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Effects of rotation and tidal distortions on the equilibrium
structure and periods of oscillations of stars in binary systems

C. Mohan & R. M. Saxena*

Department of Mathemances, University of Roothee, Roorhee 247 667

Abstract. We present methods for computing the equilibrium structures and
periods of barotropic modes of oscillations of stars which are the primary
components of binary systems. The methods utilize the averaging technique of
Kippenhahn & Thomas and the concepts of Roche equipotentials to
incorporate rotational and tidal effects. The use of the methods in obtaining
the equilibrium structures and cigenficynencies of barotropic modes of
oscillations of certain polytropic models of stars (assumed to be the pnmary

components of synchronous as well as non-synchronous binary systems) 1s
also illustrated
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Introduction

The equilibrium structure of a star in a binary system is not perfectly spherically
symmetric. The rotational forces as well as the tidal forces caused by the gravitational
pull of the companion star, distort its otherwise spherically symmetric configuration.
Some of the stars in binary systems such as 16 Lac (Fitch 1969) are also known to be
pulsating stars. Pulsation periods of such stars in binary systems are also influenced by
the effects of rotational and tidal forces.

The problem of determining the equilibrium structure of a star under the combined
influence of rotational and tidal forces and determining its eigen frequencies of
oscillations is mathematically quite a complex problem. Approximate methods have
generally been applied in which the effect of only one of these two types of distortional
forces is considered. Kopal (1972, 1974) developed in detail the concept of Roche
equipotentials to study the binary systems. Kippenhahn & Thomas (1970) proposed a
method for determining the equilibrium structures of rotationally and tidally distorted
stars. Mohan & Saxena (1983) used the Kippenhahn & Thomas approach in conjunction
with certain results on Roche equipotentials as obtained by Kopal (1972, 1974) and
Mohan & Singh (1982) to obtain the equilibrium structures of rotationally and /or tidally
distorted polytropic models of the stars. They also used this approach to determine the
eigen frequencies of radial and nonradial modes of oscillations of rotationally and (or)
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tidally distorted polytropic models of the stars by assuming such oscillations to be
barotropic (Mohan & Saxena [985). Later Mohan & Agarwal (1987) also used this
approach to determine the equilibrum structures and periods of oscillations of certain
rotationally and/or tidally distorted composite models of the stars.

In this paper we present the method based on this approach for determining the
equilibrium structures and periods of barotropic modes of oscillations of the primary
components of stars in binary systems. The use of this technique mn determmmng the
equilibrium structure and periods of pulsations of certain stars, assumed to be primary
components of binary systems, 15 also illustrated.

2. Kippenhahn and Thomas approach for determining the equilibrium structure of
rotationally and tidally distorted stellar models

In order to study the effects of rotation and tidal distortions on the equilibrium structure
of a gaseous sphere Kippenhahn & Thomas (1970) define certain topologically equivalent
spherical surfaces to correspond to the actual equipotential surface of a rotationally and
tidally distorted stellar model. [hey define on these equivalent spherical surfaces
quantities such as f, g, etc. which denote certain averages of the quantitics /, g
respectively on the actual equipotential surfaces. If  denotes the total potential
(gravitational, rotational, and tidal) of a rotationally and tidally distorted model at an
arbitrary point (x, y, z) then ¢ (x, y, z) = const. is an equipotential surface. Let ¥, be the
volume enclosed and S, the surface area of this equipotential surface iy = constant. Then
in analogy with a sphere, Kippenhahn & Thomas define a variable r, by the relation

4
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r, thus defined is then used to denote the radius of the topologically equivalent spherical
surface. They also define the mean value of any function f(x, y, z) over the equipotential
surface i = constant by the relation
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where do denotes the surface element of the equipotential surface = constant. f thus
defined over the topologically equivalent spherical surface is used to represent the actual
value of f over the equipotential surface y = constant. Clearly f is a function of ¢ only
and can be determined for each equipotential surface i = constant. Also by definition

Sy =/_ do. (3
¥ = const,

Corresponding to the usual definition of g, the acceleration due to gravity, Kippenhahn
& Thomas define a function g(x, y, z) by the relation

=9y
’—‘E! ...(4)

dn being the distance between two neighbouring equipotential surfaces ¢ = constant and
¥ + diy = constant. The distance dn in general is not constant. Thus using equation (2)
the mean values of g and g’ respectively are defined by the relations
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The mean values g and 3™’ defined over the equipotential surface | = constant are clearly
functions of ¢ only and represent the value of g, g over the topologically equivalent
spherical surface.
The volume 4V, enclosed between the equipotential surfaces i = constant and
Y + diy = constant is obtained as

AV = fvzconst dn da=ady fizcons (A)" do = Sug™'dy. ()]

Kippenhahn & Thomas (1970) also define non-dimensional parameters u, v, w as
Sy - Ty -1 GMy

=— =g — =7 -5 (7

U Vo8, and w =g Z ™

where M, is the mass enclosed by the equipotential surface y = constant.

Thus the distorted equipotential surface r = constant is regarded as topologically
equivalent to a spherical surface of radius r, for which the various quantities are defined
by the above relations. (1t may be noted that if i is the gravitational potential of a sphere
then iy = constant are spherical surfaces with r, = r and therefore, u = 1. Also on these
spherical surfaces g = GM,/r} is constant and therefore v and w are also constant and
equal to one).

Equations (1)-(7) are purely mathematical definitions which have been applied by
Kippenhahn & Thomas to gravitational fields of gaseous sphere distorted by rotation and
tidal forces. In hydrostatic equilibrium the equipotential surfaces are also surfaces of
equipressure and equidensity. Therefore on an equipotential surface the pressure Py, and
the density p, are also constant. Utilizing these concepts, Kippenhahn & Thomas obtain
the equations governing the equilibrium structure of a rotationally and tidally distorted
stellar model as

dMy dP. GM,
= 4417 = -
dr, mr po aM, anh, T
dL, dT. 3KLs
= =— .8
and aMm, © dM, 64n’a C T rth’ ®

where
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In these equations L, denotes the energy which passes per second through the
equipotential surface iy = constant, T, is the temperature on this equipotential surface,
and ¢ the rate of energy generation. Other symbols have usual meanings.

The boundary conditions to be satisfied are:

My=0, Ly=10 at centre r, =0
and on the free surface ry = ry,

M¢ =M, L= Ly, P, =0(or Pr“), Ty=0 (or T.h) . .(9)
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here M, is the total mass of the model and L., Pyus, T, are the values of Ly, Py, Ty
respectively on the outermost equipotential surface.

In the ease of no distortion f, = fr = | and the above equations reduce to the usual
equations governing the equilibrium structure of an undistorted gaseous sphere. In order
to determine the inner structure of the distorted gaseous sphere the system of equations
(8) has to be integrated numerically subject to the boundary conditions (9).

3. The proposed method for determining the equilibrium structure
of the primary component of a star in a binary system

The evaluation of the actual equipotential surfaces of a rotationally and tidally distorted
gas sphere is quite a complicated problem. Keeping this in view, Kippenhahn & Thomas
(1970) proposed that for the evaluation of the parameters u, v, w, f,, fr etc., the actuat
equipotential surfaces of the distorted star could be replaced by appropriate Roche
equipotential surfaces. (It may be noted that this approximation is reasonably valid for
most.of the real stars. In fact as far back as 1933, Chandrasekhar has shown that for stars
whose central density bears to the mean density a ratio of 100 or more, the Roche model
of a rotating configuration will represent the actual form of the surfaces of the star within
an error of less than 1%).

A binary system of stars consists of a pair of stars rotating about their axes as well
as revolving around their common centre of mass. Because of rotation and tidal effects of
the companion, the components of binary system become rotationally and tidally
distorted. In order to investigate the problems of structure and stability of such binary
stars, the concepts of Roche equipotentials and Roche limits have often been used in
literature. In such a system the primary star is supposed to be much more massive than
the companion secondary star which is considered to be a point mass. The structure of
the primary star is taken to be a Roche model in which the whole mass of the star is
concentrated at its centre which is surrounded by an evanescent envelope in which
density varies inversely as the square of distance from the centre. Some of the important
results on Roche equipotentials relevant to the present study have been obtained by
Kopal (1972) and Mohan & Singh (1982). Using these results, the system of differential

equations (8) governing the equilibrium structure of the primary component of a star in
binary system may be expressed as

dM.
——=4xD’ pur}
dl'o wD P Oﬁy
dPy _ _ GM, y
dro = "“‘—D,% P2,
dL
‘7'.:" = 4ne D* py 15 fi,
Blld dT& - 3KL¢

= - . By iati
dro 167°Dac T 7 /i (radiative),

=(1.__1.1"'_ dpy

convective). ...(10
> o “an ( ) (10)
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* being total potential (both rotational and tidal) in non-dimensional form at a distance
r/ D from the centre of primary component, D being the distance between the centres of
two components, g is the ratio of the mass of the secondary to that of the priminary.
Also fi, f, f; are certain functions of distortion parameters g, ro and n(n = w?/2, &
being the square of the non-dimensional angular velocity of rotation of the primbry) ahd
incorporate the effects of rotation and tidal distortions on the equilibirium structure
equations of a stellar model.

Expressed explicitly in terms of »n, g and r, these distortion parameters are

L= l+4nr3+(%éq2+-z—§nq+%§;inz)r3+§7§q2r8+2?6-q2r(',°—...,
f2=l—(§q2+lian+:—85n2)rg—%q2r5—g-qzr(l)o—...,
fi= l+—4£- o+(—§-q2+%nq+242?4n2)r8
+%¢%+%fﬁ+”q (1D
with
rh=r; [l——zsirf— %qz+%nq—%n2) r"“"—,—57-q2r,‘;a

2
—qurfo—....].

In the above expressions, terms up to second order of smallness in distortion
parameters n and g are retained. The boundary conditions are again same as equations

9).
At the free surface, ro = r,s where

1
W —q’
¥ being the nondimensional value of the total potential ¢ on the outermost
equipotential surface of the rotationally and tidally distorted stellar model.

It may be noted that by approximating the equipotential surfaces of a rotationally
and tidally distorted model by Roche equipotentials, the structure of, the star is not
approximated by the structure of a roche model. This is evident from the fact that in case
of no distortion (n = q = 0) fi =, = f; = | and the system of differential equations (11)
reduces to equations governing the equilibrium structure of the original undistorted star
and not of the undistorted Roche model.

Usual numerical methods for solving the stellar structure equations can be used to
integrate the system of differential equations (10). However, at each step, the values of

T =

- (12)
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the distortion parameters fi, f3, fy must be obtained using condition (11). In case the star
under consideration is the primary component of a synchronous binary system we should
also set n=(g+ 1)/2.

The shapes of the various equipotentials of the distorted star, the volume V,
enclosed within various equipotential surfaces, and the surface areas Sy of these
equipotential surfaces can be obtained using equations (13)-(15):

r¢=Dro[l+ r0+(5q+ nq+ )ro

+ = q2r0+ g're’ + .], .. .(13)
4 12 8 32
Vw=§7TD3r3[1+2nr3+(?q2+gnq+-§n2)r3
15 2_8 210
+7qro+2qro +...], _(14)
22 4n 7 3 14 56 5
S, =4er'r(‘)r¢=Dr(,[l+———r:,+(g q’+Enq+l—5n‘) "
9 2r3+ qZ 10 (15)
7q 79 N i)

4. Proposed method for computing the eigenfrequencies of
certain barotropic modes of oscillation

A distorted model in a binary system is capable of performing small periodic adiabatic
oscillations 1n a variety of modes of which some will be barotropic and other baroclinical.
Whereas in the case of barotropic modes the fluid elements on an equipotential surface
oscillate in unision and always remain so during oscillations, it is not so in the case of
baroclinical oscillations. Barotropic oscillations of a rotationally and tidally distorted
gaseous sphere correspond to the radial and nonradial modes of oscillations of a
spherically symmetric gaseous sphere. It is therefore possible to use Kippenhahn &
Thomas approach to compute the eigenfrequencies of those barotropic modes of
oscillations of the distorted model which correspond to the radial and nonradial modes
of oscillations of the original undistorted model. This may be done by writing down the
equations governing the radial and nonradial modes of oscillations of its topologically
equivalent spherical model.

Using this approach the eigenvalue problem determining the eigenfrequencies of
pseudo-radial modes of barotropic oscillations can be expressed as

An,q, ro) [ B(n, g, rn)— C(n, g, ro) ];‘j‘_’}

DO Py H
+ [ == 3_____ =
[ YPy ( ¥ )r% Elmn g, "’)] n=0, .. (16)
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In the absence of any distortion (n =g =0, D= R, Py = P, p,= p, ry = x), the above
equation reduces to the usual equation determining the eigenfrequencies of small radial
oscillations of a gaseous sphere. Equation (16) forms an eigenvalue problem in the
frequency of oscillation, g. This eigenvalue problem is of Sturm-Lioueville type having
singularities both at the centre and the surface of the model. It has to be solved subject to
the boundary conditions which require 5 to be finite at the centre as well as at the free
surface. The method commonly used for obtaining cigenfieguencics of radial modes of
oscillations of a spherically symmetric star can be used to solve this eigenvalue problem.

Similarly the system of differential equations which determine the eigenfrequencies
of the barotropic modes which correspond to the nonradial modes of oscillations of a
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gaseous sphere are

dr 1 1
T B (B2 ~ Bg)n = B,

d d®
2D L (B + BN+ Eyp+ Esp + —= 0, (17
dx dx
and
Fo d
_2;2—+ F, —£+ Fl{+ Fn+ F®=0,

where the coefficients B;, By, Ey, E, etc., are certain functions of the variables x, n, g, Py
explicitly given by

=l+l+ 1 dPy
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In the above expressions terms up to second order of smaliness in n and ¢ have been
retained. Other symbols have usual meanings.
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The eigenvalue problem posed by the system of differential equations (17) has to be
solved subject to the boundary conditions

2

o dd
+p=—-——f and — =0, .. .(18)
nt e R dx

at the centre x=20.
The boundary conditions at the free surface (x =1) are

36 72 864
3 3 2 = + — -
2rercp¢D2ros[l+4nro-+(5q+15nq BT
+£5-qzris+géqzré?+ ]n+*—=0
7
e ‘I’ 1+1 drn, 2DP, dre
+ ® + =0,
dx [l Iy dx] Pr, dx

and
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48 36 40
[z+(1+ l)[1+2nrm+(5 ¢+ ——-—nz)rﬁ — ¢'r
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20, 10 2pv +__’L + {4 40 +_2_39_2 6
+3qr°.+...}d>+pcrm[l 375,; (q lan rz)ros
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Thus in terms of the nondimensional eigenfunctions {, n and @, the problem
determining eigenfrequencies o of barotropic modes corresponding to the nonradial
modes of the undistorted model reduces to solving the system of differential equations
(17) subject to the boundary conditions (18) at the centre and the boundary conditions
(19) at the free surface. Methods commonly used for computing the eigenfrequencies of
nonradial modes of oscillation of spherically symmetric stars can be used to solve this
eigenvalue problem.

5. Numerical illustrations

In this section we demonstrate the use of the method proposed in the earlier sections to
compute the equilibrium structures and periods of certain barotropic modes of
oscillations of certain primary components of binary stars. The undistorted models of the
primary components of these binary systems have been assumed to have polytropic
structures of index N equal to 1.5, 3, and 4. The computations have been performed for
different choices of the mass ratio ¢ and n (one half of the square of the angular velocity
of rotation w). Both synchronous (n= (g + 1)/2) as well as nonsynchronous binary
systems have been considered. The results are presented in tables 1-3. Values of § the
values of polytropic index @ on the various equipotential surfaces inside the distorted
models are given in table 1. Volumes and surface areas of some of these distorted models
are given in table 2. The shape of the outermost equipotential surface of the primary
component of a synchronously rotating system (for N=130, g=0.2, and n=10.) is
given in table 2(). Whereas the eigenfrequencies of the barotropic modes corresponding
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Table 1. Values of 8y for rotationally and tidally distorted polytropes as primary components of binary systems

X = o) Fae

0.0
0.1
0.2
0.4
0.5
0.6
0.8
0.9
1.0

0.0
0.1
0.2
0.4
0.5
0.6
0.8
09
1.0

Undistorted Non-synchronous

binary
n=0.0 n=01
q=10.0 g=0.2

Values of 8y for N=15
1 00000 1 00000
0.97797 097814
091446 091509
0 69488 0 69673
056067 0 56291
0 42490 042720
018112 0 18250
008218 0.08283
0 00000 0 00000

Values of 7y for N=30
1.00000 1.00000
0.92600 092627
0.75322 0.75397
0 40590 0 40686
0.28402 0 28482
0.19316 0.19374
007313 007334
003251 0 03260
0.00000 0.00000

Values of 84 for N=4.0
1.00000 1.00000
0.73999 0.74020
0.44089 0.44114
0.17893 0.17906
0.11984 0.11992
0.07999 0.08004
0.03001 0.03001
0.01334 0.01332
0.00000 0.00000

Synchronous binary systems

n=055
g=01

I 00000
097887
0.91781
0 70481
057276
043736
0 18880
0 08592
0.00000°

1.000000
0.92749
0.75730
041118
0.28837
0.19635
007434
003304
0.00000

1.00000
0.74123
0.44234
0.17966
0.12030
0.08027
0.03006
0.01333
0.00000

n=06
g =02

1 00000
097895
091811
070570
0.57384
0 43849
0 18949
008623
0 00000

1 00000
092758
0 75755
0.41148
0.28860
0.19649
007434
003300
0.00000

1 00000
0.74128
044240
0.17967
0.12030
0.08026
0.03004
0.01332
0.00000

Table 2. Volumes and surface areas of rotationally and tidally distorted polytropes as primary components of a

binary system

0.00

0.10
0.20

0.55
0.60

0.00

0.20
0.20

0.10
0.20

N=

Volume
% 1072

2.0432

Non-gynchronous binary system

2.0770
2.1080

Synchronous binary systems

2.2214
2.2437

1.5 N=
Surface Volume
X107 X 10°

Undsstorted

1.6776 1.37474

1.6960 1.40507
1.7128 143461

1.7744 1.54860
1.7862 1.57089

3.0

Surface

X 107

5.9774

6.0664
6.1509

6.4754
6.5375

N=4.0
Volume Surface
X 107 X 107
14.06254 2.81785
14.43935 2.86744
14.80513 291559
16.25581 3.10452
16.53994 3.14066
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Table 2a. Shape of the outermost equipotential surface of the primary component of a synchronously rotating
binary system for (N =30, g=0.2 and n= 0.6)

Section by plane through the axis of rotation Section by plane through the axis of rotation

and the Ime jorming the mass centres of the and perpendicular to the line joining the mass

companions (¢ = 0) centres of the primary (¢ = 90°)
* r/D 6° r/D [/ r/D & r/D
0 0.48927 0 0.48927 0 048927 0 048927
15 049078 =15 049392 15 049157 —-15 049157
30 0.49874 =30 0 50403 30 049821 =30 0.49821
45 0.50719 —45 0.51071 45 0.50813 ~45 050813
60 0.53796 ~60 0.53320 60 0.51903 -60 0.51903
15 0.56269 =15 0 54552 75 0.52762 ~175 0.52762
90 0.57366 =90 0.55032 90 0.53089 =90 0.53089

(Shape is symmetrical about plane through the centres of mass and perpendicular to axis of rotation).

Table 3a. Eigenfrequencies w® (= r% D’ a*/ GM,) for the fundamental mode (w}) and the first mode (") of pseudo-
radial oscillations for (y =5/3)

N=15 N=30 N=40
n q k .
wh o’ wh Wi wh @
Undistorted model
0.00 0.00 1.0 2.07060 12.5325 9.2547 16,9831 15 1490 24 9452
Non-synchronous binary systems
0.10 0.20 0.5 2.6486 12.1236 9.0700 16.4804 14.7204 24.1236
0.20 0.20 0.5 2.5938 11.7414 8.8381 16.0026 14.2981 23.3390

Synchronous binary systems

0.550 0.100 0.5 2.4024 10.3896 8.2133 14.2748 12.7428 20.4361
0.600 0.200 0.5 2.3704 10,1218 8.0942 13.9438 12.4463 19.8369

to the radial modes of oscillation are presented in table 3(a), the eigenfrequencies
corresponding to the nonradial modes of oscillations are presented in table 3(b).

6. Concluding remarks

The techniques proposed in this paper can be used to compute the equilibrium structure
and periods of certain barotropic modes of oscillations of stars which are the primary
components of binary systems. These techniques can be easily incorporated into the
computer software commonly available for computing the equilibrium structure and
periods of radial and nonradial modes of oscillations of the spherically symmetric stars.

The techniques however have certain limitations. These can only be used in the case
of the primary component of a binary system. It is also assumed that the mass of the
secondary and the angular velocity of rotation are not unduly large so that terms beyond
second order of smallness in ¢ and n can be neglected. It is also assumed that the
deviation of the shape of the primary star under investigation from spherical symmetry is
not too large and that it is reasonably centrally condensed so that its equipotential
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Table 3b. Eigenvalues o’ (= rts D’ 0°/ GMy) for the nonradial modes of polytropic models of indices ! 5, 3 and
4 for /=2 and y=5/3

Undistorted Non-synchronous binary systems Synchronous binary
system
Mode
n=0.0, n=01, n=02, n=023535,
g = 0.0, qg=0.1, g=02, g=0.1,
k=10 k=05 k=0.5 k=05
Polytrope of index 1.5
D3 41.2978 (3-3) 399971 38.5917 34.2883
D2 23.5164 (2-2) 227365 21.8989 19.3390
p1 10.2869 (1-1) 9.9421 9.5729 8.4433
f 2.1204 (0-0) 2.0542 1 9841 1 7644
Polytrope of index 3
Ds 414721 (3-3) 40.0323 38.4805 33 5956
P 26 7220 (2-2) 25.8206 24 8508 21.7848
D 15.2629 (1-2) 14.7918 14.2883 12.8817
I 8.1749 (0-0) 8 0304 7.8797 7 4648
£ 49152 (1-1) 4.8733 48314 47324
o 2.8320 (2-2) 2.8125 27923 27230
2 1.8335 (3-3) 1.8202 1.8087 1.7641
Polytrope of index 4
P 62,8802 (5-5) 61.0969 59.1526 53.1433
P 50.8106 (4-4) 49 7159 48.5281 44.6485
(4-6) (4-6) (4-6)
Pt 42,1344 (3-5) 41.2448 40,2439 36.9333
(5-5) (5-5) (5-5)
b2 34.3261 (4-4) 33.6892 32.9768 30.4995
{4-6)
& 27.6387 (3-5) 27.1346 26.6083 24.9989
(5-5) (5-5)
& 230039 (4-4) 227000 22.3212 20.8000
(4-8) (4-6)
& 18.3057 (5-5) 18.1311 17 9549 17.4096

(Numbers shown in parenthesis along the eigenfrequencies are the number of nodes appearing in the
eigenfunctions [ and 7. In the case of the entries in a row where no such nodes are shown indicates that these
eigenfrequencies also have the same number of nodes in { and 7 as are shown 1w the second column of this table
for the undistorted case).

surfaces can be approximated by appropriate Roche equipotential surfaces. These
approximations are in fact valid in the case of a majority of the observed binary systems.
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Discussion

Kaul : Have these models been applied to close binary systems?
Mohan : The method can be applied to close binary systems as long as the basic
assumptions of the Roche model are not violated.
Kaul : Have they been compared with other models?
Mohan : Yes, we have compared our resuits with those obtained by other authors in the
case of rotating stars (for which the results are normally available) by taking ¢ = 0. The
results by our method compare well with the results obtamned by other methods used for
incorporating effects of rotation. This has been shown in one of our earlier publications
which has appeared in the Ap. Sp. Sei. 1985 issue. We arc not aware of any results in
which combined effects of rotation and tidal distortions have been included 1n theoretical
investigations,
Bhat : Have the results of your calculations been applied to a physical system? How
would the resuits be affected for a contact binary system?
Mohan : The results have been applied to 16 Lac, which 1s the primary component of a
binary system and is also a pulsating variable. Fitch has reported three of its observed
frequencies. We tried to see if any of the three polytropic models considered by us,
namely n = 1.5, 3 and 4, could give pulsation periods which are close to the observed
periods. It was found that even though none of the three polytropic models give all the
three observed periods, but a better fit could perhaps have been achieved for a polytropic
index between three and four.

As regards the second part of the question the method should be used with caution,
since we assume that the primary is within its Roche Lobe and the secondary is a point
mass not on the surface of the primary but some distance away from it.
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