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Formation of a binary in the general three-body problem 

K. B. nhatnagar 
Zakir Husa~n College. Ajrneri Gale, Delhi I10 006 

Abstract. This paper reviews the role of triple encounters in the evolution of 
stellar systems. If a symmetric triple collision is perturbed, we obtain a family 
of asymmetric triple close approaches with arbitrary escape velocities and with 
the formation of binaries. We obtain two-parameter family of orbits; for 
certain values of the parameters two of the bodies form a binary and third 
escapes to infinity. The work of Szebehely is reviewed in detail for fixed 
values of the parameters with special reference to the application in stellar and 
galactic dynamics. The numerical technique and controls used are also 
mentioned without which no reliable numerical results can be obtained 
regarding the dynamical behaviour of multicomponent stellar systems. 
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1. Introductian 

Birkhoff (1922, 1927) conjectured that sufficiently close simultaneous asymmetric 
approaches occurring in the problem of three bodies result in the formation of a binary 
and the third one escaping to infinity. This conjecture has been supported by numerical 
evidence by Agekian (1967) and Szebehely (1967). The conjecture has been reformulatea 
by Szebehely (1971, 1973) which is of fundamental importance in the global behaviour of 
three interacting gravitational masses. 

In the three body problem, one encounters motions of different types under certain 
initial conditions. In fact the main problem is the partition of the phase space of the 
initial conditions. The region of phase space with bounded motion is mixed with escape 
regions according to Henon (1974). Some orbits amongst a large number of periodic 
orbits discovered in the general problem of three bodies by Henon (1974). Broucke 
(1974), Hadjidemetriou (1975), Standish (1970), and Szebehely (1970) showing linear 
stability are unstable. 

Sundaman (1912) has shown that for a triple collision the total angular momentum c 
must vanish and for close approaches c should be sufficiently small. If asymmetric 
changes of the initial conditions are introduced and c is small, the equilateral 
configuration in the three body problem 'leads to escape instead of periodic orbits. 

We can classify different types of motions with the help of total energy h and the 
moment of inertia I = X m, 4 about the origin. 



2. Classification of possible motions 

Case (a ) :  h > O  and I -co  as 1 - w  

(i) Hyperbolic-parabolic. In this case I r,, 1 < - r and the bodies move along 
hyperboliclparabolic orbits and the motion is termed explosion. 

(ii) Ilypcrbolic elliptic. In this case I r l j l  < a or 1 r13) < a or ) r23 I 4 u;  I rljl and 
1 r231 f .  TWO of the three bodies form a binary and the orbit is elliptic. The third body 
moves along a hyperbolic orbit and escapes to infinity. 

Case (3): h = 0 ,  I - - m  

(i) Hyperbolicelliptic. It is similar to the motion as mentioned in case (a) (ii). 
(ii) Parabolic. In this case ( r,]l - 1, the bodies move along parabolic orbits and the 

motion is termed explosion. 

Case (c) : h  < 0 ,  I is bounded 

(i) Interplay. In this case I r,]( remain bounded and the bodies repeatedly come close 
to each other. 

(ii) Ejection. In this case two bodies form a binary and the third is ejected with 
elliptic relative velocity. 

(iii) Revolution. In this case two bodies form a binary and the orbit of the third 
body surrounds them. 

(iv) Equilibrium solutions. In this case the three bodies appear to be stationary in a 
rotating frame of reference, (Lagrange's straight line and equilateral triangle solutions). 

(v) Periodic motions. In this case the motion of the three bodies are bounded, 
periodic and unstable. 

(vi) In this case one of the three bodies recedes arbitrarily far away and returns. I(t) 
is oscillatory. 

Case (d) : h < 0, I - m 

Hyperbolic/paraboliczlliptic: in this case I r12 1 < a, I rlsl and I r23 I - 1. TWO of the bodies 
form a binary and the third escapes. 

It may also be noted that (i) escape orbits are dense, (ii) interplay leads to either 
escape or ejection, (iii) Orbits near the equilibrium points are of interplay types. (iv) 
Some unstable periodic orbits leads to interplay. (v) Revolution leads' to interplay. 

3. Conditions of escape 

Various conditions of escape, i.e. two of the bodies forming a binary and the third one 
escaping to infinity are available in the literature. 

Suppose there is a system with already formed binary; m2 moving relative to ml in 
an elliptic orbit and rn, escaping. We define 

Eb = bounding energy = - Gmlmz/ 2a 

h  = EL, + & = total energy 
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a = semi-major axis of the elliptic orbit of m2 relative to ml 
p =distance between the mass m3 and the centre of mass of ml and m2. 
v3 = velocity of m3 
v12 = velocity of m2 relative to ml. 

Conditions of escape 

(A) (i) When h 2 0, binary formation gives escape if p > 0. It does not lead to ejection. 
(ii) When h < 0, for escape 1 Ebl > ) Eel. This is true if a is sufficiently small. If a is 
large, this leads to ejection. 

(B) When h < 0. If a t  some time, to : (i) p ( t o )  = po > a, (ii) l j ( f o )  = io > 0, (iii) 6; b 
b, a > 0, b > 0 (+ve nos.) then p - a as t -- 00 and mi and m2 form a binary. 

These conditions are sufficient. The estimated values of a and b are given by: 

(i) Birkhoff 

(ii) Standish 

(C) Before stating the condition of escape, it is worthwhile to, know some of the 
properties of I(r). Let I, = @/ 21 h 1. From the graph of Z(T), figure I, we may observe 
that 

(i) Region AB :I < I,, r> 0, Il is a proper fninimum, Zl = 0 at E, 

(ii) Region BC : I ~  = 0 a t  C, Xi. = Il < I2 
a 

(iii) 

(iv) I cannot approach zerp or a constant value. 

Two of the bodies will form a binary and the third will escape if I* < i# 
where S1 = I' 10 = d + g2) 

P + l o  + lc, ' 
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Figure 1. Moment of inertia I ( i ) .  

Now we study a mathematical model in which asymmetric changes of the initial 
conditions'are introduced and c is small. We will see that the equilateral configuratinn in 
the three-body problem leads to escape under certain initial conditions. 

4. Mathematical modek 

There are three masses ml = m2 = ms = 1 situated initially at  the vertices of a traingle 
with unit sides. All initial velocities are parallel and inclined a t  an angle ce t o  one of the 
side, say, m x .  The velocities of ml and mz are v0/2 and of ms is vo in the oposite 
direction, ( v ~  4 11, (figure 2). 

Proceeding as in Szebehely (1974) we can show that when 
(i) 7716 6 a < 5 ~ 1 6 ,  m3 escapes, 

(ii) 5r/6 < a < 3 ~ 1 2 ,  ml escapes, 
(iii) 3a/2 < a < 211. + n/6, m2 escapes, 
(iv) a = 3 ~ 1 2 ,  none escapes. 

Special case a = 0. This case has been studied by Szebehely (1974) in detail. The escape 
m a r e  satisfied and escape does occur for sufficiently srnal perturbations. This 
follows from the fact that as v, -- O*, I,, - 0' orbits of ml, m2, m3 an given in figure 3 



Figure 2. ln~tial conditions. 

Orbits near triple close approach (vo' 0.001; a = 0) 



for vo = 0.00 1 .  Because of the small initla1 velocities, the three bodies begin their motions 
with a contraction toward the centre of mass. The asymmetry is apparent when the 
bodies are at the points A l ,  A2, A,. ml  and m3 experience a close approach when they are 
at the points B, and B3 and B2 is far away. At this instant rl3 = 1.5626 X lo-', 
f 1 3  = 0.641254, 1 = 5.134 X But this value of I is not the value for I,,, since I n ?  and 
r n j  Gill move towards the centre of mass. Infact, I,, occurs a t  1, = 0.641288, where 
I,, = 2.9 19 X lo-'. This occurs when the masses are at CI,  C2, C3. At I,,,, r 1  = 13.0 X 10.' 
r2  = 6.4 X and r3 = 9.0 X 
After this time m2 escapes and ml and rn, form a binary. 
Table 1 gives the positions of the masses at different timings. The graph of I ( t )  is given in 
f~gure 4. 

Table 1 .  I'lrnrs corresponding to the points on the orbits In figure I 

Pollit A ,  a, PI YI B, 6, c, Dl 

Tau 218 234 244 250 254 274 288 356 

Figure 4. Moment of lnertia at triple. close approach ( v o  = 0.001, a! = 0, I = 0.641 f 7 X ire). 

Szebehely (1974) has studied four models as applications of this analysis to stellar 
dynamics : 

(i) Three stars of solar mass M,,, = Mo, 
(ii) Two models of white dwarfs, 
(iii) Three galaxies of mass M,,, = 10'' Me, 
(iv) Three neutron stars. 
In each case he has calculated velocity of escape of the third body and the semimajor 

axis of the binary. 



5. Numerical method 

While performing numerical computation, the fi)llowing facts must be kept in mind. (i) 
The dynamical system of three bodies tend to a disruption or escape. (ii) Such an escape 
a n n o t  occur for h < 0 without a triple close approach. (iii) The triple collision is not 
continuable analytically. (iv) Sufficient close approaches might invalidate the numerical 
integration unless they receive special attention. 

Once reliable estimates are available, the rest is left to the operator of the computer. 
He may take the following two steps whenever unreliable results are obtained. (i) he may 
throw away his predictably unreliable results. He may retrace his steps and his 
integration with a smaller step size or with higher precision. (ii) He may select different 
initial conditions so that a critically low triple close approaches does not occur prior to 
the dissolution of his system. 

At present we are numerically studying the various close approaches for different 
values of a and v,,. The results will be published as soon the study is completed. 
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