taken care of correctly by equation
(4.65). However, consider those points which have § < 6. under this filtering. There
is a non-zero probability that such a point will have § > é. when the density field
is filtered with a radius R; > R. Therefore, to be consistent with the interpretation
in (4.65), such points should also correspond to a region with mass greater than M.
But (4.65) ignores these points completely and thus underestimates F (M) [by a factor
(1/2)]

To correct this mistake, we should replace (4.65) by the relation ( Bond et al.
1991; Peacock & Heavens 1990)

() §c
F(M) = / P(6, R)d6 + / C(5.,6)d6 (4.68)
§c - 00
where the second term represents the probability p, that a point which has § < é,
at the filter scale R has the density § > 6. at a larger filter scale Ry > R. For.a
sequence of filter scales R;, Ry, - - - R, we obtain a sequence of gaussian random fields
parametrised by the dispersions Ay, As---A,. The probability that a point remains
underdense (i.e. § < 6.) for all these filter scales is given by

Pourvive = Py = / dé, / dés - / dbnps(81,62---6n)  (4.60)

where py[6;] is the joint probability distribution that the gaussian variables §; take
the set of values simultaneously. Obviously, (1 —p,) gives the probability that a point
becomes overdense somewhere along the sequence of filterings (Ry, - - - Rp).

The gaussian variables obtained by different filtering scales, unfortunately, are
not independent. We can see that

£k dp . . iken
<5aab>=/(2 o )3Wk(R OWE(Ry) < 887 > eik-p)x

dk
(2m)3
is, in general, non-zero. Hence, calculating (4.69) is a non-trivial task.

We can look upon this process in a different, but equivalent, manner. Consider
any one fixed location in space. When the filtering scale is some large value R; (with

(4.70)
=3 We(Ra)W{ (Rb)ak

© Astronomical Society of India * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992BASI...20....1P&amp;db_key=AST

2BASI T T 2200 TSP

rt

64 T. Padmanabhan and K. Subramanian

a dispersion A;), let us assume that.this point had a density contrast §;. When we
reduce the scale to Rz, we will have a new probability distribution for §; let the value
of density contrast at our chosen point is now be §;. As we go through a sequence of
filtering scales, R, Rz, -- R, (in the decreasing order), the density contrast performs
a random walk through the points (8;,82---8,). Suppose the first instance when é
crosses the value 8. occurs at the k-th step. Then we will attribute chosen point to a
mass M o ﬁRi. Notice that, since § < 6. for all the higher filtering scales - i.e. for
all (Ry, Ry -+ Rk—1) - this point does not belong to any higher mass. [This takes care
of the original difficulty in (4.65)] The random walk concept merely translates into a
pictorial form the content of (4.69). This random walk problem is equally difficult to
solve because the steps are not independent. In fact the answer will clearly depend
on the correlation between the steps; and from (4.70) it follows that the answer will
critically depend on the form of the window function.

Since no result which is independent of the form of the window function is pos-
sible, one might consider window functions for which the analysis is the simplest.
This happens for window functions which are sharply truncated in k-space; that is
for Wi(R) = 6(R~! — k) which acts as a low-pass-filter in k-space (see Bond et al.
1991). From (4.70) it follows that for this window function,

< 856041 >= 0% < 6,6y >= 02 (fora <b) (4.71)

a

The step lengths of the random walks are L =(b2—-61), 12 = (83 —62), ---la =
(6a+1 — 6a) etc. Each of these is a gaussian variable with the dispersion

<12 >=< (ba41 —6a)2 >= 02,1 + 02 —2 < ba416, >= 02, — 02 (4.72)

and zero cross correlation:

< lgly > =< (ba41 — 6a)(bp41 — &) >
=< ba416b41 > — < bag16p > — < bgbpy1 > + < 8505 > (4.73)
=041~ 0ap1—05+05=0

for (a + 1) < b; other cases can be considered in a similar manner and can be shown
to vanish. In other words, sharp filter in k-space produces a random walk in which
each step l; is independent and is drawn from a gaussian variable with dispersion
(6241 — 02). In the continuum limit, this random walk is described by a diffusion
equation. The probability P(§,?) that the particle is at (8, §+d6) when the dispersion
is o2 obeys the diffusion equation

oP 10°P

307 " 1987 (4.74)

‘We are interested in the probability that the trajectory reaches (8, o) without exceed-

ing 6. earlier, i.e. at smaller 0. This is equivalent to solving (4.74) with the boundary
condition that there exists an absorbing barrier at § = 6.. This is straightforward
and the answer is

P(5,0%) = 6527 [exp (_2%) -‘ exp (-(‘5—‘20225—)2)] (4.75)
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Integrating this expression from 6. to co and differentiating with respect to M, we

get :
[2 6, do 62
dF(M) = -‘;ﬁ (—-m) exp (—202> dM (476)

-5 (2\Y?s o 82
N(M)dM = ——1% (;) a—; (—W) exp (— 2;2) dM (4.77)
which is precisely twice the value obtained by using (4.65). Of course, the normalisa-
tion problem is solved automatically.

This result can be expressed in an explicit form for power law spectra with
|6k|2 oc k™. In that case 02 = M ~(3+n)/3t4/3 where ¢ is some constant. Since
the limit of linear theory occurs when ¢ ~ 1, the characteristic mass scale My,
which goes nonlinear at time t obeys the scaling relation My; o t4/(3+") Therefore,
2 = M'(:,H")/s (tg)ta';/3 where tg is the epoch at which we need the N(M); say, the
present epoch. Since 6.(to,t;) = (t:/t0)?/3,

or

6c(to,ts) (t,-)zls M(3+n)/6 tg/s
dMt) At/ g )
M (3+n)/6
B [Mnl(to)]

(4.78)

where Mp;(2o) is the scale which is going nonlinear today. The expression for N(M, 1)
now becomes

- (3+n)/6 (3+n)/3
p n M 1/ M dM
N(M,to)dM = ﬁ (1 + E‘) (M_nl> exp [-—--2- (Mnl) ] W (4.79)

A different choice of the window function, in general, will give a different result
especially in the low mass limit (Peacock & Heavens 1990).

4.4. Zeldovich approzimation

An elegant approximate solution for the nonlinear evolution of density perturba-
tions was proposed by Zeldovich (1970). The starting point of the Zeldovich approx-
imation is the linear theory result for the growth of small perturbations, expressed
as a relation between the Eulerian and Lagrangian co-ordinates of fluid particles. We
also restrict ourselves to scales which are much smaller than the horizon scale dg, so
that the newtonian approximation applies. Consider first the smooth universe with
uniform density p;(t). The actual position of any particle r(t), is related to its initial
(Lagrangian) location q by

r(t) = a(t)q (4.80)

where a(t) takes account of the expansion of the Universe.

Now consider how this is altered in the presence of growing density perturba-
tions. We know that at least in the linear regime, one can separate out the time
dependence of a perturbation from its spatial dependence. And we would like to
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match with the linear theory for small density contrasts. So to take into account the
perturbation it may suffice to add to (4.80) a separable function of t and q of the
form say, a(t)b(t)p(q). That is we write for the motion of particles in the perturbed
universe the equation

r(t) = a(t)(a + b(t)p(a)) = a(t)x(?) (4.81)

where we have defined x(t) , the comoving Eulerian coordinate of a particle which
has a Lagrangian position q. Although (4.81) gives the evolution of fluid particles
which started at various q, it can also be thought as giving a co-ordinate transforma-
tion between the q space and the r or the x space ; provided the transformation in
invertible. We shall often use (4.81) in this sense below.

In order to find the functions b(t) and p(q) and also see more clearly how (4.81)
describes the evolution of perturbations one has to calculate how the perturbed den-
sity evolves when fluid particles move according to (4.81) . Assume that the initial
unperturbed density 5, is independent of q. Since mass is conserved we have for the
perturbed density

p(r,t)d®r = pd>q (4.82)

So

. e Bld® po(t)
plet) = pdet(00:/973) = Goton, Jom) — detleg THO@H BT )

Here we have used the fact that the background density of the smooth FRW universe

ps(t) = (p/a3(t)). Expanding the Jacobian to first order in the perturbation b(t)p(q),
we get

Se _ =) _ _yyvep (4.84)
P Pb

On the other hand from linear theory, we found that
)
—(x,1) = 9(1)8,(x) (4:85)

where 6;(x) 1s the fractional excess density contrast at an initial time ¢; and g(t) is
the function describing the time evolution of the growing mode of 6. When k = 0, for
example, we have g(t) = 3(£)?/3. So we have from matching (4.84) and (4.85) the
condition I '

9(t)éi(x) = g(t)TAxezp(ik.(q + b(t:)p(a))) = —b(t)Vq(P) (4.86)

Here Ay is the fourier transform of §;(x). Let us we chose ¢; such that the term b(¢;)p
in (4.86) can be neglected compared to q. Then we can satisfy (4.86) by identifying
b(t) with g(t) and taking

. k ) .
p(q) = Z::—zAkerP(lk-Q)- (4.87)

If we do this then (4.81) does indeed reproduce the linear theory result for growth
of small density perturbations. It was Zeldovich’s remarkable insight to suggest that
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while (4.81) is in accord with linear theory, it may also provide a good approximate
description of the evolution of density perturbations into the non linear regime where
8p/p greatly exceeds /{mity. The approximation (4.81) is aptly called the ‘Zeldovich
approximation’.

From the definition of p(q) given in (4.87) , one also has

P(q) = Vq®o(q) (4.88)
where M 1
®o(q) = Ew. (4.89)
From (4.84) we then have
N Vet )
VaqpPp=VPy=———= (4.90)
bpe
Using the Einstein equation @ = —(47Gppa)/3, we can also write this equation as
20, _
V2o, = ArGa*p — py) (4.91)

(3aba)

Suppose we compare (4.91) with the equation for the fluctuation in the gravitational
potential ¢ in an expanding universe

V2¢ = 4nGa’(p — ps) (4.92)
at an early enough time such that x is very nearly equal to q. Then we get
¢ = 3abi®, (4.93)

So @y is proportional to the fluctuation of the gravitational potential.

"Since p(q) is a gradient of a scalar function, the Jacobian in (4.83) is a real
symmetric matrix and can be diagonalised at every point q, to yield a set of eigenval-
ues and principal axes as a function of q. If the eigenavlues of 9p;/8q; are —\,(q),
—X2(q) and —A3(q) then the perturbed density is given by

py(t)
(1 =b(t)A1(a))(1 = b(t)A2(q))(1 - b(t)Aa(q))

Note that in the above equation q as a function of r is given by inverting (4.81) ,
which can be done as long as the Jacobian matrix (0z;/d¢;) is non singular.

In an overdense region, equation (4.94) shows that the density will become infinite
if one of the terms in brackets in the denominator of (4.94) becomes zero. Zeldovich
argued that the eigenvalues will generically be different from each other and in any
region of q space one of them, say A, will be maximum. Then the density goes to
infinity first when

p(r,t) = (4.94)

(1-b(t)M1(aq)) =0, (4.95)
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that is when matter in a cube in this region of q space gets compressed to a sheet in
the r space, along the principal axis corresponding to A;. At any time ¢ the solution to
equation (4.95) , if it exists at all, will define a surface in q space and hence generically
a surface in r space also. Zeldovich therefore argued that sheetlike structures, or
‘pancakes’, will be the first non-linear structures to form when gravitational instability
acts on small density perturbations.

Several interesting features of the Zeldovich approximation are worth commenting
upon. Firstly this approximation differs from linear theory in that it predicts the
formation of the first nonlinear objects from the high peaks of A1(q), instead of the
peaks of 8(q) o (A1 + A2 + A3), as in linear theory. Also worth noting is that in spite
of the formal similarity of (4.81) to inertial motion of the co-moving co-ordinate of
fluid particles, it actually describes gravitational instability in an expanding Universe.
If there were no gravity and only expansion, b(t) would infact decrease with time.

Numerical simulations have been employed to test how well Zeldovich approxima-
tion works. It is found that at the beginning of the nonlinear stage it gives the general
density distribution very well, also reproducing in an excellent fashion the formation,
appearence and location of the pancakes ( Doroshkevich et al. 1980, Efstathiou &
Silk 1983). Infact (4.81) is even used by some simulators to set the initial conditions
for numerical simulations of large scale structure formation where one wants to start
from a rather late stage when & is not small ( say =~ 0.1 — 0.5), to save computational
time (see Shandarin & Zeldovich 1989). At later times, however, it is found that while
Zeldovich approximation predicts the caustics to increasingly blur out and pancakes
to thicken, N - body simulations show that pancakes remain relatively thin. It turns
out that the pancake thickness quickly stabilizes even in a collisionless medium due to
the action of gravity. Particles falling into pancakes oscillate about the middle rather
than moving out progressively along the direction of their initial velocity as predicted
by (4.81) . Also the N-body simulations show that particles flow along pancakes to
form filaments at the intersection of pancakes and finally clumps at the intersection
of filaments, whose sharpness is not well reproduced.

In order to overcome some of these problems a number of authors have recently
suggested a possible extension to the Zeldovich approximation which we consider
in the next section. But before doing this we end the present one by asking why
in the first place does the Zeldovich approximation work at all? At least until the
formation of caustics, we have described above that (4.81) describes the evolution of
density perturbations very well | even when the density contrasts are highly nonlinear.
Why this should be so, for after all (4.81) is just an extrapolation of linear theory
? There are several probably equivalent ways of answering this question. First note
that even when the term bp is small compared to q, the density perturbations need
not be small since §p/p depends on the derivatives of bp and not on its magnitude.
So even if particle positions are not significantly perturbed, the density contrasts
can be nonlinear. The Zeldovich approximation exploits this feature by describing
the perturbations in terms of the perturbed tragectories of particles extrapolated
from linear theory, instead of trying to extrpolate the evolution of density contrasts.
Another way of looking at this question is to realise that that the basic quantity
which is used in (4.81) is the perturbed newtonian potential, extrapolated from linear
theory. The actual potential may not deviate from linear theory much even when the

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992BASI...20....1P&amp;db_key=AST

2BASIC D700 DR

rt

Galazy formation 69
density contrasts become highly nonlinear.

4.5. The adhesion model

In the adhesion model every particle moves in accordance with (4.81) until it runs
into another particle. Then they ‘stick’ and move together with a velocity which
conserves their momentum. Such a model can roughly describe the formation of
pancakes, filaments and compact clumps. Also by fiat it keeps the pancakes thin
while allowing particles to move along the pancakes. Infact, the model allows the
pancakes , filaments and clumps themselves to move as a whole and merge with each
other. The one disadvantage is that the internal structure of pancakes and other
objects which form cannot be inferred from this model.

The mathematical expression of these ideas is worked out in a number of papers
by Gurbatov, Saichev & Shandarin (1983, 1985, 1989). An excellent review of these
ideas can also be found in Shandarin & Zeldovich (1989). The starting point of this
model is Zeldovich approximation (4.81) expressed in a slightly different form.

Let us consider the peculiar velocity of a particle V(t) = a(t)dx/dt, in the Zel-
dovich approximation. We have using (4.81)

V = a(t)bp(q). (4.96)

We can also look at the above equation as defining a peculiar velocity field V(q(x))
in the x space as long as the transformation (4.81) is invertible, that is before caustics
form. Suppose we define a new velocity variable v = V /{ab), and use a new time
variable b(t) instead of t. Then from (4.96) we have

v = V/(ab) = p(q) (4.97)

Also from (4.81)

1 dx 1dx dx
Since v(x) = dx/db = p(q), and p(q) is constant in time ¢ and in ‘b’ time, the
derivative of dv/db vanishes. So we have

dv

%= (‘(93_‘1)’)x +Vv.Vyxv =0. (4.99)

One must keep in mind that this equation is valid only as long as the transformation
between q and x is nonsingular, for only then can one define a single valued v(x).
The equation. of continuity in the expanding Universe (Peebles 1980)

Op 3da 1
Bt + T + ;Vx-(PV) =0, (4.100)

can also be recast interms of the new variables by defining a new density variable
n = a3p(x, .t). We get

O _
5 + Vx(1v) =0 (4.101)
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These equations describe the evolution of a force free fluid in ‘4’ time. Assum-
ing that at small b the density is homogeneous, one can write down its solution in

Lagrangian form
7o

Det(0z7 [8q%)

As expected this is nothing but the Zeldovich solution (4.81) written in terms of
comoving co-ordinates, if we choose the initial scaled velocity field p to be that given
in (4.87) .

The equations (4.99) and (4.101) break down at points where many q’s corre-
spond to the same x, that is after caustic formation. Gurbatov, Saichev and Shan-
darin’s suggestion to rectify this problem was to modify (4.99) by adding a viscous
term to its right hand side. Such a viscosity term will prevent v from becoming mul-
tivalued and will enable one to follow the evolution beyond caustic formation. Also
by fiat it will keep pancakes thin once they form. This model is not intended to
describe the evolution of the internal structure of pancakes or other clumps. So the
form chosen for the additional viscous term is irrelevant. A particularly simple form
for this term can then be chosen, one that makes the resulting equation analogous to
a well known equation called Burgers’ equation (Burgers 1940, 1974). Thus (4.99) is
replaced by the equation

x=q+bp(q);n= (4.102)

‘Z—Z +v.Vyev =vViy (4.103)
Note that as v — 0 the viscosity term does not influence the motion, except in regions
where there are rapid variations in velocity, that is at caustics. So in this limit the
evolution outside caustics still follows the Zeldovich approximation, while at the same
time preventing multistream flows at caustics. We shall see the implications of (4.103)
better by solving it. Indeed, the main advantage of using Burgers’ equation is that,
remarkably, it has an analytic solution for ‘potential’ motion.

Suppose the velocity field can be expressed as the gradient of a velocity potential
®, that is v = V®. Note that this can indeed be done at the initial stages as we
saw in the last section for the purely growing mode. Then from (4.103) ® obeys the

equation

%% + .12.(vq>)2 = V2 (4.104)

which by means of the substitution
®=-2vhnU (4.105)

is transformed to the linear diffusion equation

ou

v _ o2
T vVU (4.106).
The solution to this equation is
_ L 3/2/ (x - Q)2 3
U(x,d) = (41rub) exp( s )U(q,0)d"q, (4.107)
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From (4.105) U(q, 0) = ezp(—Po(q)/2v), where $o(q) gives the initial value of the ve-
locity potential and is the same function defined previously in Section 4.4. Expressing
U in terms of ®, and taking the gradient we finally get

v(x,b) = fix_;ﬂlezp(—G(X,q,b)/b)d"q

[ ezp(—G(x, q,b)/2v)dPq (4.108)

where

G(x, q,b) = ®o(q) + %. (4.109)

The solution (4.108) in the limit » — 0 is of particular interest. As v tends to
zero the main contribution to the integral in (4.108) comes from the vicinity of the
absolute minimum of G(x, q, b) treated as a function of q. From (4.109) this point q
is therefore the solution of the equation

(@ —x)
b

+V® =0 (4.110)

which is nothing but the solution of Zeldovich in comoving coordinates. If qmnin is a
solution of (4.110) for which G is also an absolute minimum then the ‘velocity’ v(x, b)
is given from the steepest decent approximation to the integral in (4.108) by

v(x,b) = ";“-'%"ﬁ"_bl (4.111).

At early times, when density contrasts are still small, one expects a unique so-
lution, say q;, to (4.110) : at every eulerian point x there is only one particle which
has come from q;. But later on for some x, there may be several roots qi, q2, qs,
say, which all satisfy (4.110) . This means that several particles from diffrent q would
have all come to the same x under the ‘old’ Zeldovich approximation. But for solution
to (4.108) , one still gets a unique qmin and hence v, that for which G is an absolute
minimum. This is because the other particles which could reach x, if the medium
were collisionless, got stuck in pancakes earlier. Ofcourse there will be x’s for which G
will have an absolute minimum simultaneously at several points q. This can happen
if fluid elements at these q’s have just met at this eulerian point x. The set of all
such x’s will then trace out the caustics in eulerian space in the limit v — 0.

An elegant geometrical method then suggests itself to study the solution (4.108)
in the limit v — 0. Given an eulerian co-ordinate x and a ‘time’ ‘b’, we construct the
paraboloid

P(x,q,b) = _(";—b“)z +h. (4.112)

From the discussion above, the coordinate of the absolute minimum of G(x, q,b) is
then given by the point q where this paraboloid is tangential to the hypersurface
®o(q) for the first time as one increases h from —oo. The fact that the paraboloid is
tangential to @y, is equivalent to (4.110) and the property that the q is an absolute
minimum is guaranteed by demanding that the paraboloid is tangential for the first
time as one increases h from —o0o. The Eulerian coordinate x of the particle in
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question (with Lagrangian coordinate q) is by construction the coordinate of the top
of the paraboloid. At early times when b is small the paraboloid has large curvature
(o< b71), is very narrow and is tangential to the hypersurface at only one point. But
as time goes on b increases and the paraboloid becomes shallower. It may then be
tangential to ®o at two points for the first time as one keeps increasing h. This is
illustrated schematically in figure 4.1. In this case these two points have just run into
a pancake. The case of such double ‘touching’ is degenerate. So the points on the
paraboloid tops, when double touching takes place form a set of lower dimensionality,
and form sheets in Eulerian space. At later stages the paroboloids may touch the
suface ®g at three or even four points. The apices of these paroboloids then indicate
the positions of filaments and clumps formed.

q —»

Figure 4.1. Graphical solution to the adhesion model.

Simulations of the evolution of large scale structure have been carried out using
the adhesion model, and compared with N -body simulations. Both numerical solu-
tion of (4.108) (Weinberg & Gunn 1990 a, b) and simulations using the geometrical
technique ( Kofman et al. 1990; Sahni 1990) have been used to evolve the initial
density field. We show for example in figure 4.2 a comparison of the results of a sim-
ulation by Sahni (1990) using the adhesion model (Fig. 4.2¢ and 4.2d) with direct N
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- body simulations of Mellot & Shandarin (1989)( Fig. 4.2a), starting from the same
initial conditions. We have also shown the result of using the Zeldovich approximation
(Fig 4.2b) ( see Sahni 1991 for details). We can see quite clearly that the adhesion
model reproduces the results of fully nonlinear calculations very well. Infact, because
(4.108) has an exact solution, the density field at some arbitrary time can be found
without following the evolution for intermediate times, unlike in a N-body simulation.
It turns out that efficient algorithms using much shorter computing time, compared
to N-body simulations, can be developed to implement the the adhesion model. So

one can simulate larger volumes of space provided an approximate treatment of small
scale structure is acceptable.

(a) N - BODY

(b) ZELDOVICH
Q4F4

\d) CAUSTICS FROM ADHESION (e¢) ADHESION

Fommioaias “' ‘ N
}\ { ‘
. X ~ ‘:
-~ . X
N 4 ]
~.
~— j\ “
b;‘wﬂ' b 4

P

- 2 -
£ B4 oo

. N ’ ] oo Ty Lk
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Figure 4.2. Comparison between N - body simulation (a), Zeldovich approximation
(b) and the adhesion model (c) and (d), adapted from Sahni (1990, 1991).

Another aspect of this model is worth pointing out. In the adhesion model, as
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emphasised by Gurbatov, Saichev & Shandarin (1989), the evolution of the density
field is completely given once the initial gravitational potential pertubation ¢ (o< ®¢) is
specified. For gaussian random fluctuations the power spectrum of ¢ is oc P(k) x k=4,
where P(k) is the power spectrum of the density fluctuation. So the ¢ field has more
large wavelength ( small k) power than the density fluctuation field. This may have
important consequences for the way the charecteristic mass M., of collapsed objects
grows with time. In section 4.2 we saw that for —3 < n <1 we have the scaling law

M, o t3/(n43) ¢ ¢8/(n+3) (4.113)

It was widely believed that the same scaling law would hold even for 1 < n < 4.
For spectra steeper than n = 4, it had been argued that nonlinear generation of the
long wavelength part of the spectrum due to mode - coupling terms would dominate
any intrinsic large scale power producing an effective n = 4 power spectrum even if
initially n > 4. So a limiting growth law for M. had been proposed for n > 4 of the
form (cf. Peebles 1980)

M, x t¥7 o a®/7, (4.114)

Gurbatov, Saichev and Shandarin found on the other hand, a very different
scaling law for spectra with n > 1, using the adhesion model. Note that at large
times b(t) becomes large and the top of the paraboloid becomes very flat compared
to the shapes of the peaks and troughs of the initial potential ®g. In this limit for
any x the paraboloid is tangential to the hypersurface ®o(q) practically at its local
minima and finally at the deepest minima. Thus the asymptotic behaviour of how
structure evolves is governed by the statistics and spatial distribution of the deepest
minima of the initial potential ®;. As b increases the characteristic scale where an
absolute minimum can exist, and hence the mass of collapsed structures, will increse
depending on the statistics of the minima. In particular, it turns out that (4.113)
holds only as long as the variance of the gravitational potential diverges, as k tends
to zero ( see Gurbatov, Saichev & Shandarin 1989). For a pure power law spectrum
with a small wavelength cut-off k., the variance in the potential is given by

kmc:
o3 ~ / k=D E2dk (4.115)
0

which diverges at small k only for n < 1. For n > 1, when oy is finite, these authors
found that M. grows according to the limiting form

M, x a3/?, (4.116)

corresponding to the growth law for n =1 in (4.113) .

So the adhesion model clearly predicts a much more rapid growth of structure for
steep power spectra compared to an extrapolation of linear theory or simple minded
accounting of the effects of mode - coupling. There is some supportive evidence, from
one dimensional numerical simulations, that the adhesion model indeed predicts the
correct limiting growth law of M., that is the validity of the form (4.116) rather than
(4.113) for steep spectra ( Kotok & Shandarin 1989, Williams et al. 1991 ). Whether
this result has any implication for structure formation theories is yet to be explored.
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4.6. N - body simulations : the CDM and HDM models

One of the most fruitful and direct method of following the non linear evolution of
density perturbations, is via cosmological N - body simulations. This is particularly
the case if the universe is dominated by collisionless particles, since the evolution of
large scale structure is then driven, to a good approximation, by gravity alone. In
this section we discuss some of the results obtained by such simulations, concentrating
specifically on two of the well explored theories of galaxy formation, the hot and the
cold dark matter models.

In an N - body simulation one approximates the matter distribution as a collection
of N particles interacting via gravity. The state of the system at any time ¢ is given
by the position and the velocities of the particles. These are evolved over a sequence
of small timesteps. For this the force on a particle due to all other (N — 1) particles
is first calculated. This is used to update the velocities which can then be used to
update particle positions. In order to get a good representation of a smooth density
distribution one has to make N as large as possible. The main limitation on this
comes from the computer time required to calculate the forces. A detailed discussion
of the various schemes employed for the force computation is beyond the scope of this
review. An excellent book ( Hockeny & Eastwood 1981 ) and several review articles
exist: ( cf. Aarseth 1984, Efstathiou et al. 1985 ). We shall be content with just a
brief qualitative discussion of these schemes.

Three different schemes for the computation of forces have been extensively ex-
plored so far. Possibly the simplest in concept is the direct summation method, (
also known as the ‘Particle - Particle’ or PP scheme ) where the force on a particle is
calculated by directly summing the inverse square law forces due to all other particles.
In general the optimum strategy is not to use the strict 1/r? law all the way to zero
r ; but rather to cut off the force exerted by a particle at a minimum separation. Al-
though such softening of the force results in some loss of spatial resolution, it proves
useful in terms of computer time. This is because under a strictly 1/r2 force law, the
velocities of the particles involved change very rapidly at very small separations. One
has to then use correspondingly small timesteps to follow their trajectories accurately,
which is costly in computer time. The PP method gives fairly accurate forces but is
not suitable for very large number of particles. About N? operations are required to
evaluate the forces on N particles due to the other N — 1 particles, and the computer
time required then increases very rapidly with N. Clever algorithms using individual
particle time steps and a temporal hierarchy of force evaluations can reduce the op-
eration count to order N!-® but still, in practice, it turns out that the PP method is
limited to N < 10%.

A significant gain in N can be obtained if one calculates the forces on particles,
not directly, but from a potential got from solving the Poisson equation on a mesh.
The Particle - Mesh or the PM scheme adopts such an approach. All field variables
like the density or the potential, which are functions over space, are approximated
by their values on a regular array of mesh points. Differential operators are replaced
by finite difference approximations on the mesh. The potentials and forces at the
location of particles are derived by interpolation of the values defined on the mesh.
At the same time the densities at the mesh points are got by the opposite process
of smearing in a well defined manner the particle mass to a number of nearby mesh
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points.
Once the densities are specified on the mesh, say as p(l, m,n) where (I, m, n) are

integers giving the position of a mesh point, one can calculate the potential on the
mesh ¢(I, m,n) as the sum

p(l,m,n) =Xrp oGl =1, m—m,n— a)p(l, m,n). (4.117)

Here G(I, m, n) is the Greens function of the laplacian operator defined on the mesh.
Using the convolution theorem, one can calculate ¢ by first multiplying the finite
fourier transforms of G and p, and then taking the fourier transform of the product.
The main advantage of the PM method lies in the fact that an efficient algorithm,
the fast Fourier transform (FFT), can then be employed to work out the potential.
Also the Greens function has to be worked out only once. The assigning of the mass
of the particles to the mesh points, computing the forces on the particles, updating
the velocities and positions all require operations of order 10N, The operation count
for finding the potential on the mesh is found to be of order 5M3logo M2 for a (M x
M x M) mesh (Hockeny & Eastwood 1988). The total operation count is then of
order 10N + 5M3loga M3. So one can see that for a fixed M the PM method wins
out in the amount of computer time required compared to the PP method for a large
enough N. For example for typical values of M = 32 and N = 10° the number of
operations required in a timestep of the PM simulation is of order 4 x 106, compared to
a number of order 10!! (~ 10N?2) using the PP method. The enormous gain in speed
using the PM method is at the cost of a loss in resolution in the evaluation of the
force field. This is acceptable when one wants to study problems where the scales over
which the potential varies is atleast as large as several mesh lengths. Such a situation
can be arranged when studying the nonlinear evolution of a HDM universe, basically
because the density fluctuations in such models have no power on small scales due
to free streaming ( see part 2). Indeed the PM method has been extensively used to
simulate the evolution of HDM models.

On the other hand when one has a problem where structure is becoming non linear
at about the same time on a wide range of length scales, like in a CDM universe, the
PM method has to be modified. This brings us to the third scheme for evaluating
the force, the P3M technique. The P3M scheme tries to combine the advantages
of both the PP and PM methods. The trick is to split up the inter particle forces
into two parts ; a short range rapidly varying part due to nearby particles and a
slowly varying part due to more widely separated particles. The PP method is used
to find the total short range part of the force on each particle and the PM method for
the slowly varying force contribution. This is the reason for the name given to this
method ; particle - particle / particle - mesh or P3M scheme. The P3M sheme has
the advantage that it can evaluate the short range force accurately and the long range
force rapidly. Its main disadvantage compared to the PM method is the extra time
required to calculate short range force contribution by direct summation. This adds
a number o« N, N to the operation count of the corresponding PM calculation, where
N, is the typical number of neighbours which contribute to the short range force.
The P2M method has been extensively used in simulations of the CDM models. This
completes our brief survey of the different N - body schemes which have been used in
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simulating the non linear evolution of structures. We now turn to discuss the results
obtained for two particular theories, the CDM and HDM models.

In the cold dark matter model, recall that one assumes the dark matter to be
composed of cold collisionless particles, with negligible random velocities. One also
assumes the primordial density fluctuation field to be a random gaussian field with a
power spectrum of the Harrison - Zeldovich form. Further there is a- theoretical prefer-
ence for a flat universe, especially if one believes in inflation. The post recombination
power spectrum of density fluctuations is ofcourse different from the primordial n = 1
power law due to the processes discussed in part 2. It bends gently from the n = -3
power law on the subgalactic scales to a n = 1 index on scales larger than the hori-
zon scale at the epoch of matter - radiation equality. Structure forms in this model
by hierarchical clustering as outlined in section 4.2. However since 6 /M does not
vary very much with the scale length right from subgalactic to cluster scales, there is
substantial cross- talk between different scales. N

N - body simulations to examine the non linear evolution of the CDM universe
have been mainly carried out by Davis, Frenk, Efstathiou and White , and their
results can be found in a series of papers ( Davis et al. 1985; Frenk et al. 1985; Frenk
et al. 1988; White et al. 1987a,b ). In the first paper of this series, Davis et al. (1985)
followed the evolution of 32,768 particles using a P2M code with periodic boundary
conditions. The Zeldovich approximation was used to set up the initial positions and
velocities of the particles. They considered an ensemble of models and looked at both
the case of a flat universe and the case when 2 < 1. The most important result of
this study arose from an examination of the two point correlation function £ of the
mass distribution. Recall that £ for galaxies is well approximated by a power law of
the form £(r) = (r/ro)~' 8, where rq = 5h~'Mpc. Any model of galaxy formation
should be able to reproduce this behaviour. In the simulations with the CDM power
spectrum it was found that the non linear evolution leads to a progressive steepening
of the two point correlation function. As a result there is only one time when the
mass auto correlation function has approxiamtely the same slope as that observed for
galaxies. However, at this time, which occurs very rapidly in the simulations ( after
an expansion factor of only 1.8), the amplitude of £ is smaller than that observed
unless A < 0.22 in a flat universe or the universe is open with < 1. The first
possibility is ruled out since the Hubble constant is limited by 0.5 < A < 1. At the
same time many theorists are loath to give up the idea that the universe has Q2 =1 ;
partly from the view point of the inflationary universe model to be discussed in part
6. One way of retaining a flat cosmology in the CDM picture is to invoke a very
smooth contribution Q,meoth = 1 — Qcpum =~ 0.8 due to some relativistic particle (
Turner et al. 1984; Olive et al. 1985; Padmanabhan & Vasanthi 1987) or — more
brazenly — by postulating a cosmological constant of the required magnitude.

A much more popular alternative was first pointed out by by Davis et al. The
basic idea was to relax the assumption that galaxies trace the mass distribution. It
was suggested that perhaps galaxies could form more readily in regions of higher den-
sity, that is around high peaks in a suitably smoothed version of the linear density
fluctuation distribution. Such high peaks have an enhanced amplitude of clustering
compared to the underlying mass distribution ( Kaiser 1985). If one postulates for
example, that galaxies form only in peaks with excess fractional density contrasts
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above 2.50 ( where ¢ is the rms mass fluctuation ), then one can account for both
the amplitude and slope of the observed £, with A ~ 0.5 and © = 1. In this model
the galaxies form a biased subset of the mass distribution. Considerable effort subse-

quent to this paper has been spent on how to realise in practice such ‘biased galaxy
formation’.

The first works in this direction concentrated on radiative and hydrodynamic
processes which could supress galaxy formation in halos which collapse late, from low
peaks in the density field. (Rees 1985; Silk 1985; see also the review by Dekel &
Rees 1987). Later on it has been pointed out that purely gravitational processes may
themselves lead to biasing. For example White et al. (1987a) found from their N -
body simulations that the strength of galaxy clustering was larger for galaxies with a
deeper potential well. This enhancement ranges from a factor of order 1.8 for galaxies
with circular velocities v, > 100kms~! to about 5 for v. > 250kms~!. This bias
basically arises because clumps in higher density regions collapse earlier and accrete
faster than similar objects in low density regions. So the typical velocity dispersion
and mass of clumps is greater in protoclusters compared to protovoids. White et
al. speculated that this enhanced clustering of bright galaxies compared to the mass
may be sufficient to reconcile a flat CDM universe with observed galaxy correlation
function. A somewhat different approach has also been pointed out by Carlberg,
Couchman & Thomas (1990), which is termed velocity bias ( see also Evrard 1986;
West & Richstone 1988 ). In this approach a bias in the velocities of galaxies compared
to the DM mass arises due to the dynamical friction of the galaxies moving through
the DM. Such dynamical friction leads to a reduction in galaxy velocities compared
to that of the mass on scales up to cluster scales. This reduction implies that any
mass estimate on cluster scales using galaxy velocities is likely to be an underestimate.
Also the resulting concentration of the galaxies with respect to the mass results in an
enhanced amplitude of the galaxy autocorrelation function. One may then be able
to reconcile a flat CDM universe with observations of galaxy clustering ( Carlberg,
Couchman & Thomas 1990).

Adopting the high peak model of biasing N - body simulations have been used
to examine how well the CDM model explains a number of other features of galaxies.
On galactic scales it turns out that the CDM model does very well ; dark galactic
halos are predicted to have flat rotation curves as observed and the correct abundance
of dark halos as a function of their potential well depth are obtained (Frenk et al.
1988). However it has been somewhat of a controversial issue whether the CDM
model predicts equally well the observed large scale structure ; the sheets, filaments
and voids seen in'the CFA survey (see part 2), the abundance of rich clusters ( cf.
Teague, Carter & Gray 1990) and their correlation function ( Bachall & Soneira
1983, Sutherland 1988), the bulk flows of order 600kms~! on scales of about 50Mpc
(Lynden Bell et al. 1988). The sympathisers of the CDM model have maintained
that filaments, large sheets and voids do arise in the simulations of the CDM model
( White et al. 1987b) ; that the abundance of rich clusters can be understood if one
takes proper account of projection effects ( Frenk et al. 1990 but see Peebles 1991) ;
that bulk velocities may also be explained (Kaiser & Lahav 1989 but see Ostriker &
Suto 1990).

More recently more substantive pressure on the CDM model has come from
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the results of several detailed surveys of galaxies. The APM galaxy survey of Mad-
dox et al. (1990) has revealed that the angular correlation function of galaxies has
substantially larger amplitude on scales above 20h~!Mpc than predicted in the stan-
dard biased CDM model. Further a new redshift survey of IRAS galaxies, known
as the QDOT survey has also revealed an amplitude of the galaxy correlation func-
tion larger than that expected in the standard biased CDM model ( Efstathiou et al.
1990; Saunders et al. 1991). For example Saunders et al. (1990) find the fractional
density excess in galaxies on scales of 20h~!Mpc, 6p/p = 0.0669+ 0.019, compared to
ép/p = 0.0192 + 0.0013, which they expect in standard biased CDM model. So these
latest detailed surveys cast serious doubts on the CDM model although clearly it is
premature to abandon all aspects of the theory altogether.

Let us now turn to the other widely discussed theory of structure formation, the
hot dark matter model. The original popularity of the HDM model was due to the fact
that there is a natural candidate for HDM, the neutrino. The cosmological relevance
of massive neutrinos was pointed out some two decades back by Cowsik & McClelland
(1972) and Marx & Szalay (1972). But it was with the report of a mass measurement
for the neutrino near the value needed to close the universe that structure formation
scenarios with neutrinos as the DM, came into prominence. As we described in part
2, massive neutrinos with mass around 30ev are still relativistic when scales upto
cluster scales enter the horizon. As a result free streaming of the neutrinos wipes
out any primordial fluctuations on scales less than Aps = 28(m, /30eV)~!Mpc (see
eq. (2.76)). Due to this cutoff the first structure to form in the neutrino dominated
universe are cluster mass objects. Also because of the cutoff of small scale power,
the initial density and potential field are smooth on scales of order A.. Then as we
described in section 4.5 the nonlinear evolution proceeds initially according to the
Zeldovich approximation via the formation of pancakes, filaments and finally massive
clumps. N - body simulations of this evolution have been done by a number of authors
using PM codes (cf. Centrella & Mellot 1982; White, Frenk & Davis 1983 ). The
simulations of White, Frenk & Davis (1983) brought out several potential problems
with the HDM model, which led to a decline in its popularity.

The basic problem is due to the large value of Apg. In the HDM model galaxies
can only form after the collapse of cluster sized pancakes, by say fragmentation.
Suppose one wants galaxies to start forming sufficiently early, say at redshifts zform
comparable to that of the farthest quasars. Then some fraction of the matter must
have gone through pancakes by this redshift. For example White, Frenk and Davis
defined the onset of galaxy formation as the epoch when one percent of the particles
in their simulation had passed through caustics. It turns out that after the formation
of the first pancakes, the clustering in an HDM universe proceeds rapidly until most
of the mass is in very massive clumps. And unless zyorm < 0.5, the autocorrelation
function of particles which have gone through a caustic ( and which are identified
as potential galaxies) has a much larger amplitude than the observed £ of galaxies.
The clustering of real galaxies is also significantly weaker than that of the total mass
distribugion (neutrinos) for any acceptable redshift of galaxy formation.

White, Frenk and Davis also pointed out another difficulty with the HDM sce-
nario sorhewhat independent of the problem associated with matching the observed
galaxy clustering. This was to do with the very massive clusters that resulted in their
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simulation for what were considered to be reasonable values of z7orm ~ 2 — 3. They
argued that such clusters were unlike any known object in the universe ; and the
accretion of gas in to their potential wells would produce very large, ~ 10%%ergs—!, X
- ray luminosities and large ~ 45KeV gas temperatures. The existing X - ray obser-
vations do not reveal any such source although a large number of them should have
been detected (see also White 1986).

One possible weakness in these arguments against the HDM model is the con-
siderable uncertainity in deciding how galaxies are related to the mass distribution.
If for example galaxies avoid forming in the dense filaments and clumps then the
galxy distribution may be much smoother than that of the DM. Such antibiasing
offers one way of reconciling the HDM model with the observed galaxy clustering (
Braun, Dekel & Shapiro 1988 ). One would also have to argue in this picture that
the gas was also somehow prevented from falling in to the deep potential wells of the
massive clusters. Another possibility within the framework of the galaxies tracing
the neutrino mass distribution has been explored by Centrella et al.(1988). They
identified the present epoch as the time when the two particle correlation function in
their simulation matched the observed €. This choice means that their model is less
evolved compared to White et al. model ; the mass is not completely concentrated in
gaint clusters at the present epoch. They argue that to form quasars at high redshift
it is not essential for one percent of the mass to go through caustics, like White et al.
assumed. Rather 1t is sufficient if a small fraction of the mass has become nonlinear
with §p/p & 1. Their model has the first nonlinear structure developing at a redshift
of about 7 with most galaxies forming between z = 7 and 2 = 1. Also in their way of
normalising the HDM spectrum, very massive clusters dont form and the problems
with X - ray observations may be avoided. These authors conclude that the present
state of ignorance about how galaxies form warrants caution in rejecting the HDM
model. It is not clear ofcourse, whether simple nonlinearity in the density contrast is
enough to form quasars and galaxies.

We see from the above discussions that, in their present form, neither the CDM
nor the HDM model is able to accomodate all the observed features of galaxies. And
N - body simulations have played a crucial role in arriving at this conclusion. This
was the raison d’etre of this section ! We now turn to the consideration of how some
of the basic properties of galaxies may arise, which is not tied down to either of these
scenarios. .

4.7. The origin of the characleristic mass scales of galazies

Galaxies have typical masses =~ 10! M. Galaxy formation theories based purely
on the gravitational instability of density fluctuations in an expanding universe do
not appear to provide any natural explanation for this charecteristic mass. Is there
any physics which naturally selects galaxy mass scales ? We address this question in
the present section. As we will see the cooling of gas may provide a possible answer.

The importance of gas cooling in setting galaxy scales was first hinted at by Hoyle
(1953) and analysed further in the now classic papers of Rees & Ostriker (1977); Silk
(1977) and Binney (1977). Suppose we consider a gas cloud of mass M and radius
R, which is supported against gravitational collapse by gas pressure. The gas then
has a typical temperature T given by kT =~ GMpu/R. Such a cloud is on the verge
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of gravitational collapse, its further evolution being governed by the relation of its
cooling timescale

3pkT
teool & 4.11
ool QuA(T) ( 8)
to its dynamical or freefall timescale
7, 2GM __
tdyn ~ E(T) 1/2 (4119)

Here p is the average cloud density and A(T) gives the cooling rate in units of say
ergcm~3s~!. Note that we have taken tayn to be the freefall time of a uniform density
sphere ( any other definition will give similar results for the rough arguments which
follow).

There are three possibilities. Firstly if ., is greater than the hubble time,tsypsie,
that is the cosmic time elapsed since the redshift of cloud formation, the cloud will not
have evolved much. On the other hand if thussie > teoot > tayn, the gas can cool but
as it cools the cloud can retain pressure support by adjusting its pressure distribution
on a sound crossing timescale = tgy, which is less than .01 In this case the collapse
of the cloud will be quasi - static on a timescale of order t.,0;. Finally there is the
possibility that .01 < tigyn. In this case the cloud can cool ‘rapidly’ (compared to its
dynamical timescale) to a minimum T. It will then lose pressure support and undergo
an almost freefall collapse. Also fragmentation into smaller units can occur, because
as the collapse proceeds isothermally, smaller and smaller mass scales become Jeans
unstable.

Rees & Ostriker (1977) and Silk (1977) suggested that it is the criterion ¢ <
tayn, which sets the mass scale of galaxies. For only then will gravitating gas clouds
collapse appreciably and also possibly fragment into stars. Further in any hierarchical
theory of galaxy formation, unless a gas cloud cools on a dynamical timescale and
becomes appreciably bound, collapse on a larger scale will disrupt the object (White
& Rees 1978). In such theories galaxies are the largest masses which have resisted
such disruption by being able to satisfy the above criterion. White & Rees (1978)
further extended this argument to the case when some form of collisionless dark
matter provides the dominant mass component of a galaxy. Before we come to this, it
is instructive to examine the original case of evolution without DM in greater detail.

The cooling of primordial gas is mainly due to bremsstrahlung, hydrogen and
helium recombinations, and Compton scattering of hot electrons by the colder cosmic
background photons. Compton cooling turns out to be important only at high red-
shifts > 10 (see below). For the present we consider only the case when galaxy scales
become nonlinear at redshifts below & 10, coming back later on to discuss the case
when Compton cooling dominates. The cooling rate can then be written as

A(T) = (ABTY? + ARTY?)pergem™3s71, (4.120)

where the Ap term represents the bremsstrahlung contribution and the Ag term that
due to recombination line cooling. Note that the (4.120) is only valid for tempera-
tures above ~ 10*K : for lower temperatures the cooling rate drops drastically since
hydrogen can no longer be significantly ionised by collisions. The cooling rate for a
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plasma in thermal equilibrium has been calculated by Raymond, Cox & Smith (1976)
and one can use this in (4.118) to calculate t.,0;. For a hydrogen plus helium plasma
with a helium abundance Y = 0.25 and some admixture of metals, a very usefull
approximate expression for the resulting f.,o,; has been given by Peacock & Heavens
(1990). In a slightly modified form we have for a T' > 10K,

¢ 8 x 10°
cool —
T no(Te P 4 15T

Y (4.121)

Here nq is the gas number density in units of 1cm~3, Tg the temperature in units of
10K and f,, takes into account the possibility that the gas may be enriched with
metals : f,, =~ 1 for no metals and f,, & 30 for solar abundance (Peacock & Heavens
1990). The first term in the denominator represents the effect of bremsstraulung
while the second takes account of line cooling. For gas with primordial abundance (
fm = 1), one can see from (4.121) that there is a transition temperature T* = 10°K.
For temperatures above T* bremsstrahlung dominates the cooling while line cooling
dominates below T™*. ,

Now consider the ratio 7 = t.o01/tayn. This ratio is fixed once any two parameters
of 2 cloud is given, say p and 7. The condition 7 = 1 defines a curve on the p—T plane,
which demarcates the region of parameter space for which cooling occurs rapidly
within a dynamical time from the region of slow cooling ( see Figure 4.3 below ). For
T < T* when line cooling is dominant, we have .., T3/2/p and tgy, o p~1/2,
So 7 « T32/p!/?2 «x My, the Jeans mass for this temperature and density. ( We
define the Jeans mass to be M; = (47/3)p(As/2)3, where the Jeans wavelength
A; = (7kT/uGp)'/?). The 7 = 1 curve will then be parallel to lines of constant Jeans
mass in the p — T plane, for T < T*. Putting in numbers and using the cooling time
from (4.121) we get

r= teool o~ MJ .
tdyn 1012M@ ’

We see that the Rees- Ostriker - Silk criterion for efficient cooling can be satisfied for
masses below a critical mass =~ 1012Mg, if T < 10°K.

On the other hand for T > T", when bremsstraulung dominates the cooling,
teoot < TY/2/p and tayn < p~1/2. So T o« TY2/p!/?  A;, the Jeans wavelength. The
curve 7 = 1 for temperatures much higher than 7™ will then be parallel to lines of
constant Jeans wavelength in the p — T plane. In fact, using the ¢ oo in (4.121) , and
defining the radius associated with the cloud to be Ry = A;/2, we get

T<T (4.122)

tcool RJ -
T= EN m, T>T (4123)
Therefore high temperature clouds have to shrink below a critical radius of about
7T0kpc before being able to cool efficiently to form galaxies.

These features are illustrated schematically in figure 4.3, which we will refer to
as a ” cooling diagram ”. ( In the figure we have used n instead of p ). Such diagrams
have been given by Rees & Ostriker (1977) and Silk (1977) and they are useful in
visualising much of the physics of cooling gas clouds. We have indicated there three
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regimes A,B and C. A gas cloud with constant mass evolves roughly along lines of
constant My, with T oc p'/3 o« n'/3, if pressure supported. Gas clouds in region
A have tcoot > thussie and never cool much. Those in B cool slowly and undergo
quasistatic pressure supported collapse until they enter region C where 7 < 1. Gas
clouds in C can cool efficiently to form galaxies. We saw above that to lie in this region
they have to have a mass below ~ 1012 M, or shrink to a radius below ~ 70kpc. Rees
& Ostriker (1977) and Silk (1977) made the interesting point that these masses and
radii compare rather well with the scales characteristic of galaxies. Over the decade
since these arguments were given, theories of galaxy formation have varied greatly
according to the current fashion. But some essence of the above ideas remains in
most theories as a hint to explain galaxy masses.

tCoal > tHubble

-6
0 -
2
\0ch
~N
n (cm™3) \\
-2
10 -

Figure 4.3. A schematic cooling diagram.

We now consider, following White & Rees (1978), the effects of incorporating a
gravitationally dominant DM component and that of the expansion of the Universe.
In the cosmological setting one starts by considering a cloud of DM and gas which is
initially expanding, until gravitational instability leads to a ‘turn around’ and collapse.
The dynamical time scale is determined by the total, DM + gas density, whereas the
cooling time still depends only on the density of the gas. Also, in this case the gas
will not initially be at the virial temperature. It is only during collapse that the gas
gets heated up by shocks formed when different bits of gas run into each other. If the
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cooling timescale of the shocked gas is larger than the dynamical timescale in which
the cloud settles down to an equilibrium, then the gas will eventually get heated up
to the virial temperature. On the other hand were the cooling time shorter, the gas
may never reach such a pressure supported equilibrium. Efficient cooling would result
in the gas sinking to the centre of the forming DM potential well, until it is halted
by rotation or fragmentation into stars. We see that once again it is the ratio of the
cooling to the dynamical time of the object which governs its evolution. Further, in
hierarchical clustering theories, we pointed out earlier that smaller mass clumps are
disrupted as larger masses turn around and collapse. However if the gas component
can cool efficiently enough, it may shrink sufficiently to the centre of the DM potential
well to resist disruption and so break the hierarchy. In these theories, galaxies are
thought to be the largest masses that have survived hierarchical clustering.

The spherical top hat model can be used to estimate the relevant dynamical
timescale. We assume 24y, to be roughly comparable to tc.;/2, the time taken for a
spherical top hat fluctuation to collapse after turn around (section 4.1). Infact this
is the same expression as the gy, given in (4.119) above, if we identify R there with
the radius of turn around r,,,. We have

M

Leoll )—1/2(
1012 Mg 200kpc

tayn & =3 ~15x109(

)3/ 2yr (4.124)

For estimating the cooling timescale, we use (4.118), and assume that the gas makes
up a fraction F' of the total mass and is uniformly distributed within a radius r,, /2.
The gas temperature is taken to be of order the virial temperature obtained in the
spherical model, that is Ty, ~ (uv?/3k), where v2 ~ 6GM/(5r,,). This corresponds

roughly to heating by shocks with a velocity of order the collapse or the virial velocity.
We then have

1( M )1/2(
1012M, 200kpc

teool & 2.6 x 10° f71( OF )3/ 2yr. (4.125)

Here we have further assumed that the line cooling dominates for T;, relevant to
galaxies and adopted a typical value of F ~ 0.1. Note that the collapse in general is
likely to be highly inhomogeneous, and the above estimates are only to get a rough
idea of the numbers involved. From (4.124) and (4.125) we can once again estimate

that
M

F
— ~ -1 -1 _
T = teool [tayn = LTS, (0.1 (1012MO) (4.126)
So efficient cooling with 7 < 1 implies the condition
11 F
M< Mg ~57%x10 M@fm('o—l (4127)

It is pleasing that masses of order galactic masses are once again preferentially picked
out when one includes DM and takes into account the cosmological setting.

We now have the machinery to be able to apply the above ideas to any particular
theory of structure formation, especially those involving hierarchical clustering. The
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starting point to understand much of the galaxy formation physics is to plot the
cooling diagram. Firstly one plots the curve in the ny — T plane on which r = 1.
Here n; is the baryon density assumed to be a fraction , say 0.1 of the total density.
Furthermore, given the power spectrum of density fluctuations, one can work out
b0 = va(M) ( see section 4.2 ). "Then the various properties, like nj and T, of the
collapsed objects which form, can be estimated using for example the spherical top
hat model. We saw in section 4.1 that these properties depend only on one parameter
M, once the density contrast g is fixed. So for each v one gets a curve on the ny, — T
plane, giving the properties of collapsed objects. These curves assume that the proto
condensations have virialised, but that the gas has not cooled and condensed. Cooling
moves points on these curves to higher densities. In the same diagram one can also
plot for comparison the observed positions of galaxies , groups and clusters of galaxies.

~ Such a cooling diagram for the once popular cold dark matter theory, mentioned
in Section 2, is given schematically in figure 4.4. The figure is an adaptation of the
cooling diagram given by Blumenthal et al. (1984). It indicates that while galaxies
indeed show evidence of having cooled and condensed within their their dark halos,
dwarf spheroidals are only marginally able to cool and groups and clusters of galaxies
have too long a cooling time to have dissipated much of their energy. From the
diagram one can also see that roughly for mass scales with 108 Mgy < M < 10'2M
gas of primordial composition can cool within the dynamical timescale. We have
already discussed the upper limit. The lower limit comes from the fact (mentioned
earlier) that the cooling rate drops drastically below about 10* K, when hydrogen can
no longer be significantly ionised by collisions.

Some complicating features which affect the above simple ideas, deserve mention.
Firstly, we have ignored star formation and its feedback effects on the gas. If star
formation is very efficient, the supernovae from the massive stars may provide an
important heat input. It may then drive out the gas if the potential well is shallow
enough ( Dekel & Silk 1986 ). Infact such effects may be crucial in preventing the
baryons from being all locked up in small objects, before typical galaxies form ( White
& Frenk 1991). Also, we see from (4.126) that if the gas were enriched with metals,
much larger masses can cool within a dynamical time because of the increased cooling
rate. So the chemical history of the gas could also be important.

One may wonder at this stage whether cooling is relevant in setting galactic scales
in theories like the Pancake or Explosion pictures of structure formation ; where large
masses form first and then fragment into smaller masses. Silk & Norman (1981 ) have
argued that such considerations are still relavent, if the fragments are subgalactic,
as indeed seems to be the case in pancake theories. The coagulation of subgalactic
clouds to form galaxies leads to a picture not very different from inhomogeneous
protogalactic collapse. The condition of efficient cooling of the shocks formed when
two clouds collide then leads to a condition equivalent to 7 < 1. ( Silk 1983; Efstathiou
& Silk 1983).

We turn now to a consideration of the effect of Compton cooling, which we have
ignored so far. The cooling rate of a gas with electron density n, and temperature T'
in a blackbody radiation field of density p, and temperature 7T, is given by

4dorn.ck(T — T, )p, ergem=3s—1

Acomp =

(4.128)

mec?
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Figure 4.4. Schematic cooling diagram for the CDM model adapted from Blumen-
thal et al. (1984).

Here o7 is the Thompson cross section, m, the mass of the electron and ¢ the velocity
of light. The cooling time due to inverse compton scattering off the cosmic background
photons, using (4.118), is therefore

_ 3mpmec(l + 2)~*

teomp = =~ 2. 12 ~yr. .
mp 8uo7prs 2.1x10°(1+4 z)~%yr (4.129)

Here we have assumed T >> T, and used p, = pro(1 + 2)* to take into account the
expansion of the Universe.

Suppose we compare this time with the dynamical time in (4.124) using the
expression for t.on in (4.21). We then get ‘

tCO -
Teomp = td"’” 2 240(1 + zeon) %%, (4.130)
yn

which is less than unity for a z.,; > 8, independent of the mass of the object. So
compton cooling can efficiently cool an object if it collapses before a redshift ~ 10,
independent of its mass. It is not clear whether galaxies can collapse that early,
but if they do then galaxy scales can not be preferentially picked out because of the
cooling processes outlined above. However an interesting feature emerges if one plots
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the the T.omp = 1 line in the cooling diagram. Note that this line is parallel to the
T axis since Tcomp does not depend on T. It turns out that galaxies and clusters
are neatly separated by the Compton cooling line, suggesting that galaxy formation
ceased when Compton cooling became inefficient (Gunn quoted in Blumenthal et al.
1984 and see also Gunn 1982 ). If galaxies could form this early, this would be provide
a qualitatively different reason, from that of Rees & Ostriker (1977) and Silk (1977),
for their charecteristic masses. '

4.8. The origin of the angular momentum of galazies

Another key parameter of galaxies apart from their masses is their angular mo-
mentum content. One important class of galaxies, the disks, owe their equilibrium
to rotational support. The origin of galactic angular momentum is therefore a very
important question which any theory of galaxy formation must address. At present
the most popular idea is that galxies aquire their angular momentum due to the tidal
toques of their neighbours ( Hoyle 1949; Peebles 1969; Doroshkevich 1970; White
1984). Most of this section is devoted to examining this possibility. At the end we
also consider another possible mechanism by which galaxies can aquire angular mo-
mentum, one which is particularly relevant for ‘top - down ’ theories, like the pancake
picture of galaxy formation.

The growth of spin in a protogalaxy, due to tidal torques, is most easily analysed,
in the linear stages, using the Zeldovich approximation of section 4.4. Ofcourse, in
the case when the density field has lot of power on scales much smaller than galaxies,
these scales become nonlinear much before galaxies form and Zeldovich approximation
will cease to describe the evolution of galaxies. To avoid this formal problem one must
apply Zeldovich’s equation (4.81) not to the actual density field but to a field smoothed
on protogalactic scales. One is assuming here that small scale nonlinear structures
have negligible influence on the gravitational evolution of larger quasilinear scales, an
assumption which seems reasonable but needs further justification.

The spin angular momentum of the mass which will form a galaxy is given by

L) = [ 6(a,) - FO)x (V@) - V(e s, (4.131)

where r and V describe the proper position and the peculiar velocity of a mass element
as before ( see section 4.4 ). The integral is over the region which will eventually end
up forming the galaxy, © is the centre of mass and V the centre of mass peculiar
velocity of the system at time ¢. Using equation (4.26) for conservation of mass, one
can convert the integral to one over the lagrangian volume, say Vi, which initially
contained the galaxy mass. Substituting the Zeldovich solution (4.25) for r we then
get

L(t) = a? /V [([a - a] + b(t)[p(a) — P(@)]). x b(p(q) — P(@))](Pd®q).  (4.132)

The cross product of the b and the b terms vanish because they are parallel. Since
p(q) = V®o(q), we get

L(t) = pa% /V (a - )x(V®o(q) — V&(d))da. (4.133)
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We see that the angular momentum aquired is first order in the perturbations. Also
its time evolution is determined by the behaviour of a2}, since the integral and j are
constant with time. For a spatially flat Universe with b(t) o a(t) o t2/3 the a%b o t,
and so the angular momentum grows linearly with time.

Further insight into the meaning of (4.133) can be got if we assume that ®q
within V, can be approximated by the first three terms of its Taylor series about q

— 7 . - aéo 1 . =~ az@o . -.
®o(q) = ®o(a) + (¢: — q')a_q,-l“' + E(ql - q.)mlq(q, -§;). (4.134)

Putting this in equation (4.133)we have
Li(t) = a®besje [T, (4.135)
where
I =/ (g5 — @)@ — @1)pd’q
VL
is the moment of inertia tensor of the mass in Vy, and

0%,
~ Oq18qx

Tix

is proportional to the tidal gravitational field at q. 7

The tensor product in (4.135) is of the usual form used to calculate the torque
on an extended body in a tidal field. L vanishes if and only if the tensors T;; and
I;; have the same principal axes. Since the inertia tensor depends only on the shape
of the protogalaxy, while the tensor T;; depends in addition on the distribution of
neighbouring protoclumps, this is not expected to happen in general. Equation (4.135)
then shows that the angular momentum of a galaxy arises in first order due to the
coupling of the first order tidal field with the zeroth order quadrapole moment of the
irregular boundary of the protogalaxy ( White 1984). This result was derived two
decades back by Doroshkevich (1970), but it was only relatively recently that it has
been clearly elucidated in the western literature by White (1984).

Although the above calculation to derive (4.135) provides some insight into how
L originates due to tidal torquing, it cannot be used in a staightforward way to get
good numerical estimates. The problem is basically twofold : Firstly, it is difficult
to decide how Vi should be specified so that it encompasses all the matter that ends
up in a collapsing protogalaxy. Secondly, one has to take account of the growth and
exchanges of L during the fully nonlinear stages of protogalactic evolution. At present
the best way of addressing both these problems seems to be via N - body simulations
( Barnes & Efsthathiou 1987 ), though Heavens & Peacock (1988) make a brave,
fully analytical attempt starting from (4.135). Before discussing the results of these
papers, it is instructive to look at rough estimates of L using (4.135), and dimensional
arguments.

Consider a galaxy scale fluctuation of mass M, which attains a maximum size
~ R before turning around and collapsing. From (4.135) the angular momentum
aquired by this object initially grows as ¢t and therefore it experiences a constant tidal
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torque (dL/dt), at least during the quasilinear stages of growth. After turn around
the torque on the protogalaxy is expected to decrease. This is because collapse will
lead to a decrease in its moment of inertia and also cosmological expansion will result
in the protogalaxy moving away from its neighbours, and hence a decrease in the
tidal force. It then seems reasonable to assume that the maximum torque on the
protogalaxy arises when it is near about the time of turn around. We can then derive
a rough measure of the angular momentum aquired by extrapolating the constant
torque got from differentiating (4.135), to the the turn around time and multipling it
by the time elapsed till turn around. We get

L~(-C-j%)-1/2 ( )x(MRz) MRZ( )1/2 (4.136)

where first term in (4.136) represents the time at turn around, the second the tidal
potential while the third term describes the moment of inertia. (Recall from section
4.4 that the gravitational potential ¢ = 3dab®, atleast in the quasi linear stages. )
We can compare the rotational frequency aquired by a mass element

w~ L/MR? (4.137)
with that required for rotational support against gravity, say wg, got from the relation
wiR~GM/R?. (4.138)

From (4.136), (4.137)and (4.138)we have

w

o 1 (4.139)
So tidal torques could in principle give a L which is dynamically important. Ofcourse
in the above argument we reduced all mass scales to a single M and length scales to
just the radius at turnaround. So it should not be surprising that w/wg is of order
unity. In general this would not be the case since the mass scale and length scale
involved in the expression for the torque is different from that of the galaxy under
consideration, and more detailed calculations would be needed to derive w/wg and
acess the significance of tidal torques.

Such a detailed study using N - body simulations has been carried out most
recently by Barnes & Efstathiou ( 1987). A somewhat complementary, analytical
approach has also been explored by Heavens & Peacock (1988). In all such studies,
the angular momentum is usually given in terms of a convenient parameter,

LEI/?

A= GMET

(4.140)

whose significance we briefly discuss ( Narlikar 1983 ).

Consider a self gravitating system of mass M, energy F and angular momentum
L. Let it have a charecteristic radius R. We can once again define a characteristic
angular frequency of the system w by the relation (4.137) and also a hypothetical
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angular frequency wy, that is needed to support the system purely by rotation using
(4.138). We have for the ratio

w _ _(L/MR?) L
wo - (GM/R3)1/2 ~ M32Gl2R/Z (4.141)

Since the energy of the of the system E ~ GTM?, we can eliminate R in (4.141), in
terms of £ and M. We get

w L FE
wo M3/2G1/2(GM

1/2 _
)2 = A (4.142)

So a self gravitating system with appreciable rotational support has a A comparable
to unity.

The N - body simulations of Barnes & Efstathiou ( 1987) and the analytical
work of Heavens & Peacock (1988) both indicate a broad distribution of A values for
collapsed objects identified with the DM halos of galaxies, ( ~ 10~} — 10~2) with a
median A = 0.05. In their simulations Barnes and Efstathiou looked at both white
noise initial conditions ( n = 0 ) and initial conditions which have more power on
large scales, as predicted by models of galaxy formation with cold DM. They verifed
that L(t) o t, when density contrasts are small compared to unity, in accord with
the predictions of linear theory. As clumps become nonlinear, their L grows more
slowly and can even decrease at later times, depending upon their substructure. For
example, if an object has significant substructure, it initially aquires more angular
momentum because of a stronger coupling to the tidal field. But subsequently as the
subclumps in the object sink to the centre and merge, they lose their orbital angular
momentum to the outer parts, resulting in a high density, low L core.

Barnes and Efstathiou also found that the median A for the collapsed objects is
quite insensitive to the shape of the initial power spectrum of density fluctuation, a
result corraborated by Heavens and Peacock from their analytical estimates. Another
important question ( which we come back to in section 4.9 ), investigated by these
authors was whether the angular momentum aquired by an object is systematically
dependent on the magnitude of its initial overdensity ? The answer was negative.
Heavens and Peacock explained the results in a nice way : Higher peaks have a
shorter collapse time. So one may have thought that they will have less time to get
spun up. But, it turns out that higher peaks are also more clustered and experience
a stronger torque. Which effect is dominant depends on the power spectrum. For
Cold DM spectra these two effects nearly cancel. Also for all power spectra the large
spread in the angular momenta aquired washes out any systematic dependence on
peak height. ‘

The net result can be summarised as follows. Tidal torques can give angular
momentum to a protogalaxy. But both analytical estimates and N - Body simulations
indicate that the resulting A distribution has a large spread with a median value
~ 0.05, more or less independent of the shape of the initial spectrum of density
fluctuations, or the peak height. Tidal torques are therefore able to give at best 5
to 10%, of the angular momentum needed for rotational support. How then can we
explain disk galaxies 7 We will come to this question in the next subsection.
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Before this it is interesting to discuss briefly another, completely different way
by which galaxies may aquire their angular momentum. This was also analysed first
by Doroshkevich (1973) who proposed that in pancake theories the galactic angular
momentum can arise due to vorticity generation in shock waves. Note that in theories
of structure formation which invoke gravitational instability one generaly assumes
that the initial perturbations were irrotational. ( Any vorticity component of the
perturbation decays with time. So to get significant vorticities at the present requires
a much larger vorticity at recombination which is in general incompatible with the
smoothness of the cosmic background radiation ). It is well known that as long as
viscous forces are negligible, vorticity is conserved by fluid motion (Kelvin’s theorem).
However this breaks down in the presence of shocks. In theories like the HDM theory,
the first structure to form are pancake like caustics. Shock waves will go through the
gaseous component as the pancake develops. In general the pancake will be curved
and the velocity vector of the gas will be oblique to the normal vector to the shock
surface. In this case one knows that the normal component of the velocity of the gas
will be much reduced, while the tangential component remains unchanged.

Suppose at some point on the shock surface we fix our axes such that the z —azis
is normal to the shock and the velocity vector lay on the z — y plane. Also let the
vorticity be zero for the gas, before it enters the shock wave. Then initially

0vz [0yl = Ovy/0x|; (4.143)
After passage through a strong shock we have
vz = 0,0v:/0y = 0; Ovy/0z|; ~ 40v,/0z|;. (4.144)

The factor of 4 takes account of the gas compression in a strong shock. So the z
component of the vorticity is about 40v, /dz|;. Doroshkevich pointed out that when
galaxies fragment from the shocked pancake of gas this vorticity would lead to a net
angular momentum of the galaxy. His order of magnitude estimates of the resulting
specific angular momentum gave a number of the same order as seen in disk galaxies,
about 103%cm?s~!. As he himself noted more detailed calculations are neccessary to
establish the validity of this mechanism.

4.9. Formation of disk galazies

The previous two sections have been devoted to general ideas on whether it is
possible to account for two of the basic properties of galaxies, their characteristic mass
and angular momentum. In this and the subsequent section we consider more specific
details of the formation of different types of galaxies. Galaxies are divided generally
using the Hubble classification system ( Binney & Tremaine 1987 ), into four broad
categories : ellipticals, lenticulars, disks and irregulars. Further the first three types of
galaxies are subdivided to form a sequence known as the Hubble sequence, from early
type, round elliticals to late type disks. However when one takes a broad look, one
comes to the conclusion, that at the zeroth order, there are two basic types of galactic
systems whose origin one should try to understand, the disks and the ellipticals. This
section is devoted to the disk galaxies and the next to the formation of ellipticals.
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The first basic type, the spiral or disk galaxies, are basically galaxies whose mass
lies in a thin disk. They are supported against gravity by rotation, having a value of
the dimensionless parameter A ~ 0.4 — 0.5. The rotation velocity of the disk is nearly
constant in radius exept near the centre where it goes to zero. Typical rotation
velocities range from 200 — 300kms~!. A remarkable feature of many disk galaxies
is the fact that their rotation speed curves remain flat even at radii well beyond the
visible galaxy. This implies that these galaxies may be embedded in large halos of
dark matter, which dominates gravitationally outside the visible disk. The surface
brightness of the disk, and hence its surface density, displays a typical exponential
profile of the form

I(r) = Iyexp(—r/r.)

, where Iy is the central surface brightness, typically about 170 Lgpc~2 and r. the disk
scale length, has a typical value of ~ 3h~lkpc. Ofcourse the most visible feature of
the disks are their spiral arms, which is what gives them their name. The abundance
of disk galaxies is sensitively dependent on environment. It is observed that in low
density regions of the Universe, almost 80% of the galaxies are disks, while this fraction
drops to about ~ 10%, in dense regions such as the cores of rich clusters of galaxies.
How does one account for all these properties in any theory of galaxy formation ?

Most of the work on accounting for the detailed properties of disks has been
done in the context of hierarchical theories of galaxy formation, although some ideas
may also apply more generally. We shall have to keep this in mind in what follows.
Firstly in the hierarchical picture, when one incorporates a dominant DM component,
it is relatively straightforward to understand the luminous core - extended dark halo
structure of galaxies. The dark halo is supposed to form as a galactic scale fluctuation
in the DM component grows, turns around, collapses, virialises and settles into an
equilibrium. Meanwhile the gas in the halo also collapses with the halo, and can attain
a pressure supported equilibrium if heated up by shocks, to the virial temperature of
the system. However gas can cool radiatively and so collapse further into the core of
the dark halo. Initially since the gas is supposed to make up only a small fraction
~ 0.1, of the total mass, the gravity of the halo dominates that of the gas. At this
stage, star formation is expected to be suppressed by the tidal forces of the halo,
except in regions of large gas density ( White & Rees 1978; Faber 1982). But as the
gas sinks to the halo core, it comes to be dominated by its own self gravity and can
fragment to form stars, resulting in a luminous galaxy in the core of an extended dark
halo.

Dissipative collapse in a dark halo also seems to be crucial to understand the
rotation of disk galaxies. Recall from the last section that tidal torques give only 5 —
10% of the angular momentum required for rotational support, with a spin parameter
A ~ 0.05. This is far below the observed value of the spin parameter A4 ~ 0.4 — 0.5.
How then can one reconcile the tidal torque theory with observations ? One possibility
is for the gas to collapse due to cooling, increasing its binding energy, at the same time
conserving its mass and angular momentum. Since the spin parameter A o [E|'/2, it
will increase as the binding energy increases. As we show below this does not work
unless we invoke massive dark halos.

For this, suppose we were to ignore the presence of massive dark halos around
galaxies, and assume that a protogalaxy was just a self gravitating cloud of gas without
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any DM. The binding energy of the protogalaxy will be |E| ~ GM2/R, where R is
its charecteristic radius. Since M is constant during collapse, |E] o« R™! and so A «
R~1/2. The gas cloud then has to collapse by a factor ~ (Ag/A;)? =~ (0.5/0.05)% ~ 100,
before it can spin up enough to be rotationally supported, where J; is the initial value
of A given by tidal torques. Therefore to form a typical rotationally supported galactic
disk of mass ~ 10'* Mg and radius ~ 10kpc, matter needs to collapse from an initial
radius ~ 1Mpc to 10kpc. From the expression for the collapse time given in (4.124) ,
this would take an inordinately long time t.o ~ 10'!yr, much longer than the age of
the Universe. Note that even the matter within a scale length r. ~ 3kpc, would need
to collapse from ~ 300kpc and would still take a time ~ 2 x 10 %yr.

This timing difficulty is easily’avoided if one invokes massive halos. In the pres-
ence of a massive dark halo, the spin parameter of the system, before collapse of the
gas, can be written as
B LIEII/Z
© GMsI?
Here the the various quantities, L, E and M refer to the combined DM - gas system,
although the gas contribution is negligible compared to that of the DM halo. After

collapse the gas becomes self gravitating and one gets for the spin parameter of the
resulting disk galaxy

(4.145)

L. E 1/2
A = ‘”—“5'/2 (4.146)
GM:

where the parameters now refer to the disk. So

Ad _ La, |Edl\ /2, Ma\_s5/2
The energy of the virialised DM - gas system, assuming the gas has not yet collapsed

can be written as

GM?
B| = k1——, | (4.148)
while that of the disk is given by
GM?
|Eq| = ko N d (4.149)

c

Here R. and r. are the characteristic radii associated with the DM -gas and the disk
systems respeetively, while k;, k, are constants of order unity which depend on the
precise density profile and geometry of the two systems. The ratio of the binding
energy of the collapsed disk to that of the DM - gas system is then

1Edl _ ke

L
|E| — ky

2, Tc\—1

—)"". 4.15
() (4150)
Also one expects that the total angular momentum per unit mass aquired by the gas
destined to form the disk should be the same as that of the DM. This is because

all the material in the system generally experience the same external torques before
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the cooling of gas separates it into two distinct components. Assuming that the gas
roughly conserved its angular momentum during the collapse to form the disk we then
have

(4.151)

So the ratio

2 = GARMGDEMAGIT = (EICEE (@152)

where we have used (4.150) and (4.151) to simplify (4.147). The gas originally occu-
pied the halo before collapsing, so had a precollapse radius of ~ R.. So the collapse
factor of the gas is

= (—)( )(—) (4.153)

We see that the required collapse factor for the gas to attain rotational support has
been reduced by a factor ~ My/M, from that needed without a dominant dark halo.
For a typical galaxy with a halo mass ~ 10 times the disk mass, one needs a collapse
only by a factor of ~ 10 before the gas can spin up sufficiently to attain rotational
support. '

The above dimensional arguments can be somewhat improved if one assumes
realistic models of the halo and the disk. For example suppose we take an exponential
disk with a surface density

I(r) =

My T

ezp(——). 4.154
2rr? p(=1) (4.154)
Let us also assume that its rotational velocity v,, is constant with radius. Then

L4 = 2r.v,, Mg and from the defenition of A4,
Ag = kM2l 2,, _
a=ky (GMd) v (4.155)
Putting this in (4.153) and simplifying, we have

R,
_=_k1 m(

22k v
Te bY ’

1
1/2 _
= (4.156)

|E]

where v is the virial velocity v of the DM - gas system defined in section 4.1. Note
that the constant &, has dropped out of (4.156). So far we have no assumptions about
the halo properties. Suppose we take the halo to originate initially from a spherical
top hat fluctuation, we can identify R, with r;, in section 4.1 and take k; = 3/10.
To relate v,, and v we can assume that far out in the halo the rotation curve is

2y. In this case we get

detemined only by the gravity of the halo, implying v = /3%

"r = l(M) (4.157)

for the collapse factor
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We see that collapse factors of order 10 are once again implied.

Detailed computations, using a more realistic rotation curve and including the
self gravity of the disk, have been made by Fall & Efstathiou ( 1980 ). They also
use a stronger conservation law than the conservation of total Lg of the gas, that
each element of the gas conserves its angular momentum from the time it begins to
collapse. They can then use the disk properties to deduce the halo mass and the
gas collapse factor. They deduce that collapse factors ~ 10 and halo to disk mass
ratios of five or more are required to explain the rotation of disk galaxies, agreeing
substantially with the above more rough estimates.

The above picture of dissipative collapse of gas in the potential of a dominant
DM halo, has been further elaborated upon by Gunn (1982), in an attempt to explain
the systematic properties of disk galaxies. An added ingredient in this work is the
hypothesis that the collapse to form the disk occurs over a prolonged period of time,
and may even be continuing till the present time. Gunn pointed out that density
peaks inevitably have ‘tails’, which collapse much later than the material around the
peak. As a mass shell turns around and collapses conserving its angular momentum,
it will settle into a disk at a radius when rotation can balance gravity. If the angular
momentum per unit mass increases with radius, as successive shells around a density
peak collape, the disk will grow secularly iaside out.

Gunn suggested a nice explanation for why disks are exponential which deserves
discussion here. Mestel ( 1963 ) had noted a long time back that disks of spirals
have an angular momentum distribution which are not very different from that of a
uniformly rotating constant density sphere

m(h) = M[1— (1 = h/H)%?. (4.158)

Here m(h) is the mass with specific angular momentum h or smaller and H is the
maximum value of h. Mestel had examined what kind of self gravitating disks have
such an angular momentum distribution. He found that there are at least two solu-
tions. A uniformly rotating disk with a very flat density profile, and another which
is quite centrally concentrated and which was strongly differentially rotating ( called
popularly as Mestels disk ). Gunn considered the effect of embedding the disk in
an isothermal dark halo. He asked what would be the suface density distribution of
a disk, which obeys (4.158), has a flat rotation curve and is supported by rotation
against both its own self gravity and the gravity of the halo ? He showed that this
surface density distribution could be fitted very well by an exponential profile over 3
to 4 scalelengths !

This led Gunn to suggest that if the original angular momentum distribution
resembled that of a uniformly rotating sphere and if it was conserved approximately
during collapse, then the disk formed would have a characteristic exponential form.
Also as succesive shells of mass fell in, this form would be preserved except for an
increase in the scale length of the exponential. Gunn also showed how many of the
systematic properties of disk galaxies like the kind of spiral structure they display,
can be explained as a consequence of their differing accretion rates. He also pointed
out that in dense clusters the infall may be totally cut off, since the formation of the
cluster would itself have heated up all the intracluster gas to the virial temperature
of the group. This could be one reason for the deficiency of spirals in dense regions.
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To summarise we see that the idea of disk galaxies forming by dissipative collapse
in the potential of a massive dark halo has the potential of explaining many of their
observd features. The situation is not at all so clear for the ellipticals as we shall see
in the next section.

4.10. The enigma of elliptical galazy formation

We now turn to consider the formation of the second basic type of galaxy, the ellip-
ticals. Elliptical galaxies are systems of stars which are basically supported against
gravity by stellar random motions. Their projected luminosity profiles are smooth
and are well approximated by de Vaucouleurs’ r1/4 law

I(r) = I(0)ezp(—kr'/*) = Ieezp(—7.67[(rL)1/4 —1)), (4.159)

where 7. is the effective radius, which encloses half the total luminosity and I, is
the surface brightness at r.. The effective radius is typically ~ 3h~'kpc for bright
ellipticals and is smaller for fainter galaxies. Another successful fitting formula is
what is known as the Hubble - Reynolds law I(r) = (Ior%)/(r + ru)?, where the
radius ry is typically 0.1r.. Ellipticals owe their name to the fact that their isophotes
are in general elliptical, and they are classified according to the degree of ellipticity of
their isophotes. It was earlier thought that ellipticals were oblate spheroids and that
their flattening was due to rotation. But ever since the now classic work of Binney
(1978), it has been realised that ellipticals rotate too slowly for this explanation to
work. Rather it is now believed that ellipticals are triaxial and owe their shape to
anisotropic velocity dispersions. Interms of the spin parameter introduced in section
4.7 the slow rotation of ellipticals implies a A ~ 0.05. The abundance of elliptical
galaxies is also sensitive to the environment and infact the sense of this dependence is
opposite to that of spiral galaxies. In low density regions elliptical galaxies form only
~ 10% of the population while in rich clusters their abundance rises to ~ 40%. How
does one account for these properties of ellipticals in any theory of galaxy formation ?
And what decides if a given protogalctic fluctuation becomes an elliptical or a spiral
galaxy ?

A concept which has been at the foundation of many models to explain the density
profiles and the relaxed appearence of elliptical galaxies is that of ‘violent relaxation’,
and it is worth mentioning it atleast briefly. As described above elliptical galaxies have
remarkably similar density profiles, which points to some common relaxation process.
The relaxation time tg for two body encounters between stars to relax a galaxy of
N stars is about N(In N)~! times larger than the dynamical timescale of the system.
For a galaxy with ~ 10! stars this time is very much larger than the age of the
Universe. So some other process is involved which leads to a relaxed elliptical galaxy.
Lynden-Bell (1967) suggested a very interesting mechanism to solve this problem. He
argued that during the collapse of a protogalaxy, one would expect large fluctuations
in the gravitational potential, in a time of the order of the collapse time. Since the
potential is changing, individual stars do not follow energy conserving orbits. Clearly
the change in the energy of a star depends in a complex way on its initial position and
velocity, but the net effect is to widen the range of energies of stars in a time scale
of the order the collapse time, which is much shorter than tg. In this way a time
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varying potential provides a relaxation mechanism which has been termed violent
relaxation, since it operates on the relatively short dynaniical or collapse timescale of
the system. Violent relaxation and another process known as phase mixing ( see for
example Binney & Tremaine (1987)) are thought to be the key ingredientsin many
models of dissipationless collapse for the formation of ellipticals.

Historically, these ideas about violent relaxation encouraged Gott ( see for ex-
ample the review by Gott (1977) ) to suggest that ellipticals and spiral bulges were
formed by dissipationless collapse of stars at high redshift, while spirals formed later
on with considerable dissipation. Gott (1977) promoted a picture where stars formed
rapidly in dense protogalaxies even before maximum expansion, and then violently
relax to form ellipticals and spiral bulges. He needed secondary infall to reproduce
the observed de vaucouleur profiles. He argued that disk galaxies result when star
formation is inefficient and the left over gas gathers in a disk, perpendicular to the
angular momentum vector. At about the same time models of ellipticals were also
made, by Larson (1975), where dissipation also played a crucial role. In these mod-
els the time scale of dissipation, collapse and star formation were all assumed to be
comparable. Larson also reproduced the observed light profile and the debate was
whether ellipticals formed by dissipationless or dissipative collapse. However both
these sets of models suffered from a crucial flaw, on hindsight. The problem was that
in both sets of models the ellipticity of the galaxy was explained as due to flattening
by rotation. However, as we discussed above, this is not correct and these models are
no longer fashionable as'they stand.

The works of Gott and Larson however brought to the forefront the idea that
the rate of star formation is likely to be a crucial parameter in any scheme to explain
the appearence of the different types of galaxies. It seems that to form a thin disk,
it is important that star formation does not exaust the gas supply. On the other
hand in ellipticals star formation must have been efficient enough, so that the stars
formed before the gas could settle into a disk. However the question' which has to
be addressed is what decides the star formation rate ? Further, there may be other
parameters which are also crucial in understanding the origin of ellipticals and spirals.
One such crucial parameter is likely to be angular momentum, to which we now turn.

We saw in section 4.7 that tidal torques lead to a median value of the spin pa-
rameter A ~ 0.05. This value is ideal to explain the observed rotation of élliptical
galaxies. One needs to assume however that galactic scale fluctuations collapse with-
out much dissipation. To explain both the typical mass and the size of ellipticals
it may be neccessary that this collapse occured rather early. For example, from the
spherical top hat model to get r,;, ~ 10kpc and M = 10'' M, one needs §p ~ 21.2
and the collapse to occur at redhifts of ~ 11.6. It is not clear whether such early
galaxy formation can be reconciled with MBR isotropies. Also since ellipticals are
not thought to be dominated by DM atleast within their luminous radii, such a theory
of galaxy formation will not be able to accomodate DM clustered on galactic scales.
Finally how can ene then understand disk like systems which have A comparable to
unity ? '

On the other hand if one argues as we did in the last sectien that galaxies form
by dissipative cellapse in the potential well of a massive dark halo, then A will increase
to a value of order unity. Although this is what we want for explaining disks, we do
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not want A to increase for the case of ellipticals. So in this picture, which explains so
nicely many facets of disk galaxies, it is a mystery why rotation is not dynamically
important for ellipticals also ? It is not obvious as yet how to understand both
ellipticals and disks in a unified manner. We discuss below some of the ideas which
have been put forward to solve this problem.

One of the most widely discussed idea is that all galaxies first formed as disk
galaxies and ellipticals then form from mergers between disk systems. This idea pop-
ularised originally by Toomre (1977), has been a source of considerable controversy.
There are some obvious positive features of the merger hypothesis. Firstly galaxy
mergers are seen to occur in the local universe and probably were more frequent in
the past. Secondly a number of ellipticals which have smooth de vaucouler type light
profile, do show signs that they have experienced mergers. ( cf. Schweizer 1982, 1986
). These telltale signs include tidal tails, shells and in some cases gas disks inclined to
the principal planes. Furthermore numerical simulations of mergers between galaxies
show that the resultant starpiles generally resemble ellipticals. Their density profiles
closely match the density profile implied by the Hubble - Reynolds law, p o< r~3 (
White 1979; Negroponte & White 1983). Also the disks which are merging will in
general have their spins randomly oriented with respect to each other. Then the spin
angular momentum of the merger remanent can be considerably smaller than the
progenitor disks ; especially if several disk galaxies are involved in the merger and the
orbital angular momentum is negligible Fall (1979). So over all it does seem eminently
reasonable that some ellipticals can result from mergers.

The merger hypothesis also has several potential problems.

1. Ellipticals are more abundant in rich clusters. However in such clusters the
galaxies have velocities ~ 1000kms™—!, hardly conducive to mergers.

2. Special orbits may be needed for disks galaxies firstly to merge and also for their
orbital angular momentum not to lead to an excessive rotation for the merger
remnant.

3. In a dissipationless merger, if energy and mass are nearly conserved, the energy
per unit mass or velocity dispersion or equivalently the depth of the potential
well of the remnant will be similar to that of the disks. However ellipticals have
much deeper potential wells than typical disks. How can mergers lead to this
increase in the binding energy ?

4. Some ellipticals have higher core phase space densities than found in any disk
galaxy. How can a dissipationless merger, increase the phase space density ?

5. Ellipticals display metallicity luminosity correlations and metallicity gradients,
which are difficult to obtain from mergers of purely stellar disks.

6. Ellipticals have systematically more globular clusters per unit luminosity (or
mass) than spiral disks. Van den Berg defines a parameter S which is the number
of globular clusters in a galaxy per My = —15 of the parent galaxy luminosity.
He finds that S is an order of magnitude smaller in disk systems than it is in
ellipticals ( Van den Bergh 1990). x

Some of these problems may be understood by refining and modifying the original
merger hypothesis, to include the effects of hierarchical clustering, dark matter and
dissipation.

The first problem, for example, can be resolved in theories of galaxy formation
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involving hierarchical clustering. We saw in section 4.2 that in such theories the
velocity dispersion increases with mass as long as the power spectrum of density
fluctuations is shallower than a n = 1 power law over the relevant scales. So in small
mass sub clusters the random bulk velocities of galaxies will be smaller than in a rich
cluster. In such an environment merging can take place more easily to form ellipticals.
Since these subclusters merge to form rich clusters, the rich clusters will also have
ellipticals resolving the first objection (White 1982).

Some of the other potential problems (items 2 and 3 above ) of forming ellipticals
by mergers may also get resolved if one takes into account the prsence of extended
dark halos around disk galaxies. The latest simulations of the merging of disks with
dark halos to form ellipticals are by Barnes (1989). In these simulations Barnes
follws the evolutions of a small compact group of disk galaxies with dark halos. The
presence of the dark halos lead to significant dynamical friction on the galaxies as
they move through each others halo, leading to the galaxies merging even if they were
initially on a parabolic orbit. It turns out that the compact group evolves through a
sequence of mergers on a timescale of only a few crossing times. The dark halo also
acts as a sink for energy. As the disks merge they can become more strongly bound
by transfering energy to the halo. Also because of the dynamical friction the galaxies
can lose their orbital angular momentum before merging leading to a slowly rotating
merger remanent. Barnes finds that the merger remnants are typically slowly rotating
triaxial systems with de Vaucoulers’ law luminosity profile and structural parameters
generally consistent with bright ellipticals. He infact goes on to ask if most ellipticals
are produced from mergers-in such compact groups ?

Several of the other potential problems ( like items 4 and’5 ) may require the
presence of gas in the progenitor galaxies. During the merger this gas can dissi-
pate energy and sink to the centre leading to cores with high phase space densities.
Kormendy (1989) points out that this may be essential at least for the low lumi-
nosity ellipticals. For example, Kormendy estimates a phase space density. for M32
~ .08 Mgpc~3(kms~!)~3 a factor ~ 107 higher than in typical disks ! He concludes
that the formation of the low luminosity elliptical galaxy M32 atleast must have in-
volved considerable amounts of dissipation. Modest amount of gaseous dissipation
and subsequent sinking to the core regions may also help in setting up metalicity
gradients. But it is not at all clear whether the excess of globular clusters can be
explained even by the presence of gas in the progenitor galaxies which are merging to
form the elliptical ( see Van den Bergh 1989, and Schweizer 1986 for opposite views
). As a hypothesis the idea of ellipticals forming by mergers of disks has led to a lot
of fruitfull work. In the process it has evolved a great deal and a suitably modified
version seems to have some amount of suceess. Nevertheless it is perhaps wise to keep
an open mind to other possibilities, a few of which we shall now discuss.

It has always been a fond hope that one can find a small set of parameters of a
collapsing protogalaxy, which once specified, will decide the type of galaxy formed.
We have discussed the role of star formation rate and angular momentum. Are there
any other such crucial parameters ? In the early stages of the development of the Cold
DM theory of structure formation, it was hypothesised that the height of a density
peak on the galactic scale was one such parameter ( Blumenthal et al. 1984). It
was argued that the higher peaks collapsed earlier, had less time to be torqued up
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and so formed ellipticals with low A. However we mentioned in section 4.7 that the
numerical simulations which followed the formation of halos did not bear out this
picture. These simulations by Barnes & Efstathiou (1987) and earlier work by Frenk
et al. (1988) however brought to the fore another possible crucial parameter, the
amount of substructure in a protogalaxy.

It was noticed that when a prot' ;alaxy underwent a clumpy collapse significant
amounts of angular momentum can be transferred outwards as the clumps sank to

. the centre and merged ( see also secticn 4.7 ), leading to slowly rotating cores embed-

ded in extended halos. If stars could form in these clumps before the collapse of the
protogalaxy then the resulting stellar system in the core will also be slowly rotating,
and be an ideal candidate for an elliptical. On the other hand it was found that qui-
escent protogalactic collapses, did not lead to such a transfer of angular momentum.
These halos could then be ideal sites for disk formation ( Frenk et.al. 1988 ). This
picture elliptical galaxy formation is very similar to the merger picture except that
the progenitors are sub galactic clumps and not full blown disks. Of course it has not
yet been clarified whether this idea can work in detail, but it looks promising, even if
the Cold DM theory goes out of fashion.

Another possible candidate crucial parameter which has been suggested is the
shape of the dark halo in which the galaxy forms ( Subramanian 1988; Katz & Gunn
1991). Dark halos are unlikely to be symmetric, more generally they will be triaxial.
In fact nearly 25% of the halos in the N - body simulation of Frenk et al (1988) have
a short to long axis < 1 : 4. As gas collapses in such a halo potential it may lose
its angular momentum to the halo. The magnitude of this effect was worked out in
detail in an idealised picture of protogalactic collapse by Subramanian (1988). The
angular momentum loss of the collapsing gas was found to be significant when the
initial protogalaxy rotates about the halo middle axis and the halo had a short to long
axis ratio less than ~ 1 : 4. It was suggested that ellipticals were those protogalaxies
where the angular momentum has been transferred from the gas to the dark halo.
It was also suggested that in regions of larger galaxy density halos would be more
misshapen due to the tidal forces. Whether this will work in practice is not yet clear.

One can see from the plethora of ideas expressed in this section that the prob-
lem of explaining how elliptical galaxies arise is still quite open. Certainly the star
formation rate, the angular momentum content of the protogalaxy, the complex ways
in which it gets re distributed during collapse, the subsequent mergers are all likely
to have some relavance. The difficulty lies in not yet having a clean grand picture,
which seems patently obvious to everyone !

This completes our grand tour of the possible processes which operate during
the non linear evolution of structure. We now turn to consider whether the observed
universe at high redshifts has any clues to offer about when and how galaxies formed.

5: High redshift objects and Galaxy formation
5.1 Introduction

So far we have analysed the idea that gravitational instability amplified small
density fluctuations in to galaxies and other structures. We also discussed some of
the constraints on the theory arising from the CMBR and large scale velocities, which
largely probe density fluctuations when they were still in the linear regime. How does
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one learn about the nonlinear phases of galaxy formation 7 Presumably, the nonlinear
phase of structure formation occurs much after decoupling but much earlier than the
present. So a study of objects in the universe at larger and larger redshifts will be
fruitful in constraining different models of galaxy formation. We therefore examine
in what follows the possible hints which the high redshift universe offers as to how
and when galaxies formed.

The highest redshift objects which have been discovered so far are of course
the Quasi stellar objects ( QSO ’s or quasars ). The QSO PC1247 + 3406, with
z = 4.897, holds the present record for the highest redshift ( Schneider, Schmidt
& Gunn (1991)). In recent years there has also been a spurt in the discovery of
galaxies at high redshift using their radio properties, the highest redshift being 3.8
for the galaxy 4C 41.17, discovered by Chambers, Miley & van Breugel ( 1990). The
very existence of such objects puts severe constraints on theories which predict a
late epoch of galaxy formation. The high redshift radio galaxies also have several
important differences from their low z counterparts, which are indicative of vastly
different physical conditions at these redshifts. Furthermore, the QSO’s and radio
galaxies show an evolution in their comoving number density, with a possible peak
at redshifts of around 2. The relation of this epoch to the epoch of galaxy formation
is intriguing. These and other important constraints imposed by the high 2 quasars
and radio galaxies on galaxy formation are studied in sections 5.2 and 5.3.

The high z QSOs are not only interesting in themselves but also very useful
because they reveal the presence of interesting types of intervening objects, which
cause absorption lines in the QSO ’s spectra. A study of the absorption line systems
can be used to probe the content of the universe at redshifts below the QSO redshift.
Also since an absorption line producing object comes along the line of sight to the
QSO by chance, they are more representative of their class. This contrasts with the
case of QSO’s or radio galaxies whose properties may not be representative of the
general class of galaxies, since it may require special conditions to make a galaxy
active. We shall highlight some key results of absorption line studies in section 5.4,
which have particular relevance for structure formation theories.

One of the most exciting prospects of looking at objects at high redshifts is to
actually detect a forming galaxy. In fact it is not even clear at present how we will
recognise such an object. We therefore end this part with a consideration of primeval
galaxies, what are they ? when did they form ? and what should they look like ?
Much of the material to be discussed in the various sections of this part is still a
subject of active research and debate ; the conclusions we draw are therefore only

‘preliminary.

5.2 Quasars and galazy formation

Ever since their discovery, quasars have been recognised as potentially valuable
probes of the high z universe. Their high intrinsic luminosity makes it possible to
see quasars to high redshifts. Also if the QSO phase lasts only for a short time
compared to the Hubble time at the QSO redshift, then the number of galaxies which
go through a QSO like phase may be much more than the number of QSOs seen at that
z. Quasars may therefore be tracers of the galaxy population at high z. Systematic
observations of quasars has recently produced several potentially important results.
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These include a characterisation of how the QSO luminosity function evolves with
redshift, and more importantly the discovery more and more quasars at higher and
higher redshifts ( about 20 are known now with z > 4 ). We discuss the relevance of
each of these to galaxy formation, in turn.

The quasar luminosity function is usually defined as the number of quasars per
unit comoving volume per unit luminosity. One can also separate the data into vari-
ous redshift bins and examine how this luminosity function evolves with redshift. The
most interesting information from the viewpoint of galaxy formation is the redshift
dependence of the number density of quasars above a fixed luminosity. This is got by
integrating the luminosity function at a redshift z over luminosity. There is consider-
able evidence that the integrated comoving number density of quasars increases with
redshift, upto a redshift z ~ 2. This rise holds for both radio quiet QSOs ( Boyle et
al. 1987 ) and for radio quasars ( Dunlop & Peacock 1990 ). What happens after
this redshift is only beginning to be elucidated. A particularly interesting question is
whether the quasar number density cuts off drastically after some maximum redshift.
Such an epoch of peak quasar density could indicate that this epoch, say z ~ 2, is in
someway special, perhaps because it was the epoch when galaxies which could host
quasars formed in abundance.

As we summarise below, with the exception of the brightest quasars, the number
density of quasars and radio galaxies does indeed show a decline between redshifts of
2 and 4. However this decline seems to be gradual, not a drastic redshift cut -off in
the AGN number densities. In the case of radio quasars Dunlop & Peacock (1990)
find a decrease in comoving number density by a factor ~ 5, betweeen z = 2 and
z = 4 and also tentative evidence for a similar decrease in the number density of
steep spectrum radio sources ( mostly radio galaxies ). For optically selected QSOs
the situation is not so simple. For QSOs with absolute magnitude Mp < —26, there
is evidence for a sharper decline, ( cf. the review by Green (1989)) with the number
density decreasing by about an order of magnitude between redshifts of 2 and 4.
However, brighter QSOs with with Mp < —28 do not show a decline in their space
density between these redshifts ( Boyle 1990 ). One should keep in mind that these
are difficult observational questions to settle, because of selection effects and the fact
that the brightest objects are more easily seen. We should therefore not overinterpret
the decline in AGN number density until the observational situation clarifies. On the
theoretical side it is not yet clear what turns on or turns off the QSO phenomenan.

More important than the detailed evolution of the quasar luminosity function, it
is just the very existence of quasars at high redshifts, say z > 4 that provides crucial
constraints on galaxy formation ( Efstathiou & Rees 1988; Turner 1991; Kashlinsky
& Jones 1991 ). Quasars are thought to be powered by accretion onto massive black
holes, at the centres of galaxies. So before any quasar can turn on, some galaxies
must evolve at least to the stage of developing a compact and massive enough nuclei.
These galaxies have to then collapse and settle down at redshifts higher than that
of the quasar. However in some theories like the standard CDM theory or the HDM
pancake theory galaxies form at a relatively late epoch at z ~ 2, say. In this case
finding many quasars at high z & 4 could be embarassing. This is the dichotomy
which we elaborate more quantitatively below.

Quasars powered by accretion onto massive black holes have associated with them
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a characteristic limiting luminosity known as the Eddington luminosity. This is the
luminosity, say Lg above which the radiation pressure on accreted plasma exceeds the
gravitational attraction of the black hole, thus preventing accretion. For an accreting
black hole of mass Mgy,

4rGmpcMpy ~ 1.3 x 047(

LE = or 109M

)ergs 1 (5.1)
Super Eddington luminosities arée possible, but need special models, like for example
the electromagnetic extraction of the rotational energy of a spinning black hole ( f.
Rees 1984 ) Unless such special models are involved one can then infer a characteristic
black hole mass from (5.1) using the observed luminosity of the quasar. The quasars
with z > 4 have typical luminosities ~ 10%7ergs~!, assuming a cosmological model
with go = 1/2 and h = 1/2 ( cf. Turner 1991, Schneider et al. 1989 a,b ). This implies
that they involve black holes of mass Mgy ~ 10° M.

From the luminosity one can also estimate the amount of fuel that must be
present to power the quasar for a lifetime tg. If € is the efficiency with which the rest
mass energy of the fuel is converted into radiation, then the fuel mass is

M! = ICItT? ~ 2 x 109M@L47tQ366_i. (52)
Here L4z is the luminosity in units of 1047ergs™!, tgs is time in units of 108yr and
€0.1 = €/(0.1) . So for a lifetime of around 10%yr, and reasonable efficiencies the
required fuel mass is comparable to the mass of the central black hole inferred on the
basis of (5.1) .

The above masses only refer to that involved in the central engine of the quasar.
This will in general be a small fraction say F of the mass of the host galaxy. Efstathiou
& Rees (1988) write F as a product of three factors. Firstly only a fraction f, of
matter in the universe may be in baryonic form. Then when the galaxy forms only
some fraction f,.; of the baryons originally associated with the galaxy be retained
rather than expelled via a supernova - driven wind. Finally only a fraction fo. of the
baryons retained be able to participate in the collapse to form the compact central
object. So F' = fyfret fnole and we get for the mass of the host galaxy

Mg = 2¢; x 10! M, (5-3)

where ¢; = Lartgseg 1Fg o1 and Foo1 = F/0.01. For Fgo; ~ 0.1 — 1, with the earlier
value being more likely, (5.3) implies a mass for the host galaxy ~ 10! — 10!2M
assuming that the other dimensionless parameters in (5.2) are of order unity. So the
existence of quasars at z > 4 implies that atleast some objects with galactic masses
should have formed by these redshifts.

It is relatively easy to estimate the typical mass of collapsed objects at any z in
hierarchical models. Recall from Part 3 and Part 4 that the fractional density excess,
b0, in a sphere of radius R containing on the average a mass M is given by

M —(34n)/6
Go(M) 0 9 5.4
ol (53> 10159H5‘01M®) (5-4)
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N

Here we have used the Js normalisation given in (3.4), v is the peak height in units
of the standard deviation and b is the bias factor as before. One can also relate & to
the collapse redshift of an object using for instance the spherical top hat model. For
a flat universe we have from (4.50),

bo
1.686

(1 + 2co”) = (5.5)
From (5.4) and (5.5) the characteristic mass ( with ¥ = 1 ) which collapses at a
redshift z is given by

1.686b(1 + 2)

M(z) = 2.3 x 10'5( 55

)" g M. (5.6)

From (5.6) we see that M. drops steeply with redshift for for negative n. For
example M, o (1 + z)76, for n = —2, relavent to the CDM power spectrum at
galactic scales. Also if b > 1, M, is decreased correspondingly by a factor b¢/("+3), In
table 5.1 we have given M, for different values of n, the slope of the power spectrum
of density fluctuations, and for several values of z. These values of M assume no
biasing. We see from the table that, for b = 1, the characteristic mass is comparable
to galactic masses for z ~ 4 — 5 for n = —1, while for n = —2, this happens only at
redshifts ~ 1 — 2. So in theories with n = —2, galactic mass objects at z > 4, will be
rare. For theories like the Cold DM theories, the effective value of n varies with mass
scale, from n & —3 at small masses through n ~ —2 at galactic scales to n ~ —1 at
cluster mass scales. Also the standard Cold DM model needs a biasing factor b ~ 2,
and consequently a reduction in M, at a fixed redshift. It turns out that even in
these models galactic scale objects are rare at redshifts ~ 4 ; infact galaxies form in
abundance only at a z S 2 ( cf. Frenk et al. 1988; Frenk 1989 ).

Table 5.1
M. in units of M, for different values of n and for different redshifts

b M, b3 M. b2 M, bl M,

n=-2 n=-1 n=0 n=1

z=0 5.4 x 103 3.5 x 104 6.6 x 1014 9.0 x 104
z= 7.4 x 1010 1.3 x 1013 7.3 x 1013 1.7 x 1014
z2=4 3.4 x 10° 2.8 x 1012 2.6 x 1013 8.1 x 1013
z=5 1.1 x 10° 1.6 x 1012 1.8 x 1013 6.2 x 1013

We note in passing that how one normalises the spectrum may play an important
role in the above considerations. Suppose we know that the fractional excess density
contrast in galaxies 8 N/N is unity at some mass scale Mp. Then naively one may
have written o(Mp) = 1/b. However this ignores the fact that for excess density
contrasts comparable to unity, the effects of nonlinear evolution will be important. In
particular, to get a §p/p ~ 1 at some time, one would need a smaller initial density
contrast, when one takes into account the effect of nonlinear evolution, than if one
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just extrapolates linear theory. For example suppose we use the spherical model to
follow the nonlinear evolution. Then § = p/py — 1 = 1 when 6 =~ 2x/3. For this 6
we then get from (4.37), the fractional excess density contrast linearly extrapolated
to the present epoch 8 = 0.57. So we should correctly normalise our spectrum by
demanding o(Mo) = 0.57/b. This is infact how Kashlinsky & Jones (1991) normalise
the spectrum. Under _this normalisation the characteristic mass which collapses at
any z becomes

1.686b(1 + 2)

M.(z) = 1.2 x 10"5( 05T

)~ CE N g M. (5.7)

where we have used the fact that §N/N = 1 on a scale of 8h~"'Mpc. We see that
the effect of this different normalisation is roughly equivalent to introducing a bias
b ~ 2 in the expression for M, in (5.6) . So M, is in general smaller than M,.
For example for n = —1, we get M, = 3.7 x 10'' My at a redshift of 4 compared
to M, = 2.8 x 1012M in table 5.1. So using this normalisation instead of the J3
normalisation implies an even smaller abundance of quasars at high z.

How rare the possible hest galaxies of quasars are in the CDM theory has been
quantified by Efstathiou & Rees (1988), using the Press - Schechter theory outlined
in section 4.3. Recall that we can get, f(M,z)dM the comoving number density of
collapsed objects in a mass range dM as a function of redshift, using this formalism.
Assuming that every halo of mass Mg or greater forms a quasar with lifetime ¢g, the

expected number density of quasars is (cf. Efstathiou & Rees 1988; Kashlinsky &
Jones 1991 )

NQ() L4z, Z) ] fQ /Mm f(M, Z)dM (58)

Here fo = min(1,tg/t(2)), takes into account that only a fraction of order tg/t(z)
of halos will display quasar activity if the quasar lifetime is smaller than than the age
of the universe t(z) at redshift z. Efstathiou and Rees estimate

No(> L4z, 2) = 1073t ga(1 + 2)3/2¢7 %8 exp[—0.21(c1)° 2%6(1 + 2)*]Mpc™2  (5.9)

At large z the exponential in (5.9) dominates and leads to a sharp decline in the
quasar density.

The comoving number density of luminous quasars w'th Ly7 & 1 at z ~ 2 is
~ 1.2 x 10~"Mpc~3( Efstathiou & Rees 1988). One car .stimate a critical redshift
Zcrit at which the quasar density in (5.9) will drop below this value. We mentioned
earlier that the comoving number density of brightest quasars does not show any
decrease between z ~ 2 to a z ~ 4. So it may be desirable for z..;; to be atleast
greater than ~ 4. This implies from (5.9) the condition

€0.1F0.01 > 0.1

(5.10)
tos

The value of Fp o; depends on uncertain astrophysics ; Efstathiou and Rees consider
that a value ~ 0.1 ( corresponding to 1% of the baryons collapsing to form the
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central object ), may be a realistic upper limit. The radiative efficiency €¢p; cannot
substantially exceed 1 (cf. Phinney 1983 ). So the product €g1Fo.01 is unlikely to
larger than 0.1. The inequality (5.10) then implies that high z ~ 4 quasars can
only exist in sufficient number if the quasar lifetime tg is shorter than ~ 108yr, or
from (5.3) a smaller mass for the host galaxy. However for lifetimes so small that
M; < Mgy, we should not use the fuel mass to estimate the mass of the host galaxy.
Rather we should in this case use the black hole mass Mgy and write Mg ~ FMpy.
Assuming that quasar luminosities are limited by Lg, one then gets a lower limit to
what we can take for g in equation (5.10) given by equating M; and Mpy. We get

€orc

m ~ 4 x 107¢p 1 yr. (5.11)

lg>tls=¢eg=

Interestingly this is also the time scale ( Salpeter 1964 ) in which the mass of a
black hole accreting at the Eddington limit doubles due to the accretion. Keeping
in mind this lower limit to tg ~ ts we see that (5.10) can be satisfied but not
by a wide margin. Further if z¢,,y ~ 4, the abundance of high luminosity quasars
must decline exponentially for higher redshifts, which does not seem to be supported
by recent observations (Irwin et al. 1991). Finally we should note that the above
analysis has assumed that quasars can turn on immediately after their hosts collapse.
More realistically it will take some time for hosts to develop compact nuclei to power
quasars. In this case one has to account for higher collapse redshifts which is a greater
problem for a theory like the standard Cold DM model.

We have discussed the constraints implied by high z quasars on the CDM theory
in such detail, since this theory has recieved considerable attention in the recent past.
It must be emphasised that the existence of high redshift quasars is a potential prob-
lem for any theory where galaxies form late. For example in some current top- down
theories, like the HDM picture super clusters collapse into pancake like structures
first and subsequently fragment to form galaxies. As discussed in section 4.6 studies
of non linear clustering on scales < 10Mpc show that supercluster collapse must have
occured quite recently, at z < 2, so as to avoid exessive clustering. ( Frenk, White
and Davis 1983 ). The existence of high z & 4 quasars is then hard to understand in
such theories also.

Until recently quasars were the only class of objects which could be seen to high
redshifts. This monopoly has now been broken and a new class of intriguing high 2
objects have been discovered, the high redshift radio galaxies, which we now consider.

5.3 High redshift radio galazies

The explosion in the discovery of high redshift radio galaxies is a fairly recent
phenomena which has come about basically from the optical study of large samples of
strong, steep spectrum radio sources. It is still somewhat controversial as to why and
whether this criterion, that the radio source has ultra steep spectrum, is important
for discovering high z objects. Nevertheless most of the galaxies discovered to date
with z > 1, including 4C 41.17, the galaxy with the largest redshift of 3.8, have come
from the application of this method. At present more than ~ 20 galaxies are known
with z > 2, and out of these several have a redshift greater than 3. These numbers
are expected to increase in the next few years.
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The high = radio galaxies are relevant to galaxy formation in several ways. Firstly
as we discuss below, their optical properties seem to be very different from their lower
z counterparts. So their study may help one to understand the physical conditions
and the evolution of at least those, perhaps exceptional, high redshift galaxies, which
host radio sources. Secondly the very existence of the highest z radio galaxies will
constrain theories of late galaxy formation, just as in the case of quasars discussed
in the previous section. In addition, in the case of these galaxies, one may be able
to independently estimate their age and minimum mass, from the flux they emit at

various wavebands (see below). This will provide additional constraints on the epoch
of structure formation.

Figure 5.1a,b. The high redshift radio galaxy 2104 — 242 at z = 2.491 showing the
alignment effect. The Lyman a image on the left (5.1a) and the r- band image on the
right (5.1b) are both elongated in the same direction as the radio source (Figure 5.1c)

appearing below. The images are 25" on a side and the object to the upper right in
(5.1a) and (5.1b) is a star.

Radio galaxies at high z differ from their lower redshift counterparts in basically
the following ways : Firstly, they have associated with them optical emission - both
lines and continuum - extended over large regions, from several tens of kpc to over
200 kpc ( cf. McCarthy et al. 1987a). The emission line gas in several objects also
displays large velocity gradients up to ~ 2000kms=1 ( McCarthy et al. 1987a). And
most intriguing is the fact that the optical emitting region is elongated, its major axis
being preferentially aligned with the axis defined by the radio source ( McCarthy et al.
1987b; Chambers, Miley & van Breugel 1987; McCarthy 1989). This is in complete
contrast to what is seen in the case of radio galaxies at low redshift, where if at all
there is alignment it is between the radio and the minor axis of the optical galaxy (
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Figure 5.1c. The radio map of the galaxy 2104 — 242. Figures 5.1a, b, ¢ has been

adapted from McCarthy et al. (1990).

Palimaka et al. 1979). In figure 5.1 we show an example of this phenomenon studied
by McCarthy et al. (1990), the radio galaxy 2104 - 242 at a redshift of 2.491. Figures
5.1a and 5.1b show the Lyman a and r band images of this galaxy which can be seen
to be elongated in the same direction as the radio source shown in figure 5.1c. This
‘alignment effect’ has been the prime mover for much of the theoretical study of high
z radio galaxies. So we begin in this section with a more detailed consideration of the
alignment effect. The questions which arise for example are ; why is there a radio -
optical alignment ? Where does the gas spread over such large volumes come from
? Since these high z radio galaxies are very different from their low z counterpzrts,
do they represent young galaxies which have just formed the bulk of their stars 7 We
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-shall cosider tentative answers below.

A good review of the various mechanisms proposed to explain the alignment effect
is given by Chambers & Miley ( 1990). The possible explanations include gravitational
lensing (Lefevre et al. 1988a, 1988b,), electron and dust scattering of beamed optical
emission from an underlying active nucleus (cf. Fabian 1989; De Alighery et al. 1989
respectively), and radio source induced star formation. Of these the last possibility
appears at present to be the most likely explanation in the majority of the sources,
although in some cases lensing or scattering of beamed optical emission may also
play a role. Infact, there exists a possible nearby example of a starburst triggered
by a radio source,the Minkowski’s object ( van Breugel et al. 1985; Brodie, Bowyer
& McCarthy 1985 ). Chambers, Miley & van Breugel (1987) and McCarthy et al.
(1987a) suggested in their very first papers which pointed out the alignment effect that
such a process may also explain the radio - optical alignment. A number of authors
have worked out in greater detail how this may happen ( Rees 1989; De Young 1989;
Subramanian 1989; Begelman & Cioffi 1989; Daly 1990 ). The basic idea is as follows

Suppose a galaxy in the process of formation develops, a two phase medium ;
clouds or filaments with a temperature T < 10*K in pressure balance with a hotter
medium at T' X 108 K. We shall discuss a little later how this may come about. The
pressure felt by the clouds is then

po = nkT = 3 x 10-“( )dynem ™2 (5.12)

10— 2c =2 051’
where n is the density of the hot inter cloud medium. Suppose such a galaxy also
develops an active nucleus which squirts out twin jets of plasma to feed double radio
lobes. As the lobe propogates into the gas, it will drive a bow shock ahead of it.
There could also be shocks propogating transverse to the jet axis driven by the over
pressured cocoon of plasma which gathers behind the radio lobes. The pressure of
the shocked gas in front off the lobe is ~ m,vi4n, where vy is the velocity with which
the head of the lobe advances into the gas. Assuming the lobe of relativistic plasma
to be in rough pressure balance with the shocked gas in front of it, we can estimate
the pressure of the plasma in the lobe to be

paTx107%( Ydyncm ™2 (5.13)

10- 2c) (10 2c -3
A similar radio lobe pressure is also estimated by Rees (1989) from applying the
equipartition assumption to the high z radio galaxy 3C 368. Note that p; is much
larger than pg, the pressure initially felt by the cool clouds. The pressure in the
cocoon will be much smaller than p; but still much larger than pg, by a factor ~ M2
where M is the mach number of the transverse shock. As the shocks produced by
the radio jets propagates into the gas, the clouds wandering into the lobes or cocoon
find themselves overpressured by a factor p;/po ~ 10 in the lobe for v, ~ 0.1c and
perhaps a much smaller factor M? in the cocoon. The sudden jump in pressure, and
the resulting compression would trigger the collapse of all clouds down to a fraction
of ordet (p1/po)~1/2 ~ 0.01 to ~ 1/M of the previous Jeans mass, leading to a burst
of star formation along the radio axis. Rees (1989) estimates that the rate of star
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formation along the radio axis maybe enhanced in this process by a factor ~ 10 —100,
comparable to the mach number of the shocks driven into the gas by the jets.

This explains the aligned optical continuum emission. In order to account for the
line emission one needs also a source of ionizing photons. Such photons can come from
hot stars which are co - existing with the cool gas or can arise from the active nucleus
of the radio galaxy. It turns out that the line ratios seen in high z radio galaxies are
best explained if the cool line emitting gas is photoionised by a power law continuum,
expected from the active nucleus ( cf. van Breugel & McCarthy 1990). In this case
the alignment of the line emitting region with the radio axis requires the’optical
continuum from the nucleus to be beamed also along the radio axis. Interestingly,

such beaming has been independently proposed in schemes to unify radio galaxies
and quasars (Barthel 1989).

The above models for the alignment effect would not be complete without ac-
counting for the gas spread over large volumes ( ~ 100kpc ), which we postulated to
be in the form of a two phase medium. This question has not perhaps received as
much attention as it deserves. The most influential paper in this context has been
the work of Fall & Rees (1985). Suppose one considers a collapsing protogalaxy. We
saw in section 4.6 that for massive galaxies with M 2 10'2M(, that the ratio 7 of
the gas cooling time to the collapse time initially exceeds unity (4.60). In this case as
protogalaxy collapses most of the gas will get heated up initially to the virial temper-
ature of the system, and try to settle into a pressure supported equilibrium. However
as the gas cools, it will flow in, the density will rise and 7 will decrease to unity. Fall
& Rees (1985) argue that as this happens, the gas will bécome thermally unstable
- slightly overdense regions will cool faster than their surroundings, be compressed,
become denser, cool even faster and so on. The cool gas will start to condense out,
thereby reducing the hot gas density and increasing 7. Fall and Rees argue in fact
that the condensation of the cool gas depletes the hot gas in such a way that its
cooling and collapse times scales remain comparable. It is from the cool - phase gas
clouds that stars would form. Clouds massive enough to be Jeans unstable would
contract, possibly initiating star formation within them. But clouds are expected
with a broad spectrum of sizes, stretching well below the limit for Jeans instability.
It is such clouds which may be pushed over the limit when they are engulfed by the
radio source.

This picture nicely accounts for the fertile initial conditions which we postulated
above, where gas clouds are waiting to be hit by a radio source to form stars. However
it is not clear if it also accounts for the large extents of such gas. This is because
thermal instability operating on small density peerturbations, initially leads only to
power law growth of density contrasts ( Fall & Rees 1985). If the initial density
contrasts are ~ 10%, then Fall and Rees show that cool clouds condense out only
after the gas has collapsed by a factor ~ 10, from the radius when first 7 ~ 1,
to say radii ~ a few kpc. So to get cool gas at large radii ~ 100 kpc, one has
to postulate the protogalaxy to be highly inhomogeneous right at the start of its
collapse. This may not be totally unnatural, if galaxies build up by the mergers
of smaller masses. Another possibility which has been considered by Subramanian
(1989) is that the protogalactic collapse is not spherical, but rather the protogalaxy
initially collapses to a large pancake during which cool clouds are again produced
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due to thermal instability. Such pancakes may well be the absorbers producing the
damped Lyman a absorbing systems ( see the next section). Subramanian argues
that the merger of a protogalactic pancake with another galaxy can disperse the cool
gas to large volumes, and can also possibly switch on the radio source lighting up the
merger.

Whatever the origin-of the gas seen in high z radio galaxies, their very existence
can strongly influence the properties of the radio source, for example the radio linear
size. This argument can be turned around and one can ask whether observations
of the linear sizes of high z radio galaxies, can be used to probe galaxy formation
and evolution. Infact, observations already exist atleast up to a redshift z ~ 1, which
show that the median linear size {, of radio sources with similar radio power, decreases
steeply with redshift as I oc (1 + z)~3 (Oort et al. 1987; Singal 1988; Kapahi 1989).
This evolution may be understood if gaseous halos around these galaxies had a larger
density in the past (Swarup 1988; Subramanian & Swarup 1990; Gopal Krishna &
Wiita 1991). For forming galaxies, with most of the mass still in a gaseous form, the
reduction in the radio linear size may be quite dramatic. For example, Subramanian &
Swarup (1990) show that for fdrming galaxies, [ may be reduced by factors ~ 10—100,
for jets with power between ~ 10%6 — 1044 erg s~! respectively, compared to values
seen in local radio galaxies. So it may be possible to probe the epoch of vigorous
galaxy formation by studying radio linear sizes as a function of redshift.

Perhaps the one spanner in the above works on explaining the radio - optical
alignments of high z radio galaxies, is the fact that these alignments may persist even
in the infrared waveband. The emission region in the infrared does not in general
appear as elongated as in the optical, nevertheless for several high z radio galaxies,
including 4C41.17, the radio galaxy with the largest z, it does appear to be aligned
with the radio. ( Chambers et al. 1988; Eisenhardt & Chokshi 1989 ). The case for
infrared alignments is not yet as robust nor as universal as in the case of the optical
emission (cf. Peacock 1990 ) and even the flux in the infrared may be much smaller
than previously estimated for some objects (see Hammer, Lefevre & Proust 1991 in
the case of 3C368 and Eisenhardt et al. 1990 for 0902 + 34). So at present one must
be somewhat cautious in interpreting the infrared observations. We discuss below the
possible origin of the infrared alignments, with the above caveat in mind.

The natural tendency to explain the infrared - radio alignments would be to
extrapolate the picture for explaining the optical alignments and say that the infrared
emission is also produced by stars formed due to the passage of the radio lobes. Since
these stars have to be younger than the radio source which itself is believed to have a
lifetime 108yr,_ the observed infrared emission has to arise from a relatively young
stellar population. However this has potential problems with two important sets of
observations. These observations are also relevant to the question of the ages of these
high redshift radio galaxies and therefore deserve discussion.

The first set of observations which is potentially embarassing for the above expla-
nation of the infrared emission, is the observed colours of these galaxies. This is nicely
quantified by plotting what is known as the spectral energy distribution ( henceforth
SED ) of the galaxy, that is the dependence of flux density on the rest wavelength.
Note that the infrared observations of a high z galaxy gives information about the the
red to near infrared part of the spectrum in the rest frame of the galaxy. This part
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of the spectrum is generally dominated by emission from old red giant stars. On the
other hand young massive stars generally contribute to the blue end of the spectrum.
For an old elliptical galaxy in which there is very little ongoing star formation, the
old stars dominate and the flux density is largest in the red part of the spectrum.
So it is generally believed that a galaxy in its rest frame red wavelengths traces out
more robustly the underlying stellar population. The SED for a number of high 2
radio galaxies have been determined. It turns out that the SED’s are generally flat
in the ultraviolet and show a rise in flux in the red. This is illustrated schematically
in Figure 5.2. If this ‘red bump’ is due to an old stellar population then these stars
atleast could not have been formed by the radio source. So in this case one should
hardly see any elongation of the infrared ( rest frame red ) images along the radio
axis.

In fact Lilly (1989, 1990 ) has taken this point of view. He fits the red bump
with an old stellar population. In order to fit the flat ultraviolet part of the SED,
he assumes that there is a second burst of star formation invoving only ~ 4% of the
mass, lasting about 108yr and possibly associated with the radio activity. In order to
fit the red bump of 4C41.17, it turns out that the older stellar population must atleast
be ~ 1.3Gyr old. Since the age of the universe at z = 3.8 in only ~ 1.25Gyr in a flat
universe with h = 1/2, clearly Lilly’s models if true have important implications for
both galaxy formation and cosmology. Lilly expects that there would a be minimal
alignment effect in the infrared, which is potentialy testable.

Taking the original observation of infrared alignments more seriously, a number
of authors have tried to find ways of producing the red bump using only young stars.
Chambers et al. (1988) and Bithell & Rees (1990) investigated whether the infrared
continuum in the aligned radio galaxies is due to a large population of massive red
supergiants. However it turns out these stars also spend some fraction of time being
blue, and one only gets a red bump for a small fraction of the luminous phase of
this population ( Chambers & Miley 1990). Chambers & Charlot (1989) have come
up recently with calculations which show that the observed SED’s of high z radio
galaxies can be reproduced even with young stellar populations. In their models the
observed flat ultraviolet + red bump SED’s can be produced with a normal initial
mass function in < 0.3Gyr and persists for more than 0.6Gyr if most of the stars
formed on timescales < 0.1Gyr. They estimate an age ~ 0.33Gyr for 4C 41.17 which
implies a formation redshift of 4.9 for this galaxy in a flat universe with h = 1/2. Their
evolutionary code is a modification of the Bruzual (1983) code, thé main difference
being in the treatment of the post main sequence evolution along the Asymptotic
Giant Branch. It is far from clear to the non expert ( and perhaps the experts ) that
the last word on models to fit the SED’s of high 2 radio galaxies has been said as yet.

This brings us to the other important observational constraint on any model to
explain the infrared emission from high z radio galaxies , the infrared Hubble diagram.
A plot of the infrared K magnitude with redshift for esentially complete samples of 3C
and 1 Jansky samples of radio galaxies shows a remarkably tight correlation between
K and z ( Lilly & Longair 1984; Lilly 1989). The K -z relation remains tight to the
highest redshifts sampled, with a dispersion of ~ 0.4 magnitudes, constant over the
redshift range 0 < 2z < 2. The few systems known at z > 3 may also fall roughly
on this relation. Any model for high z radio galaxies must be consistent with both
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Figure 5.2. A scematic spectral energy distribution (SED) of a high redshift radio
galaxy.

this small scatter and the fact that high-z galaxies lie on the same relation defined
by galaxies at lower redshift. As Lilly (1989) points out, the continuity and the
small scatter in the infrared Hubble diagram obtains despite a factor of 6 difference
in the radio luminosity between the two samples and a wide variation in the SED’s
at shorter wavelengths. These features can be easily understood if the K band light
arises dominantly from a uniform ‘old’ population of stars. In models involving young
stellar populations, their contribution to the light in the K band is expected to evolve
on rather short timescales, say ~ 108yr. It is not then a priori clear whether the
small scatter and the continuity in the infrared Hubble diagram would be maintained.
However Chambers & Charlot (1989) claim that their models of the SED’s of high z
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radio galaxies, involving young stellar populations, is still consistent with the infrared
Hubble diagram. They say that this is possible in their models because the different
evolving components (main sequence, massive supergiants, AGB stars and red giants)
conspire to maintain roughly constant visible to near infrared ( in their rest frame )
light from the time the galaxy is born up to & 1Gyr. As we said before we shall have

- to watch the future work on this question with interest.

The models to explain the SED’s of high z radio galaxies also give as a byprod-
uct, the total luminous mass and the redshift z;, when the galaxy formed. For a
cosmological model with ¢o = 0.5 and b = 1/2, Chambers and Charlot predict a
characteristic luminous mass of ~ 3 x 10! Mg, for the high z radio galaxies that they
model. If one takes into account the possible contribution of DM, the total mass of the
galaxy could be an order of magnitude higher than the above value. The formation
redshift z; depends on the both the observed redshift and an estimate of the age of
the galaxy from the model to account for its SED. For 4C 41.17 at a redshift of 3.8,
Chambers and Charlot predict a luminous mass ~ 5.7 x 10!! Mg and a formation red-
shift z; ~ 4.9. For lower go models the formation redshifts are lower but the masses
are significantly larger. Lilly (1989) concludes on the basis of his models invoving
an old stellar population to explain the K - band light, similar large masses of stars
~ 10'2Mg making up the high z radio galaxies. But his models imply that most of
these radio galaxies formed well before their observed redshifts, with z; > 5 — 10,
the lower value being relevant for lower go. We can see from the above masses and
formation redshifts, that the very existence of high z radio galaxies, just as in the case
of quasars, will set interesting constraints on galaxy formation theories. In particular
if many more radio galaxies are discovered at z & 3, as seems inevitable at present,
theories with late galaxy formation will be in trouble for the same reasons as outlined
in the last section, in conection with high z quasars.

We have outlined in this section a variety of ways in which the existing observa-
tions of high z radio galaxies give clues the early evolution of at least some galaxies,
which are perhaps exceptional in that they have learned how to make a radio source.
We now consider the less special but equally interesting high z objects which are
revealed as absorption line systems in the spectra of quasars.

5.4 Absorption lines and galazy formation

The QSO absorption lines have been generally divided into several distinct cat-
egories. Of these the Lyman - a forest lines, the damped Lyman -« systems and the
metal lines are the most interesting in the context of galaxy formation and evolution.
Also of considerable importance is the constraint on the intergalactic medium ( IGM)
first discussed by Gunn & Peterson (1965), that is the absence of absorption by in-
tergalactic hydrogen up to redshifts of atleast 4. In figure 5.3 we show schematically
the spectrum of a QSO with the different types of absorption lines relevant to galaxy
formation. The figure is exagerateed to show all the different types of apbsorption sys-
tems in the same spectrum. We begin this section with a discussion of the constraints
imposed by the lack of the Gunn - Peterson dip in the spectra of QSOs.

Suppose the IGM were in the form of neutral hydrogen. It could then in principle
be detected by examining the spectrum from a distant source, like a QSO. This is
because neutral hydrogen atoms abosorb Lyman - a photons, of wavelenth 1216A°,
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Figure 5.3. A schematic spectrum of a QSO exagerated to show the different ab-
sorption lines of interest for galaxy formation.

whose energy corresponds to the energy difference between the ground state and the
first exited state of the atom. Because of cosmological redshift, the photons which
are absorbed will have a shorter wavelength at the source and the signature of the
absorption will be seen at longer wavelengths at the observer. So the spectrum of the
source should show a dip at wavelengths on the blue side ( shortwards ) of the Lyman
- a emission line if indeed neutral hydrogen is present in between the source and the
observer. The magnitude of this dip of course depends on the neutral hydrogen density
and can be quantified by calculating the optical depth, say p to such absorbtion.

Let n be the number density of hydrogen atoms and o the absorption cross
section. Then

p= /nacdt ) (5.14)
where the crossection for’absorbing a Lyman - a photon is given by

2
o(v) = ’:nic fo(v - va). | (5.15)

Here e and m are the electron charge and mass respectivefy and f = 0.416 is the
oscillator strength for the Ly a transition. The function g is sharply peaked at v,
the frequency corresponding to the Lyman - a photon and its integral over v is unity.
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Converting the integral over cdt into an integral over z we then have

7l'62 174 Z)=—V c 2
pz/n(z)x( fov(1+2) —va)y d (5.16)

me ) (_H—o)(l +2)2(1 + 2(,1;,::)1/2 '

In the above integral the observed frequency v is fixed and corresponds to a photon
of frequency v(1+z) at the absorber. In the case when g is sharply peaked it behaves
like a delta function and the main contribution to the integral is from absorbing atoms
at a redshift z such that (1 + z) = v, /v and we have

n(z) el _ ¢ 101 -1 n(z)
— =~ 4. h :
T ® 4 O D + 200072

p= (14 2)(1 + 2902)Y/2 mevq (5-17)

Gunn & Peterson (1965) did the above exercise and looked at the quasar 3C9
to see if there is any evidence for a dip in the spectrum shortward of the Lyman - «
emission line. This quasar had a redshift of about 2 which brought this line into the
visible part of the spectrum. There was hardly any dip noticable, which led them to
put an upper limit to the density of neutral hydrogen in the IGM. Since then Steidel
& Sargent (1987) have extended and improved this limit and get p < 0.05 for quasars
in their sample with a mean redshift z ~ 2.6. From (5.17) this lead them to derive
an upper limit

n(z = 2.64) $ 8.4 x 10" 2hem™3 (5.18)

for a go = 1/2 universe. This should be compared with the expected HI number
density at this redshift

1:0,;[1 =1.1x 10—5(1 + 2)39)},f12(:m_3 (5.19)

where we have adopted a hydrogen mass fraction X = 0.75. If we take Qy = 0.026h~2
(see part 1) then at z = 2.64, ng; ~ 1.4 x 107>, So we see that n is much smaller than
the expected HI density ngy. This has been interpreted to mean that any hydrogen
in the IGM must be almost completely ionised. There has been no evidence for the
Gunn - Peterson dip in quasars at even a higher z ~ 4.

The lack of Gunn - Peterson dips upto redshifts of order 4 raises the question of
what causes such ionisation of the IGM at these redshifts ? At present there is no clear
cut answer to this question. Either the IGM has been heated to temperatures 2 106K
or sufficient numbers of energetic photons have been produced by sources forming at
large z 2 4 to completely photoionise the IGM. In either case strong constraints
on epoch and the nature of galaxy formation are implied. The former possibility
may obtain for example in scenarics of galaxy formation like the explosion picture
of Ostriker & Cowie (1981). The later possibility has been extensively explored by
Shapiro & Giroux ( 1987, 1989 ), who point out the inability of quasars to provide
enough emissivity in ultraviolet photons. They also consider other possible sources
of the required photons like young galaxies, primordial stars and decaying particles
and do not find any of these to be entirely satisfactory. The lack of the Gunn -
Peterson dips must clearly be understood as it may reveal some crucial aspect of
galaxy formation.
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Although high z quasars do not show any Gunn - Peterson dips, they do show
many narrow absorption lines at wavelengths shortward of the Lyman a emission
line. These are thought to be Lyman a absorption lines arising in clumps of gas
with some fraction in neutral hydrogen. Because these lines are so numerous they
are referred to as the Lyman « ‘forest’. Infact, the line density is so high in many
objects that it becomesdifficult to find the continuum level to be used to determine
any of the absorption line parameters. The parameters which can be measured are the
wavelengths, the equivalent widths and where the spectum has sufficient resolution
one can also determine the line profile or the doppler widths of the lines. Detailed
studies indicate several important observational properties of these lines (cf. the
review by Carswell (1989)):

Firstly, the mean number density of lines per unit redshift, say dN/dz, appears
to evolve with epoch. For Lya lines with rest equivalent widths > 0.324 one has

dN

@'t o 2 .

P k(1+ z)", (5.20)
where v = 2.3+ 0.42 for 1.5-5 z < 3.8 ( Hunstead et. al. 1988). The constant k
is more uncertain and is ~ 3 — 5 (cf. Bechtold 1987). For comparison suppose we
calculate the number of absorption systems to be expected along the line of sight to
a quasar from clouds of radius r. and space density n.(z) = no(1 + z)3. We get

dN,. 2 53 cdt
erﬂrc xn0(1+z) X B?

(5.21)

Te No

)2( (l + z‘)
10kpc” “10-2Mpc

(1 + 290z)'/?

~ 0.02( —)

where we have put in fiducial numbers for r, and ng corresponding to nearby galaxies.
Comparing (5.20) and (5.21) we see that the absorbing clouds have to be either larger
than 10kpc and /or more abundant than nearby galaxies to match with the observed
k. Moreover, it can be seen that the number density of lines increases much more
rapidly with increasing z than if the comoving number density of absorbers were
conserved. For example if go = 1/2, one expects dN/dz o (1 + z)!/2, for constant
comoving number density of clouds, where as observations indicate dN/dz o« (142)23.
Any model for the Lya forest has to explain this evolution.

The equivalent width and the profile of the Lya absorption line can be used
to derive the neutral hydrogen (HI) column density and the Doppler parameter of
the absorbing eloud. The H! column densities for the Lya forest systems range
from 10'3cm~2 to 10'%¢cm~2 and the column density distribution in this range is
well approximated by a power law of the type

f(N)AN o« N-PdN (5.22)
where f is the fraction of systems with column densities between N and N +dN, and
B ~ 1.75. The above lower limit in the column density may not reflect the absence of

such systems but rather arise because they are below the detection threshold of the
present data. The exponent g also does not seem to strongly depend on redshift.
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The doppler widths are usually quoted in terms of a parameter b = v/20, where
o is the one dimensional velocity dispersion of the absorber. The doppler parameter
shows a broad peak around ~ 30 — 35kms™! and the mean value shows no strong
dependence on redshift.

There has also been some interest in whether the Lya systems are clustered. If the
absorbers were associated with galaxies one would expect some degree of clustering.
Interestingly, there is evidence for weak clustering over velocity scales of ~ 150kms™?
at intermediate z ~ 2.5, but for higher mean z ~ 3.4 it appears that the Lya clouds
are distributed uniformly. So there is a suggestion that clustering in the Lya systems
increases as the redshift decreases.

If we are to determine the physical parameters of the clouds causing the Ly«
forest lines, we have to have more information than given above. The single key
observation on which most models rely upon is the fact that the two images of the
quasar Q23454007 contain a number of common Lya absorption lines. In order to
intercept the line of sight to both the images the clouds then have to be atleast as large
as the projected distance between the two images calculated at the absorption redshift.
This quasar may be a case of multiple imaging by an intervening gravitational lens
(cf. Weedman et al. 1982; Subramanian & Chitre 1984 ). In this case minimum cloud
sizes r. ~ 5 — 25kpc are implied ( Foltz et al. 1984). Also some of the lines are not
seen in both the spectra. So the cloud size cannot be much larger than the above
estimate. Assuming a quasi spherical absorber one then gets an estimate of the HI
density

N -8 N T,
HI ™ e 3x 10 (1015cm‘2)( 10kpc
To make further progress one has to know the neutral hydrogen fraction, since clouds
with o 2 10kms™! or TR 10*K are likely to be highly ionised.

A popular assumption is that the clouds are photoionised, in which case the
neutral hydrogen fraction depends on the background (or metagalactic ) ionising
flux. This in turn is estimated by noting how the number of Lya lines changes as the
redshift approaches that of the quasar. There is some indication that the line number
density above a fixed equivalent width decreases as one approaches the quasar redshift
(cf. Bajtlik, Duncan & Ostriker 1987). This effect, called the ‘proximity effect’, may
be due to the increase in ionising flux from the quasar and the resulting decrease
in HI column density, as one approaches the neighbourhood of the quasar. So the
change in the line number density as one approaches the quasar will be governed
by how the ratio of the quasar flux to the background ionising flux changes. This
can then be used to estimate the metagalactic ionising flux. In their detailed study,
Bajtlik, Duncan & Ostriker found that the metagalactic ionising flux at the Lyman
limit, J(vr), is roughly constant over the redshift range 1.7 < z < 3.8 and has a value
~ 10~21.0£05¢rg0cm =25~ 1Hz " 1sr—!.

The neutral hydrogen fraction can then be estimated from the equation governing
the ionisation equilibrium

) lem™3 (5.23)

C!an = I‘Hn;”, (524)

where n is the total number density of the gas, assumed to be mostly hydrogen, ay
is the recombination rate coefficient and I'y the ionisation rate. Assuming that the
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ionisation flux J has a power law spectrum with spectral index of 1 above a thershold
frequency for ionisation vr, the above equation can be rewritten as follows.

aHn2 = nH[/J(V)o‘H(V)dI/

Vmazx

= J(VT)nH[/ (-l%)-la'y(l/)dl/ (5.25)

vr

= J(vr)nyiGy

Here oy is the crossection for ionisation, ag = 4.36 x 10~1° T-3/4cm3s~! (Oster-
brock 1974). And Gy = 3.2 x 10%rg~'cm?Hzsr ( Ostriker and Ikeuchi 1983). Using
(5.25) and ngy from (5.23) we then have

n & 4.9 x 107473 2N P8 10’;: )=Y2cm=3, (5.26)
One can also estimate the mass of the cloud from
M, ~ %—nmprc 4.6 x 107 Mg Jo[ 2 NI 2p32T318, (5.27)

So cloud masses ~ 107 — 108 M, are typical.

What are these clouds and how are they produced ? For the above cloud param-
eters one can show that the ratio of the thermal energy to the gravitational energy of
the gas in the cloud very much exceeds unity. So the clouds cannot be self gravitating
and in any case self gravitating isothermal clouds tend to be unstable - if compressed
they would collapse; if slightly inflated they go into free expansion (cf. Black 1981).
If the cloud is not self gravitating then the gas must be confined in some other way.
Two possible confining agents have been suggested ; the pressure of a hotter IGM or
the gravity of DM.

Sargent et al. (1980) originally suggested the possibility that the Ly clouds are
primordial intergalactic clouds which are pressure confined by a surrounding hot IGM.
Such a possibility naturally arises if the clouds form through thermal instabilities
in shocks caused by either gravitational or hydrodynamical processes (cf. Ostriker
1988). The shock could be either the thermonuclear explosions associated with galaxy
formation ( Ostriker & Cowie 1981; Ostriker & Ikeuchi 1983; Ikeuchi & Ostriker 1986)
or the pancaking which arises naturally in the hot DM models. In these models the
Lya clouds are those which are not massive enough to be Jeans unstable but at the
same time of sufficient mass so that they are not evaporated by the surrounding hot
IGM. This constrains not only the clouds but also the IGM. The observed evolution
of the number density of lines given in (5.20) is explained by taking recourse to the
evolution of the IGM ( the density and temperature decrease ) as the universe expands.
To account for the range of column densities at a fixed z one has to postulate a range
of masses for the clouds ( Ikeuchi & Ostriker 1986) or variations in the pressure of
the hot confining medium ( Baron et al. 1989). The observed weak clustering of the
lines is yet to find a natural place in this picture. Also of potential importance is the
unsuccesful search for voids in the Lya forest, which indicates that the pressure of
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any confining medium is the same to a factor ~ 2 in incipient voids as well as clusters
( Carswell & Rees 1987).

Another possiblity which has been advocated by Rees (1986) and Ikeuchi (1986),
is that the clouds are gravitationally confined by mini halos of cold DM. As we
discussed earlier, in the cold DM theory and infact in any hierarchical clustering theory
smaller mass objects form first then cluster and merge to form larger structures like
galaxies. Suppose the IGM at these redshifts is photoionised and at a temperature
T 2 10*K ( see the discussion on the Gunn - Peterson effect ). For the smallest
masses the potential well may be too shallow to capture any of this photoionised gas.
On the other hand for larger masses comparable to the galactic mass the gas may
cool efficiently, satisfying the 7 < 1 criteria of section 4.6, and sink to the centre of
the DM halo. Rees pointed out there may be intermediate mass DM halos in which
the captured gas may be stably confined being neither hot enouugh to escape nor cool
enough to collapse, with heating by photoionisation balancing the cooling by radiative
recombinations. Such mini halos have a virial velocity ~ 30kms~! and characteristic
masses of ~ 10°Mg with a 10% contribution to the mass from the baryons (Rees
1986). Rees points out that such gravitationally confined clouds are a neccessary
consequence of the cold DM theory and had they not already been discovered one
could have predicted such clouds.

In this model the observed evolution of the Lya forest may arise due to several
factors. Radiative cooling of the gas, a decrease in the background ionising flux with
time and accretion of gas can all cause the gas to sink to the core and eventually
fragment into stars. Rees infact hypothesises that dwarf galaxies result when this
happens. Also the minihalos could get progressively destroyed if they get incorpo-
rated into larger clumps as galaxy formation proceeds. In the minihalo model, the
distribution of column densities (5.22) may arise quite naturally from the fact that
the lines of sight to sources will have a range of impact parameters. Suppose the
baryon density follows an isothermal dark halo density law n o« r~2, then from (5.25)
ngr o« r~% and N o r; 2 where rp is the impact parameter of the light rays. Assuming
that r, if randomly distributed one gets f(N) < N —5/3  whhich is not too different
from (5.22) (Rees 1988; Ikeuchi, Murakami & Rees 1990).

We have discussed two of the main models for the Lya clouds. The state of
flux of the field and the need to keep ones options open can be gauged from a recent
controversy regarding some of the basic facts discussed above. Pettini et al. (1990)
have claimed, from high spectral resolution ( 6.5kms~!) observations of the QSO
2206 - 199N, that most Lya lines in this object have b < 22kms~! and that lines
with larger b have systematically larger column densities. The lines with the smallest
b values they find can only be understood if the gas is much cooler than previously
thought, with T' ~ 5000 — 10000K, and hence predominantly neutral. They conclude
that all clouds must have this temperature and the b — N correlation arises because
the larger N sytems involve many more clouds whose bulk motion produces a b
larger than implied by the gas temperature. Their favored model is that the clouds
are dense sheets or filaments with masses several orders smaller than those inferred
above, possibly residing in forming galaxies. However high resolution observations (
< 9kms™! ) by Carswell et al. (1991) of another quasar Q1100 - 204 does not show
any correlation of b and N. It is hoped that improvement in the signal to noise of the
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data may resolve the issue (cf. Peacock 1991).

We now turn to a class of absorbers called the damped Lya systems, which are
potentially a very important probe of galaxies at large 2, since they may contain a
significant fraction of the baryons at large redshifts.

The damped Lyman a systems were discovered and extensively studied by Wolfe
and his collaborators. The original motivation was to see if one could detect the
counterparts to the spiral disks at large redshift. Since these disks are expected to
have a large column density in neutral hydrogen, it was hoped that they would produce
strong Lyman a absorption lines which have been broadened by radiation damping.
(Note that for large enough optical depth, the width of a line determined by the
natural line-width dominates over that produced by thermal broadening. Since the
classical analogue of this mechanism is radiation damping, the name ‘damped’ is used.
The relative importance of such ‘radiation damping’ compared to thermal broadening,
can be examined by considering the frequency dependence of the optical depth in the
two cases. Doppler broadening leads to an optical depth 7 = rgezp(—(v — v0)?/20?),
while the natural line width arising in quantum mechanics leads to a dependence 7 =
10/[1 4 (v — 15)?/T'?]. Here 75 is the optical depth at the frequency vg, corresponding
to the line centre, o the velocity dispersion in the absorber and I is the natural line
width. Since the lorentzian profile falls of much more slowly than the gaussian profile
it can be seen that for large 7o, the frequency for which 7 = 1, say , and hence the line
width, will be determined by the lorentzian profile. (see also Unsold 1977)). Wolfe
et al. (1986) made a systematic study of the spectra of 68 QSOs to search for lines
among the Lya forest which were strong enough to be candidates for damped Lya
lines. Of the 47 candidates they found follow up spectroscopy confirmed 18 systems
as damped Lya systems ( Wolfe et al. 1989, Turnshek et al. 1989 ). These systems
have the following properties ( Wolfe 1988, 1989) :

The redshifts of the detected systems lie between 1.8 and 2.8. The absorbers have
an average HI column density < N >~ 10>'cm~2. By comparison the H content
is very low. Studies of two absorbers show that the H, mass fraction S 10-° and
10~* respectively (Black et al. 1987, Lanzetta et al. 1988). In contrast this mass
fraction is & 107! in the disk of our galaxy for lines of sight encountering comparable
column densities in neutral hydrogen. A comparison of the optical continua of QSOs
located behind the damped systems with a control sample shows that these systems
may have some dust, between 1/20 to 1,/4 that of the Galaxy (Fall, Pei & McMahon
1989). These absorbers also have some metals. Low ionisation states of carbon, silicon
and iron (CII, Sill and Fell) are always detected whilst high ionisation state CIV and
SilV are less common. Pettini et al. (1989) find a metal abundance Z < 1/10 the solar
abundance for the absorption system in PHL 957 with z4,, = 2.3091. The velocity
dispersion revealed by the metal lines associated with the damped systems range
from 10 — 100kms~!. On the other hand associated 21cm absorption lines, in 7 of the
damped systems, show the HI to be much more quiescent with a velocity dispersion
generally < 17kms™!. This may be indicating that both a quiescent component
producing HI absorption and a turbulent component producing the metal lines may
be present in the absorber.

One of the most intriguing propertiees of these systems has to with their abun-
dance. Firstly unlike in the case of the Lya forest there is no positive evidence for
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redshift evolution of the damped Lya systems ; their redshift distribution is consis-
tent with the absorbers having a constant comoving number density and cros sec-
tian. However the number of damped Lya systems per unit redshift interval with
N 210%°3cm=2 is
dN, damp
dz

where < z > refers to the average redshift of these systems. At this average redshift
(5.21) gives dN./dz ~ 0.05 for galactic like absorbers. A more careful calculation for
the number lines per unit redshift expected from spiral galaxies also gives dN/dz =~
0.05 £+ 0.03. So the number density of the damped systems exceeds that expected
from disks by a factor ~ 6. This can mean that either the number density or the
cross section of the absorbers is larger than that associated with disk galaxies. Wolfe
et al. have followed the later route and argued that disk galaxies at high z have radii
2 3 times the Holmberg radii of present day disks. We shall return to this question
shortly.

Whatever the interpretation of the absorbers one can estimate the density pa-
rameter contributed by them from the observed dNggmp/dz, and using the fact they
have a mean column density < N >= 102'cm~2. The mean mass density contributed
by the damped Lya systems at their mean redhift < z > is

=0.29+0.08; < z >= 2.4. (5.28)

_dN
Pdamp(< z>)= pm, < N > l<z>
cdt 5.29)
Ho G.
l<zs X —c—(1+ <z >)2(1 +2¢< z >)1/2

_ dN

=pump < N > .

Here g = 1.4 is the mean molecular weight of the gas and m, is the proton mass as

before. As the universe expands this average mass density would have decreased by

a factor (14+ < z >)3. Comparing the resulting density with the present day critical

density one gets the current density parameter of the HI making up the damped Lya
absorbers to be

__dN (14 2¢0 < z >)Y/2
Q = —_—
damp HMp <N> I<z> Pc(l+ < z >)

dz
_J1.2p"1x 1073 for ¢o = 0.05
T 12.3h7 1 x 102 for go = 1/2

(5.30-)

where we have put in the appropriate numerical values from (5.28) to get Qaamp. By
comparison the mass density of the stars in disk galaxies makes up an Q ~ 2h~1x10-3,
So we see that the damped Lya systems may contain, at the redshift at which they
are detected, a significant fraction of the baryons in the universe, comparable to that
of luminous matter in galaxies. It is this that makes these absorbers such a crucial
probe of the nature of protogalaxies at high z.

Based on the fact that to some extent they saw what they were searching for,
Wolfe and collaborators put forward the suggestion that the damped Lya systems
arise in rotationally supported disks which are the progenitors of present day disk
galaxies. However in order to explain the number of systems seen, they had to say, as
we mentioned earlier, that these proto disks were several times larger in the past. The
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main problem is how to form rotationally supported disk galaxies with radii several
times the Holmberg radius of present day disks ? ‘

Recall our discussion of the formation of disk galaxies in section 4.8. We saw that
at least in hierarchical theories, tidal torques give protogalaxies only about 5 — 10%
of the angular momentum needed for rotational support. So to aquire rotational
support the gas has to collapse by factors of ~ 10 in radius. Now if the Lya disks are
rotationally supported at radii of ~ 3 Holmberg radius, say at a radius ~ 30kpc, then
this gas has to collapse from ~ 300kpc. Even if the gas turn around radius was this
value (and not greater), it would take atleast ~ 5.5Gyr to collapse, using (4.18) with
M ~ 10'2M,,, corresponding to a collapse z ~ 1 in a flat universe, which is too late
to explain the damped population. One way out is to decrease the collapse factor. It
is rather doubtful whether this can be done in the context of rotationally supported
disks (but see Schiano, Wolfe & Chang 1991). On the other hand if one gives up the
demand for rotational support, it is much easier to think of how such large sizes may
arise by protogalactic collapse. One possiblity is that the damped Lya absorbers are
caustic sheets or pancakes of cool gas which have arisen from the general organised
collapse or collapse in an asymmetric protogalactic potential. ( Rees 1988, Hogan
1987, Subramanian 1988, 1989). One can then have large sizes for these systems even
with modest collapse factors and reasonable timescales, since collapse has to occur
only along the shortest axis of the system. Ofcourse caustic sheets and pancakes are
also naturally expected in the explosion picture or the hot DM models.

Yet another suggestion about the nature of the damped Lya systems is that they
may represent a population of dwarf galaxies, which had smaller cross section but
were much more abundant in the past (cf. Tyson 1988; Pettini et al. 1989 ) There
is some indication that this may not be the case in atleast one object, the z = 2.04
absorption system in PKS 0458-02. For this object Briggs et al.(1988) find similar 21
cm line profiles towards different components of the extended radio structure of this
source. This implies that the absorber must extend more than 8h~lkpc across the
line of sight, and unlikely to be a dwarf galaxy at least in this case.

It is important to decide between the various possible explanations of the damped
Lya population since these systems have such a significant baryonic content.

Another class of absorption lines which may probe the evolution of galaxies par-
ticularly their gaseous halos at high z are the heavy element systems. These lines are
seen as narrow absorption lines longward of Lya emission. The commonly encoun-
tered lines are those corresponding to magnesium (MgllI), carbon (CII, CIV), silicon
(siIV) and iron (Fell). The typical neutral hydrogen column density is inferred to be
~ 3x10'8cm~? and the doppler parameter is in the range 5 —25kms™! (cf. the review
by Sargent 1988). There is a wide range of ionisation showing that the gas is probably
being photoionised by a flat spectrum source (like for example the metagalctic flux).
The heavy elements are somewhat underabundant with Z ~ 0.1Z;. The line depths
show that the clouds producing the absorption cover the QSO emission region and
so have a size & 10'9cm. The two images of the gravitationally lensed quasar 0957
+561 show the same C IV absorption redshifts z = 1.12, but differences in detailed
line profiles, implying that the absorbinng cloud has a size < 10kpc. It is thought
that the absorption occurs in relatively small clouds embedded in much larger struc-
tures. A number of reasons seem to favour the hypothesis that the heavy element
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redshifts ( with z4ps < zem ) arise in intervening galaxies.( cf. Weymann, Carswell &
Smith 1981; Sargent 1988). Particularly encouraging are the discovery of galaxies at
the same redshift as the absorption system in several cases, upto z ~ 0.8 ( Bergeron
1988).

The observed frequency of absorption systems per unit redshift, for the metal
lines, is of great interest. Since it may be used to infer the required mean cross sections
of galactic halos, and how they evolve, via (5.21) . Sargent, Boksenberg & Steidel
(1988) find in their survey of C IV absorption systems, that < dN/dz >~ 2.5 at a
mean < z >~ 2 and that dN/dz o< (14 z)~! 2207 for the lines in the redshift interval
1.3 < z < 3.4. Since (5.21) gives dN/dz ~ 0.035 from galaxies with a crossection of
10kpc and at a < z >= 2, one infers galactic halo cross sections ~ 85kpc to explain
the observed mean dN/dz. Further the observed negative value for the evolution
parameter v ( defined as in (5.20) ) compared to an expected ¥ ~ 0 — 1/2 which
would have obtained for a constant comoving density of absorbers, implies that the
probability of absorption decreases in the past. One possible explanation for this is
metal enrichment, that as galaxies evolve the abundance of heavy elements increases
and the detectability of C IV absorption goes up with increasing time or decreasing
z (Sargent, Boksenberg & Steidel 1988). Another possibility is halo expansion with
time, possibly associated an earlier burst of star formation and the resulting energy
injection into the gas (Ikeuchi 1990).

In contrast to the case for C IV, it appears that the low ionisation system Mg II
has dN/dz o« (1 + z)*-5£%6 in the redshift interval 0.2 < z < 2.1. Also the observed
< dN/dz >~ 0.6 at a mean < z >~ 1.1, implying from (5.21) a cross section ~ 45kpc
for the absorbing halos. Tkeuchi (1990) hypothesises that this positive evolution may
be due to a shrinking phase of the halo gas, which follows its expanding phase, due
to gas cooling. The observations and the models of the evolution of metal lines are
perhaps still in a preliminary stage. But as these improve one expects the metal line
systems to become a very important probe of the evolving gaseous halos of forming
galaxies.

This brings to an end our survey of high redshift objects which may shed some
light and set constraints on theories of galaxy formation. The ideal high z objects to
discover and study would have been galaxies in the process of forming. In the last
section of this part we therefore consider such primeval galaxies. We must confess at
the outset that at present there is no unambiguous detection of such objects, possibly
due to the fact we mentioned earlier that we do not even know perhaps what to look
for !

5.5 Primeval galazies

Even the definition of what shoud be called a primeval galaxy is not universally
agreed upon. Is a primeval galaxy one which has has just collapsed bringing ~ 10! M,
within a radius of say ~ 10kpc ? Or is it an object which is in its most rapid
star forming phase - an object which has completed forming half the stars seen in a
luminous galaxy - a galaxy mass object which is still chemically young ? The first
definition seems most sensible but such a primeval galaxy may or may not be the
most easily observable.

The different definitions of primeval galaxies lead to differences in what one
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considers to be thé epoch of galaxy formation. Peebles (1989) has reviewed some
very simple constraints on this epoch, which deserve mention. The first arises from
the sizes of galaxies. Suppose the number density of bright galaxies in the local
universe is n ~ 0.02h3Mpc~3, and each galaxy has an average size r ~ 10kpc. The
average separartion between galaxies today is R ~ n'/3 = 4h~'Mpc. In the past this
separation would decrease roughly as (1 + 2) and so galaxies would begin to overlap
at a redshift earlier than 2z, ~ R/r. If protogalaxies collapsed by a factor f. in radius
before they became the galaxies we see, then this redshift would be further reduced
by the same factor. So we have

200
fe

A somewhat more stringent constraint arises from the observed density of a
galaxy, say pops. From the spherical model we roughly have

78S lc(g) ~ (5.31).

obs 92
pf; ~ Tg Peltm) ~ 5.6Qpc(1 + z)* - (5.32)

For a luminous galaxy or cores of DM halos, of mass ~ 10 M within say a radius
r ~ 10kpc, we have pops /p. ~ 10° and so from (5.32) the redshift

~i Pobs )1/3~ 30
fc 5.6Qp, chI/.‘i

29

(5.33)

If the collapse factor was much greater than unity, one has to allow for the time taken
for collapse, which in the spherical model is roughly twice the turn around time.
So the above z, would have to be divided by a further factor of order 22/3. What
should we take for f. in the above equations ? In case of dissipationless collapse we
estimated on the f. = 2 for the spherical model. On the other hand for the gas which
goes to form the disk we may need larger collapse factors ~ 10 in order that it attains
rotational support ( see section 4.9). So, if gravitational instability is responsible for
getting a galactic mass object within a radius of order 10kpc, the redshift of galaxy
formation z;, < 15 for the halo cores and is probably less than ~ 3 for the formation
of disks.

An interesting limit on the epoch by which galaxies can synthesise their metal
content can be derived in the following way ( Ostriker quoted in Peebles 1989). Note
that heavy elements are made and distributed into the interstellar medium of a galaxy
by reasonably massive stars, whose ages are ~ 107-3yr. Since several generations of
such stars are needed to make the observed heavy elements, a limit on the time of
formation of the bulk of the heavy elements is

2

te =
¢ 3QY2H(1 + 2. )3/2

> 108yr, (5.34)

which implies, -
2y < 2¢ < 20h™23Q~1/3 (5-35)
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Here 2z, denotes the formation redshift of the bulk of the observed stars which are
metal rich. 7

Finally if one wants preferred galaxy mass scales to be imprinted on cooling gas
clouds in the way argued in section 4.6, then the redshift z, and z, has to be smaller
than about 10.

What should primeval galaxies look like and how can one detect them ? The
short answer to this question is that nobody knows ; otherwise they would probably
have found them. Suppose we wish to search for a primeval galaxy, at say its most

luminous phase. If for example this phase occurs ‘at redshifts z > 5, then the infrared

is the obvious place to look for them. This is because the dip in their spectral energy
distribution due to absorption at the Lyman limit will move into the optical band
at these redshifts, causing them to be invisible in optical. On the other hand the
emission from young stars in the ultra violet to the visible band will be seen in the
infrared for such z. So far searches in the infrared have not yielded any candidate
primeval galaxy at large z (cf. Peacock 1991).

If primeval galaxies are at much lower redshifts then optical searches would be
more suitable. The null results of such searches upto about 1985 has been reviewed
by Koo (1986), who concluded that galaxies cannot form at redshifts below about
6. However Koo (1986) based his conclusions on models of galaxy formation which
assumed rapid star formation rates, typically that a galaxy of stars formed in a dy-
namical time of the system (cf. Meier 1976 ). Baron & White (1987) re-examined this
question and pointed out that there is a possible loophole in Koo’s argument. They
argued that in many galaxy formation theories stars could form over an extended
timescale and in sub units which then merged to form the galaxy. They showed that
a primeval galaxy could then have a low enough surface brightness to have escaped
detection in the searches reviewed by Koo (1986). But is there any positive evidence
for galaxy formation at low redshift ?

Recently it seemed that there was indeed such evidence, coming mainly fron the
counts of faint galaxies. Such counts show a much higher galaxy number density than
expected without evolution. For example Tyson (1988) in his counts of faint galaxies,
finds a number density of order 3 x 103deg~2, for galaxies brighter than By = 27. On
the other hand Koo (1989) calculates that, in a flat universe, the expected number
of galaxies is only about 4.3 x 10*deg~? even upto a redshift 4. Here the comoving
number density of galaxies has been taken to be 0.0015Mpc™2, corresponding to the
density of average ( L*) galaxies in the local universe. One can increase this number
by including fainter galaxies, but one has to go almost 5 magnitudes fainter and then
it is doubtful if such a galaxy will be seen at all in the counts. It appears therefore
that to explain the sheer number of galaxies seen in the faint galaxy counts, the galaxy
luminosity function has to evolve with redshift.

Another reason why the faint galaxies are so interesting, is also because a sig-
nificant fraction of them appear to be somewhat blue in colour (Tyson 1988, see also
Lilly, Cowie & Gardner 1991, who however find that the faintest objects in their
sample are not as blue as found in the survey of Tyson). The total flux from these
faint blue galaxies may be so large that the associated star formation could account
for a substantial fraction of present day metals ( Cowie 1988). This has lead White
& Frenk (1991), for example, to ask whether these faint galaxies are the long sought
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primeval galaxies. However redshift surveys at the bright end of this population show
somewhat surprising results. Broadhurst et al.(1988) found that upto a limiting blue
magnitude of 21.5 the median redshift of these galaxies in only ~ 0.2. Colless et al.
(1990) extended these results to objects one magnitude fainter. Their results and also
that of Lilly, Cowie & Gardner (1990) shows that even upto 24th B- magnitue where
the number density of galaxies is already of order 10%deg=2, the median redshift is

*about 0.4.

Any model to account for the observed counts of galaxies, which takes recourse to
some form of evolution in the galaxy luminosity function, must also be consistent with
the low median redshifts discussed above. Rocca-Volmerange & Guiderdoni (1990)
have for example examined a model where smaller galaxies progressively merge into
bigger ones. Another possibility is that the faint end slope of the galaxy luminosity
function steepens with redshifts, possibly due to increasing starburst activity of low
luminossity galaxies at larger z (cf. Colless et al. 1990; Ellis 1990). However, as
pointed out by Lilly, Cowie & Gardner (1991), this explanation may be in trouble in
explaining the excess number of galaxies upto the faintest magnitudes. Since it would
imply sustained star formation activity over cosmological timescales in these galaxies,
which may give rise to a much larger fraction of metals than seen in the prsent day
galaxies. The galaxy number counts in the K band may also help in distiguishing
between the various possibilities. It appears that the K-band counts are consistent
with a no evolution model. Since the K-band light is a more robust tracer of the
mass of galaxies this makes models involving large scale merging less promising ( cf.
Peacock 1991) It appears therefore that the origin of the large excess of galaxies, seen
in faint galaxy counts, still poses a challenge. Also if the blue galaxies are indeed low
mass galaxies being made to undergo sporadic bursts of star formation, then it is not
clear that they represent the major episode of massive galaxy formation, though they
may be producing a significant fraction of present day metals.

We see from the above that any discussion about primeval galaxies at present
is neccessarily incomplete. If high redshift and high star formation rates were the
characteristics of a young galaxy, then the high z radio galaxies discussed in section
5.3 would be ideal candidates. However one has the uncomfortable feeling in this
case that these radio galaxies may not be representative of the general population of
galaxies. If the ability to produce a significant fraction of the present day metals were
the criterion then the faint blue galaxies seen in deep galaxy counts could be called
primeval, but as we just mentioned this is not totally satisfactory.

In Figure 5.4 we show schematically, in redshift space, the various high z objects
that may be relevant to galaxy formation and which have been discussed in this part of
the review. The highest redshift QSOs and radio galaxies show that some developed
structure already exists at epochs corespponding to z ~ 4 — 5. This seems to be
corraborated also by the fact that the IGM already appears to be highly ionised by
a redshift of about 4. Coming down to smaller 2 ~ 3 — 4, we see evidence from the
Lya forest of the existence of possibly many intergalactic clouds or mini galaxies.
The damped Lya systems, which are also seen at present up to redshifts of about
3, indicates that a significant fraction of the baryons seen in present day galaxiess
was in a neutral form at these redshifts. Whether these systems represent a primeval
phase of galaxy formation is an open question. At somewhat lower z ~ 2 — 2.5, we
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Figure 5.4. The high redshift universe.

have the very interesting epoch where the number density of QSOs and radio galaxies
appears to peak. It is again not clear what this is implies for the epoch of galaxy
formation. Further down in redshift we come to enigma presented by the large number
of objects being revealed in the faint galaxy counts. Ofcourse of direct relevance to
galaxy formation would be the discovery of a set of objects which could be clearly
identified as primeval galaxies. This is shown as the big question mark in our figure!

We now turn to a consideration of how the perturbations which eventually grew

into the structure we see may have arisen.
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6: The origin of perturbations
6.1 The concept of inflation

The entire approach to structure formation, outlined so far, relies on the am-
plification of certain small perturbations which exist in the early universe. Such a
picture can be considered complete (and satisfactory) only if we could produce these
initial perturbations through some viable physical mechanism. Any attempt in this
direction runs into two immediate difficulties:

(i) In the conventional big-bang model, there is no natural seed for these per-
turbations. Truly primordial perturbations e.g. those due to quantum gravitational
effects at t = tp are likely to be of O(1) and will be difficult to estimate. Thus, the
theory lacks predictive power.

(i1) The second difficulty is seen by the following argument. A linear pertur-
bation at a characteristic physical scale Ay to-day would correspond to a proper
length of Xg(a(t)/ag) o t™ in the past, if we take a(t) o« t". The characteristic
expansion scale of the universe, on the other hand, is given by the Hubble radius
cH™Y(t) = c(a/a)™! = en~'t. In realistic cosmological models, n < 1 and hence the
ratio [A(t)/cH~'(t)] increases. as we go to the earlier epochs. In other words A(t)
would have been larger than the Hubble radius at sufficiently high redshifts. Notice
that a galactic mass perturbation was bigger than the Hubble radius for redshifts
larger than a moderate value of about 10°. This result leads to a major difficulty in
conventional cosmology. It is usually assumed that physical processes can act coher-
ently only over sizes smaller than the Hubble radius. Thus any physical processes
leading to small density perturbations at some early epoch ¢t = ¢; could have only op-
erated at scales smaller than cH~!(¢;). But most of the relevant astrophysical scales
(corresponding to clusters, groups, galaxies, etc.) were much bigger than H~!(t) for
reasonably early epochs! Thus, if we want the seed perturbations to have originated
in the very early universe, then it is difficult to understand how any physical process
could have contributed to it.

It is possible to tackle some of these difficulties of the standard FRW models by
modifying the dynamics of the very early universe. The trick lies in introducing a
temporary phase during which the universe expanded ezponentially as in the classi-
cal de Sitter model (Kazanas 1980; Sato 1981; Guth 1981). Such an exponentially
expanding phase is called ‘inflation’. The de Sitter model describes a universe with
expansion caused by negative stresses due to the A-term. The inflationary universe
also requires a A-term; but here it arises and is supposed to last only during the
transient stage when the GUTs phase transition is taking place. We shall consider
the actual mechanisms proposed for this purpose in the next section. Here we will
outline the actual model that emerges and the way it can handle some of the awkward
features of the standard model.

Consider a model for the universe, in which the universe was radiation dominated
upto, say, ¢t = t;, but expanded exponentially in the interval ¢; <t < t;:

a(t) = a; exp H(i - t,') t; <t<ty (61)

For t > t;, the evolution is again radiation dominated [a(t) ox t!/2] until ¢t = ¢,
4.36 x 10'°(2h%)~2s. The evolution becomes matter dominated for te; <t < tnow

iR
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to. Typical values for ¢;,t;, and H, suggested in the literature are:
t; ~107%%s; H =~ 10'°GeV; t; ~T70H™! (6.2)

which give an overall ‘inflation’ of about A = exp N =2 exp(70) & 2.5x103° to the scale
factor in the period t; <t < t;. At t =t;, the temperature of the universe is about
101GeV. During this exponential inflation, the temperature drops drastically but
the matter is expected to be reheated to the initial temperature ~ 10'4GeV at t ~ ¢;.
The reheating takes place when the phase transition is over and the energy released
in the process is passed on to the radiation content of the universe. The si.uation is
analogous to the reheating that takes place when supercooled steam condenses and
releases its latent heat. Thus, inflation effectively changes the value of S = T'(t)a(t)
by a factor A = exp(70) = 103%. Note that this quantity S is conserved during the
non- inflationary phases of the expansion.

Such an evolution, if it can be implemented dynamically, has several interesting
features. The most attractive feature of the inflationary model is probably the pos-
sibility of generating the seed perturbations which can grow to form the large scale
structures (Bardeen et al. 1983; Guth & Pi 1982; Hawking 1982; Starobinsky 1982).
This is realised in the following manner:

In the FRW models with a(t) o t” (n < 1), the physical wavelengths (which
grow as A o« a o< t") will be far larger than the Hubble radius (which grows as
H(t)™! « t) in the early phases. This situation is drastically altered in an inflationary
model. During inflation, physical wavelengths grow exponentially [ « a o exp Ht]
while the Hubble radius remains constant. Therefore, a given length scale has the
possibility of crossing the Hubble radius twice in the inflationary models. Consider,
for example, a wave length A\p ~ 2Mpc today (which contains a mass of a typical
galaxy 1.2 x 10'2(Qh?)My). This'scale would have been

— a(tf) - TO ~ -2 '
/\(tf)_/\oa(to) = 2Mpc (T(tf)) ~ 1.8 x 107 “cm (6.3)
at the end of inflation. (This is, of course, much larger than the typical Hubble radius
at that epoch, cH~! & 1.4 x 10~2%*cm). But at the beginning of inflation, its proper
lengtli would have been
A(t;) = Mty) ats) _ ATI\(t) = -32
i) = Aty)- = (t;) = 1.8 x 107“cm (6.4)
a(ts)

This is much smaller than the Hubble radius. This Hubble radius remains constant
throughout the inflation while A increases exponentially. In about At = ¢t — t; ~
18 H~1, X will grow as big as the Hubble radius.

The situation is summarised in fig.(6.1). We see that the scales which are astro-
physically relevant today were much smaller than the Hubble radius at the onset of
inflation. (Therefore, causal processes could have operated at these scales). During
inflation, the proper wavelength grows, and becomes equal to the Hubble radius cH !
at some time ¢ = texj;. For a mode labeled by a wave vector k, this happens at texi¢(k)
where,

27

Ta(texit) =cH™! (6.5)
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That is, when (kc/aH) = 2x. In the radiation dominated era after the inflation, the
proper length grows only as t!/2-while the Hubble radius grows as t; Thus the Hubble
radius “catches up” with the proper wavelength at some t = tepnser(k). For t > tenter,
this wavelength will be completely within the Hubble radius.

log (length) —

414 in non-inflationary

/
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Figure 6.1. Wavelength and Hubble radius in the inflationary model.

Thus inflationary models allow A to be less than ¢H~! at two different epochs: an
early phase, t < teye(k) and a late phase, t > tepter(k). Any perturbation generated
by physical processes at ¢ < texit can be preserved intact during texit < t < tenter and
can lead to formation of structures at ¢t > fenter.

What can lead to perturbations at ¢ < texit? Since the physical processes taking
place in this epoch are quantum mechanical by nature, quantum fluctuations in matter
fields are obvious candidates as seed perturbations. Therefore, in principle, we can
now generate (and compute) the density inhomogeneities in the universe. This is
indeed a major achievement of inflation.

Notice that all the above conclusions only depend on the scale factor growing
rapidly (by a factor 103° or so) in a short time. For example, if the energy density
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€(t) varies slowly during ¢; <t < t;, then one has near exponential expansion with
ty
a(ty) = a(t.-)exp/ H(t)dt = a(t;)exp N - (6.6)
t,

where H2(t) = (8wGe(t)/3c?). This provides a general definition of N.

6.2. The epicycles of Inflation

Since the inflationary idea seems to be quite attractive, several mechanisms were
devised by which this idea can be implemented. Each of these models has some
advantages and disadvantages and none of them is completely satisfactory. We will
briefly summarise three different models.

For the universe to expand exponentially, the energy density should remain (at
least approximately) constant. Various models of inflation differ in the process by
which this is achieved. In most of them the ‘quasi-constant’ energy density €(t)
is derived from phase transition at the GUT epoch. Although in specific details one
grand unified theory may differ from another almost all of them involve gauge theories
with a mediating role played by the Higgs scalar field ¢. We need not go into the
intricacies of how ¢ is related to the other matter fields. The feature which is of
interest to us is that the potential energy density V of the scalar field ¢ depends on
the ambient temperature T.

At any given temperature T which is higher than a critical temperature T,
the minimum value of V is found to be at the expected zero of ¢. We may term
this minimum at ¢ = 0 as the ‘vacuum state’ of ¢. As the temperature is lowered,
however, it may happen that the minimum of V' no longer remains at ¢ = 0 but shifts
to a finite value ¢ = ¢. This ‘phase transition’ occurs at T = T, and may be likened

to the condensation of steam. Thus ¢ would tend to transit from ¢ =0 to ¢ = 0.
| If ¢ were to ‘condense’ immediately at T, all the excess energy could be released
at once. However, in the more likely case of ‘supercooling’, ¢ may continue at ¢ = 0
and move to the true minimum ¢ = o later. During this transitional stage the state
¢ = 0 is called the ‘false vacuum’ state since the ‘true vacuum’ is now at ¢ = . The
original model for inflation, due to Guth, invoked this temperature dependence of the
potential energy of the Higgs field V(¢,T). Here T. =~ 10'4GeV.

At temperatures T > T, the potential V has only one minimum (at ¢ = 0) with
V(0) =~ (10'*GeV)*. As the temperature is lowered to T' ~ T, a second minimum
appears at ¢ = 0. For T <« T, the ¢ = ¢ minimum is the ‘true’ minimum. [i.e.
V(o) ~ 0 < V(0)]. Now consider what happens in the early universe as matter cools
through T'~ T,. At T > T, the minimum configuration corresponds to ¢ = 0 while
for T ~ T, it is ¢ = o. But the matter in the universe does not instantaneously switch
over from ¢ = 0to ¢ = 0. The universe can get “stuck” at ¢ = 0 (the “false vacuum”),
with V = V(0), even at T < T, and will expand exponentially because the dominant
energy density driving the expansion is the constant V(0) — V(o) = V(0). Over the
course of time thermal fluctuations and quantum tunneling will induce a transition
from the ‘false’ vacuum ¢ = 0 to the ‘true’ vacuum ¢ = o ending the inflation in
localized regions (“bubbles”). The phase transition is expected to be completed by
the expanding ‘bubbles’ colliding, coalescing and reheating the matter.

© Astronomical Society of India ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992BASI...20....1P&amp;db_key=AST

2BASIC D700 DR

rt

Galazy formation 133

Detailed analysis, however, shows that this model does not work (Guth & Wein-
berg 1983). In order to have sufficient amount of inflation, it is necessary to keep the
“false” vacuum fairly stable. In such a case the bubble nucleation rate is small and
even the resulting bubbles do not coalesce together efficiently. The final configuration
is very inhomogeneous and quite different from the universe we need.

The original model was soon replaced by a version based on a very special form
for V(9) called the Coleman-Weinberg potential (Albrecht & Steinhardt 1982; Linde
1982 a,b). At zero temperature this potential is given by :

2
V() = %Bo’" + B¢*[In ﬁ—z - %]; B=x~10"3;, o=~ 2x1015GeV. (6.7)

This potential is extremely flat for ¢<o and drops rapidly near ¢ & o. At finite
temperatures, the potential picks up a small barrier near the origin [at ¢ ~ O(T)]
with height O(T?), creating a local minimum at ¢ = 0. This ‘false’ vacuum, however,
is quite unstable when the temperature becomes ©@(10°GeV). The scalar field rapidly
tunnels to ¢ = ¢9 ~ O(H), and starts ‘rolling down’ the gently sloped potential
towards ¢ = o. Since the potential is nearly flat in this region, the energy density
driving the universe is approximately constant and about V(0) = (3 x 104GeV)*.
The evolution of the scalar field in this ‘slow roll-over’ phase can be approximated as

O+ V' (@) =é+3Hd+V'(8) ~3Hé+V'(¢) =0 (6.8)

where we have ignored the ¢ term and H = (4rBGo*/3¢?) = 2 x 101°GeV (in energy
units). If the slow roll over lasts when ¢ varies from @giare =~ O(H) to some ¢end
<0O(c) then
ty be Pe 2
NE/ Hdt=H 9 o3 H—d¢.
t, ¢. |9l 6. V(o)
For the typical values of the Coleman-Weinberg potential this number can easily be
about 102 ensuring sufficient inflation.

As ¢g approaches o, the field “falls down” the potential and oscillates around the
minimum at ¢ = ¢ with the frequency w? = V(o) = (2 x 10'4GeV)? > H2. These
oscillations are damped by the decay of ¢ into other particles (with some decay time
r-1, say), and by the expansion of the universe. If I''! « H-!, the coherent field
energy (%412 + V) will be converted into relativistic particles in a timescale At;eheat
~ I'"! « H~!. This will allow the universe to be reheated to a temperature of about
Treheat ® w = 2 x 101%GeV = Tipitiai. The decay width of several Coleman-Weinberg
models can be about I'"! ~ 10'3GeV > H. This ensures good “reheating” of the
universe (Albrecht et al. 1982; Dolgov & Linde 1982). Since the field has already
tunneled out of the false vacuum before the onset of inflation, we do not face the
problems which plagued the original inflation. Instead of several bubbles having to
collide, coelesce and make up the whole observable universe of today, we have one
huge bubble encompassing everything observable now. ‘

Though an improvement on the original version, this model is also not free from
problems. It turns out that the field should start its slow “roll over” from a value ¢, = .
H to ensure sufficient inflation. It can be shown that the quantum fluctuations in the

(6.9)
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scalar field are about A¢ ~ (H/2x) (Linde 1982b; Vilenkin & Ford 1982). Since ¢, ~
A¢, the entire analysis based on semiclassical V' (¢) is of doubtful validity. The second
- and more serious - difficulty stems from the calculation of density perturbations in
this model: they turn out to be too large by a factor of about 10°, unless the parameter
B is artificially reduced by a factor 10!? or so!

The original model for inflation used a strongly first order phase transition while
the second model may be considered to be using a weakly first order (or even second
order) phase transition. It is possible to construct inflationary scenarios in which
no phase transition is involved. The idea of “chaotic inflation”, suggested by Linde
falls in this class. (Linde 1983) In this model, the potential has a very simple form:
V(¢) = A¢*. Inflation results because of the rather slow motion of ¢ from some initial
value ¢¢ towards the minimum. (The initial non-zero value of the ¢q is supposed to
be due to ‘chaotic’ initial conditions). This model can also lead to sufficient inflation
but suffers from two other difficulties: (i) To obtain the correet value for the density
perturbation, it is necessary to fine-tune A to very small values: A = 4 x 107!, (ii)
In order for the inflation to take place the kinetic energy of the scalar field has to be
small compared to its potential energy. Detailed calculation shows that this requires
the field to be uniform over sizes bigger than the Hubble radius! This is completely
against the original spirit of inflation.

A further epicycle in the saga of inflation envisages a universe that is without a
big bang origin. In this version the de Sitter type inflationary phase is self reproducing
in a chaotic set up with the help of large scale quantum fluctuations of a scalar field
¢. The bubbles of FRW models are nucleated in it at random points of space and
time through quantum phase transitions.

A solution to the bubble nucleation and coelescence problem of the original Guth
model (sometimes referred to as the ‘graceful exit’ problem) was proposed in yet
another way (La & Steinhardt 1989; Steinhardt & Accetta 1990). In their ‘extended
inflationary cosmology’ these authors used the Brans-Dicke theory of gravity instead
of general relativity as the background theory for the early universe. The inflationary
phase in this model has a power law type of expansion factor instead of the exponential
one, thus making it possible for the inflationary phase to end gracefully through bubble
nucleation.

Nevertheless this idea also ran into trouble with distortions of the MBR and
was changed to ‘hyper-extended inflation’. The background theory of gravity for
this model differs from the Brans-Dicke theory through the inclusion of higher order
couplings of the scalar field with gravity. In a rapidly changing subject in which the
half-life of a theory is one year it is hard to pass judgement on the merits of this
scenario. '

The schemes and shortcomings discussed above are typical of several other models
suggested in the literature. The most serious constraint on inflationary scenarios arises
from the study of density perturbations. No single model for inflation, suggested so
far, can be considered completely satisfactory.

6.3 The origin of scale-invariant speclrum

The most attractive feature of inflation, from the point of view of an astronomer,
is the possibility that inflation may provide the seed perturbations which grow to
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form the structures we see today. In this section we will overview how this is achieved
and what difficulties arise. /

The most natural choice for the origin of seed perturbations, in the context
of inflation, comes from the quantum fluctuations in the scalar field ¢(¢,x) driving
the inflation. The computation of classical perturbations, generated by a quantum
field is a difficult and technically involved issue. Several questions of principle are
still unresolved in this calculation (see e.g. Padmanabhan, Seshadri &,Singh 1989).
Since this review is primarily intended for the astronomer, we will avoid the technical
aspects of the calculation and content ourselves by discussing the physical idea.

During inflation, the universe was assumed to be - on the average - in a FRW
state with small inhomogeneties. This implies that the source - which is a classical
scalar field ®(¢,x) - can be split as ¢o(t) + f(t,x) where ¢o(t) denotes the average,
homogeneous, part and f(t,x) represents the spatially dependent, fluctuating part.
Since the energy density due to a scalar field is pc? = (1/2)¢?, we get,

8p(t,x) = p(x,t) — B(t) = do(t) f(t,x)/ (6.10)

(where p(t) = %:ﬁ-o(t)z and we have assumed f <« ¢g). The Fourier transform will
now give

8p(k, t)c? = do(t)Qx(t), (6.11)
where we have put ‘
. — dak ik x
f(t,x) = (Q—W)—an(t)e . (6.12)

Since the average energy density during inflation is dominated by the constant term
Vo, we have the density contrast

5(k,t) = dpc? _ (f.’o(t)Q‘k(t)'

7 7 (6.13)

It might now appear that all we have to do is to compute the quantities ¢o(¢) and
Q& (t) from the equation of motion for the scalar field. For-¢o(t) we can use the mean
evolution of the scalar field during the slow roll-over phase and determine ¢o(t) from
the classical solution. The fluctuating field f(¢,x) is supposed to be some classical
object mimicing the quantum fluctuations. Such a quantity is conceptually difficult
to visualise, and justify. What is usually done is to choose some convenient quantum
mechanical measure for fluctuations and define Q; in terms of this quantity.

In quantum theory, the field ¢(t,x) and its Fourier coefficients §i(t) will become
operators related by

3
é(t,x) = / \-(%r%qk(t)e"‘". (6.14)

The quantum state of the field can be specified by giving the quantum state ¥ (gx,t)
of each of the modes §x. (One can think of g, as coordinates of a particle and ¥ (g, )
as the wavefunction describing this particle.)

The fluctuations in g; can be characterised by the dispersion

oi(t) =< Yl W)Y > — < Ylar(®)|¥ >2=< Y|gd(t)|v > (6.15)
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in this quantum state. (The mean value of the scalar field operator < ¢(t,x) >= ¢o(t)
is homogeneous; therefore, we have set < §x >’s to zero in the above expression. Note
that we are interested in only the k # 0 modes). Expressing §x’s in terms of ¢(¢, x)

it is easy to see that
p

o3 (t) = / Bx < BIg(t, x+ Y)d(L, y)[¥ > e, (6.16)

In other words, the ‘power spectrum’ of fluctuations o is related to the Fourier
transform of the two-point-correlation function of the scalar field. Since o#(t) appears
to be a good measure of quantum fluctuations, we may attempt to define Qx(t) as

Qi(t) = oi(t). (6.17)
This is equivalent to defining the fluctuating classical field f(t,x) to be
— a3k ik.x
f(t,X) =/z§7?)—3-0'k(i)8 . (618)

This leads to the result

N 6(k,t) = ¢OT?)6'k(t). (6.19)

The procedure may be summarised as follows: (i) In quantum theory, the field
#(t,x) and its Fourier coefficient §i(t) become operators. In any quantum state, the
variables will have a mean value and fluctuations around this mean value. (ii) Since
the mean evolution of the scalar field is described by a homogeneous part ¢o(t), we
expect the mean values of §x’s to vanish (for k # 0); < ¥|qk(t)|¥ >= 0. However, the
fluctuations around these mean values, characterised by o2(t) = < ¥|¢?|¢ > do not
vanish. (iii) We incorporate these quantum fluctuations in a semi-classical manner
by taking the scalar field to be ®(t,x) = ¢o(t) + f(t,x) where f(t,x) is related to
ok(t) by (6.18). (iv) The density perturbations are calculated by treating ®(t,x) as
a classical object.

The expression derived above gives the value of §(k,t) in the inflationary phase:
t; <t <ty. To compare this with observations, we need to know the value of é(k,t)
at ¢ = tenter(k) - that is when the perturbations enter the Hubble radius. Fortunately,
there exists a (approximate) conservation law which relates the value §(k, tenter) With
8(K, texic) where texic(k) is the time at which the relevant perturbation ‘leaves’ the
Hubble radius in the inflationary epoch (Bardeen et al. 1983; Frieman & Turner
1984). This law can be stated as

6(1(, texit(k)) _ 6(k,tenter(k))
1+ w(texit) ! + 'w(tenter)

(6.20)

where w(t) is the ratio between pressure p(t) and density p(t) of the background
(mean) medium: w(t) = p(t)/p(t). In the inflationary phase with the scalar field,

1. . i2
pt) = 540 Vo;  p(t) = %rb% +Vo; 14+ w(t) = % (6.21)
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where we have used the fact ¢3 &« Vob. In the radiation dominated phase (at t = tenter),
1+ w = 4/3. Therefore

6(k,tenter) = 6(k;texit)-§ (%) y (622)
0
or using (6.19), i /s .
8(K, tenter) = = ‘T—") ~ (ﬂ) 6.23
( r) 3 (4’0 t=texit 90/ 1=t enis ( )

This is the final result.

The problem now reduces to computing o+ (t) and ¢o(t), which can be done once
the potential V(¢) is known. For a Coleman-Weinberg potential, detailed calculations
(see e.g. Brandenberger 1985) give the result:

8(K, tenter) = AVZN3/2=3/2 » 1025372 (6.24)

where we have taken the effective e-folding time N =~ 50 and A =~ 0.1. We see
that the density perturbations have the scale-invariant spectrum but too high an
amplitude. To bring it down to the acceptable value of about 104, we need to take
the dimensionless parameter A to be about 10~3! This requires an extreme finetuning
for a dimensionless parameter especially since we have no other motivation for such
a value.

This has been the most serious difficulty faced by all realistic inflationary models:
they produce too large an inhomogeneity. The qualitative reason for this result can
be found from (6.23). To obtain slow roll-over and sufficient inflation we need to keep
¢o small which tends to increase the value of §. We could have saved the situation if it
were possible to keep o} arbitrarily small; unfortunately the inflationary phase induces
a fluctuation of about (H/27) on any quantum field due to field theoretical reasons.
This lower bound prevents us from getting sensible values for § unless we fine-tune
the dimensionless parameters of V(¢). Several ‘solutions’ have been suggested in the
literature to overcome this difficulty but none of them appear to be very compelling.
(see e.g. Ellis et al. 1985; Holman et al. 1984; Jensen et al. 1986; Padmanabhan
1988; Padmanabhan, Seshadri & Singh 1989).

Before concluding the discussion on inflation it is probably worth mentioning a
definite prediction which emerges from inflationary models. It turns out that the
same mechanism which produces the density inhomogenieties also produces gravita-
tional wave perturbations. (see e.g. Abbot & Wise 1984; Allen 1988; Fabri & Pollock
1983; Rubakov et al. 1982; Yajnik 1990). These perturbations also have a scale in-
variant power spectrum and an r.m.s. amplitude of about (H/10'°GeV). The energy
density of the gravitational waves contributes a fraction Qgrav & 10~5(H/mp)2h~2
to the critical density. Such perturbations can induce a quadrupole anisotropy in
the MBR background. The present bounds on this anisotropy ($10~*) suggest that
H < 101%GeV. The value of Qgrav can be also restricted by the timing measurements
of the millisecond pulsar; the present bound is Qgrav(A ~ 1pc) < 3 x 10~7. A positive
detection of quadrupole anisotropy in MBR or a direct detection of relic gravita-
tional radiation will certainly go a long way in boosting confidence in inflation. [The
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Laser Interferometer Gravity Wave Observatory (LIGO) and similar projects can, in
principle, reach a sensitivity of Qgray ~ 10711].

7: Concluding remarks

We have emphasised in this review several general aspects of how gravitational
instability may act on initially small density perturbations in the universe and lead to
the development of the large scale structure and the galaxies that we see. We have also
examined how several properties of galaxies may arise and the relevance of the high
redshift universe to probe galaxy formation. We have not given a detailed discussion
of particular theories, although the machinery that we have outlined particularly in
parts 2 , 3 and the first half of part 4 can be used to examine any such theory.

At present it appears that no particular theory satisfactorily accounts for all
the observed structure in the universe ; although many people would agree that
the gravitational instability paradigm seems to offer the best hope of finding such
a successful theory eventually. Peebles and Silk (1990) have compared the relative
merits of several different theories in their cosmic book of odds. A glance at the list
of various observational features that they feel any theory should account for, makes
it apparent that galaxy formation theories are quite strongly constrained. It is no
longer possible to speculate wildly when considering theories of galaxy formation ;
one has to satisfy constraints from a wide range of phénomena.

One crucial test of the gravitational instability paradigm will be the detection
of small fluctuations in the cosmic microwave background, especially on large scales
where causal processes have not had time to act. That no fluctuation in the CMBR,
other than the dipole, has been detected so far already provides a severe constraint on
theories. It pushes the epoch of galaxy formation to low redshifts. At the same time
the wealth of objects seen at high redshifts argues that the epoch of galaxy formation
was not too recent. It remains to be seen how these observations firm up in the coming
years and how any theory would eventually satisfy both constraints. If and when
fluctuations in the CMBR are detected, they would provide an invaluable probe of the
early universe. On the other hand a growing need to change the conventional paradigm
would arise if the CMBR continues to show no fluctuations even as observations
become more and more senstitive.

As far as the potential use of other types of observations, the recent efforts in
conducting large redshift surveys is particularly interesting. It has brought to the fore
another important probe of structure formation theories, the peculiar velocity field.
We also keenly await radio observations of the redshifted 21 cm line from neutral
hydrogen at high redshifts. This could be a powerful diagnostic of structure formation
theories. In fact, recently Uson, Bagri and Cornwell ( private communication) have
claimed to have detected with the VLA the 21 cm line redshifted from z = 3.4, in
absorption against a high redshift radio galaxy, and more interestingly in emission
from a nearby region at the same redshift. The Giant Meterwave Radio Telescope
being presently set up in India (Swarup 1984, 1990) will have a larger collecting area
and is expected to perform better at meter wavelengths than the VLA. It should be
possible, therefore with GMRT, to probe the neutral hydrogen phase of the universe
at high redshift. We hope for exciting new discoveries from this latest window to the
high redshift universe.
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Postscript

This review was completed in June, 91. Since then a number of exiting develop-
ments have taken place. The foremost is the discovery of fluctuations in the CMBR by
the Cosmic Microwave Background Explorer (COBE) satellite. Smoot et al: (1992)
have analysed the first year of the data from the Differential Microwave Radiome-
ter (DMR) of COBE. After subtracting the mean and the dipole anisotropy of the
CMBR, they find an rms sky variation in the CMBR temperature (smoothed over 10
degrees) of 30 £ 5 pK. The rms quadrapole amplitude is 13 + 4 pK. These numbers
translate into fluctuations in the gravitational potential ~ 10~5. The data is also
consistent with a Harrison - Zeldovich spectrum of density fluctuations. This is the
first time one has obtained a direct view of the small fluctuations which could have
seeded galaxy formation. The observed anisotropy also provides a way of unambigu-
osly normalising the power spectrum of density fluctuations of any given theory of
structure formation ; once and for all ! A preliminary discussion of the implications of
the COBE detection for structure formation theories has been given by Wright et al.
(1992) and Padmanabhan & Narasimha (1992). The latter authors point out that the
COBE result combined with data from galaxy surveys, severely constrains the shape
of the density spectrum. There appears to be a sharp break in the density spectrum at
about 50h~! Mpc which may pose problems for existing theories of galaxy formation.
Another important development, which we had referred to above, ( and whose details
are now in print ) is the radio detection by Uson, Bagri & Cornwell (1992) of neutral
hydrogen, in emission, from a redshift z = 3.4. The observed flux of redshifted 21 cm
emission implies that the mass of HI in this object is ~ 2 x 10'3h=2M,. This large
HI mass has lead Uson et al. to identify the emitting object as the first example of a
cluster sized Zeldovich pancake, of the kind expected in HDM theories. Subramanian
and Swarup (1992) have focused, as an alternative, on theories where galaxies form
before cluters. They suggest that the Uson et al. object may well be a large col-
lection of HI rich protogalaxies, cf the kind needed to explain the damped Lyman «
absorption systems seen in quasar spectra. The detection of many more such objects
promises to provide strigent constraints on theories of galaxy formation.
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Appendix 2.1. Newtonian perturbation theory

In the linear regime, each mode evolves independent of other modes. At any
given time t, there will be modes such that, the proper wave length, A(t), is much
smaller than the Hubble radius of the universe, dy(t), at that time. It should be
possible to study such modes by Newtonian theory of gravitation; this may be done
in the following manner. [The derivation in this appendix and the next are based on
Padmanabhan 1990; Lyth & Stewart 1990].
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There is a systematic procedure (involving expansion in powers of ¢~1) which
will allow one to determine the Newtonian limit of a given metric. For our purpose,
this can be most easily done by transforming the FRW metric

ds? = c2dt® — a*(t) [dR? + R*(d6? + sin? 6d¢?)) (A1.1)

to a coordinate system which is locally inertial at the origin. It can be easily shown
that, the metric in such a coordinate system is given by

ds? = ¢? (1 + %"—)) dt? — (dz? + dy? + dz?) (A1.2)
where | /a
au(t,x) = - (—) X% Ixl = a()[R] (41.3)

To the lowest non-trivial order, for |x| <« dy, we may treat ¢, as an equivalent
Newtonian potential due to the uniform, homogeneous background. The Newtonian
limit of the matter flow equations (7°°%;b = 0) will, in general, be

29200 iy
=3 =% + (v*'0i)p = —-p(V.v) (A1.4)
V= -0'¢—-p 0P ) (A1.5)

which can be satisfied, for the potential in (A1.2), by the following ansatz: P, = 0,
po(x,t) = pu(t), vo(t,x) = f(t)x. Then we get,

% +3pf(t) =0 (A1.6)
f+rw= (%) (A1)

The second equation integrates to give f(t) = (a/a) = Hy(t); substituting in the first
equation we discover that ps oc a=3. This set determines the Newtonian limit of FRW
universe.

We now perturb this solution. As long as the perturbations are linear and have a

scale length much smaller than dy (so that the entire perturbed region can be covered

by the region in which (A1.2) is valid), we can simply add the perturbed potential §¢
(due to the perturbed density é6p) to the background potential ¢,(t,x). Let ¢, v, P and
p denote variables containing perturbed parts as well. By writing down the linearised
versions of (A1.4) and (A1.5) one can easily obtain the perturbation equation for the
variables like ép. We will, however, proceed in a (more complicated) manner which
has the advantage that it can be easily adapted for a fully relativistic situation.

We begin by decomposing the gradient of the velocity field (0;v;) into an anti-
symmetric part, symmetric traceless part and the trace by writing

6,-v,- =wjj +oi; + H&,'J' (A1.8)
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where 2w;j = (ij.-—a.-vj); 20; = ajU,' +6.-v,-—2H5.-,- and H(t, x) = [6.-v‘(x,t)/3] is the
trace. [In the absence of perturbations H(t,x) = Hj(t) reduces to the Hubble constant
of the background universe; in this sense we may consider V.v to be proportional to
the ‘perturbed Hubble constant’ H(t,x) = Hy(t) + §H(t,x)]. It is trivial to verify
that

(85v:)(8'v') = 3H? + 2(0? — w?) (A1.9)

where 202 = 0;j0* and 2w? = w;;jw'. Taking the divergence of the Euler equation

%%—+(v1'3,-)v"+6"¢= —p 3P (A1.10)

and using 3H(t,x) = 8;v* and (A1.9) we get

%(V.v) + (v 8;)(V.v) + (8:v7 )(8;v°) + V¢ = —8;(p~ 10" P) (A1.11)
3H +3H? 4+ 2(0? —w?) + V2 = -§; (?;—P) (A1.12)

This equation is exact in the Newtonian limit; we now linearise it retaining only first
order corrections to the background variables. We can ignore o2 and w? since they are
of quadratic order and replace p by p; in the right hand side because P is essentially
8P (since P, = 0). We thus get

. 2
§H = —2H,6H — %Vzédz - %V il
e X @25 (A1.13)
= —2H,6H - 6p 36 p

where we have set V26¢ = 47Gép and 6P = c26p with ¢, the sound velocity . The
continuity equation

p=-3H(t,x)p (A1.14)
can be similarly linearised to give
8p = —3Hybp — 3py6H (A1.15)
or, using the definition ép = p;é,
6p) 16p 1 (p,, ) 1.
SH=-Hy| —)|—s—=-Hb—--|—0+6)=—-26 Al.16
’ (pb 3 73\ 3 ( )

Suubstituting this into (A1.13), we obtain
6 +2Hy6 — 4nGpyé — 2V26 =0 (A1.17)

This looks very much like a perturbation equation; but notice that the ‘overdots’ in
this equation stand for the operation [(3/8t) + v*3;] and not just (3/8t). However,
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when operating on §, we only need to retain the zeroth order part of v* which is just

= (a@/a)z’. That is

2 (%) Liasm (%) 4 (E) a0,
b= (2) svas (L) +(Heos o

We will now reintroduce the FRW-coordinates (X,Y, Z) related to (z,y,2) by z =
a(t)X etc. Clearly, for any function f(,z) '

df = (QL) dt + (gi) dz = (g—{) dt + (gf) [aXdt + adX]

(%), 3, e ()
B w3, v

Thus, in the (¢, X) coordinate system, the overdot merely means partial derivative
with respect to t; however, V2 = a~2V%. Thus we get the final equation

(A1.19)

showing

6 + 2Hpb — c2a=2V2%6 = 4rGpy6 (A1.21)

This equation, set in the original FRW coordinates, describes the growth of pertur-
bations in the Newtonian limit.

Appendix 2.2. General relativistic perturbation theory

The central equations of Newtonian perturbation theory disucssed in the previous
Appendix 1 were for the perturbed density and perturbed Hubble constant:

6p = —3Hybp — 3Ipp6 H

2 A2.1
61 = —2H,6H — TG, _ LY26P (42.1)
3 3 m

The correct, general relativistic, perturbation equations can be made to look identical
to the above set except for the change of p; to (p» + Ps). [Note that, in the Newtonian
limit P, < pp.] Thus we get

8p = —3Hybp— 3(ps + Py)6H (A2.2)

4G 1 V2P
3 P73 (m+ Py

For a single component model, we can set 6P = v?§p, eliminate §H and obtain
a second order equation for 6p. It is usual to use a Fourier transform with proper
wavelength so that V2 is equivalent to a~2k2. This will lead to the equation discussed
in the main text. We will now derive (A2.2) and (A2.3) .

§H = —2H,6H — (A2.3)
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Let a,b,- - - denote spacetime indices and %, j, k - .- denote the space indices. At
each event in spaccetime we choose an orthonormal basis such that the momentum
density vanishes. In this frame, the four-velocity u® has the components u® = up =1
and v/ = 0. If D, is the covariant derivative operator, then the ‘overdot’ will denote
the directional derivative along u?, i.e. the operator u® D,. Surfaces orthogonal to the
comoving world lines (for which u® are the tangent vectors) will be called comoving
hypersurfaces; the projection tensor on to these surfaces will be hgp = gap — ugus (in
the co-moving basis, only nonzero components of this tensor will be k;; = g;;.) Using
D, and h,p we can construct the natural derivative hf’, Dy on the comoving surfaces
and the Laplacian V2 = A2 Dyh%°D,. In the absence of perturbations V2 = a~2 8'§;
because the comoving surfaces are flat (at any given t); in the presence of metric
fluctuations, these surfaces show deviation from flatness but this deviation will only
produce a second order effect when V2 is applied to the perturbed quantity. Thus as
far as perturbation equations are concerned, one can continue to use V2 = a~2§;0*
even when the hypersurfaces are not flat.

With these preliminaries, we can start the derivation of the fluctuation equations.
The relativistic analogues of continuity and Euler equations are

p=—3H(p+P) (A2.4)
ht D, P

ila = - 4 A2-5
(p+ P) (429)

where all quantities refer to the background metric. We now proceed exactly in the
same manner as before by starting with the relation
Do u® = Daub Dyu® = (Daub)(Dyu®) + u® D, Dyu®
= (Daub)(Dbu") + utDyD,u® + ub[Da, Dy)u® (A2.6)
= (Daub)(Dbua) + ubDb(Dau“) + ubRa;,ua
Now, since u® has constant norms u® Dyu, = 0 implying D,u® = 0 in comoving basis.
Therefore (D, u®)(Dyu®) and D,u® reduce to purely spatial terms (D;u/) (D;u’) and

(Diu'). We can now separate this tensor into o;;, wi; and H exactly as before [with
0; replaced by D;]. The last term in (A2.6) is

1

u® Raps® = Roo = 87G(Too ~ 5Targ™) = 47G(p + 3P) (A2.7)
Using this result and
Div' = 3H; (Divw')(Dju') = 3H? +2(0? — w?) (A2.8)
we get )
Dyu® = 3H 4+ 3H? + 2(0? — w?) + 47G(p + 3P) ~ (A2.9)

The left hand side can be related to V2P by using the Euler equation. We have

D,u® = hiD.4® + uuD. u®

= hiD.u® + u*D.(uat®) — u®4*D.u,

(A2.10)
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in which the middle term vanishes (uzu® = 0) and the last term is of second order

(a%(u®D.ug) = 4%i,). Using (A2.5), the first term can be written as

h“”DbP] vip
hé¢D.u® = —h¢D, —_— A2.11
e (Sl M EY) N
which is correct to linear order. Therefore
v2p
D, u® A2.12
ot (p+ P) ( )
Substituting back into (A2.9) we get
) 2
H=-H?- ﬁ(p 3py— L VP (42.13)

3(p+P)

This equation, along with (A2.4) constitute the basic set. Before we separate out the
quantities as H = Hy 4+ 6 H etc we have to take note of one additional complication.
The interval d7 along a comoving world line between two adjacent comoving surfaces
is position dependent on the surface and hence cannot be taken to be a valid label for
the hypersurfaces. Suppose t stands for a valid ordering label for the hypersurfaces;
then we can prove (we will do it at the end) that it can be chosen to give

dr 6P
i 1- p+_P (A2.14)

Given this relation, our equations can be recast with derivatives with respect to ¢.
The continuity equation becomes

dp d(ps + 6p) [ §P
= = (ps + 65) |1
= B 6P(p + BTy - P HA |1+ o

= —3Hy(ps + Ps) = 35H(ps + Py) - 3Hb(6p +6P)

) . Pb
~ 6p+ 6P
] Pt 0P ps+ P

(A2.15)
where we have kept only the linear terms and used the overdot symbol to denote
derivatives with respect to t. Equating the zeroth order terms we get

pv = —3Hy(ps + P) (A2.16)

Using this in the first order equations we get

op —5P =6p—3H,6P = -36H + Py) —3H,6 JH,6P A2.17
(Pb+ ) p—3H, (Ps + P») »6p — 3H, ( )

or

6p = —-3(ps + Py)6H — 3Hy6p (A2.18)
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which is the advertised equation (A2.2) . The H equation proceeds along the same
lines: We begin with :

dH 6P
dr —(Hb+6H)( b+Pb>
(A2.19)
47G 47G 1 V2P
=—-H? —2H,6H — — 3P) — —(6 36P) — =—m————
b b 3 (ps + 3Ps) 3 (6p + 36P) 3 T B
in which we have used the result V2P, = 0. The zeroth order term is
. 4nG
Hy=—H} - 7r_(Pb +3P,) (42.20)
while the first order term is
H, 47G 1 V%P
— P +6H = —2Hy6H — ——6p — 47G6P — = ——— A2.21
Grmy Y e B ey -y B
Substituting the value of H, in this, we get
47G 1 V2P
6H + 2HyH + —6p + = ———— —  _|Hy+47G(py + P,
b 3 3(ps + Pb) (Pb + P ) [ b (e b)]
47G
——— |- —(pp + 3P) + 47G(pp + P ] A2.22
o T Pb) [ (Pb 5) (ps + Ps) ( )

81rG
— T —————————— — 2 —
(ps + P») [ Hit =3 pb] 0

So we get the second of the advertised perturbation equation (A2.3)

: 4rG. 1 VP
§H = —2Hy6H — ~§p — o
b 3 P73+ By)

4G v: Vip
= —-2HybH - —bp— ————
” SN

3
In arriving at the last equation we have used the definition 6P = v26p. Also note
that the ‘dot’ may be interpreted as (0/0t) while acting on small deviations like § H,
6p etc. The rest of the analysis proceeds as in the non-relativistic case; rewriting the
continuity equation as
1

bH = ——————[6p+ 3HOp|] =
3(ps + P) 167 ol =

(A2.23)

m [5 3Hw6] (A2.24)

and substituting into the § equation we get

. w .
$H = 5o [6 - 3Hw6] m [5 3Hwé — 3HwS — 3Hw6]
1 . W Huw Hwi H Huw
SR S I + -5 - -
3(1+ w) 31+w)? " (1+w) (1+w)? (1+w) (1+w)

(A2.25)
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It is easy to verify that
w = 3Hy(w —v?)(1 + w)

. A2.26
Hy=-H} - lH,f(l +3w) = —§-HE - Ewa = —EH,?(I + w) ( )
2 2 2 2
Using these we can write
: 1 " i 92 3 .
TR § S - ZH2s - _
6H ST+ w) {6 3Hy(2w — v*)6 + 2H,, (2v* + w* —w) (A2.27)
Therefore the equation (A2.23) becomes
_1 {5 — 3H6(2w — v?) + 9}125(21}2 + w? — w)
31+ w) 2.
1 1 2 (A2.28)
—__ — s _ 12 v 2
= ~2Hg [a 3Hw6]+2H,,6+ N
Equivalently,

2
6+ Hpb(2 — 32w — v?)) — %HE& [1-6v - 3w? + 8w] = — (%”) &  (A2.29)

in which we have introduced the Fourier transform such that V2§ = —(k/a)2?6. This
was the equation which was used in the main text.

All that remains is the derivation of equation (A2.14). There are several ways of
doing this, the easiest being the following:

Let (t,z;) be a set of coordinates with ¢ labeling the comoving hypersurfaces;
and let (Au,e;) be a coordinate basis associated with this set, with A = (dr/dt).
Obviously, u.e; = 0 which implies that

l'x.e,- = —é,-.u = ‘l:t,' (A230)

On the other hand, since the basis vectors are coordinate induced, all Lie brackets
vanish: [Au, e;] = 0. On expanding this, we get

(0é)® — Di(Adu)® = 0 (A2.31)

which is equivalent to
(€:)® — Diu® = A~1(8; ) )u® (A2.32)

Taking the dot-product with u,, the second term vanishes; the first term gives u;
because of (A2.30). Thus we find

i; = A71(6;N) (A2.33)
Combining this with (A2.5) and working upto first order, we find
0;6P
Ao = ——— A2.34
(oo + P») ( )
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giving
[ _ 8P 1, _ 6P _dr
(ps + Pb) (po + Py) — dt’

This is the result to be proved.

Lastly, let us consider the case of several uncoupled fluids. [For example, radiation
and dark matter]. In the Newtonian limit, this poses no special problems; we only
have to take the H contributed by all matter and replace the driving term 47Gép by
47G )_ bp;. But there are some interesting subtleties in the relativistic case.

In a manner very similar to that of single component fluid, one can derive the
following equations

A =exp (Aé.35)

PN = —3HN(PN + Pn)

1 4G'

3 (A2.36)
D.u® = — V2PN 3(H - HN)PN
anN pN + Pn pN + Pn
where N = 1,2,3--- denotes the various fluids (radiation, matter etc.) and
p=Y_pn, P=) Py, H=) Hn (A2.37)
N N N

etc. The last term in the third equation shows the main difference from the single
component case. The mean values of all variables like H etc. are defined by averaging
over each spacelike hypersurface. It, therefore follows that

<Hy>=H (A2.38)
giving
H—-Hy=6H-6HN (A2.39)
It is also easy to show that
(p+ P)H =) (pn + Pn)Hn (A2.40)

Combining all these equations, we can derive the perturbation equations

8pn = —3(pn + Pn)6Hy — 3Hépn — 3H (6P — 65 6P)

4G‘5 1 V2Py N Py
3 P~ 3(pv + Pv) | pN + Pn

§Hy = —2H6HN — Z(BMéHM) 6HN]
(A2.41)

where

PN + Py

On =
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To each component, we can associate a velocity dispersion

6PN Pn

2
v = —— = =
N"%on ~ pN

(A2.43)
but this does not allow one to give a corresponding relation between the total 6 P
and total 6p. Because of this peculiarity, it is best to introduce a new variable which
measures the deviation from adiabaticity.

Let us illustrate how it works for the case two uncoupled fluids. If 8, = (6p1/p1)

and 83 = (6p2/p2) denote the fractional density contrast of each fluid, then the most
convenient variables to use are the total density contrast

5 = 6pr+06p2  p161 + p2be
1+ p2 p1+ p2

(A2.44)

and the ‘non-adiabaticity’ parameter

_ 4 b2
_1+1.U1 14wy

(A2.45)

[The name is due to the following fact: If the first fluid is dust (w; = 0) and the second
is radiation (wy = 1/3), S = 8 — (382/4); for adiabatic perturbations §, = (36,/4)
giving S = 0. Since the background model completely specifies the evolution of
p1(t), p2(t) etc, we can trade off the two unknowns é; and 62 in favour of § and
S]. Using the general set of equations for the multicomponent medium, discussed
above, we can write down the differential equations for § and S. The procedure is
straightforward but tedious. The final result is the set of equations:

§+[2 - 32w — v?)|Hé - %H?(l — 6v% + 8w — 3w?)é
’ 42 (A2.46)
= -a—g(v’cs + wn)
.. . k2
S+ (2-3u®)HS = —[-u?S + (v — v})(1 + w)™14)
a? (A2.47)
= (Pl + Pl)(p2 + PZ)(vz _ ’Uz)S
(o + P)P b
with ) .
P P
==, =2 A2.48
P 4 PA ( )
P))v3 + (p2 + Po)v?
u? = ot Pvs 1 A2.49
(p+ P) ( )

Quite clearly (A2.46)reduces to the density perturbation equation if 7 = 0 and there
is only one component. When there exists more than one component § and S are
coupled; S generates § and vice versa. In general, the solution to (A2.46) and (A2.47)
needs to be obtained numerically.
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