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Effects of rotation and tidal distortions on the equilibrium 
structure and periods of oscillations of stars in binary systems 

C .  Mohan & R.  M. Saxena* 
Deparltiier~r o/ . ~ ! a l / ~ r r ? ~ o r r c ~ ~ .  Unrvcr~r r~~  o/ Roorkre, Root hre 247 667 

Abstract. We present methods for computing the equilibrium structures and 
periods of barotroplc modes of osc~llations of stars which are the primary 
components of binary systems. The methods ut~lize the averaging technique of 
Kippenhahn & Thomas and the concepts of Roche equipotentials to 
incorporate rotational and tidal effects. The use of the methods in obtaining 
the equilibrium structures and c i g t n f ~ c . ~ ~ u c . ~ ~ c i c ~  of barotropic modes of 
oscillat~ons of certain polytroplc models of stars (assumed to be the prlmary 
components of synchronous as well as non-synchronous binary systems) 1s 
also illustrated 

Key wtords : b ~ n a r y  stars- -oscillations-rotation-tidal distortions 

Introduction 

The equil~brium structure of a star in a binary system is not perfectly spherically 
symmetric. The rotational forces as well a s  the tidal forces caused by the gravitational 
pull of the companion star, d~stor t  its otherw~se spherically symmetric configuration. 
Some of the stars In binary systems such as  16 Lac (Fitch 1969) are also known to be 
pulsating stars. Pulsation periods of such stars In binary systems are also influenced by 
the effects of rotational and tidal forces. 

The problem of determining the equilibrium structure of a star under the combined 
influence of rotational and tidal forces and determining its eigen frequencies of 
oscillations is mathematically quite a complex problem. Approximate methods have 
generally been applied in which the effect of only one of these two types of distortional 
forces is considered. Kopal (1972, 1974) developed in detail the concept of Roche 
equipotentials t o  study the binary systems. Kippenhahn & Thomas (1970) proposed a 
method for determining the equilibrium structures of rotationally and tidally distorted 
stars. Mohan & Saxena (1983) used the Kippenhahn & Thomas approach in conjunction 
with certain results on  Roche equipotentials as obtained by Kopal (1972, 1974) and 
Mohan & Singh (1982) to obtain the equilibrium structures of rotationally and/or  tidally 
distorted polytropic models of the stars. They also used this approach to determine the 
eigen frequencies of radial and nonradial modes of oscillations of rotationally and (or) 
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tidally distorted polytropic modcls of the stars by assuining such osctllat~ons to be 
barotropic (Mohan & Saxena 1985). Later Mohan & Agarwal (1987) also used this 
approach to determine the equ~l~br~urn structures and per~ods of osc~llations of certaln 
rotat~onally and/ or tidally distorted colnposite models of the stan. 

In t h ~ s  paper we present the method based on this approach for determining the 
equilibrium structures and periods of barotrop~c niodcs of oscillat~on\ of thc prlnlary 
components of stars In binary systcms. .I he use of t h ~ s  techn~que In dc ' t c i~ i i i~ i~ i~g  the 
equil~brium structure and periods of pulsnt~ons 01 certatn stars. assurncd to bc prlnlary 
components of blnary systems, I S  also illustrated. 

2. Kippenhahn and Thomas approach for determining the equilibrium structure of 
rotationally and tidally distorted stellar models 

In order to study the effects of rotation and tidal d~stortions on the equilibrium structure 
of a gaseous sphere Kippenhahn & Thomas ( 1970) define certaln topologically cqutvalent 
spherical surfaces to correspond to the actual equ~potent~al surface of a rotationally and 
tidally distorted stellar model. rhey define on these equivalent spherical surfaces 
quant~tie's such as J: g ,  etc. whlch denote certain averages of the quantities f ;  g 
respectively on the actual equtpotentlal surfaces. I f  I) denotes the total potential 
(gravitational, rotational, and tidal) of a rotationally and tidally distorted model a t  an 
arbitrary point (x, y,  z )  then i,b (s, /I, z)  = const. is an equipotential surface. Let V+ be the 
volume enclosed and S$ the surface area of this equipotential surface $ = constant. Then 
in analogy w ~ t h  a sphere, Kippenhahn & Thomas define a variable r ,  by the relation 

r* thus defined is then used 'to denote the radius of the topologically equivalent spherical 
surface. They also define the mean value of any function f ( x ,  y, z) over the equipotential 
surface I,$ = constant by the relation 

where do denotes the surface element of the equipotential surface J, = constant. f t hus  
defined over the topologically equivalent spherical surface is used to represent the actual 
value off over the equipotential surface J, = constant. Clearly ?is a function of 9 only 
and can be determined for each equipotential surface +!I = constant. Also by definition 

S, =/ do .  
# = conat. 

. . .(3) 

Corresponding to the usual definition of g, the acceleration due to gravity, Kippenhahn 
& Thomas define a function g(x, y,  z) by the relation 

dn being the distance between two neighbouring equipotential surfaces J, = constant and 
@ + dJ, = constant. The distance dn in general is not constant. Thus using equation (2) 
the mean values of g and g-l respectively are defined by the relations 
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d* -do  ; and g-l =- 

The mean values and g-' defied over the equipotential surface 4 = constant are clearly 
functions of $ only and represent the value of g, g-l over the topologically equivalent 
spherical Surface. 

The volume dV,  enclosed between the equipotential surfaces $ = constant and 
+ f d$ = constant is obtained as 

Kippenhahn & Thomas (1970) also define non-dimensional parameters u, v, w as 

S * 2 
U = -  v = g -  - re and w = 6' - G M s  , 47rd ' M* ' 1.: 

where M* is the mass enclosed by the equipotential surface $ = constant. 
Thus the distorted equipotential surface I,/J = constant is regarded as topologically 

equivalent to a spherical surface of radius r ,  for which the various quantities are defined 
by the above relations. (It may be noted that if I,/J is the gravitational potential of a sphere 
then $ = constant are spherical surfaces with rg = r and therefore, u = 1. Also on these 
spherical surfaces g = G M # / ~ $  is constant and therefore v and w are also constant and 
equal to one). 

Equations (1)-(7) are purely mathematical definitions which have been applied by 
Kippenhahn & Thomas to gravitational fields of gaseous sphere distorted by rotation and 
tidal forces. In hydrostatic equilibrium the equipotent~al surfaces are also surfaces of 
equipressure and equidensity. Therefore on an equipotential surface the pressure Pr, and 
the density p ~ ,  are also constant. Utilizing these concepts, Kippenhahn & Thomas obtain 
the equations governing the equilibrium structure of a rotationally and tidally distorted 
stellar model as 

dM* -- dP* 
- 4 ~ &  p*, - = - GM* 

dr* dM* 4,r:fpy 

where 

In these equations L* denotes the energy which passes per second through the 
equipotential surface $ = constant, T,  is the temperature on this equipotential surface, 
and E the rate of energy genemtion. Other symbols have usual meanings. 

The boundary conditions to be satisfied are : 

M,, = 0, Llr = 0 at centre r* = 0 

and on the free surface r* = r,, 

M, = Mo, L* = L*,, P+ = 0 (or &.), Ty = 0 (or T*,) 



318 C. Mohan arzd R. M. Sa,vena 

here MO is the total mass of the model and L,,, P*,, T*, are the values of Lp, P*, T* 
respectively on the outermost equipotential surface. 

In the case of no distortion f, = fT = I and the above equations reduce to the usual 
equations governing the equilibrium structure of an undistorted gaseous sphere. In order 
to determine the inner structure of the distorted gaseous sphere the system of equations 
(8) has to be integrated numerically subject to the boundary conditions (9). 

3. The proposed method for determining the equilibrium structure 
of the primary component of a star in a binary system 

The evaluation of the actual equipotential surfaces of a rotationally and tidally distorted 
gas sphere is quite a complicated problem. Keeping this in view, Kippenhahn & Thomas 
(1970) proposed that for the evaluation of the parameters u, v, ul, S,, IT etc., the actual 
equipotential surfaces o'f the distorted star could be replaced by appropriate Roche 
equipotential surfaces. (It may be noted that this approximation is reasonably valid for 
moshof the real stars. In fact as far back as 1933, Chandrasekhar has shown that for stars 
whose central density bears to the mean density a ratio of 100 or more, the Roche model 
of a rotating configuration will represent the actual form of the surfaces of the star within 
an error of less than 1%). 

A binary system of stars consists of a pair of stars rotating about their axes as well 
as revolving around their common centre of mass. Because of rotation and tidal effects of 
the companion, the components of binary system become rotationally and tidally 
distorted. In order to investigate the problems of structure and stability of suoh binary 
stars, the concepts of Roche equipotentials and Roche limits have often been used in 
literature. In such a system the primary star is supposed to be much more massive than 
the companion secondary star which is considered to be a point mass. The structure of 
the primary star is taken to be a Roche model in which the whole mass of the star is 
concentrated at its centre which is surrounded by an evanescent envelope in which 
density varies inversely as the square of distance from the centre. Some of the important 
results on Roche equipotentials relevant to the present study have been obtained by 
Kopal (1972) and Mohan & Singh (1982). Using these results, the system of differential 
equations (8) governing the equilibrium structure of the primary component of a star in 
binary system may be expressed as 

dT* and -= - 3 KL* P * 
dro 

-4 (radiative), 
. 1 6 r 2 ~ a c  f i  & 

1 T+ d p r  = ---- 
( I  V I P *  dro 

(convective). 
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1 
Herero=-; 

Ji* - 4 

Ji* being total potential (both rotational and tidal) in non-dimensional form at a distance 
r/ D from the centre of primary component, D being the distance between the centres of 
two components, q is the ratio of the mass of the secondary to that of the pnmmary. 
Also f ~ ,  f2, j; are certain functions of distortion parameters q, ro and n ( n  = u2/2, (0' 

being the square of the nondimensional angular velocity of rotation of the ahd 
incorporate the effects of rotation and tidal distortions on the equilibirium structure 
equations of a stellar model. 

Expressed explicitly in terms of n, q and ro these distortion parameters are 

with 

In the above expressions, terms up to second order of smallness in distortion 
parameters n and q are retained. The boundary conditions are again same as equations 
(9). 

At the free surface, r,-, = r,, where 

Ji? being the nondimensional value of the total potential 4 on the outermost 
equipotential surface of the rotationally and tidally distorted stellar model. 

It may be noted that by approximating the equipotential surfaces of a rotationally 
and tidally distorted model by Roche equipotentials, the structure of. the star is not 
approximated by the structure of a roche model. This is evident from the fact that in case 
of no distortion (n = q = 0) fi = fi =A = 1 and the system of differential equations (1 1) 
reduces to equations governing the equilibrium structure of the original undistorted star 
and not of the undistorted Roche model. 

Usual numerical methods for solving the stellar structure equations can be used to 
integrate the system of differential equations (10). However, at each step, the valves of 



the distortion parametersfi, fi, f3 must be obtained using condition (1 1). In  case the star 
under consideration is the primary component of a synchronous binary system we should 
also set n = (q + 1)/2. 

The shapes of the various equipotentials of the distorted star, the volume V* 
enclosed within various equipotential surfaces, and the surface areas Se of these 
equipotential surfaces can be obtained using equations (1 3)-(15): 

4. Proposed method for computing the eigenfrequencies of 
certain barotropic modes of oscillation 

A distorted model in a binary system is capable of performing small periodic adiabatic 
oscillations m a variety of modes of which some will be barotropic and other baroclinical. 
Whereas in the case of barotropic modes the fluid elements on an equipotential surface 
oscillate in unision and always remain so during oscillations, it is not so in the case of 
baroclinical oscillations. Barotropic oscillations of a rotationally and tidally distorted 
gaseous sphere correspond to the radial and nonradial modes of oscillations of a 
spherically symmetric gaseous sphere. It is therefore possible to use Kippenhahn & 
Thomas approach to compute the eigenfrequencies of those barotropic modes of 
oscillations of the distorted model which correspond to the radial and nonradial modes 
of oscillations of the original undistorted model. This may be done by writing down the 
equations governing the radial and nonradial modes of oscillations of its topologically 
equivalent spherical model. 

Using this approach the eigenvalue problem determining the eigenfrequencies of 
pseudo-radial modes of barotropic oscillations can be expressed as 
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where 

Also 

where 

In the absence of any distortion (n = q = 0, D = R, P ,  = P, p* = p, ro = x), the above 
equation reduces to the usual equation determining the eigenfrequencies of small radial 
oscillations of a gaseous sphere. Equation (16) forms an eigenvalue problem in the 
frequency of oscillation, a. This eigenvalue problem is of Sturm-Lioueville type having 
singularilies both at the centre and the surface of the model. It has to be solved subject to 
the boundary conditions which require q to be finite at the centre as well as at the free 
surface. The method commonly used for obtaining cigrnf~r:rl~~c~lr*ics of radial modes of 
oscillations of a spherically symmetric star can be used to solve this eigenvalue problem. 

Similarly the system of differential equations which determine the eigenfrequencies 
of the barotropic modes which correspond to the nonradial modes of oscillations of a 
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gaseous sphere are 

d7 d @  - + ( E I U ~  + E2)5 + E3q + E4Q) + - = 0 ,  
dx dx 

and 

if@ 
-+F, - 
dxz 

dm + F2(+ F37 + F4@ = 0 ,  
dx 

where the coefficients B1, B2, El ,  E2, etc., are certain functions of the variables x, n, q, P* 
explicitly given by 

l + l  I dP1 
B1 = - +--, 

x y P 1 d x  

2 . r r G p C m  dr* B2=-- ## - DX yP #  dx 

- 2 r G  p, -- 36 72 
1 + 4nx3r'.+ (T q 2 +  -nq 

YP, 15 

55 2 8 8 26 2 10 10 + en2) x6rl. t - q x r .  +. -q x ros + . . , 
45 7 3 I 
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80 2 8 8 40 C - q  7 x r . t 5 - q f x ' o r l + .  . .  

In the above expressions terms up to second order of smallness in n and q have been 
retained. Other symbols have usual meanings. 
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The eigenvalue problem posed by the system of differential equations (17) has to be 
solved subject to the boundary conditions 

a= d +  
q + 3 =  6 ,  and - = 0, . . 

2 T G PC lrO, d x  

at the centre x = 0. 
The boundary conditions at the free surface (x = 1) are 

and 

Thus in terms of the nondimensional eigenfunctions 5, q and Q,, the problem 
determining eigenfrequencies a of barotropic modes corresponding to the nonradial 
modes of the undistorted model reduces to solving the system of differential equations 
(17) subject to the boundary conditions (18) at the centre and the boundary conditions 
(19) at the free surface. Methods commonly used for computing the eigenfrequencies of 
nonradial modes of oscillation of spherically symmetric stars can be used to solve this 
eigenvalue problem. 

5. Numerical illustrations 

In this section we demonstrate the use of the method proposed in the earlier sections to 
compute the equilibrium structures and periods of certain barotropic modes of 
oscillations of certain primary components of binary stars. The undistorted models of the 
primary components of these binary systems have been assumed to have polytropic 
structures of index N equal to 1.5, 3, and 4. The computations have been performed for 
different choices of the mass ratio q and n (one half of the square of the angular velocity 
of rotation w). Both synchronous (n = (q 4- 1)/2) as well as nonsynchronous binary 
systems have been considered. The resuits are presented in tables 1-3. Values of 8, the 
values of polytropic index 8 on the various equipotential surfaces inside the distorted 
models are given in table 1. Volumes and surface areas of some of these distorted models 
are given in table 2. The shape of the outermost equipotential surface of the primary 
component of a synchronously rotating system (for N = 3.0, q = 0.2, and n = 0.6) is 
given in table 2(a). Whereas the eigenfrequencies of the barotropic modes corresponding 



Distorted stars in binaries 325 

Table 1. Values of Blufor rotatlonally and t~dally distorted polytropes as prlmary components of b~nary sy\tenls 

Und~storted Nan-synchronous Synchronous blnary system5 
b~nary 

n = 0.0 n = 0  1 n = O 5 5  ti = 0 6  
x = r ~ /  r, q = 0.0 q = 0.2 q = O l  q = 0.2 

Values of 19$ for N = 1 5 
0.0 1 ooooo I OOM30 1 OOOOO I 00000 
0. I 0.97797 0.978 14 0 97887 0 97895 
0.2 0 91446 0 91509 0.9 178 1 0 9181 1 
0.4 0 69488 0 69673 0 7048 1 0 70570 
0.5 0 56067 0 56291 0 57276 0.57384 
0.6 0 42490 0 42720 0 43736 0 43849 
0.8 0 18112 0 18250 0 18880 0 18949 
0.9 0 08218 0.08283 0 08592 0 08623 
I .o 0 00000 0 00000 0.00000' 0 00000 

Values of nr  for N = 3 0 
0.0 1.00000 1 .ooO0o 1.000000 1 00000 
0.1 0.92600 0 92627 0.92749 0 92758 
0.2 0.75322 0.75397 0.75730 0 75755 
0.4 0 40590 0 40686 041118 0.41148 
0.5 0.28402 0 28482 0.28837 0.28860 
0.6 0.19316 0.19374 0.19635 0.19649 
0.8 0 07313 0 07334 0 07434 0 07434 
0 9 0 0325 1 0 03260 0 03304 0 03300 
1 .o 0.000M1 0.00000 0.00000 0.oOoM) 

Values of Br for N = 4.0 
0.0 1 .ooooO 1.00000 1 .ooO00 1 00000 
0. I 0.73999 0.74020 0.74123 0.74128 
0.2 0.44089 0.44114 0.44234 0 44240 
0.4 0.17893 0.17906 0.17966 0.17967 
0.5 0.11984 0.11992 0.12030 0.12030 
0.6 0.07999 0.08004 0.08027 0.08026 
0.8 0.0300 1 0.03001 0.03006 0.03004 
0.9 0.01334 0.01332 0.01333 0.01332 
I .o 0.00000 0.00000 0.00000 0.00000 

Table 2. Volumes and surface areas of rotatlonally and tidally distorted polytropes as primary components of a 
blnary system 

N =  1.5 N = 3.0 N=4.0 
n 9 

Volume Surface Volume Surface Volume Surface 
x lov2 x ~ o - ~  x ~ o - )  x lo-= x lo-) x lo-' 

Non-synchronous binary system 

Synchronous binary systems 
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Table 2a. Shape of the outermost equ~potentlal surface of the primary component of a synchronously rotatlng 
binary system for (N = 3.0, q = 0.2 and n = 0.6) 

Section by plane through the axis of rotation Section by plane through the axis of rotat~on 

and the Ime jo~ning the mass centres of the and perpendicular to the hne jolnlng the mass 

companions (4 = 0) centres of the primary (4 = 90°) 

(Shape is symmetrical about plane through the centres of mass and perpendicular to axis of rotat~on). 

Table 3 s .  Eigenfrequencles w2 (= r), d 02/ G M ~ )  for the fundamental mode (mi) and the first mode (w',) of ~seudo-  
radial oscillations for (y = 513) 

Undistorted model 

Non-synchronous binary systems 

Synchronous binary systems 

to the radial modes of oscillation are presented in table 3(a), the eigenfrequencies 
corresponding to the nonradial modes of oscillations are presented in table 3(b). 

6. Concluding remarks 

The techniques proposed in this paper can be used to compute the equilibrium structure 
and periods of certain batotropic modes of oscillations of stars which are the primary 
components of binary systems. These techniques can be easily incorporated into the 
computer software commonly available for computing the equilibrium structure and 
periods of radial and nonradial modes of oscillations of the spherically symmetric stars. 

The techniques however have certain limitations. These can only be used in the case 
of the primary component of a binary system. It is also assumed that the mass of the 
secondary and the angular velocity of rotation are not unduly large so that terms beyond 
second order of smallness in q and n can be neglected. It is also assumed that the 
deviation of the shape of the primary star under investigation from spherical symmetry is 
not too large and that it is reasonably centrally condensed so that its equipotential 
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Table 3b. Eigenvalues w2 (= rb, d U'IGMO) for the nonradial modes of polytrop~c models of indlces 1 5,3 and 
4 for l = 2  and y = 5 / 3  

Undlstorted Non-synchronous b~nary systems Synchronous binary 
system 

Mode 
n = 0.0, n = 0  1, n =O2, n = 0 55, 
q = 0.0, q = 0.1, q = 0 2 ,  q =O.I, 
k = 1.0 k = 0 5  k = 0.5 k = 0.5 

Polytrope of mdex 1.5 

Polytrope of index 3 

Polytrope of Index 4 

(Numbers shown In parenthesis along the elgenfrequencies are the number o f  nodes appearing in the 
eigenfunctions (; and g. In the case of the entries in a row where no such nodes are shown lnd~cates that these 
eigenfrequencies also have the same number of nodes in 5 and 7 as are shown m the second column of this table 
for the undistorted case). 

surfaces can be approximated by appropriate Roche equipotential surfaces. These 
approximations are in fact valid in the case of a majority of the observed binary systems. 
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Discussion 

Kaul : Have these models been applied to close binary systems? 
Mohan : The method can be applied to close binary systems as long as the basic 
assumptions of the Roche model are not violated. 
Kaul : Have they been compared with other models? 
Mohan : Yes, we have compared our results with those obtained by other authors in the 
case of rotating stars (for which the results are normally ava~lable) by taking q = 0. The 
results by our method compare well with the results obtained by other methods used for 
incorporating effects of rotation. This has been shown in one of our earlier publications 
which has appeared in the Ap.  Sp.  Sci. 1985 issue. We are not aware ot any results in 
whlch cornb~ned effects of rotation and tidal distortions have been included In theoretical 
investigations. 
Bhat : Have the results of your calcu\ations been applied to a physical systeni! How 
would the results be affected for a contact binary system? 
Mohan : The results have been applied to 16 Lac, which is the primary component of a 
binary system and is also a pulsating variable. Fitch has reported three of its observed 
frequencies. We tried to see if any of the three polytropic models considered by us, 
namely n = 1.5, 3 and 4, could give pulsation periods which are close to the observed 
periods. It was found that even though none of the three polytropic models giye all the 
three observed periods, but a better fit could perhaps have been achieved for a polytropic 
index between three and four. 

As regards the second part of the question the method should be used with caution, 
since we assume that the primary is within its Roche Lobe and the secondary is a point 
mass not on the surface of the primary but some distance away from it. 
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