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Abstract. A theoretical model of close binary system for the gravity-
darkening due to tidally and nonuniformly rotating Roche components has
been formulated using the fourth order of r/ R where r is the radial distance
and R is the distance between the centres of the binary stars. This model
provides expressions to calculate the temperature and brightness distributions
along the surface of the components.
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1. Introduction

A comprehensive model to explain the effect of rotation and the gravity darkening on the
spectral characteristics, the temperature, and brightness distributions of a binary system
is still lacking. The factors that need to be considered are reflection, limb-darkening,
turbulence, and meridional circulation currents within the stellar atmosphere. Ireland
(1966, 1967) has discussed the importance of gravity-darkening in the case of uniformly
as well as nonuniformly rotating Roche model. He has shown that nonuniform rotation
can significantly change the temperature and brightness distributions along the surface of
a star. Peraiah (1969) extended the analysis to the case of close binary-system. He showed
that tidal and rotational effects have much influence on the distributions of temperature
and brightness along the surface of the components. Here he considered only the radial
component of the surface gravity. Subsequently Peraiah (1970) considered the case of
total gravity. To calculate potential due to tidal forces of the secondary component,
Peraiah (1970) used only the second order term of Legendre polynomial P,(#) which
contains second order in r/ R, the ratio between the radial distance r and the distance R
between the centres of thie stars of the binary system (Kopal 1959). In the present paper,
this ratio has been extended to the fourth order. .

We assume the system to be under radiative as well as hydrostatic equilibrium. The
origin of the coordinate system is taken to be the centre of the primary; x-axis is the line
joining the centres of the stars; the axis of rotation of the primary component is the z-
axis. The z-axis is taken perpendicular to the orbital plane which is also the equatorial
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plane of the primary component. Any point on the surface of the primary is given by the
polar co-ordinates (r, 6, ¢).

2. Formulation of the model

Let a binary system have masses m, (primary component) and m, (secondary
component). For a Roche model of mass m, rotating according to the law (Ireland 1966)

Q=b, + bw? (D)

where w (= r sin ) is the distance r measured from the axis of rotation, the equation of
hydrostatic equilibrium can be written as

grad p = p, grad ¥, ...(2)
when the equation of equipotential is simply given by
¢ = constant, ...(3)

In equation (2), p is the total pressure, p, the density of the gas and y the combined
poténtial of gravitational and rotational forces. Now, the equation of hydrostatic
equilibrium can be written as

1
dp=p dv+ 2P Q2 d(wh), (4

where v is given by (Kopalil959)

Gm1 Gm24 r
= — — .5
S L ®

Z =cos ¢ sin 0, ...(6)

a being the gravitational constant, r the distance from the primary’s centre, R the
distance between the centres of gravity of the two components and P(z) the Legendre
polynomials. The first term of equation (5) is the gravitational potential due to the
primary component and the second term due to the secondary (Kopal 1959). The right-
hand side of equation (4) can be expressed as a perfect differential. The Legendre
polynomials. P(z) (=2, 3, 4) in equation (5) can be calculated from the relation
(Macrobert 1966).

G+1) Pu@— @2+ 1)z P(2)+j Pu(2)=0, =0, 1, 2, 3, 4, ... ) ...(D
if we remember
Pu(2) =1, P(2) =z ...(8)

To the order of accuracy, the maximum value of j in equation (5) has bgen taken j = 4.
Putting j =1, 2 and 3 in equation (7) and using equation (8), we shall get

P, (2= —;— 32 - 1),

P, (2) = —;— (5% - 3),
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Pi(2) = —;— (352 — 3022 + 3), .9

From equations (1), (2) and (4), we can write

nl:—Gm—'+G’"2 ( )P(z)+—b sin” 6
r
1
+?bbzr sin* 6+?bzr sin® 6. .. .(10)

If Q. and (), be the equatorial and polar angular velocities, then from equation (1) we
have

b= by=(Qe— Q)/r,, .1
r. being the equatorial radius, we set
x =0/, f=r. O/Gm, ...(12)

where x is the ratio of the equatorial to the polar angular velocities and fthe ratio of the

centrifugal to the gravitational forces at the equator. Now we can write from equation
(10) (putting 6 = 0°) as:

(U)poe = 21 : G’"Z[ (’) )] a3

If we equate equation (10) to equatlon (13), then the equation of the stellar surface can be
put in the form:

ap’ +Bp° +vp' + 80 —p+1=0, ...(14)

where
— 6
a=a sin 0,

B = B sin* 6+ J;,

vy =

5=, sin’ 8+ Ji,
[=1-0+3Q,

a f(x—l) ( )7’
=T (B
Y1

Ji= Qi3 sin? 8 cos’ ¢ — 1),
Jo=Q, (5 sin’ 8 cos® ¢ — 3 sin 6 cos @),
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=0, (35 sin* 6 cos* ¢ — 30 sin® @ cos’ ¢+ 3).

Ql“— )#1, O = 1 rp)uz,
=)
B = mr(;)“’, G=1, 2, 3), ...(15)

where r,/r. is given by

3

(% ) “(os )" )*?‘“‘0’ ..16)

+f(x2+x+ )}
6x*

pe = S+ p2 J + py J7,

with

u=l +lJ4

1
J’=7(3 cos’ ¢ — 1.
” ] 3
=7(5 cos” ¢ — 3 cos @),

1
J =g (35 cos® ¢ — 30 cos® ¢ + 3).
..(17)
The surface gravity g is given by

g =- grad ¢’ = (gh gO’ gcb)’ . .(18)

where g,, g4, g4 are the components of g in the three orthogonal directions defined by the
curvilinear co-ordinates (r, 6, @), so,

oy Gm,

=-Tt= . -2 .19
& or - —7[1 £, (6) sin* 8 J(e)p] (19)
1 3¢y Gm
ge=——r—30——7—' -7[ £ (6) sin 8 cos 8 — 6 p’ KcosBcos¢] .. (20
l a!ﬁ Gml 1 3 .
=——— Lt =""0._l6p°K , .. .21
ke rsinf 9¢ r pZ[ p sm¢] @D

with
[V
146 === 2vi p°+4 B, p’sin” 0+ 6 o p’ sin’ 6,
1
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3 )
./,(0) = J| + _2‘ sz + 2p".l3,

1 o,
K=Q,sin0cos¢+ZpQ2K2+—6-p‘Q3K3.

K, =15 sin® 8 cos’ ¢ — 3,
K; = 140 sin® 6 cos’ ¢ — 60 sin 6 cos ¢.

Therefore, the total surface gravity g is given by

g= @& tg+e)" .. .(23)
and hence the polar surface gravity g, is
g = G’;"{(l +20 - 1200 +9 Qi]”, .. .(28)
rp

The effective temperature T. at any point on the tidally and rotationally distorted
component car be obtained from

Tc — g 1/4 (25)
T, ( 8p ) '

where T, is the polar temperature for the case of black body radiation.
The distribution of brightness is (Kopal 1959) given by

H

P

=1+%(i—1), . (26)

g

where H is the brightness at any point and H, is that at the pole. The value of A is given
by

a
b= —.
l—¢"
= _*e 27)
T NT ol

where h is the Planck’s constant, ¢ the velocity of light, k the Boltzman constant, A the
wavelength and T the temperature.

Equations (25) and (26) are used to calculate the temperature and brightness
distributions. For calculating these values equations (14) to (27) are employed in the
following manner : a few appropriate values for x, f, m;/m, and r./ R are selected. r./r,
has been calculated from equations (16) and (17). This value of r./r, is used in the
equation (15) to calculate the coefficients a, B, v, 6, { which, in turn, are substituted in
the equation (14) to solve for p. By substituting p in the equations (23) and (24), g/g; is
calculated, whose substitution into the equations (25) and (26) enables us to calculate the
temperture and the brightness distributions.

If we put Py(z) =0, Ps(z) =0 in the relation (5) [i.e. w2 = u3 = 0 in equation (15)]
and g, = g, =0 in equations (20) and (21), the formulations deduced here reduces to
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those of Peraiah’s paper (1969) and if we put Py(z) =0, Py(2) =0, P«(z) =0 [ie.
41 = u2 = p3 =0 in equation (15)], the formulations reduce to those of Ireland’s paper
(1967). If (r/R)* in equation (5) is neglected [i.e. u3 =0 in equation (15)], then the
secondary component, of which tidal force is considered, is a point mass to the order of
accurracy.

In the next papers, other important factors already mentioned will be included into
the model.
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