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Some Rotational Effects in Black Hole Spacetimes 

Abstract: 

We study some of the rotational effects such as gyroscopic pr(,(,(,5sion, the general 

relativistic analogues of inertial forces and to gravito-electromagllctism in black hole 

spacetimes and establish interrelations among them. The phenOllH'1l011 of gyroscopic 

precession is not only important from the conceptual point of view but also it has 

been proposed as a test to the general theory of relativity itself. \-Ve lise the covariant 

Frenet-Serret formalism for gyroscopic precession as given by Iyer and Vishveshwara. 

Recently, there has been considerable interest in the general relativistic analogues 

of inertial forces, especially the centrifugal force and its reversal. We study inertial 

forces using the covariant formalism given by Abramowicz, Nurow:-;ki and \Vex. The 

similarity between gravity and electromagnetism allows one to define the concept of 

gravito-electromagnetism. We use the properties of Killing vectors in order to define 

gravito-electromagnetic fields. We define gravito-electric and gravito-magnctic fields 

with respect to the irrotational congruence in an axially symmetric stationary space­

time. We establish the direct covariant relations between these rotational effects in an 

axially symmetric stationary spacetime. One of the important results which emerged 

from these relations is that of the simultaneous reversal of gyroscopic precession and 

centrifugal force in general static spacetimcs. Previolls studies indicated this by eom­

puting the centrifugal force and gyroscopic precessioIl for specific examples. From 

direct relations we also show that neithC'r centrifugal force nor gyroscopie precession 

reversal occurs at the photon orbits in stationary spacetimes. In order to get more 

physical insight, we also apply this formalism to the black hole space times such as 

the Kerr-Newman and the Ernst spaeetimes. In static spacetimes such as the Ernst, 



Reissner-Nordstrom and Schwarzschild spacetimes we observe that reversal of both 

gyroscopic precession and centrifugal force occurs at the circular photon orbits. In 

case of stationary spacetimes such as the Kerr-Newman and Kerr spacetimes rever­

sal of gyroscopic precession and centrifugal force occurs at different points in the 

spacetime. 

The concept of inertial forces from Newtonian mechanics was generalized to the 

general theory of relativity in order to study the motion of test particles. In Newtonian 

mechanics the concept of potential which defines the force is used to express the 

gravitational field through the Laplace or the Poisson equations. If the fiducial test 

particle is moving along the Killing trajectories such as a circular orbit in axially 

symmetric stationary spacetimes, one observe the fact that the inertial forces are 

proportional to the gradient of a scalar function. We express the Einstein equations 

in axially symmetric stationary spacetimes in terms of inertial forces. For source 

free axially symmetric stationary spacetimes, we use the formalism given by Geroch 

in order to express field equations in terms of inertial forces. Hansen and Winicour 

extended the Geroch formalism for field equations with source terms. We use this 

formalism for expressing the field equations in terms of inertial forces. 
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Chapter 1 

Introduction 

1.1 Introduction 

The existence of black holes is one of the most interesting predictions of the gen­

eral theory of relativity. In contrast to the Newtonian solution to the gravitation 

field of a point mass, the Schwarzschild solution to the Einstein equations exhibits 

novel physical effects such as the existence of the event horizon and the circular null 

geodesic. Physical phenomena in the strong gravitational fields of black holes are 

not only interesting from the conceptual point of view but are also of astrophysical 

importance. There has been considerable amount of studies in the area of black hole 

physics over the past three decades. These include, mainly, the geometric structure 

and physical properties of black holes. In addition, rotation induces interesting as well 

as intriguing physical effects both in Newtonian mechanics and the general theory of 

relativity. In relativity, these effects are built into the structure of spacetime, such as 

that of the rotating black hole. In the case of the Kerr black hole, rotation separates 

the stationary limit from the event horizon and giv~s rise to the ergo-region. This 

leads to several interesting effects such as the Penrose process and super-radiance. 

In this thesis WC' study some of the rotational effects in stationary, axially symmetric 

1 
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spacetimes, in particular those of black holes. These are gyroscopic precession, the 

general relativistic analogues of inertial forces and gravito-electromagnetism. We in­

vestigate these effects in the general case of axially symmetric, stationary spacetimes 

and apply them to the black hole spacetimes as specific examples. We also establish 

the interrelations among these rotational effects. These formalisms are also applicable 

to the case of ultra compact objects whose radii are very close to the event horizon. 

We shall now give a brief outline of these effects. 

1.2 Inertial Forces 

Inertial forces give very simple physical descriptions of dynamical systems involv­

ing non-inertial frames in Newtonian mechanics. In order to apply Newton's laws 

within non-inertial frames such as rotating frames, one needs to add suitable force 

terms. These forces are called pseudo-forces or inertial forces. Inertial force terms 

are generated when Newton's laws are transformed from a global inertial frame to a 

non-inertial frame. Newtonian dynamics can be fully described using inertial frames. 

However, non-inertial frames, hence inertial forces cannot be avoided in many appli­

cations. The well known example of an inertial force is the centrifugal force, which 

one experiences in day-to-day life. In order to gain further insight, we consider a 

rotating frame as an example of non-inertial frames. The equation of motion of a test 

particle in a non-inertial frame can be decomposed into the following terms, 

dv dvo . 
m dt = mdi + mr x w + 2mv x w + m(w x r) x w. 

where w is the angular velocity of the frame. The first term on the right is the 

acceleration of the test particle in the rotating frame. Other terms correspond to 

pseudo-forces or inertial forces called, Euler force, Coriolis force, and centrifugal force 

respectively. The Euler force arises because of the change in the angular velocity of 
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the rotating frame itself and vanishes in the case of uniformly rotating frames. The 

Coriolis force arises because of the relative motion of the test particle with respect to 

the rotating frame. When one considers the earth as an example of a rotating frame, 

the Coriolis force give rise to several interesting physical effects. These effects are 

important when the relative velocity of test particles are significant, such as in the 

case of ocean currents and wind flows. For a test particle moving along a meridian of 

the earth with a constant angular velocity, it can be shown that the Corio lis force acts 

along the eastward direction in the northern hemisphere, along the western direction 

in the southern hemisphere and vanishes on the equator. This phenomenon manifests 

itself in the case of an imaginary river flowing from the south pole to the north pole 

by exerting more pressure on the eastern bank in the northern hemisphere and on 

the western bank in the southern hemisphere. In the case of wind flow one of the 

effects of Coriolis force is known as Buys-Ballot law, according to which the direction 

of wind velocity is not along the pressure gradient but is deviated considerably to 

the right in the northern, to the left in the southern hemispheres respectively. The 

Corio lis force vanishes if the particle is at rest with respect to the accelerated frame. 

These are some of the physical effects which can be explained using the concept of 

inertial forces. However, since these forces are merely due to the reference system, 

by choosing suitably a generalized coordinate system one can avoid referring to these 

inertial forces. 

One of the very important properties of inertial forces is that they are always 

proportional to the mass of t he particle . The same is true of gravitational force as 

well. This striking similarity of the two gave rise to the equivalence principle, which 

states that t.he properties of the motion in a non-inertial system are the same as th()se 

in an inertial system in the pn~senc() of a gravitational field. Hence, in a local inertial 

frame the gravitational and inertial forces are indistinguishable. In the general theory 
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of relativity, all forces are replaced by the curvature effects of the spacetime. However, 

the concept of forces is a very useful tool for analyzing the rotational effects in the 

general theory of relativity. 

The general theory of relativity is a fully covariant theory, which remains invariant 

under arbitrary coordinate transformations. Because of this, it does not in allow 

general any global inertial frames in order to define the inertial forces. However, one 

can generalize the concept of Newtonian global rest frames even in general relativity 

in special cases. The concept of a global rest frame is associated with the existence of 

a timelike vector, which is hypersurface orthogonal. The three surface orthogonal to 

this timelike vector defines the space of simultaneity. This hypersurface orthogonal 

timelike vector along with the three-surface orthogonal to it defines the generalized 

Newtonian rest frame. For the case of an axially symmetric stationary spacetime, 

Greene, Schiicking and Vishveshwara showed that such global rest frames can be 

uniquely defined[35]. 

Abramowicz, Carter and Lasota [lJ first formulated the concept of inertial forces 

in static and stationary spacetimes using the optical reference frame. The optical 

reference geometry can be constructed by conform ally rescaling the spacetime metric 

with a suitable conformal factor. The important result that emerged from their studies 

is the reversal of centrifugal force in static spacetimes at the photon orbits if such 

orbits exist, whereas in the case of Newtonian mechanics the direction of centrifugal 

force is always away from the axis. Abramowicz and Prasanna showed that this occurs 

at r = 3m in the Schwarzschild spacetime. This paradoxical behavior at r = 3m in the 

Schwarzschild spacetime was first observed by Abramowicz and Lasota[lO, 11J. They 

pointed out that, at r = 3m, the thrust needed to keep a test particle in a circular 

orbit is independent of the velocity of the particle. Abramowicz, Nurowski and Wex 

[2J have presented a general formalism for inertial forces in an arbitrary spacetime. 
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They decomposed the acceleration of the test particle with respect to a global rest 

frame defined by the time like hypersurface orthogonal vector field provided such a 

vector field exists. The details of this formalism are given in the second chapter. 

We adopt this covariant formalism for our study. In an arbitrary spacetime the 

three-space and time splitting is non-unique. However, one may note that all such 

splittings may not represent the generalized Newtonian global rest frame. Hence, a 

totally arbitrary decomposition is not useful for defining inertial forces. As mentioned 

before, in the case of an a. .. dally symmetric stationary spacetime, the global rest frame 

can be defined uniquely[35J. However, the splitting and identifying the various terms 

in the acceleration might differ depending on the physical nature of the problem or 

depending on the observers' frame. Various such possible splitting schemes have been 

discussed by Bini, Carini and Jantzen[16J. They have also studied these formalisms 

in the case of an axially symmetric stationary spacetime as an example[17J. 

De Felice has criticized the decomposition of spacetime into spatial and temporal 

parts. He has argued that the paradoxical behavior of the test particle below the 

radius of circular null geodesic in the Schwarzschild spacetime is due to more gravi­

tational attraction than the centrifugal force reversal[24J. He has also defined what is 

called pre-horizon regime, a region in spacetime in which, when an increase in the an­

gular velocity of the test particle orbiting on timelike non-geodesic spatially circular 

trajectories, causes more gra .... itational attraction than centrifugal repulsion[24, 25J. 

In static, spherically symmetric spacetimes, the pre-horizon regime occurs below the 

circular lIull geodesic. In the case of Kerr spacetime, the situation is more complex 

due to the existence of co- and counter- rotating null geodesics. This causes a shrink­

age in the pre-horizon rcgimc[2G]. De Felice and Usseglio.Tomasset have investigated 

various definitions ()f inward and outward directions with respect to the center in the 

Schwarzschild Hpacctimes and the possibility of inferring the direction using a gyro-
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compass[27]. As mentioned before, in static spacetimes, for spatially circular orbits 

with radius less than the circular null geodesics, have the property that an increase in 

the angular velocity corresponds to an increase in the thrust in the outward direction. 

In the case of the Schwarzschild spacetime this occurs for radii which are too small 

(7" < 3m) for direct observations. However, De Felice has suggested that, in the case 

of the Kerr spacetime, the above effect not only holds at small coordinate distances 

from the event horizon for co-rotating circular orbits, but also holds arbitrarily far 

away from the source on counter-rotating circular orbits with angular velocities which 

tend asymptotically to zero. Since this behavior has no Newtonian analogue, it can 

be taken as a possible test for the general theory of relativity[28]. 

An alternative scheme for decomposing the acceleration has been proposed by 

Semerak[64]-[70]. In this approach also, the observers following timelike hypersurface 

orthogonal vector fields are used as fundamental observers. The transport law for 

such fundamental observer's tetrad is decomposed into a Fermi-Walker part and a 

spatial rotation part. The acceleration of a test particle as observed by a fundamen­

tal observer can be split into terms consisting of the gravitational (gravito-electric) 

part, the dragging (gravito-magnetic or Lense-Thirring) part, the Corio lis part, the 

centrifugal part (minus normal component of the particle '5 specific inertial resistance) 

and the tangent component of the particles' specific inertial resistance[64). Thus de­

fined, centrifugal force is always repulsive as in the case of Newtonian mechanics and 

in contrast to the definition given by Abramowicz et. al. [1, 2]. Semerak has also re­

lated inertial forces to the concept to gravito-electro magnetism and of the gyroscopic 

precession[65]. 

Despite the fact that the general theory of relativity does not allow the concept 

of forces, the generalization of the Newtonian concept r>f f'lrcf's is a useful tool for 

understanding the motion of test particlf!s as well as for understanding the spacetime 
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structure. Many of the advantages of inertial forces are described by Abramow­

icz et. al [6]-[9]. Alternative definitions of inertial forces and interrelations among 

them also helps to gain more insight into the physical phenomena. In an attempt 

to understand the connection between the general theory of relativity and the !\'lach 

principle, Prasanna and Iyer have introduced a new parameter called cumulative drag 

index[61, 62]. This parameter is defined for a particle in a circular orbit in an a..xially 

symmetric stationary spacetime. It was also shown that the behavior of this param­

eter is similar for both co- and counter- rotating orbits[61]. Initialy this parameter 

was defined on circular orbits on which the centrifugal force vanishes and later it was 

generalized to all circular orbits[62]. 

In the next section we introduce another important rotational effect,the concept 

of gravito-electromagnetism. 

1.3 Gravito-electromagnetic Fields 

Another important tool for investigating the rotational effects in the general theory of 

relativity is gravito-electromagnetism. The concept of gravito-electromagnetism arose 

due to the similarity between the general theory of relativity and the Maxwell theory 

of electrodynamics. The analogy between the electrostatic force and the grllvitational 

force is well knowIl as both the forces follow the inverse square law. If one compares 

the motion of It eharged test particle with a test particle in 1\ uniformly rotating 

frame, one ean further identify the similarity between the magnetic field and inertial 

forces. This comparison becomes straight forward if one writes t.he Lagrllllgian for 

both motion of a charg(!<l test particle ill all dectrmuagnetic field and a t(~st particle 

in a uniformly rot.ating frame. The gCll(~raliz(!d pot.entia.l for a charged test particle 
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in an electromagnetic field may be written as, 

q - -USM = q¢--A.·v. 
c 

(Ll) 

In the above, ¢ and A are electric(scalar) and magnetic(vector) potentials respectively. 

The charge of the test particle is represented by q and 6 is its spatial velocity. Similarly 

the effective potential for a test particle in a uniformly rotating frame may be written 

as, 

UnOT = V - ~mlw x T12 - mv· (w x f'). 
2 

(1.2) 

Here w is the angular velocity of the rotating frame, and v is the velocity of the 

test particle with respect to the rotating frame. The function V is the potential in 

the rotating frame. From the above effective potentials, one can draw the following 

analogies. The term V -1mlw x T12 is similar to the electromagnetic scalar potential 

¢ and the term (w x f') is similar to the electromagnetic vector potential..r. The 

magnetic force acting on the charged test particle is similar to the Coriolis force 

(6 x w), acting on the test particle in a rotating frame. The above example illustrates 

the similarity between electromagnetism and inertial forces within the framework of 

Newtonian mechanics. 

Faraday unified the concept of electric and magnetic fields, finally giving rise to the 

Maxwell theory of electromagnetism. The equivalence principle proposed by Einstein 

does not allow one to distinguish between the gravitationnl and the inertial forces lo­

cally. From the point of view of structure of the equations. both Einstein's equations 

and Maxwell's equations constitute a set of hyperbolic partial differential equations. 

Using the suitable gauge condition, Maxwell's equations can be written in the form of 

a wave equation. Similarly, in the linearized theory of gravity, the Einstein equations 

can also be cast in the form of a wave equation. The important implication of this 

is the existence of gravitational waves, which was predictE"d by Einstein. When t.he 
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linearized field equations are applied to a slowly rotating mass configuration, one ob­

tains several interesting results. The gravitational field produced by a massive sphere 

in the general theory of relativity is analogous to the electric field produced by an 

electrically charged sphere. When rotation is induced, in addition to the electric field, 

one also has the magnetic field generated whose strength is determined by the angular 

velocity. When a massive sphere is slowly rotated in the general theory of relativity, it 

generate a field similar to a magnetic field known as the gravito-magnetic field. This 

solution was first obtained by Lense and Thirring[51, 52, 53, 54J. In this case also, 

the strength of the gravito-magnetic field depends on the angular momentum of the 

rotating mass. In this example the 94>t component of the metric tensor is the vector 

potential for the gravito-magnetic field. The details of this approach may be found 

in reference[23, 74J. As in the case of a charged spinning test particle in a magnetic 

filed, a spinning gyroscope would experience a torque when subjected to the gravito­

magnetic field. Therefore, the gyroscopic would precess with a frequency proportional 

to the gravito-magnetic field. This phenomenon is known as the dragging of inertial 

frames and the precession is known as the Lense-Thirring precession. In this manner, 

gyroscopes can be used as a probe to investigate the gravito-electromagnctic fields. 

Several authors have discussed gravito-electromagnetism and its effect on gyroscopic 

precession within similar formalism[23, i 4, 64, 29, 46]. 

Our approach to the gravito-magnetism is not based OIl the weak field or linearized 

field equations. Striking similarity between a. constant electromagnetic field and the 

Killing vector field was demonstrated by Honing, Schikking and Vishveshwara[42J. 

'vVe extend thiH analogy and define the gravito-eledric and gravito-magnetic fields 

with respect to irrotational observers in an axially Hyrnmctric stationary spacetime. 

In similar fashion it is possible to define electric and magnetic fields for a given 

electromagnetic field tensor[13]. In the case of the gravito-(\lectromagnetie field the 
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derivative of the timelike Killing vector plays the role of the anti-symmetric field 

tensor[42, 43, 59]. The details of the formalism are given in chapter 3. In the next 

section we shall describe the gyroscopic precession. 

1.4 Gyroscopic Precession 

The phenomenon of gyroscopic precession is of interest in various situations in physics. 

In the context of Newtonian mechanics, a gyroscope can be idealized by a rapidly spin­

ning rigid body, for example, a rapidly rotating symmetrical top. When subjected 

to the external torque or gravitational field, the gyroscope undergoes precession and 

nutation. One of the natural examples of gyroscopic precession is the precession of 

equinox. In this particular case the Earth itself acts like a gyroscope and precesses 

because of the torque exerted by the solar system. The Larmor precession is an­

other example of the precession in the framework of electromagnetic theory. Here, 

a magnetic dipole of the charged particle acts like a gyroscope and precesses when 

subjected to a uniform magnetic field. The frequency of precession is proportional to 

the strength of the magnetic field. From the conservation of angular momentum one 

can show that, in Newtonian mechanics, precession can occur only in the presence of 

a torque. 

In the special theory of relativity, the Thomas precession refers to the precession 

of the inertial compass along an arbitrary world line of an accelerated particle in 

the Minkowski space. When two successive pure Lorentz transformat.ions are applied 

on an inertial frame it induces a spatial rotation of the frame. This is referred to 

as Thomas precession. One can show that the Thomas precession frequency can be 

written as w == ~ ( (! x v ), where a is the acceleration of the particle and v is its spatial 

velocity. This indicates that the Thomas precession occurs only when the acceleration 
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is non-zero. In other words ' .... hen the trajectories are along geodesics precession is zero. 

This is also true for accelerated straight line motion as the precession frequency is the 

cross product of the acceleration and velocity. Thomas precession plays an important 

role in atomic physics, where this effect was first experimentally verified[i3]. 

In the context of the general theory of relativity, gyroscopic precession involves 

kinematic effects, contributions from spacetime curvature and the effect of inertial 

frame dragging when the spacetime possesses inherent rotation. The gyroscopic pre­

cession has been proposed as a test of the theory itself. Since in curved spacetimes, 

the geodesics are in general not straight lines, the precession along the geodesics 

is non-zero. In the general theory of relativity the gyroscopes are mathematically 

idealized as spatial triads of Fermi-Walker transported tetrads transported along a 

worldline[56]. Precession of the Fermi-Walker frame with respect to any other frame 

transported along the same trajectory is physically realized as the gyroscopic pre­

cession. We adapt the Frcnet-Serret formalism for gyroscopic precession developed 

by Iyer and Vishveshwara[43]. In this formalism, the precession of the Fermi-Walker 

frame is realized with respect to a Frenet-Scrret tetrad. The Frenet-Serret frame is one 

of the most natural and intrinsic frames associated with an arbitrary curve[71, 76, 15]. 

Here a curve is associated at every point with the orthonormal Frenet-Serrct tetrad. 

The members of the tetrad, of which the first is the unit tangent to the trajectory, 

satisfy the Frcnet-Serret equations. Furthermore, the intrinsic geometry of the curve 

is uniquely determined by the Frenet-Serret scalars, namely the curvature (I\:) and the 

first and second torsions (Tl and T2 respectively) defin(~d along the trajc<:tory. Such 

a description prov()s to be quite elegant when the world lines follow the dif(~ctions of 

spacetime symmetri(~s, or Killing vector fields, provided of course that tlw spacetime 

admits such symmetries. Honig, Sdliicking and Vishv('shwarn. used the Fr(lIlet-Sl~rret 

formalism to describe the mot.ioll of a cha.rged test partide in l\ constant d<,ctromag-
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netic field[42]. In this case they showed that the Frenet-Serret parameters x, Tl and T2 

are constants along the trajectory. It was shown that the components of the Frenet­

Serret triad satisfy a Lorentz like equation and can be expressed uniquely in terms of 

the applied field and four velocity of the test particle. Furthermore, they also showed 

that the Frenet-Serret formalism when applied to a timelike Killing trajectory in Rie­

mannian spacetimes, yields similar results to that of the trajectory of a charged test 

particle in a homogeneous electromagnetic field. The vorticity of the Killing congru­

ence, which represents the rotation of the connecting vector, was expressed in terms of 

the Frenet-Serret parameters. In the case of axially symmetric stationary spacetimes, 

Rindler and Perlick showed that the vorticity of the Killing congruence describes the 

gyroscopic precession[63]. They also observed that the gyroscopic precession reversal 

occurs at r = 3m in the Schwarzschild spacetime. The Frenet-Serret formalism for 

gyroscopic precession was developed by Iyer and Vishveshwara[43]. In this elegant 

formalism the precession of a Fermi-Walker tetrad is computed with respect to a 

Frenet-Serret tetrad, when both are transported along a given trajectory. They have 

given a comprehensive treatment of gyroscopic precession in axially symmetric sta­

tionary spacetimes making use of the Frenet-Serret formalism. In this case, two of 

the Frenet-Serret parameters, namely the torsions 'Tl and T2, are directly related to 

the precession. Several interesting results emerge when the above considerations are 

applied to black hole spacetimes. 

1.5 Plan of the Thesis 

The main objective of the present thesis is to study the rotational effects such as iner­

tial forces, gravito-electromagnetism and gyroscopic precession within the framework 

of the general theory of relativity. We investigate these rotational effects and establish 
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interrelations among them in general, stationary, axially symmetric spacetimes. We 

take black hole spacetimes such as the Kerr-;,'Ilewman and Ernst solutions as specific 

examples to study these rotational effects. 

In the second chapter we briefly describe the necessary formalism needed for our 

studies. First we describe the Frenet-Serret description for gyroscopic precession 

which was formulated by Iyer and Vishveshwara[43]. For inertial forces we use the 

covariant formalism given by Abramowicz, Nurowski and Wex[2]. As mentioned be­

fore, for gravito-electromagnetism we use the formalism given by Honig Schiicking 

and Vishveshwara[42]. In the second chapter we show how the acceleration of a test 

particle can be decomposed into electric and magnetic force terms using the example 

given by Landau and Lifshitz[50]. 

In the third chapter, we apply these formalisms to circular quasi-Killing trajecto­

ries, which we shall define later, in an axially symmetric stationary spacetime. We 

also establish direct relations between the gyroscopic precession and inertial forces 

by expressing the Frenet-Serret parameters Tl and T2 in terms of inertial forces. We 

also prove an important theorem concerning the simultaneous reversal of gyroscopic 

precession and centrifugal force at the circular null geodesics in static spacetimes. In 

the case of stationary spacetimes we show that the reversal of neither centrifugal force 

nor gyroscopic: precession occnrs at the photon orbits. 

We define the gravito-electric and gravito-magnetic fields with rcspe(:t to a global 

rest frame. This definition is very useful in (>stablishing the direet rela.tions between 

inertial forces and gravito-electromagnetic fields. W(l also define gnwito-Hlectric and 

gravito-magnctic fi(!lds with rcspcet to the eo moving frame of the test particle. Us­

ing this definition one observ(ls the one-ta-onc (:orrC'sp()ncicIH:e between (\ cOllstant 

eleetromagnetk field[.!2] and the gravito-f'lec:tromagn('tie field. 

In t.he fourth ('hapt(>r we apply thrse formalisllls to Home of the black hole space-
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times. In the case of Ernst spacetime, which represents a Schwarzschild black hole in 

a constant magnetic field, we show that gyroscopic precession and centrifugal force 

reversal occurs at both of the circular null geodesics, which in fact, is the generic 

property of all static spacetimes. The Schwarzschild solution and :'IIelvin universe are 

treated as special cases of the Ernst solution. We take the Kerr-Newman spacetime 

as a typical example of a stationary, axially symmetric spacetime, which represents a 

charged Kerr black hole. In this case we show that the reversal of neither centrifugal 

force nor the gyroscopic precession occurs at the circular null geodesics. The Kerr 

and Reissner-Nordstrom solutions are treated as special cases of the Kerr-Newman 

solution. 

In the fifth chapter, we relate inertial forces and gravito-electromagnetic fields 

to the Einstein equations. For this purpose, we project Einstien's equations on to 

the two-manifold orthogonal to the two-surface formed by the Killing \·ector fields, 

using the Geroch formalism[32, 33]. We recast the Geroch formalism in terms of 

potential functions whose gradients are proportional to inertial forces. In the case of 

field equations with the source term we use the formalism developed by Hansen and 

Winicour[38]. Finally we end the thesis with the sixth chapter which comprises a few 

concluding remarks. 



Chapter 2 

Gyroscopic Precession, Inertial 

Forces, and 

Gravito-electromagnetism 

2.1 Introduction 

In the first chapter we outlined general considerations about the rotational effccts such 

as the phenomcnon of gyroscopic prcccssion, inertial forccs and gravito-electromagnetism. 

In the prcsent chapter, we study these effects within the frame work of the general 

theory of rclativity. In section 2 we present the FrClwt-S(1rret description of gyroscopic 

preccssion as givcn by Iyer and Vishveshwara[43]. In a previous approach, Rindler 

and Perlick estimatcd gyroscopic preccssion in the Schwarzschild and the Kerr space­

times by computing the vorticity of the congruence along \vhich the gyroscopes are 

transportcd[63j. But in the Frcnet-Serr~t formalism, tile geometric properties of a 

curve defined by t.he FrcIlct-Serrct parmn<ltcrs arc relatcd to physical phenomenon 

such as the precession of a gyroscope ill it covariant manncr. In the gencml theory 

15 
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of relativity, a gyroscope is mathematically idealized as a frame obeying the Fermi­

Walker transport law [56, 72]. In section 2.2.1 we give a brief description of Fermi­

Walker transport and its physical significance as a set of gyroscopes and we also 

compute the precession of a gyroscope with respect to an arbitrary frame transported 

along the same trajectory. In section 2-.2.2 we describe the Frenet-Serret formalism in 

three and four dimensions. In the Frenet-Serret formalism the geometric properties 

of a curve are described by scalar parameters such as K, the curvature and 'II, and 

'12 the torsions. Considerable simplification occurs when the formalism is applied to 

the Killing trajectories, as these trajectories are of great importance in the case of 

black hole spacetimes[42j. In section 2.2.3 we show that the Frenet-Serret parame­

ters 1>., 'II and '12 are constant along the quasi-Killing trajectories. In section 2.2.4, 

we compute the precessi~n of a Frenet-Serret triad with respect to a Fermi-Walker 

triad, which gives the Frenet-Serret description of gyroscopic precession. We show 

that the phenomenon of gyroscopic precession is described essentially by the Frenet­

Serret parameters 1"1 and '12. In section 2.2.5 we relate the Frenet-Serret description 

of gyroscopic precession to the vorticity of the quasi-Killing congruence. In the case 

of the Killing trajectories, one can show that the Frenet-Serret precession is equal to 

the vorticity of the congruence. 

Abramowicz, Carter and Lasota for the first time, formulated the (~Ollcept of iner­

tial forces in static and stationary spacetimes[l]. In this formalism, t.hey adapt.ed so 

called optical reference geometry, by mUltiplying the spacetime metric with a suitable 

conformal factor. In optical reference geometry, the acceleration of a t(>st particle can 

be decomposed into various inertial force terms. One of their important results is that 

the centrifugal force reversal occurs at the photon orbits in the eas(~ of st.atic space­

times. In the optical reference geometry formalism, the three-space is cOIlstructed 

orthogonal to the timelike Killing vector, which is in general not hYP('r surface or-
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thogonal. As mentioned in the last chapter, in order to define the inertial forces, one 

needs global Newtonian-like rest frames, In section 2,3.2 we discuss the concept of 

a global rest frame in the general theory of relativity. Abramowicz, Nurowski and 

\Vex generalized the optical reference geometry by incorporating the concept of a 

global rest frame, to give a covariant description of inertial forces in an arbitrary 

spacetime[2]. 

In section 2.4 we briefly outline the formalism for describing the gravito-electromagneti 

by showing the similarities between the forces acting on a test particle in a stationary 

spacetime and a charged test particle in an electromagnetic field. We end the chapter 

with section 2.5 comprising the concluding remarks 

2.2 Gyroscopic Precession 

2.2.1 Fermi-Walker Frame and Gyroscopic Precession 

In this section we describe the Fermi-walker transported frame and its importance in 

the rotational (~ffects such as gyroscopic precession. In order to study the rotational 

effects inherent to a spacetime, one needs to construct a reference frame, which does 

not have any intrinsic rotation of its own. Since the general theory of relativity does 

not allow, in general, any global inertial frames as in the Newtonian theory, one 

needs to construct a system of tetrads along a worldline. These frames can then 

be related to each other by successive Lorentz transforrnatiolls along the t.rajectory. 

Since Lorentz transformation OIl a frame is equivalent to rotatioIl in spaeetimc, when 

one constructs a system of tetrads along a worldline with an arbitrary accderation, 

it implies rotation of the tangent vector in spacetime. This rotation of tlw tangent 

vector is inevitable. One defines the concept of a nOli-rotating frame of rPl"crence by a 

frame whidl allows pseudo-rotation only in the timdike plane spanned by the v('locity 
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and the acceleration vectors, and does not allow any rotation in the three-space. The 

Fermi-Walker frame is one of such frames of reference and it can be constructed as 

follows. 

In Newtonian mechanics, a rotating vector Vi is represented by the following equa­

tion 
d 
dt VQ = (w x v)Q = €Qjj-ywfjv-Y, (2.1) 

where w is the angular velocity. Similarly, in a four dimensional spacetime, rotation 

of a vector can be expressed by 

D 
D1' ~a = nab'Vb (2.2) 

where nab = -Dba, which would take the form €;ikWi in the non-relativistic case. 

Here, we define the rotation in a plane orthogonal to the vector wi. We adopt the 

convention that Latin indices a, b, ... = 0 - 3 and Greek indices Ct., (3, . .. = 1-3 and 

the metric signature is (+, -, -, -). Geometrized units with c = G = 1 are chosen. 

In our case, we would like to confine rotation to the timelike plane spanned by 

the velocity and the acceleration. In this case, the nab can be uniquely expressed as, 

(2.3) 

where, uP is the fOllr velocity and aq is the four acceleration along the trajectory. 

One can easily show that the velocity.vector trivially satisfies the transport equations 

(2.2) and (2.3). Also, rotation vanishes for a spacelike vector, if it is orthogonal to 

both acceleration and velocity, i.e 

d a 
- W = 0 if wa . 'Ua = aP ' Wp = 0 
d1' ' 

(2..1) 

A \'ector which satisfies the following equation 

(2.5) 
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is said to be Fermi-Walker transported. A frame or a tetrad {J(i)}, whose components 

follow the Fermi-Walker transport law, with fro) along the four velocity of the world­

line, is referred to as the Fermi-Walker frame. ':'he spatial triad of a Fermi-walker 

frame does not undergo any rotation. This can be physically realized as a set of three 

gyroscopes each of which is aligned to a basis vector of the Fermi-Walker triad. If an 

observer chooses an arbitrary frame different from that of a Fermi-Walker frame along 

an arbitrary worldline, then his spatial triad will undergo precession with respect to 

the Fermi-Walker frame[56]. Let us assume that the transport law for an arbitrary 

observer is given by, 

(2.6) 

where nab = -nba , which can be uniquely decomposed into a Fermi-Walker part 

and a spatial rotation part as follows, 

Aab + Aab 
~'(FW) H(SRJ 

nab = 
(FW) 

Aab __ 
u(SR) 

In the above, wOo is a vector orthogonal to the four velocity ua • i. e. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

From the above equations it is straightforward to show that the precession frequency 

w" can be expressed as, 

1 r-:: Aab. q 
wp = Zv -g€pqabH U 

If {/(<lJ} is the Fermi-Walker triad, then, 

c1 fa 
dT (i) = 

From equation (2.6) and (2.12) we get, 

Ii ( " fll) <iT f.I(n) - (tt) = 

(2.11) 

(2.12) 

(2.13) 
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or 
d 
dr (eeG) - iea») :=: w x erG)' (2.14) 

This can be physically interpreted to as the spatial triad {eeG)} precessing with respect 

to the Fermi-Walker triad, with a frequency w. In the Frenet-Serret description of 

gyroscopic precession, one uses the Frenet-Serret transported frame {e(i)} in order 

to compute the precession frequency given by equation (2.11). The Frenet-Serret 

formalism is described in the next section. 

2.2.2 Frenet-Serret Formalism 

The Frenct-Serret(FS) formalism is one of the elegant methods for investigating the 

geometric properties of curves. In this formalism, curves are studied by assigning an 

orthonormal frame called the 'Frenet-Serret frame' at each point. Rates of changes of 

these frames are expressed by the Frenet-Serret formulae in term of scalar parameters 

called the Frenet-Serret parameters. These parameters along with the Frenet-Serret 

frames describe the fundamental geometric properties of the curve. 

We shall first illustrate the Frenet-Serret formalism in three-dimensional space[71, 

76, 15]. Let ,(8) be a three curve in space with unit tangent eel) :=: ')"(8). If the 

acceleration ')'" ( 8) is not zero along the curve, one can construct a unique circle at 

each point on the curve with radius l/iI"(s)J. This circle is called the osculating 

circle. The center of the circle lies along the vector ," (8) which is orthogonal to the 

tangent vector. The unit vector e(Z) along ')''' (s) is called the principle normal of the 

curve, which satisfies the equation 

de(l) = 
d8 

(2.15) 

where 11. is called the curvature. The plane described by the vectors e(l) and e(Z) is 

called the osculating plane. 
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The unit vector e(3) normal to the osculating plane, called the binormal vector, is 

given by 

(2.16) 

One defines the torsion 7( s) at each point on the curve as from the equation 

de(2) _ _ 

ds = -",e(l) + Te(3)· (2.17) 

Further, the binormal vector satisfies the equation 

de(3) _ 
(f;" = -7e(2)· (2.18) 

Equations (2.15), (2.17) and (2.18) are called the Frenet-Serret equations, which 

describe the geometry of the curve in space. In this case the geometry of a curve is 

described by an orthonormal frame consisting of unit vectors e(1), e(2) and e(3), and 

the scalar parameters "', the curvature and T the torsion. 

From the above equations OIle can clearly see that for all curves confined to a 

plane, the torsion 7 is identically zero. When 7 = 0 and K, = constant, the curve 

represents a circle with radius 1/ J),. A helix is characterized by 7 = constant and 

'" = constant 

The Frenet-Serret formalism can be extended to four dimensional spacetime[42, 

72]. If c(O) is the unit tirnelike tangent vector along a trajectory, the Frenet-Serret 

equations in general arc given by 

·a 
e(O) = 
(;(1) = 

&(':.1) = 
·i' 

('(:1) = 

"efl) , 

II:C(O) + 7[ (,('2)' 

-7ICe!) + 72('(:1)' 

-T2C?2)· 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

The parameters "',7[ and 72 are the curvature, the first and the second torsion while 

e(i) form an orthonormal totrad. These six quantitil'H not only deHcribe the geometry 
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of the worldline completely, but also elucidate the interlink between the physical 

quantities and geometric properties. If one specifies that the unit vector e(O) is the 

four velocity of a test particle, then we have 

~I> - -I> eb - aP 
(:"(0) - (:"(0);6 (0) = . (2.23) 

Where aP is the four acceleration of the test particle. The Frenet-Serret parameter '" 

can be expressed as, 

(2.24) 

Which clearly shows that the parameter ". is the magnitude of the four accelera­

tion. Next we shall show that the parameters 71 and 72 are directly related to the 

phenomenon of gyroscopic precession. 

2.2.3 The Frenet-Serret Parameters and Gyroscopic Preces-

sion 

In the last section we have seen that the Frenet-Serret parameter". is the magnitude of 

the four-acceleration along the trajectory. In this section, we shall give the physical 

interpretation of the Frenet-Serret parameters Tl and 72, by relating them to the 

phenomenon of gyroscopic precession. 

Let us consider a Fermi-Walker tetrad {J~)} and a Frenet-Serret tetrad {eli)} are 

being transported along an arbitrary trajectory. Let u· be the four velocity and ua 

be the four-acceleration along the trajectory. Then we have the following, 

(2.25) 

Since the four-velocity uo. is an unit vector, without loss of generality, we can take 

(2.26) 
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Where x; is the magnitude of the four-acceleration along the trajectory. Using the 

above, the Fermi-Walker transport law, as given in the equation (2.3) takes the fol-

lowing form 

n pq 
. (FW) = ~ (Jr;.)J(~) - frO/?l») (2.27) 

and we have, 
d r 

d1" (i) = n (j) r 
(FW)(i) (j) (2.28) 

In the above, 

0 K- 0 0 

(j) x- 0 0 0 
n(FW)(i) = 

0 0 0 0 
(2.29) 

0 0 0 0 

Here, (i)··· (j) are tetrad indices. We take the orthonormality condition for tetrad 

components[22] , 

(2.30) 

where 

7'/(a)(b) = Diag[l,-l,-l,-l] (2.31) 

In a similar fashion, the Frcnet-Serrct transport law given by the equations (2.19-2.22) 

can be written as, 
d a 

d1" t!(i) = n (jl a 
(FS)(il e(j) (2.32) 

where 

0 x- 0 0 

(il n. 0 1"[ 0 
n(FS)(i) == 

0 -1"1 0 1"2 

(2.33) 

0 0 -1"2 0 



c1wpLe1'2 2,1 

We now decompose the n(FS) into a Fermi-Walker term n(FW) and a spatial rotation 

term n(SR) as given in equation (2.7), 

r. (j) _ r. (j) (j) 
H(SR)(i) - H(FW)(i) + n(FS)(i) 

(2.34) 

where 

0 0 0 0 

(j) 0 0 7"1 0 
n(SR)(i) = 

0 -7"1 0 7"2 

(2.35) 

0 0 -7"2 0 

From the above, for the Frenet-Serret frame, the equation (2.14) can be written as, 

:7" (e(U) - f(u)) = 17(Q)(j3)(-r) e(.B)w(-r) 

= (w x e)(a) 

(2.36) 

(2.37) 

where ry(Q)(j3)(-r) are the tetrad components of the completely antisymmetric tensor. 

The tetrad components of the precession frequency can be obtained from the 

equations (2.13) and (2.35) and can be written as[34], 

(2.38) 

(2.39) 

The components of the precession frequency in the coordinate basis. can be ex-

pressed as, 

(2.40) 

(2.41) 

As mentioned before, wa represents the precession frequency of the Frenet-Serret 

triad with respect to a Fermi-Walker triad. Since a Fermi-Walker transported frame 
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is physically realized as a set of gyroscopes, the precession frequency w" represents the 

precession of the Frenet~Serret triad with respect to a set of gyroscopes. In other words 

a gyroscope would precess with a frequency -w" with respect to a Frenet-Serret frame. 

Here we have shown that the Frenet-Serret parameters 71 and 72 are directly related 

to the phenomenon of gyroscopic precession. Considerable simplification occurs when 

the trajectories involved are along the Killing vector fields. Next, we shall apply the 

Frenet~Serret formalism to the Killing trajectory in four dimensional spacetimes. 

2.2.4 Application to Quasi-Killing Trajectories 

In this section, we apply the Frenet~Serret formalism to the case of a spacetime ad­

mitting Killing vector fields. For example, an axially symmetric stationary spacetime 

such as the Kerr spacetime, admits a timelike Killing vector field ~ .. and a. space­

like Killing vector field r,o., which generate closed circular orbits around the axis of 

symmetry. Furthermore, the static spherically symmetric Schwarzschild spacetime 

admits a timelike Killing vector ~ .. and three rotational Killing vectors corresponding 

to spherical symmetry. These Killing vectors satisfy the Killing equation, 

(2.42) 

When the Fren<lt~Serrct formalism is applied to the Killing trajectories of space­

times, many interesting features mncrge. These considerations apply to n. single tra­

jectory in any specific example. However, additional geometric insight may be gained 

by identifying the trajectory as a member of one or more congruences generated by 

combining different Killing vedors. For this purpose, t.he FrcxHlt.-Serrct forma.lism is 

applied to quasi-Killing trajectories. In the discussion giv(>n below we clo::;(>ly follow 

the reference [43]. 

Consider a Hpacct.imc that admits a timelikc Killing v('ctor E,o. and a set of spacelike 
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Killing vectors 7J(A) (A=1,2, ... m). Then a quasi-Killing vector may be defined as 

(2.43) 

where (A) is summed over. The Lie deriyative of the functions W(A) with respect to 

x.a is assumed to vanish, 

(2.44) 

A congruence of quasi-Killing trajectories is generated by the integral curves of XG. 

As a special case, we obtain a Killing congruence when weAl are constants. Assuming 

Xa to be timelike, we may define the four "elocity of a particle following x.G by 

ea - u G - e",xa 
(0) = = " (2.45) 

so that 

(2.46) 

and 

(2.47) 

it follows from equation (2.42) that 

(2.48) 

The derivative of W(.-t) drops out of the equation. The Killing equation (2.42) and the 

equation Ea;b;c == Rabcd~d satisfied by any Killing vector lead to 

(2.49) 

When the Frenet-Serret formalism is applied to a quasi-Killing congruence important 

simplifications occur. It can be shown that K" 7"1 and 7"2 are constants and that each 

of eli) satisfies a Lorentz-like equation[42], which can be summarized as follows, 

From equation(2.47) and (2.19) we have. 

'a T:'a b 
e(O) = rb e(O) = (2.50) 
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Taking the derivative on both sides and using equation (2.49), we get 

(2.51) 

Contracting the above equation with e(1)a, gives 

k = 0, (2.52) 

since, e(l)a being a unit vector 

(2.53) 

and 

Fabe(l)e~l) = 0 (2.5"*) 

by the antisymmetry of Fab. From equations (2.52) and (2.51) we have, 

(2.55) 

which shows that e(1) also satisfies the Lorentz like equution(2.4 7). Similarly it is 

easy to show that the Frcnet-Serret parameters 7"1 and 7"2 are also constant along the 

worldline and that e(2) , e(3) also satisfy the Lorentz like equation (2.47)( for more 

details see referencc[42]). To summarize, 

and 

Further, t;" 7"1, 7"2 and C(n) Gan be expressed in terms of e(O) and 

F~b == Fa a.1 Fa.~2 ... Fan_lb. 

1\,2 = F2 a b 
abC(O)f!(O) 

F4 e" (,b 
2 = /'i,2 _ ab "(0) '(1) 

7"1 1\,2 

FO co. eb (') ") 2 
2 lib '(a) '(0) t;,- - 7"t 

7"2 = 2 2 
7"r fi. 7"1 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 
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efl) = ~pabetO) (2.61) 
K 

G 1 [p2" 2ra] b (262) 
e(2) = - b - K Vb e(O) • 

K7l 

e(3) = _1_ [p34b + (7f - K,2) P"b] etO) (2.63) 
K7172 

The above equations were first derived by Honig, Schiicking and Vish"eshwara [42] 

to describe charged particle motion in a homogeneous electromagnetic field. Interest­

ingly, they are identical to those that arise in the case of quasi-Killing trajectories[43]. 

In the next section we shall compute the precession of the Frenet-Serret frame e(i) 

with respect to the Fermi-Walker frame. 

2.2.5 Frenet-Serret Description of Gyroscopic Precession: 

Along Killing Trajectories 

The Frenet-Serret formalism offers a covariant method for treating gyroscopic pre­

cession. It turns out to be a convenient and elegant description of the phenomenon 

when the worldlines along which the gyroscopes are transported, follow spacetime 

symmetry directions or Killing vector fields. In fact, in most cases of interest, orbits 

corresponding to such worldlines are considered for simplicity. For instance, this is 

the case when one studies circular orbits in black hole spacetirnes. As we have al­

ready shown that, the torsions 71 and 72 are directly related to gyroscopic precession, 

transported along an arbitrary worldline. Here we shall prove some of the identities 

corresponding to the Killing trajectories. 

Let us consider an inertial tetrad (etO) , IrQ») which undergoes Fermi-Walker trans­

port along the worldline. The triad i(Q)' as we have mentioned before, may be phys­

ically realized by a set of three mutually orthogonal gyroscopes. Here we show that 

the angular velocity of the Frenet-Serret triad eta) with respect to the Fermi-Walker 

triad f(a) call be directly fE-lated to the Frenct.-Serret parameters 7\ a.nd 72' This 
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result has been pointed out by Honig, Schiicking and Vishveshwara[42]. We briefly 

outline the details of the derivation. 

As given in the section 2.2.1, the precession frequency of an arbitrary spatial triad 

with respect to a Fermi-Walker triad is given by equation(2.11} i.e. 

Considering equation (2.47) and (2.48) for a Killing trajectory we have, 

The tensor Fo.b, which is the dual of Po.b is defined by 

and 

Fo.b 

We define the scalar parameters 

= _l_,abcd F: 2A' cd· 

(2.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

The following identities are useful for simplifying the expression for the parameters 

71 and 72 from equa.tions (2.59) and (2.60). 

(p:I)~ - ~Fb" - ;3Fbfl = 0 

(F4): - o(F2)ba - ;320'; = 0 

(F6 )g - (ci + (32)(P2 )b - a/Pot: = 0 

(2.70) 

(2.71 ) 

(2.72) 

These equatiolls are valid for any arbitrary s{'cond rank Huti-Hymmctric tPIlHOf Fab[42]. 

From equation (2.59) and (2.71) we have 

2 :.I /Jl 
71 = /'i, - n --

,.;2 
(2.73) 
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the equation (2.60) can be simplified using the identity (2.72) and we obtain 

p2 
"..2 _ 

2 - ",2 

Using the above equation, equation (2.73) can be rewritten as 

From equations (2.63), (2.71), (2.74) and (2.75) we can show that 

30 

(2.74) 

(2.75) 

(2.76) 

This establishes the important physical formula which directly relates the Frenet­

Serret parameters 71 and 72 to the phenomenon of gyroscopic precession. 

In other words the gyroscopes precess with respect to the Frenet-Serret frame at 

a rate given by 0(9) = -WFS. Furthermore, in case of the Killing congruence, WFS is 

identical to the vorticity of the congruence, which will be shown next. 

2.2.6 Vorticity and Gyroscopic Precession 

The concept of vorticity is another important geometrical notion associated with a 

trajectory as a member of a suitably chosen congruence of curves. It measures the 

twisting of the congruence. In this section, we study the relation between gyroscopic 

precession and vorticity. Here we show that the Frenet-Serret precession for l\ trajec­

tory belonging to a Killing congruence is equal to the vorticity of the congruence. 

As it was shown earlier (2.76), the precession frequency is given by 

(2.77) 

where 

= 1 ",abed l:' 
2 c-;:;C rcd 
v-g 

(2.78) 
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From equation (2.47) and (2.48), we have 

a e'" abed ( (A.)) 
W = ~c ~e'd + W(A)'lc'd Ub 2y-g , , 

(2.79) 

since W is constant from equation (2.46), we have 

(2.80) 

which is the vorticity of the congruence. Therefore, the gyroscopic precession for a 

Killing trajectory is determined by the vorticity of the Killing congruence. This is not 

true in the case of quasi-Killing trajectories. The vorticity of a congruence is defined 

as 

na. 1 abed (2.81) - 2.,;=gc e(O)be(O)c;d 

= 1 abed [F. 2.J=t e(O)b cd -9 
+ e"'W(A),d17(A)c] (2.82) 

= a + ba.b W(FS) e(O)b (2.83) 

where 

jjab = 1 e:abcd D -- cd 2A 
Ded - e"'W(A)[,d1J~)) (2.84) 

1 
A[abl - 2'(Aab - Aba) 

As is well known, physically, vorticity na represents the angular velocity of the con­

necting vect.or with respect to an orthonormal spat.ial frame Fermi. Walker transported 

along the congruence. On the other hand, Frenet-Serret rotation W(FS) represents the 

precession of the intrinsic Frenet-Serret frame with r('spect t.o the Ilon-rotating Fermi­

Walker frame. In general, for example ill the quasi-Killing case, the two arc not the 

same. Therefore the gyrosc:opie precession along It quasi-Killing trajectory differs from 

the rotation of t.he connec:ting v('ctor of the corresponding quasi-Killing congruence. 
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2.3 Inertial Forces 

2.3.1 Optical Reference Geometry 

Abramowicz, Cater and Lasota(ACL) formulated the optical reference geometry to 

study the dynamics of test particles in stationary and static spacetimes[l]. In this 

formalism, the three-geometry orthogonal to the timelike Killing vector is conform ally 

rescaled. Here we briefly describe this approach. 

The metric for a stationary spacetime can be written as 

(2.85) 

Here, dl2 is the line element on the quotient space orthogonal to the timelike Killing 

vector ~a and is given by, 

where, 

900 = <I> , 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

The dynamics of a test particle with four momentum pa is described by the 

equation 

(2.90) 

(2.91) 

where fa is the force acting on the test particle. The mass of the test particle Tn is 

given by 

(2.92) 
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The energy of the test particle can be defined as, 

(2.93) 

where ~a is timelike Killing \·ector. The energy & is conserved along a geodesic. In 

order to study the equation of motion in the quotient space, we define the three­

momentum components Pi in the quotient space as follows, 

(2.94) 

The equation of motion projected on the quotient space can be decomposed as follows, 

(2.95) 

and 

In order to identify the above projected acceleration into various inertial force 

terms, ACL have introduced a new conformally modified metric. 

(2.97) 

on the quotient f;paee, 

(2.98) 

With the above conformal modification, the spacetime metric takes the form 

(2.90) 

The three-1ll0IIlelltum of the test partide in the optical reference frame is given 

by, 

(2.100) 
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and the contravariant three-momentum can be written as 

(2.101) 

With the above definitions the four acceleration of test particles, when projected onto 

the conformal spacetime, splits into terms that may be identified as inertial forces. 

m<p (II' - 20.1'10) = p" (avPI" - ~PPOlJgllp) + ~m2alJ<P + 2£ pI.' (OlJo.v - avo.)J.) , 

(2.102) 

which can be written as 

(2.103) 

where 

(2.104) 

Here, ~ v is the covariant derivative operator in the optical reference geometry. In 

the above equation, the term pVV"PI" represents centrifugal acceleration in the three­

space. The velocity independent second term ~m2al"<p, can be identified with Newto­

nian gravitational force. The last term 2£ pI.' wVI" is the Lense-Thirring-Coriolis force 

which is a manifestation of frame dragging in stationary spacetimes. 

In the case of static spacetimes, one can show that 

WIJV = 0, (2.105) 

because of the fact that the timelike Killing vector (a is hypersurfac:e orthogonal or 

(2.106) 

In which case the equation of motion simplifies to 

(2.107) 
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The important result emerging from the above formalism is that, in the case of static 

spacetimes, the four-dimensional null geodesic, which is characterized by 

m = 0, fa = 0 

satisfies the quotient-space geodesic equation, 

plJfJvPI' = O. 

(2.108) 

(2.109) 

In other words, the centrifugal force reversal occurs when the four-dimensional tra­

jectories are null geodesics. 

As we have seen in this formalism, the quotient-three-space is defined with respect 

to the timelike Killing vector ~a which in general, does not define the surface of 

simultaneity. In the next section, we define the concept of global rest frames in 

the general theory of relativity, which are close to the Newtonian global inertial 

frames. This formalism was followed by the covariant definition of inertial forces, by 

Abramowicz, Nurowski and Wexi[2], which is described later in this chapter. 

2.3.2 The Global Rest Frame 

In this section, we describe the concept of global rest frames in the general the­

ory of relativity. The general theory of relativity docs not allow the construction of 

global inertial frames, as in the case of the Newtonian theory. However, one can con­

struct spatial frame of reference, which are possible generalizations of the Newtonian 

non-rotating rest frames. The concept of a rest frame is closely connected with the 

existence of time symmetry, since all t.he rest. observer docks are synchronized with 

respect to a world-t.ime. A consideration of rest fram(ls is given in [75], which we shall 

outline below. 

The rest frame in a flat spacetime is adapted to the illortial ohSerV(lr following a 

worldlinp along time t. This is tIl(' direction of tlw tinwlike I{ilIing v('dor E,a. The four 
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velocity of the observers at different spatial points are orthogonal to the hyperspace 

t = constant. The four velocity is given by, 

(2.110) 

And 

~. = 80 and ~a = t,. (2.111) 

Therefore 't! is the synchronous time for the rest observers. As in the case of New­

tonian inertial frames, all the rest observers with four-velocity u'\ follow geodesic 

motion. These rest observers constitute an irrotational congruence. If we define the 

vorticity of this congruence, or that of the vector field ~a by 

_ 1 abed. 2'" 
W• • t: C W· = e "W:, , = AO ~b~c;d, , (2.112) 

then 

w{ == O. (2.113) 

The concept of a global rest frame is directly extended to a static spacetime, which 

admits a hypersurface orthogonal timelike Killing vector field ~'. The four velocity 

u' given in equation(2.110) which defines the rest observers, no longer follow geodesic 

motion. However the vorticity, 

(2.114) 

Therefore, the four velocities form an irrotational congruence. Once again' tf is the 

common synchronous time for the rest observers in the static spacetime. 

In the case of stationary axially symmetric space times, such as those of the Kerr 

spacetime, the timelike Killing vector field is no longer irrotational and hence the 

Killing obsen-ers follOwing t; a no longer dcfin~ the global rest frame. Nevertheless, 

considering the vector field 

co (2.115) 
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We notice, 

Carya = 0 (2.116) 

so that (a is the projection of t;a orthogonal to 7]a. Furthermore, it is easy to show 

that the vorticity of the (a - congruence 

w( = 0 (2.117) 

This was first noticed by Bardeen[14], who called the frames adapted to Ca as locally 

non-rotating frames (LNRF). It was recognized that the physical phenomena in the 

Kerr spacetime could be studied in a significant manner when referred to LNRF. The 

observers with four velocity 

(2.118) 

are in fact the 'rest' observers and the frames adapted to them form the global rest 

frame since Ca is in fact hypersurface orthogonal: 

( = [er; - (r;b7]b)] t 
" • (rtrJcl ,a 

(2.119) 

As before 't' is the synchronous time for these observers. 

Properties of the global rest frames were studied in detail and generalized to arbi­

trary stationary, axisymmetric spacetimes by Greene, Schucking and Vishveshwara[35]. 

They showed that if the Killing fields r;a and 7]a satisfied orthogonal transitivity, as 

in the Kerr spacetime, X" became null on the event horizon similar to r;" in the 

Schwarzschild spacetime. Furthermore, t = constant can be shown to be maximal 

surfaces. Physical phenomena can be studied meaningfully in the global rest frames, 

especi~tlly since extrnded systems can be defined only 011 spatial surfaces of simul­

taneity, like t == ('on.9tant. These global rest fraIlles are used to define tlw inertial 

forces in the general theory of relativity. 



2.3.3 Covariant Definition of Inertial Forces 

In the previous section, we have described how the optical reference geometry can be 

used to identify the inertial forces in stationary and static space times. As mentioned 

earlier, the three-surface orthogonal to the timelike Killing vector t;" in stationary 

spacetimes, in not hypersurface orthogonal. In this section we discusse the general 

covariant formalism given by Abramowicz et. al. [2) in which the general relativis­

tic analogies of inertial forces are defined with respect to agio bal rest frame in an 

arbitrary spacetime. 

An arbitrary spacetime metric can be expressed as 

_ -2¢ (a)2 t~ (a) ( f)) 1'" ( a ) ( f) ) 
9 - e &i + 2g iii ax~ + 9 aX" Dx" (2.120) 

with ¢ satisfying the condition, 

(2.121) 

One can define the one form 

(2.122) 

The above equations suggest that, 

(2.123) 

The vector field n· defines the global rest frame. As one can see, when the spacetime 

is static the vector field n" is a unit vector along the timeIike I{illing \'rctor (". In 

the case of stationary axially symmetric spacetimes, the vector field 71," is along the 

irrotational congruence ('. In an arbitrary spacetime, the vector field nO can be 

defined uniquely from equation (2.123). However, locally, each particular choice of 

ni uniquely defines a foliation of the spacetime into slices, each of which represents 

three-space at a particular instant of time. The metric for the three-space orthogonal 
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to na is defined as 

(2.124) 

Similar to the optical reference geometry given by Abramowicz, Carter and Lasota, 

the metric hob is conformally adjusted to define iiab as 

(2.125) 

Let fi and Ti denote the contravariant and covariant components of the unit vector 

along Ti in t.he conformal geometry hik' which are given by 

(2.126) 

The dynamics of a test particle with an arbitrary four velocity can be studied as 

follows. First the four velocity "Ua is split uniquely with respect to the unit timelike 

vector na ns. 

u· = I (na + UTa) (2.127) 

Here T a is the unit vector orthogonal to no, along which the spatial three velocity v 

of the pnrticlc is aligned and I is the normalization factor that makes uau. = 1. 

The acceleration of the test particle with the above four-velocity 1.!a (2.127) 

(2.128) 

can be (~xprPssed as, 

(2.129) 

We define the quantity 

(2.130) 

which is t.he erwri\Y of the test. part.iel(' when the spac(~t.imc is stationary. Then we 

have, 

(2.131 ) 
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and, 

(~V) (,),V),bnb 

e-"'1./V'i(Ev) - ')'2V2T iV'd) (2.132) 

If Vi is the covariant derivative operator in the space orthogonal to n°, then one can 

show that 

(2.133) 

Substituting the above expressions in equation (2.129), the expression for the accel­

eration can be written as 

Using the fact that 

(2.135) 

we obtain, 

aj = 'il j ¢ + -ynj + fjUiV'i(Ev) - ')'2vni(\liTj - \ljTi) - ')'2VTinjnlV'lni + ·/v2fifl,fj 

(2.136) 

Projecting this equation on to the space orthogonal to nO with the projection operator, 

hj = 6] - n!nj (2.137) 

we get, 

The various terms of the equation (2.138) can be identified with the inertial forces as 

follows, 

(2.139) 
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where, 

Gravitational force 

Centrifugal force 

Euler force 

Coriolis-Lense-Thirring force 

with, 

Zk 

V 

Xk 

¢,k 

- bv) Tif:;iTk 

Ek -\iTk 

Ck '"lVXk 

= (ve4>1'),;'ui 

ni (Tk;i - 7"i;k) 

-nink,i 

This is the covariant formalism of inertial for<:cs. 
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(2.140) 

(2.141) 

(2.142) 

(2.143) 

(2.144) 

In the next chapter, we shall apply this formalism to a partide moving in a circular 

trajectory in stationary spacetimcs. Though this formalism is general and applicable 

to an arbitrary spacetime, we shall not apply it to It gem!ral stationary spacetime but 

to the special ease of stationary spac:etimes with axial symmetry. The prime reason 

for this is that the vec:tor field II" is non-unique in a gClwral Htationary spacetime. 

Greene, Schiicking and Vishveshwara showed that the irrot!ltional congruence which 

defines the vector field n" is unique in a stationary axially symmetric: spa<:('time[35]. 

The details of thcs() results are presented ill the next chapter. 



2.4 Gravito-electromagnetism 

In the last chapter we have seen the strong analogy between gravitation and electro­

magnetism. In this section we shall highlight this striking similarity in the case of 

stationary spacetimes. We follow the example given by Landau and Lifshitz[50] to 

illustrate the electromagnetic analogy in a stationary spacetime. Here, we show that 

the acceleration of a test particle in a stationary spacetime can be split into terms 

analogous to forces acting on a charged test particle in an external electromagnetic 

field. 

As given in section 2.3.1 we shall split a stationary metric with respect to the 

timelike Killing vector ~a. In this case we write the metric as follows 

where 

and 

'Yo.{3dx"'dxi3 

h 

( + 90,,900) 
-9"'il --

900 

900 

90", 

900 

(2.145 ) 

(2.146) 

(2.147) 

(2.148) 

We study the motion of a test particle moving with a four velocity u" by splitting 

the acceleration into various gravito-electromagnetic terms. The four velocity of a 

test particle given by the equation 

i d xi 
U = --

ds 
(2.149) 

can be decomposed into spatial and temporal parts as follows. 

(2.150) 
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where, 

uO 1 g v~ 
(2.151) + __ a __ 

..JJi~ ~ 
u" 

va 

vI - 02 
(2.152) 

Here, v<> is the spatial t.hree-velocity in the three-space orthogonal to the timelike 

Killing vector field and is defined by the metric 1<>/3 as given in the equation (2.146). 

Also we have, 

(2.153) 

(2.154) 

In order to compute t.he acceleration of the test particle, we split the Christoffel 

symbols fbe as given in reference[50]. 

(2.155 ) 

(2.156) 

(2.157) 

where -\31 are the three-dimensional Chri~toffd symbols defined by the metric I<>fj· 

The equation of motion can be now written as, 

(2.158) 

Using the expression for the wlocity froIl! (~q\lati()n(2.150) we get 

211.( 1 - II~) 
(2.159) 

dv" 

One can simplify the above' equation to 

(2.160) 
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where aQ is the spatial acceleration of the test particle, In the three-dimensional 

notation one can write 

a = ~ {-\lJh + v'hv x (curlg)} . 
vl- v2 

(2.161) 

We compare the above equation with the Lorentz force equation acting on a test 

particle in an electromagnetic field. 

qE+VxB. (2.162) 

Here,E is the electric field given by 

E = - \1 <I> electric (2.163) 

and B is the magnetic field given by vector potential it, 

B = curiA.. (2.164) 

From the above comparison one can define gravito-electric force as, 

EG (2.165) 

and the gravito-magnetic force as, 

v'h 
MG = v' . v x curlg. 

1- v· (2.166) 

In the above the three-vector get acts as a vector potential for the gravito-magnetic 

field. In the next chapter we shall define the gravito-electric and gravito-magnetic 

field in a simpler and covariant manner. In the formalism given above the gravito­

electromagnetic fields are defined with respect to the timelike Killing vector in sta­

tionary spacetimes. In order to relate these fields to inertial forces one Ilpeds to define 

these fields with respect to the vector field na as in the case of inertial forces which 

will be considered in the next chapter. 
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2.5 Conclusions 

In the present chapter we have considered the formalism necessary to establish the 

relations among gyroscopic precession, inertial forces and gravito-electromagnetism. 

In the next chapter we apply this formalism to circular trajectories in a.··dally sym­

metric stationary spacetimes and establish interrelations among them. As mentioned 

earlier, Abramowicz, Carter and Lasota[l] showed that the centrifugal force reversal 

occurs at the photon orbits in static spacetimes, which was also shown by taking 

specific examples[3, 4, 60]. It was observed that the gyroscopic precession reversal 

also takes place at the photon orbits in static spacetimes, by taking specific examples 

such as the Schwarzschild spacetime[63, 43]. This simultaneous reversal of gyroscopic 

precession and centrifugal force[57] seems to indicate the possibility of direct relations 

between the two. These and other related questions are answered in the next chapter. 



Chapter 3 

Gyroscopic Precession, Inertial 

Forces and 

Gravito-electromagnetism: 

Covariant Connections 

3.1 Introduction 

In the last chapter we have given the covariant formalisms for gyroscopic precession, 

inertial forces and gravito-electromagnetism. When these formalisms are applied 

to specific examples, several interesting results emerge. Such examples would be 

of interest not only from the conceptual point of view but aL~o for astrophysical 

applications. One of such interesting observations, is the reversal of the centrifugal 

force in static spacetimes. In their earlier studies, Abramowicz and coworkers indicate 

that the centrifugal force reversal occurs at the photon orbits in static spacetimes[3, 

4]. This occurs in the Schwarzschilcl spacetime at 1· = 3M where the circular null 

geodesic exists. It was noticed that the gyroscopie pr,,~pssion reversal also occurs in 

46 
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the Schwarzschild spacetime at r = 3M. This raises several interesting questions such 

as the existence of a direct relation between the phenomenon of gyroscopic precession 

and the centrifugal force in static spacetimes. In this chapter we try to answer these 

questions. We establish a covariant connection between these two phenomena and 

show that the reversal of both the gyroscopic precession and the centrifugal force, 

occur at the photon orbits in the case of static spacetimes. In the case of stationary 

spacetimes, the physical situation alters completely. Additional inertial forces such as 

the CorioJis-Lense-Thirring force and Euler force, can also exist. We therefore have, 

on the one hand, gyroscopic precession which is influenced not only by spacetime 

curvature but also by the rotation of spacetime itself. On the other hand, rotational 

effects enter also into the description of the general relativistic equivalent of inertial 

forces. Under these circumstances, we would like to study the possible reversal of both 

gyroscopic precession and inertial forces in stationary spacetimes. For this purpose, 

we also establish the direct relation between the phenomena of gyroscopic precession 

and inertial forces, i.e. centrifugal and Coriolis forces. From this we also prove 

the result that, in general, the simultaneous reversal of gyroscopic precession and 

centrifugal force does not occur in a stationary spacetime at the photon orbits. 

This chapter is organized in the following manner. In section 3.2 we discuss the 

important properties of axially symmetric stationary spacetimes, which includes a 

brief study of global rest frames. In section 3.3 we compute the Frenet-Serret param­

eters K,1'1 and 1'2, and tetrad components for stationary observers. These results are 

extended to the circular orbits, using a rotating coordinate system. This approach 

is much simpler compared to the direct computation of Frenet-Serret parameters for 

circular quasi-Killing trajectories. These results can be specialized to static space­

times by setting ~.'T/. = O. In section 3A we compute the inertial forces for a particle 

following a circular quasi-Killing trajectory. The Euler force is identically zero along a 



chapter3 48 

quasi-Killing trajectory. In the case of static spacetimes, which does not incorporate 

inertial frame dragging, the Coriolis-Lense-Thirring force is zero. In section 3.5 we 

establish covariant relations between inertial forces and Frenet-Serret parameters. In 

the case of simpler static space times we show that the parameter 'I is proportional 

to the scalar product of the acceleration and the centrifugal force. The parameter 

'2 is also directly related to the centrifugal force. In the case of stationary space­

times, the Coriolis-Lense-Thirring force is non zero and the centrifugal force in the 

expression for the parameters 'I and '2 is replaced by a combination of centrifugal 

and Coriolis-Lense-Thirring forces. In section 3.6 we establish direct relations be­

tween the phenomenon of gyroscopic precession and inertial forces, without using the 

Frenet-Serret formalism. Since the precession frequency is equal to the vorticity for 

Killing congruence, this establishes the relation between the vorticity of the Killing 

congruence and inertial forces. In section 3.7 we study the reversal of gyroscopic pre­

cession and the centrifugal force. We prove that, in the case of static spacetimes, the 

simultaneous reversal of gyroscopic precession and centrifugal forces takes place at 

the circular null geodesics. In the case of stationary spacetimes this does not happen. 

We also study the reversal of gyroscopic precession and centrifugal force, and their 

relatioll to the null geodesics. Abramowicz, Carter and Lasota[l] for the first time 

used optical reference geometry to study the motion of test particles in the general 

theory of relativity, where the three space orthogonal to the vector field na is con­

formally adjustcd. We study gyroscopic precession and inertial forces in spacetimes 

which arc conformal static spacetimcs with the conformal factor corresponding to 

the optical reference geometry. In this conformal spacetime, t.he gravitMional force 

is effectively wllloved. This giv(~s rise to several interesting resuits, which are dis­

cllssed ill sectioll :.3.8. In sectioll ~U) we study t.he gravit.o-I'lectromagllctic fields with 

respect to two diffcrl~nt observers. First we (icline the gnl.Vito-eledromagnetic fields 

with respect to the global rest observers and relate them to inertial forces. "Ve all;o 
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define the gravito-electromagnetic fields with respect to the four velocity (u") of a 

test particle and relate them to the Frenet-Serret parameters 7"1 and 7"2' Interestingly, 

these results are exactly similar to those pertaining to the of motion of a charged test 

particle moving in a constant electromagnetic field[42]. Finally we end the chapter 

with a brief concluding section. 

3.2 Axially Symmetric Stationary Spacetimes 

In this section we summarize some of the important properties of axially symmet­

ric stationary spacetimes, relevant to our studies. An axially symmetric stationary 

spacetime admits a timelike Killing vector ~a and a spacelike Killing vector "1/" which 

generates closed circular orbits around the axis of symmetry. If the spacetime is 

asymptotically flat,~· is a timelike unit vector at infinity and (~a7)a)/(1}b"l/b) ~ goes to 

zero at infinity. Furthermore, the Killing vectors ~" and 1}" commute[19]' 

-£~Ea 

eb1}~ - 1)b~~ = 0, (3.1) 

where £,1)" is the Lie derivative of the vector field ~. with respect to the vector field 

1}b. Assuming orthogonal transitivity, in coordinates (XO == t, x 3 == ¢) adapted to the 

Killing vectors ~a and 1}" respectively, the metric takes on its canonical form 

with gab functions of Xl == rand x2 == e only. In this case, the opacetime is foliated 

by a two-parameter family of two-surfaces which are everywhere orthogonal to the 

two surfaces formed by the Killing vectors r;a and 7]". The condition for orthogo­

nal transitivity is characterized by the Killing vector fields r;a and 1,a satisfying the 
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equation[49, 48], 

(3.3) 

As we have mentioned in the last chapter, such a spacetime admits a globally hyper­

surface orthogonal timelike vector field[14, 35], 

(3.4) 

with 

The fundamental angular speed of the irrotational congruence is 

(3.5) 

The vector 'field C" is the projection of the timelike Killing vector I;a orthogonal to 

1t. Since Wo is not 11 constant, C" is not a Killing vector. However, since L'(WO = 0, 

the vector field Ca forms a quasi-Killing congruence. The vorticity, 

a_I abcdC C 0 
W, - r::::;;€ b'c d = , v-g , 

(3.6) 

for this congruence, which implies that C" is a locally irrotational congruence. Further 

more, observpr8 who follow the worldlincs along Ca ,10 not rotate with r('spect to the 

neighbonring oncs belonging t.o this congrucncc[14]. Thus, the dragging of inertial 

frames is pliminatnd. Irrotation is equivalcnt to local hypersurface orthogonality, i. e. 

in some neighbourhood about each point, the infinitesimal three surfaces orthogonal 

to Ca arc surface- forming. But Greene, Sehiic:king and Vishveshwara[35] showed that 

Co is actually globally hyp(~rsl1rfa(;e orthogonal. Since C" is a timelikc global hyper­

surface orthogoual vpetor fi('It!, it defineB it ~urface of simultaneity with ('aeh of the 

observers aloug ("; their world-t.ill\(! docks ,lIe synchronized by the hYPNsurface. The 

Co frallw is it p;('u('mlizatioll or tJw NI~wt()llian nou-rotating rest frame. III reference 
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[35], Greene, Schiicking and Vishveshwara, show that for the existence and uniqueness 

of irrotational congruence, orthogonal transitivity is a sufficient but not a necessary 

condition. A weaker condition in comparison with equation (3.3), 

(3.7) 

is a sufficient condition for the existence and uniqueness of i (B. They also prove 

some of the important properties of irrotational congruence; it was shown that the (B 

frame is well behaved down to the event horizon, where (a becomes null. In the case 

of orthogonal transitivity (B (if not zero) coincides with a Killing vector on the event 

horizon. This result also holds for the spacetime satisfying the weaker condition, viz. 

equation (3.7). In the case of static spacetimes where ~BTJB = 0 the vector field (" 

coincides with the timelike Killing vector filed (,". 

In the following sections, we compute gyroscopic precession and inertial forces in 

the case of axially symmetric stationary spacetimes. For simplicity, we assume that 

the spacetime satisfies the orthogonal transitivity conditions as given in equation 

(3.3). As we have seen in chapter 2, in order to define the inertial forces in the 

general theory of relativity, one uses a rest frame which is hypersurface orthogonal. 

We use the observers along (" in order to define the inertial forces. 

3.3 Gyroscopic Precession in Axially Symmetric 

Stationary Spacetimes 

In this section we compute the Frenet-Serret parameters and tetrads for a trajectory 

along the timelike Killing vector (,B in a stationary axially symmetric spacetime. These 

trajectories represent the worldlines of stationary observers; in the case of black hole 

spacetimes these observers are at rest with respect to the black hole. The four velocity 
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for such observers is given by 

ua (3.8) 

where 

(3.9) 

The above four velocity represents the stationary observer in the spacetime. 

After straight forward but long calculations, the expressions for the Frenet-Serret 

parameters can be expressed as[43J, 

(3.10) 

rf = [gaba.dbr (3.11) 

ri = [~narba,ddr (3.12) 

and the Frenct-Serrct basis vectors can be written as, 

e(O) 

(3.13) 

In the above, 

d. ( B ) [B. A.} 
2J-!:1:IK. If- A 

A. 
2A 
B. 
2B 

A (.;a~a), B 

(3.14) 
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A" = (~b~bl,a, Bb = (1)b~b),"; a = 1,2. 

6.3 W~a)(1]b1]b) - (1]"';a)2 (3.15) 

where nO is the unit vector along the irrotational congrue!lce defined by (" and r j 

is the unit vector along the rotational Killing vector 1]". We may note that all the 

above equations can be specialized to a static spacetime by setting ~°1)a = 0 and 

(a == ';Q. Since the quantity d" in equation (3.14) is zero for static spacetimes, the 

gyroscopic precession is zero for static observers. But, for stationary observers the 

gyroscopic precession is non-zero. This is due to the effect of inertial frame dragging 

in stationary spacetimes. 

The expressions for the Frenet-Serret parameters computed in this section for 

stationary observers can be easily generalized to the circular trajectories using the 

rotating coordinate systems. The rotating coordinate system approach was adapted 

by Rindler and Perlick[63] in order to compute the gyroscopic preccsion along circular 

tajectories. This method is far simpler than the actual computation of the Frenet­

Serret parameters for circular trajectories. We discuss the rotating coordinate system 

approach to compute the Frenet-Serret parameters for circular orbits in the next 

section. 

3.3.1 Gyroscopic Precession for Circular Orbits 

In the last section, we have computed the Frenet-Serrct parameters and the tetrad 

components for stationary observ(~rs. In t.he present section, we extend the computa­

tion for a test particle moving ill a circular orbit. The drcular orbits around the a.'ds 

of symmetry can i)(! represented by Killing trajectorir.s 

x" = E,0 + WI," (3.16) 
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where W is constant along each orbit. The four velocity of a particle along these 

trajectories can be written as follows, 

(3.17) 

In order to compute the Frenet-Serret parameters for circular orbits given by the 

above four velocity, we adapt a rotating coordinate system appraoch given by Rindler 

and Perlick[63]. A stationary axially symmetric metric of the form (3.2), adapted to 

the Killing vector ( and T/ is form invariant under the coordinate transformation, 

¢ = ¢' + wt'; t = t' (3.18) 

where w is a constant. In the rotating coordinate system, the line element can be 

expressed as[.\3], 

(3.19) 

where 

90' 3' 903 + W 933 

93'3' 933· (3.20) 

Under the coordinate transformation (3.18), we note that Ea + wrya is also a Killing 

vector, provided w is a constant. The metric (3.19) is given for a coordinate system 

adapted to the Killing vector field E,'a = I;a + wr!" and Ii' = 7/. The Killing vector 1;' = 

(1,0,0,0) is timelike (for timelike circular orbits in the original coordinate system) 

and we can use equations (3.10), (3.11) and (3.12) to obtain K, T[ and TZ along this 

IVorldlinc. Howev"r, ~' corresponds to ( + WT/ in the unprimed coordinates so that 

we call compute i"C., T[ and T2 along trajectories ( + WI) by replacing I;a~a and Cry. in 
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equations (3.10), (3.11) and (3.12) by A and B. More importantly the prescription 

also works in the case where W is not a constant but only satisfies £xw = O. 

Thus along trajectories of ~ + WTJ, we have, 

In the above, 

da ( B ) [B. A.] 
2v'-il.31'o: B - A ( v' -~31» [b. - a.l 

A. 
aa 2A 

ba 
Ba 
28 

A (~·~a) + 2w (TJo~.) + w2 (TJoTJo) 

B (TJ·~o) + W (7]°TJo) 

C = (~·~o) + w (7t~0) 

Aa = (~bEb),a + 2w(7]b~b),. + w2(TJbTJb),.; a = 1,2. 

8b (TJoE.),b + w(T}"TJ.),b; b = 1,2. 

.6.3 = ({"Ea) (7]bT}b) - (TJo~a)2 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The Frenet-Scrret tetrad is obtained by a vector transformatioll and can be written 

a.'S, 

p.(O) 
1 M(l, 0, D,w) 

eel) 1 (0 11 22 0) -- ,9 allY a2, 
K. 

1 (3.25) e(2) Mv=:;s:a (8,0,0, -C) 
A -~3 

e(3) ..;grrgn ) ---(0, -a2, all 0 
Ii 
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One can also check explicitly that the same expressions for r;, 7"[ and T~ are nl/tained 

by direct calculations for the four velocity along ( + M7· As mentiolw! b('for~. tht· 

above result can be specialized to static spacetimes by betting E,"rya =: n. 

The above equations for the Frenet-Serret parameters are presented ill a t!iffpf(~Ilt 

form than those given in reference [43J in such a way, that it is collv('nient to ('st.abli~h 

direct relations with inertial forces. In the next section, we compute the inertial fpreps 

for a test particle moving in a circular orbit. 

3.4 Inertial Forces in Axially Symmetric Station-

ary Spacetimes 

In the last chapter, we have described the formalism for inertial forees in th(' )l;1'rH'ral 

theory of relativity. In this section, we compute the inertial forces for a test partidp 

in a circular orbit, described by the quasi-Killing trajectory 

p.:26) 

As given in chapter 2, we decompose the velocity with respect to the ri'st fmrlJ(~ 

described by the irrotational congruence, 

(:l.:m 

here nO is a unit vector along the irrotational vector field given in ('<Illation Cl .. !). 

na '" e-1>;-o =: e-¢> (Cll _ I;bryb"la) . ( 
"" :1.28) ryC'lc 

These form the fundamental global t b '. .. res a servers III an m(Jally symmetric statlOllar:-: 

spacetime. Then we have that r"'. . 
IS a umt vector orthogonal to n" or Ttl is It unit 

vector along the three-velocity of the particle, 

(3.2!.l) 
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The spatial speed v and the normalizing factor 'Y can be expressed as, 

where C/>, a and 1/! can be written as follows 

c/> = ~lnW(.), 
a = ~ In( -1)"1).), 

1/! = ~ In(x''x.)· 
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(3.30) 

(3.31) 

(3.32) 

(3.33) 

From the above relations, we can write down the inertial forces from their definition 

as follows. 

Gravitational force 

c/>,k (3.34) 

Centrifugal force 

Zk = ~e2(1{JH)w2 (1)41)4) 
2 (?(b ,k 

(3.35) 

Coriolis-Lense-Thirring force 

(3.36) 

where 

w = (w - wo) (3.37) 

In the case ()f quasi-Killing trajectories, it is ellSY to show that V = 0 and hence the 

Euler force does not exist, 

(3.38) 

As in the ease of Newt.onian gravity, in the general theory of relativity also, the 

gravitational force can be expressed as the gradient of a scalar potential. For a particle 

following a quasi-Killing trajectory, inertial forces are proportional to gradients of 

functions. 
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3.4.1 Specialization to Static Spacetimes: 

. . th 1 b 1 \. ell'ke Killing vector ~" is itself hypersurface or-
In a statIc spacetIme, ego aIm 

thogonal. The unit vector n" is now aligned along ~", 

Then we have the inertial forces as follows: 

Gravitational force 

where ¢ = ~ln((·{a) 

Centrifugal force 

tj;,k 

Zk = _ w2 e2(>I+a ) fin ('I)''I)i)1 
2 l {J{j ,k 

And the Coriolis-Lense-Thirring force is identically zero, 

Ck '" 0, 

(3.30) 

(3.40) 

(3..,11) 

(3.42) 

this is because of the fact that t;a'l)a '" ° in static spacetimes, which determines the 

dragging of inertial frames. 

3.5 Covariant Connections 

In the preceding section, we have derived expressions for TI and T2 which give the 

gyroscopic precession rate in terms of the Killing vectors. Similarly, inertial forces 

in an arbitrary axisymmetric stationary spacetime have also been written down in 

terms of the Killing vectors. All these quantities have been defined in l\ completely 

covariant manner. \\'e shall now proceed to establish covariant connections between 

the gyroscopic precession, i.e. the Frenet-Serret torsions Tl <tnd T2, on the one hand 
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and the inertial forces on the other. First, we shall consider the simpler case of static 

spacetimes. 

3.5.1 Static Spacetimes 

In the present section, we establish the relation between the Frenet-Serret parameters 

T[ and T2 with the centrifugal force. As shown earlier, the Coriolis-Lense-Thirring 

force is identically zero in static spacetimes. 

We have derived in equations (3.22) and (3.23), the Frenet-Serret torsions T[ and 

T2 for a stationary spacetime. As has been mentioned earlier, for a static spacetime 

~a1)a = 0 and (a = ~a in the above equations, as well as in the expressions for the 

inertial forces. With this specialization, the centrifugal force can be written from 

equation (3.41) as 

(3.43) 

Substituting equation (3.43) in equations (3.22) and (3.23) we arrive at the relations 

(3.44) 

and 

(3.45) 

where 

(3,46) 

The equations above relate the gyroscopic prccc~siOll directly to the centrifug;al force. 

The two torsions T[ and T2, equivalent to the t.wo components of the prpcessioll, are 

respectiwly proportional to the scalar and cross products of the accderation and the 

centrifugal force. \Ve shall discuss the consequences of t.hese relations later on. In the 

llrxt. section, Wi' derive similar relations in axially symmetric stationary spacetimes. 
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3.5.2 Stationary Spacetimes 

In order to establish direct relations between the Frenet-Serret parameters and inertial 

forces in axially symmetric stationary spacetimes, we decompose all the parameters 

with respect to the irrotational congruence. From equation (3.14) we have 

A W~.) + 2w (","(.) + w2 (7]"TJo) 

8 (",.~.) + W (7]07]0) 

We decompose the angular speed w with reference to the fundamental angular speed 

of the irrotational congruence Wo = -~, 

w =w+wo. (3.47) 

Then A and 8 simplifies to, 

B (3.48) 

Similarly, their derivatives also can be written as, 

(3.49) 

where 

(3.50) 

or equivalently, 

c. = _(~b"'b)WO,. (3.51) 

From equations (3.14),(3.48) and (3.49) we can show that 

2 e-(Hc)w 
-e.p~ {((P(p)Co + W [((P(p)(7]q7]q)," - (7]P7]p)((q(q),.] 

- (;} (rf",p)C.} (3.52) 
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Further, it is is easy to see that Co is directly proportional to the Coriolis force, 

(3.53) 

where Ca is the Coriolis-Lense-Thirring force. Then equation (3.52) takes on the form 

Where Za is the centrifugal force. 

Substituting this in equation(3.22) for 7"[ we get the relation, 

where 

e(¢-c.) 

K. 

_~ [1 + ,;:,2e2(c.-¢)] 

Again, from equation (3.23) and (3.52), we obtain the expression 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

These relations arc more complicated than those we have derivecl in the static case. 

Nevertheless, they closely resemble the latter with the centrifugal force replaced by 

the combination of the centrifugal and Corio lis forces (Z. + {J[G.). The static case 

formulae are obtained from those of the stationary case by setting the Coriolis force 

to zero. 

In this method we have directly expressed the Frenet-Serrct parameters 7"[ and 7"2, 

which dcterminc the gyroscopic precession, in terms of the inertial forces. 
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3.6 Gyroscopic Precession, Vorticity and Inertial 

Forces 

In the last section, we have related the gyroscopic precesRioll and inertial for(,~B us­

ing the Frenet-Serret formalism. In other words, we have related the Frerwt-St>rrt't 

parameters 'I and '2 to the inertial forces. In this section we shall diredly relate 

the gyroscopic precession and inertial forces yielding vector rclatioll$, whereas the 

relations derived in the last section were scalar. The vorticity is another important 

geometrical quantity of a trajectory which is embedded in a congnHlllC(" W" have 

seen in the last chapter, that for a Killing congruence, the vorticity anci the gyroswpi<: 

precession frequency are identical. By setting the parameter W {'onstaut, W(' obtain 

direct relations between the vorticity and the inertial forces. 

In the last chapter, we have seen that, for a quasi-Killing trajeetory, the gyroscopic 

precession frequency can be written as, 

(:l.SS) 

In order to relate the above equation and the inertial forces, we c1dill<l tIl(! followinp; 

quantities, following the notation by Geroch[33]' 

(:l.G!)) 

(:I.GO) 

(;l.(ll) 

VIe also define the following scalar parameters 

(3.G2) 
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From equation (3.59) and using the properties of Killing vectors, the derivatives of 

the Killing vector can be expressed in terms of its vorticity, as follows, 

(3.63) 

Similarly from equation (3.61) we get 

(3.64) 

From equations (3.63) and (3.64), we express the vorticity iii"' ~", and t';'" in terms 

of the scalar parameters defined in equation (3.63) as follows. 

(3.65) 

(3.66) 

(3.67) 

The gyroscopic precession frequency along a quasi-Killing trajectory is given by 

From equation (3.59, 3.60 and 3.61) we can express wa as, 

2", 

w" = ~ [ w" + 2w w" + w2 w"] . 2 00 01 11 

Decomposing w with respect to the irrotational congrncllce, 

w = w+wo 

('2," 1 
w" = ..:....... [( w" + 2;"·0 w" + w2 w") + 2w ( w" + Wo w") + w2 w" 2 00 ()l 0 U III 11 Ll 

(3.68) 

(3.69) 

(3.70) 
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(3.71) 

(3.72) 

(3.73) 

we can express w· in terms of the inertial forces as follows, 

(3.74) 

We have 

so that we get 

w· (3.75) 

or 

(3.76) 

This is the direct relation between the gyroscopic precession and inertial forces, in 

contrast to the Frenet-Serret approach given in the preceding sections. 

In the last two sections, we have established the relationship between inertial 

forces and gyroscopic precession for circular orbits in stationary axially'symmetric 

space times. One of the important consequences of these relations is to show the 

simultaneous reversal of the gyroscopic precession and the centrifugal force in static 

spacetirnes, which we shall carry out in the next section. We shall also prove that, 

in general neither centrifugal force nor gyroscopic precession reversal occurs at the 

photon orbits in the stationary spacetimes. 
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3.7 Reversal of Gyroscopic Precession and Inertial 

Forces 

In this section, we study the reversal of the gyroscopic precession and the centrifugal 

force. Abramowicz, Carter and Lasota[l) first proved that the centrifugal force rever­

sal occurs at the photon orbits in static spacetimes. In this section, we shall show 

that the gyroscopic precession reversal also occurs at the photon orbits. 

The condition for the reversal of the gyroscopic precession is given by 

(3.77) 

Since e(l) and e(3) are linearly independent vector fields at each point, this condition 

is the same as requiring 

(3.78) 

By considering the actual structure of 1"2, it is easy to show that 1"2 becomes zero on 

a plane about which the metric components arc reflection invariant. The equatorial 

plane in the black hole spacetime is an example of this. 

We shall now {~xamine the vanishing of the Frenet-Serret torsions in relation to 

the inertial forces. 

3.7.1 Static Spacetimes 

In what follows, we shall prove a theorem that relat(>s the simultaneous reversal of 

the centrifugal force and the gyroscopic precession to t.he ('xistellce of a null circular 

orbit. First we shall prove that the gyroscopic prec('ssion reversal occurs if and only if 

the gyroscope i, transported along a tinwlike trajectory whose spatial orbit coincides 

with a null geodesic. 
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We start from the condition for gyroscopic precession reversal, i.e. 1"1 = 1"2 = 0, 

and show that at the point where this occurs a null circular geodesic must exist. In the 

second part we take a circular null geodesic and show that the gyroscopic precession 

reversal occurs at such orbits. 

Setting 1"2 = 0 in equation (3.23) and noting that the only non vanishing compo­

nents of n. and 1". are respectively, no and 1"3, we arrive at the condition 

(3.79) 

(3.80) 

We shall now assume that the gyroscope is transported along a circular orbit which 

is not a geodesic, i. e. K, 1= O. This we do in anticipation of the result that a null 

geodesic - not a timelike one, - exists with its spatial trajectory identical to that of 

this timelike orbit. Now K, 1= 0 implies Al 1= 0 and A2 1= 0 from equation (3.14). 

Then from equations (3.79) and (3.80) we arrive at 

(3.81) 

and 

o (3.82) 

. Combining the above two equations, 

ABa -BA. 0 

Then, equation (3.14) reduces this condition to 

(3.83) 

With the help of this equation, we can show that, if a circular geodesic exists where 

precession reverses, then it has to be null, as follows. 
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The condition for circular geodesics is 

(3.84) 

This can be proved from the geodesic equation, assuming that the four velocity u" is 

proportional to ';" + w'f/". Using condition (3.83), this reduces to 

(.;b';b)," [(CdC) + 2( d )] = 0 
(.;c';c) ~ ~d W 'f/ 'f/d (3.85) 

Since ~~?l~i is the gravitational force, which is assumed to be nonzero, this is equiv­

alent to 

(3.86) 

This means that the geodesic, if one exists, is null. Now we shall show that in fact a 

geodesic must exist at the point of precession reversal. 

If a geodesic does not exist at the point of reversal, then 

(3.87) 

for all values of w. However, equation (3.83) may be recast as 

(3.88) 

This shows that the geodesic condition is satisfied for w2 - (r:&..) Therefore - - rl(''fk • 

there does exist a geodesiC and we have already shown that it has to be Ilull. We 

shall now prove the converse, i. e. if a circular null geodesic exists, then 7"1 and 7"2 are 

zero at the null geodesic. 

The condition for a circular null geodesic is giv(m I;y (~qlll\tion (3.83). Dividing this 

equat.ion by (';"';.)(rl'f/b), we see that it renu('es t.o [In (~)] k which is proportional 

to Z" from equation (3,41) IUld is equal to zero. Further, from the dependence of 71 

and 72 on Z., from equations (3,44) anci (3,45) WE'see t.hat 71 = 72' = O. We may 
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note the fact that both the gyroscopic precession and the centrifugal force the reverse 

simultaneously, as is evident from equations (3.,14) and (3.45). We have therefore 

proved the following theorem. 

Theorem: In the case of circular orbits in static spacetimes reversal of gyroscopic 

precession and centrifugal force takes place at some point, if and only if a null geodesic 

exists at that point. 

In the next section we study the reversal of the gyroscopic precession and the 

centrifugal force in stationary spacetimes. 

3.7.2 Stationary Spacetimes 

In section 3.5 we have derived expressions for 71 and '2, that embody gyroscopic 

precession, in terms of inertial forces, namely the centrifugal force Z. and Coriolis­

Lense-Thirring force C.. These are complicated expressions and w does not stand 

out as an overall multiplicative coefficient. Consequently, the reversal of gyroscopic 

precession is not related directly to that of these forces individually. As has been 

discussed in reference [58], these reversals occur at different places and also not at 

the null geodesic. Nevertheless, one can see from equation (3.55) and (3.57) that the 

gyroscopic precession reverses at a point where the combination of the centrifugal and 

the Coriolis forces given by (Z. + {hC.) , goes to zero. 

We shall derive the angular velocity of a timeJike orbit whose three dimensional 

trajectory coincides with a null geodesic in terms of inertial forces. Although there 

are no reversals at the null geodesic, this should give an idea of how these forces are 

structured along the null trajectory. 
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Conditions for the existence of circular null geodesic are 

(3.89) 

and 

o (3.90) 

The expression for A can also be written as 

(3.91) 

where 

(3.92) 

Then A o implies 

(3.93) 

Further, from equation (3.90) 

An = -;.- {(1)Q1)q)((b(b),. - ((b(b) (1)q1)q),a } ± ~ - C;Cb c. = 0 (3.94) 
1)~ 1)~ 

This has to be zero for a null geodesic. For a timelike curve with the same spatial 

orbit, but having angular velocity w with respect to na,we have from equations (3.35) 

and (3.53) 

Substituting ill equation (3.94), we get 

_1_ {2c-21/!((p( )w-2 Za} 'F {2~ _ (b(b e-21/!w-1C.} 
1J1'r)p P 1)q1)q 

This reduces to the equation 

~ - (P(p Z. 'F wC. = 0 
1)Q1)q 

which gives w ill terms of centrifugal and Coriolis forces. 

(3.95) 

(3.96) 

o (3.97) 

(3.98) 
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3.8 Gyroscopic Precession and Inertial Forces in 

Conformal Static Spacetimes 

Some further insight into the gyroscopic precession and the inertial forces may be 

gained by considering them in a space conformal to the original one, as given in 

Abramowicz, Carter and Lasota [1]. In the case of the static metric, we carry out the 

conformal transformation 

If we choose 

e-2¢ = lO = 2-
900 

(3.99) 

(3.100) 

then, goo = gOO = 1. The spatial part of metric gab corresponds to optical geometry 

defined in reference [1], for identifying inertial forces in such geometry. Purely in the 

conformal space, without referring to the original9ab, we have 

(3.101) 

for a stationary observer with four velocity u" = (1,0,0,0), where Va is the covariant 

derivative with respect to the conformal metric 9~b. The two four velocities u' and 

ita are related by ua = e-¢u". Equation (3.101) indicates that because of dilation, 

ft· follows a geodesic trajectory in the conformal metric. This is equivalent to the 

statement that the only force acting on a particle at rest in the original space is the 

gravitational force which is not felt in the conformal space. Since the gravitational 

force is independent of the velocity, no particle will experience it in the conformal 

space. In other words, the gravitational force is effectively removed to some extent by 

dilation given in equation (3.100). Consequently, if a particle is moving in a circular 

trajectory, then the only force acting all it is the centrifugal force. 

If ~. is a Killing vector in the original space, then ~a is also a Killing vector in the 
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conformal space if 

(3.102) 

This is trivially true in coordinates adapted to the Killing vector ~a. Then the Killing 

vectors, in the original spacetime are also Killing vectors in the conformal spacetime. 

Therefore, (a = (1,0,0,0) is the timelike Killing vector and 7/" = (0,0,0,1) is the 

spacelike Killing vector which generates circular orbits in the conformal spacetime. 

The quasi-Killing trajectories 

(3.103) 

generate circular orbits and the only force acting on these particles is the centrifugal 

force. It is easy to prove that the expression for the centrifugal force is now 

(3.104) 

where 

ita (3.105) 

3.8.1 Gyroscopic Precession in the Conformal Space 

The gyroscopic precession in the conformal spacetime can be computed exactly as 

before. The Frenct-Serrct parameters for circular quasi-Killing trajectories can be 

written as, 

;,,2 = _ ~ (gllA~ :- 922 A~) 
4 A2 

(3.106) 

( 82 ) 
4.6.3 (gllA¥ + g~2 A~) . 

( .ijllAI8t + g22A2 B2 ,ijllA1 + g22A~)2 
. 8 - A (3.107) 

gllg22 (A\82 _ A28\) 2 

4.6.3 (gllAy + ii22A~) 
(3.108) 
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where 

and 

One can then show that 

S = w i/ija = 

Aa = W2(ijbr,b),a ; a = 1,2 

Sa = w(r,br,b),a ;a=1,2 

Sa 

72 

(3.109) 

(3.110) 

(3.111) 

(3.112) 

With the help of the above equations, i;2 can be related to r;2. After some simplifica-

tion we have, 

(3.113) 

From the definition of i; and the expression for the centrifugal force as in (3.104), it 

is clear that the two are one and the same. This is because the contribution from 

the gravitational force has been removed and the acceleration that appears is due to 

the centrifugal force alone. We can relate if to ",2 by using the expression for ff to 

obtain 

i\2 - 6 3w2 
(3.1l4) 

The above equation is similar to equation(3,44) which relates 1'\ to the centrifugal 

force. It can also be shown that 

o (3.1l5) 
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everywhere in the conformal spacetime. 

From equations (3.114) and (3.115) it is clear that the gyroscopic precession also 

reverses when i;. = 0 and that in tum corresponds to the centrifugal force reversal. 

Also;;' = 0 corresponds to the geodesic condition in the conformal space, which 

represents the null geodesics in the original space as given in reference [1]. 

To sum up, we have factored out the contribution due to the gravitational force 

by conformal transformation and have shown in a simple manner the simultaneous 

reversal of both the gyroscopic precession and the centrifugal force at the photon 

orbit. 

3.9 Gravito-electric and Gravito-magnetic Fields 

In the last chapter we have defined the gravito-electromagnetic fields in stationary 

spacetimes. In this section we shall define these fields in a covariant manner. Here 

we shall make use of the properties of a Killing vector, i. e., that the derivative of 

a Killing vector ~.;b is an antisymmetric tensor. We take the analogy between the 

Maxwell field tensor for electromagnetic field :F ab and Fab for a Killing vector field. 

Using the above analogy one can define the gravito-electric and gravito-magnetic field 

with respect to any timelikc vector field. In order to (!stablish relations between the 

inertial forces and gravito-eiectromagnetic fields, we define these fields with respect 

to the global rest observers no.. These fields with respect to observers following the 

integral curves of no., can be defined as follows. 

Gravito-electric field: 

(3.116) 
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Gravito-magnetic field: 

Ha (3.117) 

where pab is the dual of Fab, 

F- ab 1 ( r-::) -1 abcaF. = 2" y-g C cd (3.118) 

In the above, as before, Fab == e"'(~a;b + Wrya;b). The equation of motion is 

(3.119) 

Projecting onto the space orthogonal to na with hao = gab - nanb and decomposing 

U a as given in (2.127), we get 

(3.120) 

where 'Y is the normalization factor. This equation can be written in the form 

(3.121) 

or 

U.La 'Y[E + vxH] (3.122) 

We can therefore define 

Gravito-electric force: 

iasa (3.123) 

Gravito-magnetic force: 

(3.124) 

These define the gravito-electromagnetic fields. We have also split the force acting 

on a test particle in terms of gravito-electric and gravito-magnetic forces. In the next 

section we relate these forces to the inertial forces. 



3.9.1 Relations Among Gravito-electric, Gravito-magnetic and 

Inertial Forces 

3.9.1.1 Static Case 

We have defined the gravito-electric field Ea by 

If we substitute for Fab = e.p(~a;b + W1)a;b) , we get 

fOEa = -yEa = -yFaene = -e2(.pH)Ga (3.125) 

So, 

(3.126) 

Here Ga is the gravitational force. Similarly, we have for the gravito·magnetic field 

fOlla = -yv(Fae7e - n.nb Fbe7e ) 

The second term in this equation is identically zero because the Killing vector fields 

~a and 1)a commute and we get 

fOlla ,VHeabcdnb7cHd 

-yvFac7e 

[e2(.p+<»w2G. - Za] (3.127) 

The above relation clearly shows the connection between the gravito-magnetic force 

on the one hand and the gravitational and centrifugal forces on the other. 

3.9.1.2 Stationary Case 

In the stationary case, na is given by equation (3.30). As before we decompose 

W = w + wo, where Wo is given by (3.5). Then a straightforward computation gives 
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the expression for the gravito-electric field. 

(3.128) 

and the gravito-electric force, 

(3.129) 

This shows the relation of gravito-electric field or force to both the gravitational and 

centrifugal forces. In the stationary case also we have, 

(3.130) 

Then it follows 

'""(VF.cTC 

[~ + e2("¢+<»i;lC. - z.] (3.131) 

Hence gravito-magnetic force is related to all the three inertial forces - gravitational, 

centrifugal and Corio lis. 

3.9.2 Gravito-electric and Gravito-magnetic Fields with Re­

spect to Comoving Frame 

In the previous section, we have defined gravito-electric and gravito-magnetic fields 

with respect to the irrotational congruence. Similarly these fields can be defined with 

respect to the four velocity u· of the particle as follows. 

Gravito-electric field: 

(3.132) 
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Gravito-magnetic field: 

(3.133) 

Where F"b is dual to F"b as before. The equation of motion takes the form 

a" = EO (3.l3.!) 

The precession frequency can be written simply as 

w" = fro (3.135) 

Following Honig, Schiicking and Vishveshwara [421, the Frenet-Serret parameters K., Tl 

and T2 can be expressed in terms of gravito-electric and gravito-magnetic fields. 

where 

where 

and 

(3.136) 

(3.137) 

(3.138) 

(3.139) 

(3.140) 

(3.l.!1) 

the Frcnct-Serret tetrad components can also be expressed in terms of Ea, fl· and 

pa, 

1'(1) 
EO 
lEI 

e(2) 
po 

(3.l.!2) 
IPI 

cr\) 
cabed EI,P,.lld 

prEr 
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In reference [42], these expressions had been derived for charged particle motion in a 

constant electrcmagnetic field. vVe have now demonstrated the exact analogue in the 

case of gravito-electric and gravito-magnetic fields. The one-to-one correspondence is 

indeed remarkable. 

3.10 Conclusions 

The main purpose of the present chapter was to establish a covariant connection 

between the gyroscopic precession on the one hand and the analogies of inertial forces 

on the other. This has been accomplished in the case of axially symmetric stationary 

spacetimes for circular orbits. In the special case of static spacetimes the gyroscopic 

precession can be directly related to the centrifugal force. From this we have been able 

to prove that both precession and centrifugal force reverse at a photon orbit, provided 

the latter exists. In the case of stationary spacetimes, the corresponding relations are 

more complicated. The place of centrifugal force is now taken by a combination of 

centrifugal and Coriolis-Lense-Thirring forces. As a result, the gyroscopic precession 

and the centrifugal force do not reverse, in general, at the photon orbit. We have also 

studied some of the above aspects in the spacetime conformal to the original static 

spacetime. In this approach, part of the gravitational effect is factored out thereby 

achieving a certain degree of simplicity and transparency in displaying interrrlations 

and the reversal phenomenon. Closely related to these considerations is the idea 

of gravito-electric and gravito-magnetic fields. We have covariantly defined these 

with respect to the globally hypersurface orthogonal vector field, that constitutes 

the general relativistic equivalent of a Newtonian rest frame. In this instance, these 

fields can be related to the inertial forces. When these fields are formulated with 

respect to the orbit under consideration, they lead to a striking similarity in the 
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corresponding physical quantities that arise for a charge moving in an actual, constant 

electromagnetic field. We have thus established connections and correspondences 

among several interesting general relativistic phenomena. In the next chapter, we 

shall compute the gyroscopic precession and inertial forces in some of the black hole 

spacetimes. 



Chapter 4 

Application to Black Hole 

Spacetimes 

4.1 Introduction 

In the last two chapters we have presented the formalisms for the phenomena of gyro­

scopic precession and inertial forces. We have also established interrelations between 

them. In order to get further physical insight, we apply these formalisms to spe­

cific examples. These include static spacetimes - in which both gyroscopic precession 

and centrifugal force reversals occur at the null geodesics - and stationary spacetimes 

where this does not occur. The simultaneous reversal of gyroscopic preCE.'Ssion and 

centrifugal force occurs in the Schwarz schild spacetime at r = 3M, where a circular 

null geodesic exists[l, 4, 57, 60]. We take the Ernst spacetime as a typical p.xam­

pic for a static axially symmetric spacetime in order to illustrate the simultaneous 

reversal. In addition, the Schwarzschild spacetime and the !-,;!elvin universe can be 

treated as spt>cial eases of the Ernst spacetime. As has been s!wwn in the last chap­

ter neither centrifugal force nor gyroscopic precession rewrsal occurs at the circular 

null geodesics in stationary spacetimes. In this chapter ,,'e take the Kerr-Newman 

80 
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spacetime as an example of axially symmetric stationary spacetimes. 

In this chapter we first study gyroscoic precession in static spacetimes using the 

Frenet-Serret formalism. In section 4.2.1 we give the gener .• l expressions for circular 

quasi-Killing trajectories. These results take a simple form c.n the equatorial plane. In 

section 4.2.1.2 we study the precession along a circular geodesic and show that in the 

limit r;, -+ 0, the Frenet-Serret parameter 7'1 is well defined. We may also note that 

the Frenet-Serret parameter 7'f = Wk~l"" where the Wkepler is the Keplerian orbital 

frequency. In section 4.2.2 we study inertial forces in the Ernst spacetime. As we 

have seen earlier, the Euler force is zero for quasi-Killing trajectories and the Coriolis­

Lense-Thirring force is zero in static spacetimes, so that we have only centrifugal force 

in addition to the gravitational force in static spacetimes. By setting the magnetic 

field parameter B = 0, we obtain the Schwarzschild solution as a special case of 

the Ernst spacetime. In section 4.2.3 we study gyroscopic precession and centrifugal 

force in the Schwarzschild spacetime. The Melvin universe can also be treated as a 

special case of the Ernst spacetime by setting the mass parameter M = O. These are 

considered in section 4.2.4. One of the main motivations is to investigate the reversal 

of gyroscopic precession and centrifugal force in the Ernst spacetime. In section 4.2.5 

we show that both gyroscopic precession and centrifugal force reversal occurs at the 

circular null geodesics in the Ernst spacetime as expected. Similar studies can be 

carried out in the case of the Schwarzschild spacetime and the Melvin universe as 

special cases. 

In section 4.3 we take Kerr-Newman spacetime as an example of stationary ax­

ially symmetric spacetimes. One of the aims is to highlight the differences in the 

phenomenon of gyroscopic precession and inertial forces, as observed ill a stationary 

spacetimei in cOllstrast to a static one. The general expression for the Frenet-Serret 

parameters along circular orbit is given in section -1.3.1. These results are special-
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ized to the case of equatorial plane and to circular geodesics in section 4.3.1.1 and 

4.3.1.2. In the case of a stationary spacetime, we see that ro direct relation between 

1"[ for circular geodesics and Keplerian angular velocity exists as in the case of a static 

spacetime. In se<;tion 4.3.2 we compute inertial forces in the Kerr-Newman spacetime 

using the formalism given by Abramowicz, Nurowski and Wex[2]. In section 4.4 we 

study gyroscopic precession and inertial forces in the Kerr spacetime as a special case 

of the Kerr-Newman solution by setting the charge parameter Q = o. Gyroscopic 

precession in the Kerr spacetime was studied by Iyer and Vishveshwara[43]. In sec­

tion 4.4.1 we present the expression for gyroscopic precession as a special case of the 

Kerr-Newman solution. The expressions for inertial forces in the Kerr spacetime was 

given in section 4.4.2. Chakrabarti, Prasanna and Sai Iyer[45, 20] computed inertial 

forces in the Kerr spacetime using the formalism given in the reference[l]' where the 

inertial forces are defined in the three-space orthogonal to the timelike Killing vector 

r;a. We utiliZe the covariant formalism given by Abramowicz, Nurowski and Wex, in 

which inertial forces are defined with respect to an irrotational congruence which is 

the generalization of a Newtonian global rest frame [35, 75]. By setting the angular 

momentum parameter a = 0 we obtain the Reissner-Nordstrom spacetime as a spe­

cial case of the Kerr-Newman solution. In section 4.5 we study gyroscopic precession 

and inertial forces in the Rcissner-Nordstrom spacetime. As the Reissner-Nordstrom 

spacetime is a static spacetime, we observer that the simultaneous reversal of gyro­

scopic precession and centrifugal force occurs at the circular photon orbits. In section 

4.6 we study where the reversal of gyroscopic precession and centrifugal force in the 

Kerr-Newman spacetime occur. From the condition for reversal, one can clearly no­

tice that the reversal of gyroscopic precession and ccntrifllg1Ll force oc~urs at different 

points ill the spacetime. 
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4.2 Gyroscopic Precession and Inertial Forces in 

the Ernst Spacetime 

In this section we compute the gyroscopic precession frequency and the inertial forces 

in the Ernst spacetime[30]. The Ernst spacetime is a typical example of static axially 

symmetric spacetime. The previous study by Prasanna indicated that the centrifugal 

force reversal occurs in the Ernst spacetime at the photon orbits. Here we show that 

gyroscopic precession reversal also occurs at the photDn 'Orbits. As has been shown 

in the last chapter the simultaneous reversal of gyrDsccpic precession and centrifugal 

fcrce at the photon orbits is in fact a generic property 'Of all static spacetimes. The 

Ernst spacetime allows two circular null geodesics and in this secticn we show that 

the reversal occurs at bDth the orbits. 

The Ernst metric can be written in the fcrm 

with 

(4.2) 

Here M and B are respectively the mass and the magnetic field in geometrized units. 

The Ernst spacetime represents a Schwarzschild black hole immersed in an axially 

symmetric magnetic field which becomes unifcrm asymptotically. When the magnetic 

field is zcro(B = 0), the solution reduces to the Scbwarzschild spacetime as a special 

case. If the mass parameter .'1;[ = 0, the Ernst solution becomes the Melvin universe, 

which is an empty universe with a constant magnetic field B. Next we compute the 

gyroscopic precession and inertial forces for a particle mDving in a circular orbits 

around the black hole. 



4.2.1 Gyroscopic Precession in the Ernst Spacetime 

In this section we use the Frenet-Serret formalism as described in the second chapter 

in order to compute the gyroscopic precession. The Frenet-Se::ret parameters t;, TI and 

T2 and the Frenet-Serret tetrad components are computed for the circular trajectories 

around the black hole. These circular orbits can be represented by the quasi-Killing 

congruence, with the four velocity, 

(4.3) 

here w is a function of 1" and 0, and e'" is the normalizing factor as mentioned before. 

The Frenet-Serret parameters for circular orbits can be written as follows, 

t;2 == iC l (4.4) 
),21"2 iC2 

(1 2M)iC 
T2 :: 

--;:- 3 2 . 2e (4.5) 1 )..2](1](2 w sm 

,"2 M 2iC4 2 2 (4.6) 2 )..4 r 2](1 w cos 0 

where 

(4.7) 
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(4.8) 

The components of the bases are given as 

(4.9) 

where 

A 

B = (4.10) 

These results are general. However, considerable simplification occurs in the above ex­

pressions when we specialize to orbits in the equatorial plane and, further, to circular 

geodesics. 
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4.2.1.1 Equatorial Plane 

The black hole spacetimes have reflection symmetry about the equatorial plane, which 

is represented by It = I' By setting B = 7':/2 in equatio:J.s (4.4.4.5 and 4.6) we 

obtain, 

(1-~) {;'t [J\! + B2r2(2r - 3M)] + 'ff [~_1]}2 
).2 [.\2 (1- 2~!) _~] 

2 

{(1-~) [~-1] r + t[M + B2r2(2r - 3l\1)l}2 2 

).2r2 [.\2 (1- 2~!) _ w~;2]2 W 
(4.11) 

o 
1 

One observes that 72 = 0 on the equatorial plane. This is in fact true for any plane 

about which the spacetime has as reflection symmetry. Since 72 = 0, the gyroscope 

precesses about e(3), i. e. about an axis orthogonal to the orbital plane at a rate given 

4.2.1.2 Circular Geodesic Motion 

In chapter 2 we have shown that the Frenet-Scrrct parameters K. represcnts the mag­

nitude of the four ,\cccleration of the particle. One call clc<,.riy ~e,> the fact that the 

Frenet-Serret equations arc not well defined for geodesics as a single curve. However, 

olle can define til(' geodesics as a member of a eongruencc for which t.he Frenet-Serrct 
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parameters are smooth functions on the spacetime. In such a case, geodesics are 

defined as a limiting case K, -+ OJ also, the corresponding FreI:.et-Serret parameters 1"1 

and 1"2 are well defined as it was shown in reference [43]. Here we study the circular 

geodesics in the Ernst spacetime. We consider the circular geodesics as a member of a 

quasi-Killing congruence with suitable w. In such a case, circular geodesic motion can 

be obtained as the limiting case when K, vanishes. The Keplerian orbital frequency in 

this case is given by 

(4.13) 

As a liming case, since the ratio ~ goes to zero as K. -+ 0 indicates that 72 = 0 for 

geodesics and the ratio A(1) / K, is well defined in this limit, one can determine 71 and 

it is given by 

7f = (1 ~4~:1"2) [M + B2r2(2r - 3M)} (4.14) 

As has been discussed in reference [43], we can now compute the total angle of gy-

roscopic precession Ill/! with respect to a fiducial direction fixed in space, when the 

gyroscope is transported along the orbit in one full revolution. This angle is 

(1- 2AI) _ [A! + B2r2(2r - 3M)] _ 1] (4.15) 
r r(l- B2r2) 

In the next section we compute the inertial forces for circular trajectories in the 

Ernst spacetime. 

4.2.2 Inertial Forces in the Ernst Spacetime 

Prasanna[60] first computed the centrifugal force in the Ernst spacetime in order 

to demonstrate the reversal of centrifugal force at photon orbits in the case of the 



chapter..J 88 

Schwarzschild spacetime. Here we give the general expressions for the centrifugal 

force and the gravitational forces for circular quasi-Killing trajectories in the Ernst 

spacetime. For the sake of brevity, we shall leave out the intermediate steps and give 

the final results. The gravitational force is given by 

where 

91 

92 

~ [AI + B2r2 sin2 O(2r - 3M) 1 
2 (1- 2~I) >.B2r2cosOsin9 

Similarly the centrifugal force is given by 

where 

. 20 
- SI~ [(r _ 3M) - B2r2 sin2 O(3r - 5M) 1 
(1- 2~) :: sin 9 cos 0 (3B2r2 sin2 9 -1) 

On the equatorial plane ( 9 = 71"/2 ) these expressions reduce to 

so that 

Similarly, 

91 = ~ [M + B2r2(2r - 3M) 1 
92 = 0 

( 2M) -\ 1 [ 2 2 ( 1 ) Gk = - 1 - -:;- >'r2 M + B r 2r - 3M) (0, 1,0,0 . 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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so that 
[(r - 3M) - B2r2(3r - 3M)] w2 (0,1,0,0) 

A).3 (1- 2~1) 
(.1.23) 

In the following sections we obtain the gyroscopic precession and the inertial forces in 

the Schwarzschild spacetime and in the Melvin universe as special cases of the Ernst 

spacetime. 

4.2.3 Gyroscopic Precession and Inertial Forces in the 

Schwarzschild Spacetime 

In this section we compute gyroscopic precession and inertial forces in the Schwarzschild 

spacetime as a special case of the Ernst spacetime, by setting parameter B = O. The 

metric for the Schwarzschild spacetime can be written as, 

(4.24) 

Where l'vf is the mass parameter. 

The Frenet-Serret parameters x:, rl and 72 for circular orbits can be deduced form 

equations (4.4, 4.5 and 4.6), by setting B == 0 or ). == 1. 

(4.25) 

( 4.26) 

(4.27) 

where 

(1 2M) ') [M ') ,,]2 
--r- r- ~-w-rsin-e 

+ W 4T4 cos2 e sin2 e (4.28) 
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[ ( 2.U) 2 2 ?] 2 1 - -:;:- - w r sin- II 

[( ~; - w2r sin211) (3M - r) + r2(,i cos2 or (4.29) 

In the equatorial plane, the above equation can be simplified and written as, 

r2 (1-~) (¥ _w2) 
",2 = 2 

(1 - 2~f _ r 2w2) 
(4.30) 

2 (1_~)2 
w 2 (1 _ 2~[ _ r2w2) 

(4.31) 

O. (4.32) 

The expressions for inertial forces in Schwarzschild spacetime can also be obtained 

as a special case of the Ernst spacetime and are given by, 

gravitational force 

( 2M)-1 1 
Gk = - 1 - -:;:- (0';:2",0,0) 

and the centrifugal force is given by 

w2 

where, 

- sin2 8(r - 3M) 

_ (1- 2~[) r 2sinO eosO 

A ( 1 - 2~[ _ w2r2 sin2 8) 

On the equatorial plane (8 = rr /2) the centrifugal force reduces t.o 

(r- 3M)w2 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

From t.he above equation it is clear that both gyroscupic precession and centrifugal 

force reversal oc('ms at r = 3Al. A more (letailed Htudy of reversal of gyroscopic 

precession ami (;pntrifugal foree is given in section 4.2.5. 
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4.2.4 Gyroscopic Precession and Inertial Forces in the Melvin 

Universe 

The Melvin universe may be treated as a special case of the Ernst spacetime by setting 

lvf = 0 and the spacetime metric is given by 

(4.39) 

with, 

(4.40) 

As mentioned earlier, the Melvin universe represents a flat spacetime with constant 

magnetic field. 

All the relevant quantities can be read off from the formulae already given for the 

Ernst spacetime by setting the mass parameter AI = O. We note that, because of the 

inherent cylindrical symmetry, one finds T2 = 0 for all values of the angle B. 

Specializing to the equatorial plane B = 1r /2, we have 

702 
2 

{2)'B2r + w;;. (~ - 1) } 2 

.),2 [.:\2 - ~t 
w2 (3B2r2 _ 1)2 

[).4 _ w2r2J2 

o 

Further, for geodesic motion with /'i. = 0 we get 

2B2.:\4 
w2 = 7:=--~"""" (1 - B2r2) 

and 
2B2 

Tf = Y (1- B 2 r2 ) 

The gyroscopic precession for a full orbital revolution turns out to be 

(4.41) 

(4.42) 

(4.43) 

(4...14) 
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Gravitational and centrifugal forces in the Melvin Universe are found by setting, 

as before, J'[ = 0. So, 

2 2 
-);B rsinl1(O, 1,rcosl1' 0) 

w2sinl1 
). [).4 _ w2r2sinl1] 

(0, [r - 3B2r 3 sin2 11] , r2 cos 11 [2B2 r 2 sin2 11 - 1] ,0) ( 4.45) 

On the equatorial plane, these reduce to 

(4.46) 

In the next section we study the reversal of centrifugal force and gyroscopic pre­

cession in the Ernst spacetime. 

4.2.5 Reversal of Centrifugal Force and Gyroscopic Preces­

sion in the Ernst Spacetime 

One of the int(lresting resul ts that emerged from the generalization of inertial forces to 

the general theory of relativity is the reversal of centrifugal force. In the last chapter 

we have prov(ld the theorem on the simultaneolls reversal of gyroscopic precession 

and centrifugal force in static spacetimes. In this section we sho.!l demonstrate this 

interesting result ill the case of the Ernst spacetime. 

4.2.5.1 Centrifugal Force 

In order to study the reversal we write the centrifugal foree as follows, 

(4.-17) 
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where Zk is the unit vector in the conformal space with the metric hik • On the 

equatorial plane, to which earlier calculations by other authors have been confined 

to, this reduces to 

- ( 2M)-1 Z = - 1 - -;:- (0,1,0,0) (4.48) 

and 
c = {;{(1_~)_B2r2(3-~)}w2 

F [(1- 2~[) ,\2 _ w~~2] 
(4.49) 

This agrees with the expression derived by Prasanna in reference [60] making use of 

a formalism developed earlier than the one presented in [2] which we have followed. 

Reversal of centrifugal force in the Ernst spacetime has been discussed in detail in 

reference [60]. As in the case of the Schwarzschild spacetime, this reversal occurs 

where there is a circular photon orbit. In the Ernst spacetime, depending upon 

the value of BM, there can be one, two or no circular photon orbits. Accordingly, 

centrifugal force can also reverse at these circular null geodesics. The condition for 

the existence of such a null geodesic is given by 

(4.50) 

where R == r / M. It can be shown that this equation gives the location of centrifugal 

reversal as well. 

By setting the parameter B = 0 we get the re\'ersal condition for the Schwarzschild 

spacetime. The magnitude of centrifugal force takes the form, 

CF = (r - 3M)w2 . 

[( 1 - ~) - w2r2] 
(4.51) 

Also, the condition for circular null geodesics is given by, 

r=3M ( 4.52) 

The reversal in the ;'-Ielvin universe can also be studied by setting M = O. We 

find that centrifugal force reverses in the r,Ielvin Universe at r = 7ra' 
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Figure 4.1: Plot of T[ and Cj as funetions of R for EM = 0.05 and 0.095 in the Ernst 

spacetime. 

4.2.5.2 Gyroscopic Precession 

Gyroscopic prrcession along the equatorial orbits in the Ernst spacctime is given by 

Tl of equation (4.23). The orbit at which the precession reverses sign cun be located 

by equating Tl to zero. With some algebra it can be shown that this yields exactly 

the condition (4.50). Gyroscopic precession therefore reverses at the circular photon 

orbits as in the case of the ccntrifugal force. We note that this rev('fsal is independent 

of the value of w. Figure '1.1 shows plots of funttiolls T[ and Cf' which arc t'quivalellt 

respectively to Tl and C F with the w dependence factored out. TllUB, 
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Figure 4.2: Plot of Ti and Cj as functions of R for B = 0.05 and 0.095 In the Melvin 

universe. 

T' 1 

where, 

Q Tl 

J\~ { (1-~) eB21~2R2 - 1) R - ~ [1+ B2M2R2(2R - 3)]} 
(wM)-l a CF (4.53) 

R{( 3) 222( 5)} J\3 1 - R - B AI R 3 - R 

(4.54) 
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Again, in the special case of :VIelvin Universe (AI 

to, 

where, 

C;' w- 1,3Cp 

!"(3B 2r 2 - 1) 
,,\ 
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0) the above formulae reduce 

(4.55) 

(4.56) 

Gyroscopic prccession, as in the case of centrifugal force, reverses at r = Fs' 
Figure 4.2 shows examples of this phenomenon for some values of B. 

So far in this section we have emphasized the simultaneous reversal of gyroscopic 

prccession and centrifugal force in static space times. As we have seen in the last chap­

ter, the description becomes more complicated in the case of stationary spacetimes. 

Neither centrifugal force nor gyroscopic precession reversal occurs at the circular null 

geodesics. Also, there are two circular null geodesics corresponding to co-rotating and 

counter-rot.ating orbits. In the next section we study the phenomena of gyroscopic 

precession and incrtial forces in stationary spacetimcs, by taking specific examples 

such as the Kerr-Newman spacetime. 

4.3 Gyroscopic Precession and Inertial Forces In 

the Kerr-Newman Spacetime 

In tht' case of a stationary spacetime, the inherent rotation of the spacetime man­

ifest.s as inertial frame dragging and plays an importmlt roh~ in tile phenomena of 
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gyroscopic precession and the general relativistic analogues of inertial forces. As 

has been shown in the last chapter, due to the effect of frame dragging a gyro­

scope transported along the stationary observers undergoes precession. Similarly, 

Coriolis-Lense-Thirring force is non-zero in a stationary spacetime, which gives rise 

to interesting results. In the last chapter we have seen that, in the case of stationary 

spacetimes, the gyroscopic precession is related to a combination of centrifugal and 

Coriolis-Lense-Thirring force. This leads to the fact that the simultaneous reversal of 

gyroscopic 'precession and centrifugal force does not occur in stationary spacetimes. 

In this section we study the gyroscopic precession and inertial forces for circular 

quasi-Killing trajectories in the Kerr-Newman spacetime as an example of stationary 

axially symmetric spacetimes. 

The Kerr-:Jewman metric represents a charged Kerr solution. When the charge Q, 

is set to zero, we obtain the Kerr spacetime as a special case. The Reissner-Nordstrom 

solution is a special case of the Kerr-Newman solution when the angular momentum 

parameter a is zero. 

The spacetime metric for the Kerr-Newman solution can be written in the form, 

ds2 = (1 - ~) dt2 + ~ sin2 edtdif; 

(a2 + r2 + J.L~2 sin2 e) sin2 edif;2 

with M and Q being mass and charge respectively, and 

( 4.57) 

(4.58) 

The black hole or the null surface in the case of Kerr-~e\Vmall solution is repre­

sented by the equation, 

o. (4.59) 



chapter4 

on which the irrotational congruence defined by the equation, 

(~ = f,. _ f,bT/bT/., 
7Jc7Jc 
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becomes null. The stationary limit is defined by the surfaee on which the timelike 

Killing vector f,~ becomes null, which is given by the condition, 

(4.60) 

Next we compute the gyroscopic precession and inertial forces in the Kerr-Newman 

spacetime. 

4.3.1 Gyroscopic Precession 

By making use of the formulae given in the last chapter we can compute the Frenet­

Serret quantities for a given circular orbit of fixed but arbitrary values of r, () and w. 

Thus 

",2 = 1C1 

EIC2 

1'2 
1 = ~1C3 . 2 (J 

EIC11C2 sm (4.61) 

1':; 
1C4 2 

'i'51C cos (J 
~ 1 

where 

1C1 D.,[~\(1-waSin2(J)2-w2rSiIl2(}r 
2 

+ sin2 (J<:OS2 (J [W2D., + ;2 {(r2 + (1.2) W - a} 2] (4.62) 
2 

1C2 [1_w2SiIl20(1'2+a2) -~(1-W(tSin20)2] (4.63) 

1C3 [{ ~\ (1 - wasin2 0)2 - w2rsin2 o}. 
{ p.wr ( . 0) ,\ ( . " ) [( ., ") ]} wr-T l-wasm-O - E2 l-wasm-(J 1'-+(1- w-a. 
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+ COS28{W2~+~~ [(r2+a2)w-ar} 

{~~(1-waSin21:1/ -w}f (4.64) 

/(,4 [w~a:"sin2 e {(a2 + r2) w - a} - >.w (1- wasin~ 1:1) (r2 + a2) 

+ J.L~a (1- wasin2 e)2f (4.65) 

and 

The components of the bases are given by, 

where A(1), A(2), Band C given as 

A 

B 

C 

1-w2 sin2 1:1 (r2 + a2) - f (1- wasin2 e)2 

2~2 (1 - wasin21:1)2 - 2w2rsin21:1 

-2 cos e sin 1:1 [W2 to. + ~2 {(r2 + a2) w - a} 2] 
• 2 e 

~a~n (1 _ wasin2 1:1) _ wsin2 e (r2 + a2) 

1- f (1-wasin2e) 

(4.66) 

(4.67) 

(4.68) 

The above formulae simplify when we specialize to trajectories lying in the equa­

torial plane, especially, to geodesic orbits. 
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4.3.1.1 Equatorial Plane 

We take () = 11"/2 so that the Frenet-Serret scalar simplifies to, 

",2 = 
,6. {;:\- (Afr - Q2) (1- wa)2 _ w2r}2 

;=2 [1 - w2 (r2 + a2) - eA!~;;-Q2) (1 - wa)2r 
(4.69) 

{wr- eAfrr-Q') (1 - wa)w - ( Mr
r3Q') (1- wa){(r2 +a2)w _ a}}2 ~ 

2 (~.IO) 
r2 {I - w2 (r2 + a2) _ eM~,Q') (1 - wa)2} 

o (4.71) 

The base components can be written as, 

e(O) = 
1 

(l,O,O,w) V[ 1 - w2 (r2 + a2) - (2M~,Q2) (1 _ wa)2] 

~(O,l,O,O) 
([(~) (l-wa) a -w(-r2 +a2)] ,0,0 - [1- (~) (i-wa)l) 

V {,6. [1 - w2 (a2 + r2) - eM~,Q2) (1 - wa)2]} 

1 
-(0,0,1,0) (4.72) 
r 

Since T2 = 0, the gyroscope precesses about the vector f(3), that is, about the axis 

orthogonal to the orbital plane, at a rate given by TI' 

4.3.1.2 Circular Geodesics 

The special ease of circular geodesic motion results in the limit of vanishing /'i,. The 

geodetic orbi tal frequency w is given hy, 

(4.73) 

The precession rate Tl, which is finite in this limit, is, 

(4.7-1) 
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As has been outlined in reference[43J the total angle of gyroscopic precession D.iP 

can be computed relative to a fiducial direction fixed in space when the gyroscope is 

transported around the orbit in one full circle. This angle is given by 

4.3.2 Inertial Forces in the Kerr-Newman Spacetime 

The formalism developed in reference [2J and summarized in the previous subsection 

can be applied to the Kerr-Newman spacetime in a straightforward manner. Results 

pertaining to the Kerr and the Reissner-Nordstrom spacetimes may be deduced by 

setting Q = 0 and a = 0 respectively. The forces in the Kerr-Newman spacetime for 

circular orbits with fixed but arbitrary values of r, () and ware as follows. 

Gravitational force 

(4.76) 

where, 

(4.77) 

Coriolis-Lense-Thirring force 

(4.78) 

where, 

w 
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(r2 + a2) + ~a2 sin2 e (4.79) 

2 [~2 (,2 + a2 ) + ~ ] a sin2 e 
6.J.t 

-2F a3 sin3 e cos {} 

Centrifugal force 

(4.80) 

where, 

z, Si~e [(, _ M) {(r2 +a2) + ~a2sin2e} - 2Ll {r - ~2a2sin2 e}] 

Z2 -sinl1cos{} {(r2 + a2) + ;2a2sin2 {} [2 (r2 +a2) + EJ} (4.81) 

As usual, on the equatorial plane (11 = IT /2) these expressions simplify to 

~~ {( Mr;; Q2) a2 + CM7·r- Q2)} (0, -1,0,0) (4.83) 

W2 
Zk A (0, .::" 0, 0) ( 4.84) 

where, 

z, = 2;.~3 [(r - M),{(r2 +a2) r2 + (21\1r - Q2)a2} -26.{r4 - (Afr _Q2) a2}] 

(4.85) 

As mentioned earlier, by setting the charge parameter Q to zero in the Kerr­

Newman solution, one obtains the Kerr solution. In the next section we obtain 

the gyroscopic precession and incrtial forces in the Kerr spacctime by setting the 

parameter Q == ° in the above results. 
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4.4 Gyroscopic Precession and Inertial Forces in 

the Kerr Spacetime 

The Kerr metric is one of the most important solutions to the Einstein equations from 

the astrophysical point of view[47]. It represents a vacuum solution with a rotating 

black hole. The spacetime metric for the Kerr solution in Boyer-Lindquist form can 

be written as[18], 

(4.86) 

with 1\,1 and a being mass and angular momentum parameter respectively, and 

(4.87) 

The gyroscopic precession in the Kerr spacetime was studied in detail by Iyer and 

Vishveshwara[43]. Here we obtain these result as a special case of the Kerr-Newman 

spacetime by setting the parameter Q = O. We also study the inertial forces in the 

Kerr spacetime using the formalism given in reference[2]. 

4.4.1 Gyroscopic Precession 

By setting the parameter Q = 0 one gets the values of "', T[ and T2 for the Kerr 

solution from the Kerr-Newman case which can be written as, 

",2 
K[ 

EK2 

7 2 t::.K.3 ." (4.88) ---sm-I} t EK. t K2 

7,2 K.4 0 

2 E5K. t cos-(j 
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where 

K.l 

and 

The components of the bases are given by, 

1 
£4(1,0,0, w) 

1 It 22 ) -2"A(0,y A(1),y A(2)'O 

1 
Ii ;---\(B, 0, 0, -C) 
vAv-~:J 

.JijITgJ'1(O A A [)) 2"A ' - (2), (l), 

where A(1), A(2), Band C given as 

104 

(4.92) 
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A ( 2)2 2' 00 2E2 1- wasin 0 - 2w rsm-

[ 2MI' {( 2 2) }2] -2cosOsinO w2.6.+""F" I' +a w-a (4.9--1) 

B 2MarSin2 0(1 .20) '20(2+a2) r: - wasm - wsm 7' 

c 2Mr ( . 00) 1- y l-wasm-

As usual, the above formulae assume simpler forms when we specialize to trajec­

tories lying in the equatorial plane, especially, to geodesic orbits. 

4.4.1.1 Equatorial Plane 

We take 0 = 1r /2 so that 

{ 2 3 2}2 
£lAP (aw - 1) -!fr 
--6- 2 

I' {1 _ w2 (r2 + a2) _ 2~f (1 _ wa)2} 

{wr- 2M (l-wa)w - un (l-wa) {(r2 + a2)w _ a} }2 
1'2 {I - w2 (r2 + a2) - e~f) (1- wa)2} 

2 

o 
1 

(l,O,O,w) 
V[l- w2 (1'2 + a2) - e~f) (1 - wa)2] 

~(0'1'0,0) 
([(~) (1- wa) a - w(r2 +a2)] ,0,0 - [1 - (~) (1 - wall) 

V{ £l [1 - w2 (a2 + 1'2) - e~f) (1 - wa)2]} 

1 
- (0,0, 1,0) 
'r 

(4.95) 

(4.96) 

(4,9i) 

As before, since 1'2 = 0, the gyroscope precesses about the vpetor C(3), that is, 

about the a."ds orthogonal to the orbital plane, at a rate giwn by 1'1' 
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4.4.1.2 Circular Geodesics 

The special case of circular geodesic motion results in the limit Jf vanishing 1'(,. The 

geodetic orbital frequency w is given by 

r;:a 
w- I =a±VM (4.98) 

The precession rate TI, which is finite in this limit, is 

(4.99) 

As has been outlined in reference[43], the total angle of gyroscopic precession llr/> 

can be computed relative to a fiducial direction fixed in space, when the gyroscope is 

transported around the orbit in one full circle. This angle is given by 

27r r; 
1lr/> = 'fTI-V A + 27r 

w 

[( 3M . fill ~ 1 'f27r 1 - "7"" ± 2ay ?i) - 1 

4.4.2 Inertial Forces in the Kerr Spacetime 

(4.100) 

Forces in the Kerr spacetime can be read off from the formulae given for the Kerr­

Newman metric by setting Q = o. For the sake of simplicity we shall consider only 

the equatorial orbits (0 = 7r/2). Chakrabarti, Prasanna and Sai Iyer have discussed 

centrifugal force in the Kerr spacetime [45, 20]. They have made lise of an earlier 

formalism develop(~d by Abramowicz, Carter and Lasota [1], whidl cOIlsiders the 

forces in the quotient space orthogonal to the timelike Killing vector ~4. On the other 

hand the formalism of reference[2], whieh we arc employing, defines the quotient space 

orthogonal to the irrotational vector field ni. The advantage of the latter formalism is 

that n' is timclike all the way down to the (!Vent horizon and the ni (:ongrllence, being 

globally hypcrsurface orthogonal, defines observers who measure and synchronize the 
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global time t. They are the general relativistic analogues of the Newtonian rest 

observers [35]. Thus in the present formalism the forces in the Kerr spacetime for 

equatorial orbits are g:iven by 

(4.101) 

(4.102) 

(4.103) 

where 

(4.104) 

Another important special case of the Kerr-Newman solution is the Reissner­

Nordstrom spacetime. In the next section we present the expression for gyroscopic 

precession and inertial forces in the Reissner-Nordstrom spacetime as it special case 

of the Eerr-Newman spacetime. 

4.5 Gyroscopic Precession and Inertial Forces in 

the Reissner-Nordstrom Spacetime 

The Reissner-Norclstrom solution is it spherically symmetric static solution with a 

charge Q. It reduces to the Schwarzschild spacetime when the charge is zero. It is 
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a special case of the Kerr-Newman solution, where a -+ o. The Reissner-Nordstrom 

metric can be written as, 

( 2M Q2) ( 2M Q2)-1 . 
ds2 = 1--+- dt2_ 1--+- dr2-r2(dr2+sin2()dt/i) (4.105) 

r r2 r r2 

Here, we study the gyroscopic precession and the inertial forces in the Reissner­

Nordstrom spacetime. 

4.5.1 Gyroscopic Precession in the Reissner-Nordstrom Space-

time 

Gyroscopic precession in the Reissner-Nordstrom spacetime can be deduced directly 

by setting a = 0 in the result derived in the case of the Kerr-Newman metric. For 

the sake of brevity we shall confine ourselves to the equatorial plane and specialize 

to geodesic circular orbits. In the equatorial plane, () = 11"/2 , we have 

K,2 r2 [ (1 - ~ + ~){ f. (M - ~) - w2} 2] 

[1 - 2~f + ~ - w2r2 t 
(1-:l.M. + ~)2 r; r r" ~W2 

(1 - 2~f + ~ - w2r2) 

ri = 0 

Further setting'" = 0 for geodesic motion we get the Keplerian frcqmmcy 

w= ( Q2) 1 M-- ~ 
1· rJ 

(4.106) 

(4.107) 

In this limit the gyroscopic precession rate about the a."ds perpendicular to the orbital 

plane simplifies to 

(4.108) 
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the Keplerian orbital frequency. The gyroscopic precession angle for a complete or­

bital motion is then 

[( 3\/ ')Q2)t ] 
Aif;=-2rr 1-7+~r2 -1 (4.109) 

4.5.2 Inertial Forces in the Reissner~Nordstrom Spacetime 

When the Kerr-Newman angular momentum parameter a is made zero, we get the 

results for the Reissner-Nordstrom spacetime. In a static spacetime the Coriolis force 

reduces identically to zero so that we are left with only the gravitational and the 

centrifugal forces. Once again, we confine ourselves to the equatorial orbits and write 

down these forces: 

(r-m)r-A 
Ar (0, -1,0,0) (4.110) 

w2 (r 2 ') 2 ) 2M g.:. O,-;-[-r +3!1fr+_Q] ,0,0 
1 - --;:- + r' - w2r2 Ll. 

(4.1ll) 

In the next section we study the reversal of gyroscopic precession and centrifugal force 

in the Kerr-Newman spacetimes. 

4.6 Reversal of Gyroscopic Precession and Cen-

trifugal Force in the Kerr-Newman Spacetime 

As has been shown in the last chapter, in stationary spacetimes the simultaneous 

reversal of gyroscopic precession and centrifugal force does not takes place. This 

is because of the fact that the gyroscopic precession depends on hot h centrifugal 

force and Coriolis-Lense-Thirring force. In this section we study tl!psc phenomena 

in the Kerr-Newman spacetime as a typical example of stationary axially symmetric 

spacetimes. 
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Figure 4.3: Plot of 7'1, Ok, Gk and Zk as functions of R in the Reissner-Nordstrom 

spacetime. 

In the case of the equatorial orbits, gyroscopic precession rewrses when TI changes 

its sign. This orbit can be located by the condition 7'1 = O. From equation (4.70) for 

Tf we get then 

wr4 - (2Mr - (/)(1 - wa.)wr2 - (AIr - Q2)(1 - wa) {(/,2 + (2)w - a} = 0 (4.112) 

The roots of this equation depend on the val \1(' of w. Thin is so in t.he case of Kerr 

spacetime as well when Q = O. In the case of Reissncr-Nordstrom metric (a = 0) the 

root is independcut. of w. FroIll equation(4.S4) we lIlay locate the orbit for which the 

centrifugal force !'(~v('rs('s by t.ile conditioll Ck = O. This lcads to an equation which 
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Figure 4.4: Plot of Tt, Ck, Gk and Zk as functions of R in the Kerr spacetime for the 

angular momentum parameter a = 0.1 and w = 0.1. 

is independent of w: 

(4.113) 

Thus, whereas the centrifugal force reversal is independent of w, reversal of gyroscopic 

precession is not. The orbits where these two reversals occur do not coincide in 

general. Ne\'ertheless, in the case of Reissner-Nordstrom metric both gyroscopic 

precession and centrifugal force reverse at the same location, namely at the circular 

photon orbit. as they should in an axisymmetric static spacetime[5i]. This orbit 
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occurs at 
3111 ± .j9M2 - 8Q2 

r = ----"-----=-
2 

(4.114) 

The above considerations are rcflcded ill the plots of rl and Ck in the figures(4.3-

4.6}. 
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Figure 4.6: Variation of 1"[, Ok, Gk and Zk as functions of angular charge Q in the 

Kerr-Newman spacetime with R = 3M, a = 0.1 and w = 0.1. 

4.7 Conclusions 

Based on the detailed derivations of reference [571 we have discussed gyroscopic pre­

cession in the Ernst spacetime for circular orbits. We have also considered the general 

relativistic equivalent of centrifugal force as defined in reference [21. These results are 

quite general in the sense that orbits need not be confined to the equatorial plane 

and the angular speed of the orbiting particle is arbitrary. By setting the mass pa­

rameter of the Ernst spacetime equal to zero, the Melvin universe can also be treated 

as a SpCci111 ('Me. Substantial simplification occurs if the orbits are takcn to be in the 
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equatorial plane and even more so if they are geodesics. Centrifugal force in the Ernst 

spacetime lias been studied in reference [60] utilizing nn eaTlier formalism. Our results 

agree with those presented in [60]. The main interest of [eO] was the centrifugal force 

reversal nt the photon orbits. In the context of the Schwarzschild spacetime, it had 

been argued on qunlitative grounds that gyroscopic precession must also reverse at 

the photon orbits. Quantitative calculntions have borne out this conclusion. Once 

again, in the Ernst spacetime we show explicitly that gyroscopic precession, just like 

centrifugal force, reverses at the photon orbits. We may note that, since such null 

geodesics are confined to the equatorial plane, reversal cannot occur elsewhere. This 

fact can easily be ascertained from the formulae we have derived for the orbits that 

are off the equatorial plane. Depending on the magnitude of the product of the mag­

netic field nlld the mass parameter, there can be one, two or no photon orbits in 

the Ernst spncctime. Gyroscopic precession and centrifugal force have been plotted 

in some typical cases. The Melvin universe, a special case of the Ernst spacetime, 

admits a single photon orbit the location of which is inversely proportional to the 

magnetic field. Reversal of the two effects have been considered in this case as well. 

We have derived detailed formulae describing gyroscopic precession along the cir­

cular orbits in the Kerr-Newman spacetime. The Kerr and the Rei~sner-:-I()rdstrom 

rnetrics have been treated as special cases by setting Q and a equal to zero respec­

tively. These formulae simplify signific,1ntly for orbits in the equatorial plane, es­

pedally when they are geodesics. We have also considered the general relativistic 

equivalents of inertial forces as defined in refcrcncc[2]. They are with reference to 

observers following it tirnelike globally hypersllrface orthogonal congruence. As has 

bc!cn pointed Ollt in reference [35], they form the general relativistic an<llogu('s of New­

t.onian rest observC'rs. Fllrtlwr, as has been discllsscd in rderence [43], the connecting 

vector of this congruence undergoes Fermi-Walker transport and hence is locked on t.o 
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a gyroscope. Consequently, it is natural to study the precession of gyroscopes as seen 

by a Frenet-Serret frame using such a congruence. The dependence of gyroscopic 

precession and the inertial forces on a and Q has also l:een studied. As has been 

discussed in reference[57], in static spacetimes, e.g. Reissner-Nordstrom, only gravi­

tational and centrifugal forces exist. Both gyroscopic precession and centrifugal force 

reverse at the photon orbits Simultaneously. In the case of stationary metrics, e.g. 

Kerr-Newman, the situation is more complicated. Coriolis force is also present now. 

Whereas in the case of these two inertial forces, w stands as an overall multiplicative 

factor, it enters into the precession formulae in a more complicated way. Therefore, 

the reversal of centrifugal force is independent of w but it is not so in the case of 

gyroscopic precession. 



Chapter 5 

Inertial Forces and Einstein's 

Equation~ 

5.1 Introduction 

In the last chapter we have established direct relations between the phenomena of 

gyroscopic precession and inertial forces. It has also been shown that, both gyroscopic 

precession and centrifugal force reverse at circular null geodesics in static spacetimes. 

For example, this occurs at R = 3M in the case of the Schwarzschild spacetime. 

Therefore, t.hese phenomena arc important in the ca.~e of black hole solutions and 

compact objects whose radii lie within the circular null geodesics. Iyer, Vishv(1shwara 

and Dhurandhar[44] in fact showed that such ultra compact configurations arc possi­

ble and arc stable within the framework of general theory of relativity. The centrifugal 

force reversal might influence the equilibrium configurations of such ultra compact 

objects. EquilibriulIl configurations of relativistic fluids is of considerable importance 

in astrophysics, since they represent compact objects such as neutron stars. The ro­

tation induces interesting as well as intriguing effects on (,quilibriulll configurations 

of relativistic fluids. Om! sueh interesting effect in t.h(' (:ase of slowly rotating con-

116 
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figurations was first observed by Chandrashekar and Miller[21, 55J. Their studies 

showed that the ellipticity of a slowly rotating configuraticn increases to a maximum 

value and then decreases with the decreasing radius, wl;ereas in Newtonian grav­

ity the ellipticity is a monotonic function of the radius of the star. Abramowicz and 

:'IIiller[12J suggested that this is due to the reversal of the general relativistic analogue 

of centrifugal force. Using the centrifugally corrected Newtonian equations they re­

produced the phenomenon of reversal of ellipticity behavior of relativistic ;vlacIaurin 

ellipsoids. Gupta, Iyer and Prasanna[36, 37] investigated the behavior of ellipticity 

and centrifugal reversal for slowly rotating perfect fluids with various equations of 

state. They used the formalism developed by Hartle and Thorne[39, 40], where rota­

tion is treated to the first order. In order to understand the influence of centrifugal 

force and its reversal on such compact objects, it would be advantageous to have a 

general treatment, in which we express Einstein's equations for an a:..:ially symmetric 

stationary system in terms of inertial forces. In this chapter we establish direct co­

variant relations between inertial forces and Einstein's equations with a perfect fluid 

as the source term. This formalism might be useful in understating the existing axi­

ally symmetric stationary solutions in terms of relativistic analogues of inertial forces. 

Also, in particular, one might be able to study the equilibrium configuration of slowly 

as well as rapidly rotating ultra compact objects. 

In oder to establish direct relations betw~en inertial forces and Einstein's equa­

tions, we use the Geroch formalism. It is well known that for a spacetime admitting 

Killing vectors the Einstein equations can be simplified by projecting the field equa­

tions on the lower dimensional manifold defined by the space of trajectories along 

the Killing vector fields. We use the field equations in the Geroeh formalism[32, 33J. 

If the spacetime admits one Killing vector, the field equations can be projected on 

to a three-dimensional manifold. The details of the formalism for one Killing vector 
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case (general stationary spacetimes) are given in appendix A. In this formalism the 

vacuum field equations are expressed in terms of the no::m and the twist(vorticity) 

of the Killing vector field. In section 5.2 we describe the Geroch formalism for the 

case of two Killing vectors[33]. In this case the Einstein equations are simplified on 

the two-manifold S, defined by the infinetisimal two-surfaces which are everywhere 

orthogonal to the two-surface formed by the commuting Killing vectors. In this case 

the field equations are further simplified in terms of scalar products of the Killing 

vector fields ~Q and ,.,0.. In section 5.2.1 we specialize this formalism to the case of 

axially symmetric stationary spacetimes. In this case, the elements of S are surface 

forming and the two-manifold S can be represented by one of such surfaces. The Ge­

roch formalism has been extended for gravitational fields with matter field by Hansen 

and Wincour[38]. Their formalism is outlined in appendix B. In section 5.3.1, we spe­

cialize this formalism to the case where the source is described by a perfect fluid. We 

establish direct relations between inertial forces and Einstein's equations in section 

5.4. In order to establish these relations, we first express the Einstein equations in 

terms of scalar potentials which define the inertial forces. We also show that inertial 

forces are also vector fields on the two-manifold S on which the field equations are 

defined. In section 5.4.2 we express the field equations for sOllrce free spacetimes 

in term of inertial forces. The field equations with 11 perfect fluid sOllrce in terms 

of inertial forces are given ill section 5.4.3. Finally we end the chapter with a few 

concluding remarks. 

5.2 Einstein's Equations with Two Killing Vectors 

For a spacetime admitting Killing vectors, the field (·qua.tions ca.n be simplified in 

terms of the norm and the twist of the Killing vectors. The formalism given by 
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Geroch for spacetimes admitting one Killing vector is described in appendix A. The 

formalism given in the last section can be further simplified for spacetimes with two 

Killing vectors. In this section we briefly describe the Geroch formalism with two 

Killing vectors. First we outline the general formalism ar_d then specialize to the case 

of axially symmetric stationary spacetimes where the convection is assumed to be 

zero. 

Let M be a four-dimensional manifold with metric gab satisfying the source-free 

Einstein's equation represented by, 

R"" = o. 

Let the metric goh admit a pair of Killing vectors (a and "10, which commute: 

(5.1) 

where Vb is the covariant derivative on spacetime manifold M. In this chapter we use 

the (-, +, +, +) signature for the metric tensor. Since the Killing vectors commute, 

one can construct the canonical coordinate system in which the metric depends on 

only two independent variables. If one constructs a two-manifold S, with independent 

variable, then the metric and the Killing vector can completely describe the manifold 

s. As in the case of one Killing vector, here also one can express the field equations on 

the two-manifold S. The formalism was given by Geroch[33J. We briefly summarize 

the general formalism as given in reference [33J and apply it to axially symmetric 

stationary vacuum fields. 

Since the Killing vector fields, {o and "10 are commuting, one can construct two­

surfaces spanned by these Killing vector fields. The two-manifold S is generated by 

the infinitesimal two-surface which is orthogonal to the surface formed by the Killing 

vector fields ~o and 71° at each pOint in the spacetime. As in the case of one Killing 

vector field here also we define the tensor field ta'b::.d on S which has one-to-one 
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correspondence with the tensor field Ta·i,:~.d on M. A tensor field T··i,:~.d on M can be 

related to a tensor field i'a·i,:~.d on S which satisfies the conditions 

~aTa·i,:~.d 0, ~dTa·i,:~.d 0, 

TJaTab:~.d 0, TJdTa·b:~.d 0, (5.2) 

£~ Ta·b·.~.d 0 

£~ Ta·b·.~.d 0 

Also, ii. is a scalar field on S which has one-to-one correspondence with a scalar f.1. on 

Mif, 

£~f.1. = £~f.1. = 0, 

We write the inner product of Killing vectors as, 

A 
11 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

It is easy to show that the scalars 01' ~ and ~ are functions on S. If we assume 

that the surface spanned by the Killing vectors ~a and 11" is timelike, then we have 

the scalar 

2 [2 1 r == 2 ,\ - A;\ > O. 
01 aD 11 

(5.7) 

The metric on the two-manifold S can be expressed in terms of the Killing vector 

fields ~. lind 11", and thllir scalar products a.~ follows, 

and the antisymmetric teIlsor in t.his eaSel is given by, 

(5.9) 
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The derivative operator DE. on S can be defined using the two-metric and the 

covariant derivative V. on M as, 

(5.10) 

The derivative operator satisfies all the conditions for the derivative operator listed 

in Appendix A. In particular one can see that 

(5.11) 

The source free field equations are expressed in terms of the twist and norms of 

the Killing vectors. The twist fields for the Killing vectors can be defined as, 

w· f·bcd{b V c{. (5.12) 
00 

w· 1 .bed( V + 7)bV c{d) (5.13) 
01 

2"€ {b clJ. 

w· €.bcd'IJb \I c7). (5.14) 
11 

In a general spacetime with two Killing vector fields, the twists defined above need 

not satisfy the conditions (5.2). This indicates the fact that w, wand ware in 
00 01 11 

general not vector fields in the two-manifold S. By projecting these twists using the 

operator (5.8), one can obtain the corresponding vector fields on S. We define the 

projections of twists on to S as, 

v· h" wb .. boo 

v" h" wb ., bOl 

va ha Wb 
11 b 11 

In addition. we also define two constants Co and C1 as, 

Co 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.1!)) 
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For spacetimes which satisfy the source free field equations, one can show that Co and 

C1 are constant. These constants represents convective flows. One can show that the 

vanishing of both constants Co and C l is a necessary and sufficient condition that the 

infinitesimal two-surface orthogonal to the two-surface formed by the Killing vectors 

are surface forming[35], i. e. the Killing vector fields satisfy orthogonal transitivity. 

The vector fields v, v and v are defined on the two-dimensional manifold S. 
00 01 11 

Their derivatives with respect to Da can we simplified to, 

CC "leab o 1 00 
(5.20) 

(5.21) 

(5.22) 

One can also show that the divergence of the twists are zero in the case of source 

free field equations(Rab = O),i.e, 

Da Va = Da Va = Da Va = O. (5.23) 
00 01 11 

The derivatives of the Killing vectors now can be expressed in terms of their twists 

and norms a.s follows, 

1 ,-I j:C d \ 1 t: D \ 
- A eabcd... W + A - ... [b aJ A 
200 00 (,Kl 00 

(5.24) 

(5.25) 

Here we use the fact that the Killing v<,etor ~a and 1/" are eommllting, hence we 

have the identity, 
1 
2-D. ,\ ., (5.26) 
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Using the equations (5.24) and (5.25) one can write the vector fields 

in terms of thE scalar products of the Killing vectors as, . 

va, 
00 

v· and v· 
01 11 

v· 
00 

(5.27) 

Taking the derivatives of the v's from equation (5.27) and multiplying with Eo. we 

get, 

(5.28) 

and using the equation (5.22), we obtain the identity, 

,\ DO [T- l Da ,\ ] - ,\ DO [T- l Do ,\ 1 = T- l [C~ ,\ - COCI ,\ ] . 
01 00 00 01 01 00 

Similar results can be proved for va and v·. Now we have, 
01 11 

,\ DO [T- l Do ,\]- ,\ DO [r- l D. ,\ 1 = r- l [C~ ,\ - COCI ,\ 1 (5.29) 
01 00 00 01 01 00 

,\ DO [r-l Do ,\]- ,\ D a [r- l D. ,\] = T- l [cg ,\ - C~ ,\ 1 (5.30) 
II 00 00 11 II 00 

,\ DO [r- l Do ,\]- ,\ DO [T- l Do ,\ 1 = r- l [ct ,\ - COCI ,\ 1 
01 11 11 01 01 11 

(5.31) 

Clearly the above equations are linearly dependent and one cannot solve them to 

obtain expressions for DO [r- l Do ~], DO [r- l Do ~] and DO [T- l D. ;\ ]. To obtain 

the field equations we compute the divergence of the scalar products as follows, 

DOD. ~ hO' 'V. (hb''Vm~) 

2hab 'V. (C'Vb~m) 

2hob~m \l.\lb~m + 2hab (\la~m)(\lbErn) (5.32) 
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from the fact that 

"il a "il b~e = Robed ~d 

and Rab = 0, we simplify the equation (5.32) to, 

Da Db ,\ = 2T-2 ,\ [Da,\ Da ,\ - Da ,\ Do ,\] + T- 1 D T DO ,\ + 2T-2C2 (5.33) 
00 00 00 11 01 01 a 00 0 

Similarly one can write for ~\ and ~\, 

DaD ,\ 
b " 

DODb'\ 
II 

2T-2 ,\ [Da A Da ,\ - DO ,\ Da A ] 
01 00 11 01 01 

2T- 2 ,\ [D" A D. ,\ - D· ,\ Do ,\ ] 
11 00 11 01 01 

The equations (5.33), (5.35) and (5.36) can be simplified to, 

2T-3 A [Do ,\ Da A - DO ,\ D. A] 
00 00 11 Ol 01 

2T-3 A [DO ,\ D. A - DO ,\ Da ,\ ] 
01 00 II 01 01 

2T-3 A [Da ,\ Do ,\ - D" ,\ Do ,\ ] 
11 00 11 01 01 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

Using the derivative operator one can <letin(~ the Riemann tensor on the two­

dimensional SIHtcr S. If k" is an arbitrary vcctor field on S then, 

D[aDb[k, 

h[:::hbrh~"ilrn [hnrh/"ilrk.,] (5.39) 
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Expanding the above equation and using the fact that ka is arbitrary we get, 

h[;hb]h/kq [iRmnpq + ,-2 ~ \7m';n \7q';P + ,-2 01 \7m17n \7qT/p 

- T-2 ~ \7 m(n \7 qT)p ,-2 ,~ \7 m17n \7 q';p (5040) 

Contracting the equation (5.40) and taking the field equation (Rab = 0) we can 

write the two-dimensional scalar curvature in terms of A'S as, 

R ,-2 [DO A Do A - DO A Do A 1 
00 11 01 01 

(5.41) 

+ 6,-4 [2COC1 ,\ - C5 ,\ - C~ A 1 
01 1t 00 

Equations (5.36), (5.37), (5.38) and (5.41) are equivalent to the Einstein field 

equations with two Killing vectors. From this two-dimensional formalism one can 

retrieve the four-dimensional equations[32, 331. This formalism simplifies considerably 

when applied to stationary axially symmetric spacetimes with orthogonal transitivity, 

which we describe next. 

5.2.1 Axially Symmetric Stationary Spacetimes 

In this section we specialize the formalism for the Einstein equations to an axially 

symmetric stationary spacetime with orthogonal transitivity. As has been mentioned 

in chapter 3, if the orthogonal transitivity conditions are satisfied, the infinitesimal 

two-surfaces orthogonal to the two-surface formed by the Killing vectors .;a and 17° are 

also surface forming. These two families of two surfaces are everywhere orthogonal to 

each other in the spacetime. In this case the two-manifold S can be represented by 

one of such surfaces which are orthogonal to the surfaces formed by the commuting 

Killing vectors. 
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The necessary and sufficient conditions for the orthogonal transitivity are given 

by, 

o (5..12) 

and 

(5.43) 

With the above conditions Einstein's field equations are given by equations (5.36), 

(5.37) and (5.38) can be simplified to, 

(5.44) 

(5.45) 

D"[T- 1 Da ,\ j = 2T-3 ,\ [D"'\ D" ,\ - Da ,\ Da ,\ 1 
11 11 00 II 01 01 

(5.46) 

and the 2-dimensional scalar curvature (5.41) can be expre~sed as, 

R = T- 2 [D" ,\ Da ,\ - D"'\ Da ,\1 
00 l1 01 oLl (5.47) 

We use this formalism to obtain direct relations between inertial forces and the 

Einstein equations. In a more realistic model one would like to establish the relation 

between the Einstein equations with source terms to inertial forces. III the next 

section we outline the field equations with the source ternl. 

5.3 The Einstein Equations with Source 

The source free formalism developed by Geroeh [:32, :33] for spacetimcs admitting two 

Killing vector fields has been generali2cd to t lw C'qllations with sources by Hansen and 

Wincollr[38j. The details of the formalism is given in appendix B. Below we specialize 

to t.he case where the source is described by II perfpct fl1lid. 
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5.3.0.1 Perfect Fluid 

The energy momentum tensor for a perfect fluid source can be written as 

(5.48) 

where u· is the four velocity of the fluid. We decompose the four velocity u· as 

It 
o 

It 
1 

(5.49) 

(5.50) 

The field equations given in equations (B.22), (B.23) and (B.24) in the appendix B 

are simplified to the following form, 

Dm [7'-IDm~] 27'-3 >. [Dm >. Dm >. - Dm >. Dm >.] (5.51) 
00 00 11 01 01 

+ 27'-3C~ - 161l''1''-1 [(JL + p) It U + o 0 
~(JL - p) ~] 

Dm[7'-lD >.] 27'-3 >. [Dm >. Dm >. - Dm >. Dm >.] (5.52) 
mOl 0.1 00 11 01 01 

+ 2'1"-3CoCI - 161l'7'-1 [(JL + p) u u + o 1 
~(JL - p) >.] 2 01 

Dm [7'- I D >.] 27'-3 >. [Dm >. D", >. - Dm >. Dm >. ] (5.53) 
"'" 11 00 11 01 01 

+ 2'1"-3C~ - 161l''1''-1 [(JL + p) u u + ~(/t - p) >.] 
1 I 2 " 

The Co and C1 are scalar functions on the two-space 5, in the case of the non-vacuum 

spacetimes. As mentioned before these functions represent the convective circulation 

of the matter in the spacetime. They satisfy the equations, 

-8.)2 1l'(JL + p) T Y f;;'Vm 

-8.)2 1l'(p + p) T ~ <:'um. 

(5.54) 

(5.55) 



chapter5 128 

The two-dimensional Ricci scalar is given by the equation, 

R T- 2 [Dm A Dm A - Dm A Dm A ] 
00 11 Ol Cl 

6T-4 [A GJ + A Cr - 2,\ COGl] 
11 00 01 

+ 871" (p + pl. (5.56) 

We also have the hydrostatic support in the direction perpendicular and parallel to 

the flow of convective circulation as, 

T-1(p + p) [ ,\D.( 1t u) + -2 AD.( u u) + AD.( u u)] = -T(h;;' + v.vm)DmP + 
11 0 a 01 0 1 00 1 01 

(p + p)e.mvm (renp Dnvp - 2V2T-2 [ ACJ - 2 ,\COGI + AClGI ]) (5.57) 
11 01 00 

(p + p)vmDm 1f 

(p+p)vmDm .~ 

-1,fvm D",p, 

- '~vmDmP 

The conservation of convective flux can be expressed as, 

(5.58) 

(5.59) 

(5.60) 

We shall now specialize to the case of a fluid with vanishing convective circulation, 

i.e., va = O. The four-velocity for such systems can be written as, 

(5.61) 

where, e'" is normalizing faetor. We assume n is a scalar function on S, i.e. 

£~ n = £~ {} = 0 (5.62) 

The field equations can be written as, 

2T-a A [Dm ,\ Dm ,\ - D'" ,\ Dm ,\ ] 
00 00 11 U1 UJ 

(5.63) 
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+ 

Dm [T- t D .\] 2r-3 .\ [Dm.\ Dm .\ - Dm .\ Dm ,\ 1 (5.65) 
m 11 1l 00 11 01 Ol 

+ 2T-3Cr + 87rT- t [(I' + 3p) .\ - (I' + p)T2e2"']. 
11 

Since the convective flows are zero, we have, 

(5.66) 

The two-dimensional Ricci scalar n on S can we written as, 

R = T-2 [Dm .\ Dm.\ - Dm .\ Dm ,\] 
00 11 01 01 

(5.67) 

6T-4 [.\C5 + .\C1 - 2 .\CoCt] + 81C(1' + p) 
11 00 01 

(5.68) 

-211'-t [D • .\ Db .\ + D • .\D,.\ - 2D • .\ Db .\1 
11 00 00 11 01 aU 

(5.69) 

~21'-t hob [Dm .\ Dm.\ - Dm .\ Dm .\1 
11 00 01 o~ 

1'-3 hob ( ,\C5 + .\c1 - ,\COC1) + 81Cpr hob = 0 
11 00 01 

+ 

Equations (5.70) to (5.69) represents the Einstein equations with the source term. 

Now we shall apply this formalism to the case of an axially symmetric stationary 

spacetime. In axially symmetric stationary spacetimes the Killing vectors 1:,0 and 7)" 

are linearly independent. The scalar functions Co and C t can be shown to be zero for 

a non-convective fluid saurce[19, 38J. The field equations can now be written as. 

2r-3 .\ [Dm ,\ Dm ,\ - Dm .\ Dm .\] 
00 00 II 01 01 

(5.70) 

+ 87rT- t [(I' +1p) ~\ - (I' + p)r2e2~n21 
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Dm [r-l Dm ~] 2r-3 .\ [Dm .\ Dm .\ - Dm .\ Dm .\ ] 
01 00 11 01 01 

(5.71) 

+ 871"r-1 [(1-1 + 3p) ~ + (p + p)r2e2?/!n] 

Dm [r- 1Dm ~] 2r-3 .\ [Dm .\ Dm ).. - Dm .\ Dm .\ ] 
11 00 11 01 01 

(5.72) 

+ 811"r-1 [(1-1 + 3p) ~ - (J.l + p)r2e2?/!J. 

R = r-2 [Dm .\ Dm.\ - nm .\ Dm .\1 + 811"(1-1 + p) 
00 Il 01 o~ (5.73) 

(5.74) 

These form the field equations in an a'dally symmetric stationary spacetime with a 

perfect fluid as source. In the next section we express these field equations in terms 

of new scalar functions. In this new form Einstein's field equations can be directly 

related to the inertial forces in a covariant manner. 

5.4 The Einstein Equations and Inertial Forces In 

Axially Symmetric Stationary Spacetimes 

In the preceding sections we have given the formalisms in which Einstein's equations 

are in terms of norms and twists of the Killing vectors. On the other hand, in chapter 3 

we have established the direct relation between vorticity and inertial forces in axially 

symmetric stationary spacetimes. In this section Wel shall establish a direct relation 

between inertial forces and Einstein's equations. As has been shown in chapter 3, 

inertial forees arc defined with rcspelct to a glohal rcst frame. In the case of axially 

symmetric stat.ionary spa<!etimes with orthogonal t.ransitivity, the global rcst frames 

an! uniquely d('termilled by the irrotational cOllgruence[35 J. Also, in the case of axially 

symmetric stationary spacetimcs, the Einstein equations are represented 011 one of the 
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surfaces in the family of surfaces S, which are orthogonal to the two-surface formed 

by the commuting Killing vectors ~" and 1]". We represent this surface as our two­

manifold S. Also, one can show that for a fiducial test particles following quasi-Killing 

trajectories, inertial forces are tensor fields on two-manifold S. We recast the Geroch 

formalism in terms of a set of new scalar functions, whose gradients are proportional 

to the inertial forces. The Einstein field equations in this new form can be directly 

related to the inertial forces. 

The two-surfaces spanned by the Killing vectors ~a and 7). are the same as the 

two surfaces spanned by the irrotational vector field <" defined by the equation (3.4), 

and the Killing vector 7)"[35]. The two-metric on the surface S which is orthogonal 

to the surface formed by the Killing vectors is given by equation (5.8), 

and can be written in terms of the vector field (" and 7)" as, 

In the above 

n" e-¢(" 

e-¢ (~" -1.7)") 
,," e-o.TJd 

where, 

e2¢ 
,,2 

2A 
11 

e2• A 
11 

(5.76) 

(5.77) 

(5.78) 

(5.79) 

(5.80) 

The vector fields (" and 7)" are both linearly independent and orthogonal to each 

other whereas the Killing vectors ~. and 7)" are only linearly imi.eprndcnt to each 
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other. However, it is important to notice the fact that the vector field (a is not a 

Killing vector field, it is only a quasi-Killing vector field as bas been defined earlier. 

We formulate the Geroch formalism for a."dally symmetric stationary spacetime in 

terms of the new scalar functions, which are defined below. 

).2 _ ,\). 1'2 
f 01 00 11 

00 ). 2 ). 
(5.81) 

II II 

). 
f ...Q.!a -Wo 

01 ). 
(5.82) 

U 

).2 2 ,\2 
f It _1_1 

II 
).2 _ ). ). 1'2 

(5.83) 
01 00 11 

The functions '\, ,\ and ,\ also can be expressed in terms of the functions f, f, and f 
00 01 11 00 01 11 

uniquely. This allow one to rewrite the field equations in term of f, f, and f. In 
00 01 11 

order to do so we write the equations (5.4-1,), (5.45) and (5.46) as, 

(5.84) 

21'-2). [Dm). Dm ,\ - Dm ,\ Dm ).] 
01 QO 11 01 01 

(5.85) 

D"'D", ,\ 
11 

21'-2 ,\ [Dm ,\ D", ,\ - Dm ,\ Drn ,\] 
11 00 11 01 01 

(5.86) 

Using the above equations one can express the field <'([uation ill t.erms of f, f, and f 
00 [11 11 

as follows, 

f f(D'" j)(Dm f) - n if (D'" f)(Dm j) 
no II 01 01 L. no 11 

(.5.87) 

II 

D"'D", f 
Ul 

-23f(D m f)(Dm f) - ~f(Dm j)(Dm j) 
II 01 00 (ll 

(5.88) 

11 Oil 
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-2 t(Dm ,()(Dm L) + ~ l(D'n l) (Dm l) 
~j(Dm f)(Dm f). 

00 II 
00 

The two-dimen~ional Ricci scalar given in the equation (5.47) takes the form, 

'R = -21f [~f(Dm f)(Dmj)+.!:..j(D m f)(Drn f 
00 00 00 11 

00 00 11 

+ ll(D'n ,{)(Dm L)1 

133 

(5.89) 

(5.90) 

The Einstein equations in the above form can be written in terms of inertial 

forces, since, gradients of the functions j, j, and f are proportional to inertial 
00 01 11 

forces acting on the test particle. 

5.4.1 Inertial Forces on the Two Surface S 

In this section we define the inertial forces for a test particle following a quasi-Killing 

trajectory. If the spacetime is a source free solution to the Einstein equations then 

we assume that the four velocity corresponds to a fictitious test particle following a 

quasi-Killing trajectory. If the spacetime is described by a perfect fluid, then the four 

velocity u· corresponds to the velocity of a fluid clement. The four velocity of such a 

system can be written as, 

u· = e'" (~" + 0.'/") (5.91) 

As we defined in chapter 3, we compute the inertial forces using the formalism given 

by Abramowicz, Nurowski and vVex[2]. The various inertial forces acting on the test 

particle can be written as follows. 

Gravitational force: 
1 

--(Dk fl· 
2 f 00 

00 

(5.92) 
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Centrifugal force: 

e'" n2 J (Dk f) 
2 00 11 

(5.93) 

where 

n+ J (5.94) 
01 

Coriolis-Lense-Thirring force: 

e'" J In (Dk J) 
00 Ll 01 

(5.95) 

It is easy to show that the scalars I, I, and J are functions on the two-manifold 
00 Q1 11 

S. The inertial forces Gk , Zk and Ck are also vector fields on S, since they are 

proportional to the gradients of the functions J, J, and I. One also verifies that 
00 01 11 

the inertial forces satisfy the conditions (5.2). 

In the next section we express the \·acuum field equations given in the last section 

in terms of the inertial forces. 

5.4.2 Vacuum Field Equations in Terms of Inertial Forces 

In this section we directly relate inertial forces acting on a fictitious test particle 

whose four-velocity is along a quasi-Killing trajectory in a source free axially sym­

metric stationary spacetime. The functions I, I, and J are like potentials of 
00 01 Ll 

the gravitational, Coriolis-Lense-Thirring and centrifugal forces respectively. The 

Coriolis-Lensc-Thirring and centrifugal forces arc proportional to the gradients of the 

potential functions. Using these potential functions one can write the field equations 

directly in terms of inertial forces. 

Using the equation (5.87) and the expressions for inrrtial forces one obtain the 

divergence of the gravitational force as 

D"'Grn = 2Gm G _ e-2,pn-2 G'" Z _ ~ e-·,,pn-2 C"'C 
m JJ m 2 PJ m 

(5.96) 
0011 0011 
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Similarly form (5.88) and (5.90) we get, 

DmZm = .zm [2DmiP + ~ Dmfl. 

135 

(5.97) 

(5.98) 

The above equations represent the field equations for a source free a.-dally sym­

metric stationary spacetime in terms of inertial forces. 

5.4.2.1 Static Spacetime 

The general results given for the stationary spacetimes can be specialized to static 

spacetimes by setting ~·77. = ~ = O. As has been shown in chapter 3 the Coriolis­

Lelllie-Thirring force Ck is identically zero in static spacetimes. The field equations 
take the form, 

e-2,pfl.-2 
2G"'Gm - --- GmZ 

f f m 
00 11 

1 [ e-2,p _ ] n = -- 4 f GmG - 4- 0-2 zma 2/ 00 m f m 
00 11 

(5.100) 

(5.101) 

(5.102) 

In the next section we der"I"e th I t' fi fi I '. . 
. ese re a IOns or e d equatIOns With a perfect fhud 

as SOurce. 
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5.4.3 Field Equations With Source in Terms ofInertial Forces 

In this section we establish direct relations between inertial· forces and field equations 

with a perfect fluid source. The field equations a=e given by 

(5.103) 

The energy momentum tensor Tab is described by a perfect fluid, 

T"b = (JI + p )u"ub + pgab (5.104) 

We assume that the four-velocity of a fluid element is along the quasi-Killing trajec­

tory and can be written as, 

u" e"'{c;" + 11T/"). (5.105) 

Where w satisfies the condition, 

£~.(} = 0, (5.106) 

i.e. 11 is constant along each orbits. 

In this case also we rewrite the field equations given by Hansen and Wincour[38] 

in terms of potential functions f, /, and f. First we write the field equations given 
00 01 11 

in equations (B.22), (B.23) and (B.24) as 

(5.107) 

2T-2 ,\ [Dm .x D ,\ - D'" .x Dr .xl 
01 0(1 m U 01 n oU (5.108) 

D"'D,,, ~ 2T-2 .x [Dm.x D .x - Dtn ,\ D .xl 
11 00 m L 1 01 m 01 

(5.109) 
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Now the field equations in terms of f, f, and f can be written as, 
00 01 II 

. 1 
10 !,(Dm l)(Dm 1) .- 2j(Dm Io)(Dm !,) (5.110) 

11 

DffiDm1 -23/Dm!,)(Dm1)-7(D1nIo)(Dm1) (5.111) 
11 00 

2 D m n 77 '''mn( 7J 
00 11 

Dm Dm!, -2 t(Dm l)(Dm 1) + ~ !,(Dm !,)(Dm /,) (5.112) 

~(Dm f)(Dm f) + 2 f [Rmnnmnn + Rmnrmr"] . 
f 00 11 II 

00 

Also the two-dimensional Ricci scalar on S can be written as 

R = -211 [11(Dm J)(Dm f) + ~f(Dm f)(Dm f 
00 00 00 11 

00 00 11 

(5.113) 

+ 1 j(Dm J)(Dm n1 + hmn Rmn + Rmnnmnn - Rmn rnrm 
00 11 01 01 

As in the case of vacuum field equations these equations can also be directly 

written in terms of forces instead of potential functions. The field equations in terms 

of inertial forces take the following form, 

e-Ztbn-2 1 e- 4tbn-2 
2CmC - --- CmZ - -_. __ emc 

m 1f m 2]21 m 
(5.114) 

00 11 00 11 

zm [2D ' + 2 D n _ e-2tbn -z_!, Z ] 
mlP A m" " " 1 m 

00 

(5.115) 

e-2,p 

-I cmcm + e2w(!21 f (Rmn nnnm + Rm"rmr") 
00 11 . 

00 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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em [2Dm1j; _ e-2;'~-2 Zm + ~ Dmn] 
00 11 

(5.116) 

2e2;'>+<t>+onRmn nm T" 

n (5.117) 

In order to decompose the energy-momentum tensor with respect to the vector 

fields na and Ta, we split the four-velocity ua as follows, 

where, 

v 

(5.118) 

(5.119) 

(5.120) 

From the above anc! using the energy-momentum tensor given in the equation (5.104) 

we get, 

Rabn"nb 87f [,2(IJ + p) + ~(p -iL)] (5.121) 

Rabn"Tb -8rq2v(11 + [I) (5.122) 

R"bTaTb [ 2 ., 1 ] 87f I v·(j.1, + p) - 2(P - IL) (5.123) 

Using t.he abov(, eqllations the field equatiolls given in (5.11-1) to (5.1li) can be 

written as, 

-21/,S}-" 1 -.1\10(2-" ')G"'G _ _ e ___ - G"'Z _ __ e ___ - C"'C 
- m ii;r Tn 2 Pi m 

(5.12-1) 
OOll 001l 

87f [,2(1' + p) + ~(p -IL)] 
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[ 2 - -2\11"'-2 l Z ] Zm 2Dm'I/J + ~ Dm!1 - e ,. 7 m 
!1 00 

(5.125) 

-21/1 [1)] __ e -C"'Cm + 81re2\11n2 f f "-/v2 (J.L + p) - ;-(p - J.L 
f 0011 2 
00 

In addition we also have, 

(5.128) 

Equations (5.124) to (5.128) represent the field equations for a stationary axially 

symmetric spacetime in terms of the inertial forces. 

Next we relate the gravito-electromagnetic fields to the Einstein field equations in 

stationary spacetime. 

5.5 Gravito-electromagpetic Fields and the Ein­

stein Field Equations 

In this section we shall express the Einstein field equations in terms of gravi to­

electromagnetic fields. 

Let {" be a tirnelike Killing vector in a stationary spacet.ime. The fOllr velocity of 

an obsen'er following along the Killing vector is given by 

(5.12D) 
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As described in third chapter we define the gravito-electric and gravito-magnetic 

fields with respect to the comoving frame of the observer mO\'ing with four velocity 

ua. We have, gravito-electric filed, 

(5.130) 

and the gravito-magnetic filed 

(5.131) 

where Fab is dual of Fob' 

Using the properties of Killing vector fields we have, 

(5.132) 

Here>. is the norm and w is the twist of the the Killing vector E,a., which are given by 

the equations (A.15) and (A.16)i respectively. 

(5.133) 

(5.134) 

Using the above definition we have 

wa (5.135) 

and 

(5.136) 

The Einstein filed equations with one KilliI~g vector can be reduce to following set 

of equat.ions Ilsillg the Geroch(32] formalism. the details are given in appe.ndix A. 

(5.137) 

D"D,,>. (5.138) 
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(5.139) 

~A-2 [WaWb _ habWm"-lm] + ~A-l DaDb'\ (5.1-10) 

1 ~ 
4A-2D•A DbA + 2(JJ.-p)hab 

In the above. source term is assumed to be a perfect fluid with energy momentum 

tensor 

T.b = ().l + p)UaUb + pg.b (5.141) 

where u· is four velocity along the Killing vector ~" as given in the equation (5.129). 

Using the definition of gravito-electric and gravito-magnetic fields, we obtain the 

Einstein field equation as, 

D·B. (5.142) 

(5.143) 

D"E. (5.144) 

1 
:2 [BaBb - habBmBm] (5.1,15) 

~ 
+DaEb - 2EaEb + 2" ().l- p) hab 

TIle5e equations represents the Einstein field equations ill terms of gravito-electromagn, 
fields. 

In the case of source free field equations we haYe, 

P = P = 0 (5.146) 

The equations 1.5.142)- (5.150) reduces to the form, 

(5.147) 
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(5.148) 

(5.149) 

(5.150) 

These presents the source free Einstein field equations with one Killing vector field, 

in terms of gravito-electric and gravito-magnetic fields. In the case of two Killing 

vector fields such as in the case of axially symmetric stationary spacetimes, we have 

seen that field equations can be written only in terms of the scalar products of the 

Killing vector fields. The twists lid' !tt and W do not represent independent equations. 

Because of this fact one can not write the Einstein field equations completely in terms 

of gravito-elcctric and gravito-magnetic fields as defined by the co-moving frame. 

5.6 Conclusions 

In this chapter we have directly connected the Einstein field equations to the inertial 

forces. The inertial force concept was first developed in order to get better insight into 

the motion of t.est particles in the general theory of relativity. When the formalism 

is applied to the trajectories along the directions of spacetime symmetries, one can 

also use inertial forces to understand the spacetime structure. This goal has been 

achieved in this dmpter by directly expressing Einstein's equations in terms of inertial 

forces. This formalism may be useful in understanding the geometry and the physical 

significance of axially symmetric stationary spacetimcs. Also, as mentioned earlier, 

several studies have been carried out relating the centrifugal forc!! reversal to the 

equilibrium configurations of ultra compact objects. The present chapter does not 

deal with this problelIl directly. However, we hope that lIlore insight into this prohlem 
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can be gained using the formalism developed in this chapter and the discussions 

extended to include fast rotations. 



Chapter 6 

Concluding Remarks 

In the present thesis we have examined some of the rotational effects in the .general 

theory of relativity. These effects include the phenomenon of gyroscopic precession, 

the general relativistic analogues of inertial forces and gravito-electromagnctic fields. 

The phenomenon of gyroscopic precession is an effective tool to probe the rotational 

effects and can be used as a test for general relativistic rotational effects. Because 

of this reason one would like to relate any rotational effect to the phenomenon of 

gyroscopic precession. This is one of the main themes of the present thesis. 

In our present study we have related the general relativistic analogues of inertial 

forces and gravito-elcctromagnetic fields to the precession frequency. Also we have 

established the relation between the inertial forces and the gravito-electromagnetiC 

fields. We have carried out our investigation in gen(~ral a ... xially symmetric stationary 

spacetimes so that the formalisms arc applicable to the case of black hole solutions as 

well as to compact objects. We have infact applied these formalisms to several black 

hole solutions in order to demonstrate some of tho interesting effects. 

For investigating gyroscopic precession we have used the Frenct-Serret formalism 

developed by Iyer and Vishve~hwara[431. In the second chapter we have shown that 

144 
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the precession frequency of a gyroscope transported along an arbitrary trajectory can 

be related to two of the Frenet-Serret parameters namely, T[ and T2. Interesting results 

emerge when the trajectories are along a tinelike Killing vector field in spacetimes. 

Along a Killing trajectory not only is the precession frequency expressible in terms 

of the Frenet-Serret parameters, in addition one can show that all the Frenet-Serret 

scalars are conserved along the trajectory. Furthermore, all the basis vector fields of 

the Frenet-Serret frame satisfy Lorentz like equation of motion[43, 35]. 

The covariant formalism given by Abramowicz, Nurowski and Wex forms the ba­

sis for our study of the general relativistic inertial forces[2]. We apply this formalism 

to a particle moving along a quasi-Killing trajectory in axially symmetric stationary 

spacetimes. In this case we show that the forces are proportional to gradients of 

scalar potentials. We have established relation between inertial forces and gyroscopic 

precession using two approaches. In the first approach we have related the Frenet­

Serret parameters Tl and T2 which represent the gyroscopic precession in terms of 

inertial forces. In a second approach we directly relate the gyroscopic precession fre­

quency to the inertial forces yielding vector relations. Using these expressions we 

show that in static spacetimes, for circular trajectories, the simultaneous reversal 

of gyroscopic precession and centrifugal force reversal occurs only at circular null 

geodesics. The reversal of centrifugal force at the photon orbits was first shown by 

Abramowicz Carter and Lasota[l]. We have shown the general properties of simul­

taneous reversal of gyroscopic precession and centrifugal force at the circular photon 

orbits in static spacetimes. By applying this formalism in the Ernst spacetime we 

have explicitly demonstrated this phenomenon. In the case of the Ernst spacetime, 

there exists two circular null geodesics and simultaneous reversal of gyroscopic pre­

cession and centrifugal force occurs at both the photon orbits. We obtain similar 

rpsuits for the Schwarzschild spacetime and the lvlel "in universe as spl,cial cases of 
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the Ernst spacetime by setting the parameter Band M zero respectively. 

Contrary to the case of static spacetimes. in the case of stationary axially symmet­

ric spacetimes, we have shown that neither centrifugal force nor gyroscopic precession 

reversal occurs at the circular null geodesics. In general, centrifugaJ force and gy­

roscopic precession reversals occur at different points in the spacetime. Using the 

Kerr-Newman spacetime as an example for axially symmetric stationary spacetime 

we study the reversal of gyroscopic precession and centrifugal force. We also inves­

tigated forces as functions of angular momentum parameter and charge parameter 

in the Kerr-Newman spacetime. Kerr solution is treated as a special case of the 

Kerr-Newman spacetime by setting the charge parameter Q to be zero. By setting 

angular momentum parameter a as zero in the Kerr-Newman spacetime one obtains 

the Reissner-Nordstrom solution which is a static spacetime. As expected, we observe 

that in the Reissner-Nordstrom spacetime both gyroscopic precession and centrifugal 

force reversals occur at the circular photon orbits. 

We have used a different approach for treating the gravito-electromagnetic fields 

in contrast to conventional weak field approximation[23]. We use the properties of 

Killing vector fields in order to define the gravito-electromagnetic fields. The advan­

tage of our approach is that one can define the gravito-electric and gravito-magnetic 

fields with respect to any given observer. By defining the gravito-electric and gravito­

magnetic fields with respect to the global rest frame, we relate them to inertial forces. 

If one defines the gravito-electric and grm'ito-magnetic fields with respect to the co­

moving frame of the particle, we show that one can obtain simple relations between 

gravito-electromagnetic fields and the Frenet-Scrret parameters. 

In the fifth chapter we have established the direct relation between the inertial 

forces and the Einstein field equations. A.5 we have shown that the inertial forces 

arc proportional to gradicnts of scalar potentials, we ('xprcss the Einsteiu equations 
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in terms of these potentials using the Geroch formalism [32, 33]. In the case of field 

equations with a perfect fluid source terms w~ use the formalism given by Hansen and 

Winicour[38]. The concept of inertial force was first developed to study the dynamics 

of the test particles in a given spacetime. Since we have established relations between 

inertial forces and the Einstein field equations, this formalism can be used for physical 

interpretations of exact solution in terms of inertial forces. This can be expected to be 

useful in studying the equilibrium configurations of relativistic rotating ultra compact 

objects. 



Appendix A 

Einsteins's Equations in Stationary 

Spacetimes 

In this appendix we introduce the Geroch formalism which simplifies the Einstein 

equations for a source free stationary spacetime[32]. In this formalism the Einstein 

equations are represented on the three-space orthogonal to the Killing vector ~/l. The 

field equations are completely expressed in terms of the magnitude and the vorticity 

of the Killing vector field ~/l. Though the formalism is applicable with ont! arbitrary 

Killing vector, we assume that the spacetime is stationary, i.e., the Killing vector 

field ~/l is timelike at each point. The detailed derivation of the formalism is given in 

reference[32]. We briefly summarize t.he formalism for ~\ stationary spacetime. 

Let M be a stationary spacetime with metric gab and timelike Killing v~ctor field 

~.. We construct spacetime foliations at each point, which are orthogonal to the 

timelike Killing vector field ~a and are represented by S. The projection operator for 

the quotient space can be defined as follows, 

gab - (~rn~rn)-l~a{b 

gab _ (~m~",)-l~"{b 
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(A.I) 

(A.2) 
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(A.3) 

If the Killing vector ~a were hypersurface orthogonaL then it is possible to represent 

S as one of the hYi,.'rsurfaces in M which is everywhere orthogonal to E;a. In the 

non-hypersurface on hogonal case, however, there is no natural way of introducing 

such a surface in M. 

The tensor field hab as given in equation (A.I), defines the metric on the three­

quotient space orthogonal to the Killing vector E;a. The geometry on S is induced 

by the spacetime M with induced metric hab' Any tensor field on M projected on 

to the quotient space using the operator hob is a tensor field on S. But we consider 

certain tensor fields ta.b:~d on S which have a one-to-one correspondence with the 

tensor fields Ta.~:/ on M. In order to have such a one-ta-one correspondence the 

tensor field Ta.~:~d on M must obey the following conditions[32], 

(A.4) 

and 

(A.S) 

A scalar field jl on the quotient space S represents a scalar field /L on ,\II if it satisfies 

the equation, 

(A.6) 

The above results arc proved in reference[32]. The conditions (A.4), (A.5) and (A.6) 

define the scalar and tensor fields on S. The antisymmetric permutation tensor t abcd 

on S can be defined as 

€abc (A.7) 

with 

6. (A.S) 
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Since the tensor fields satisfying the conditions (AA) and (A.5) have one-to-one cor­

respondence with the tensor field on S, we drcp the tilde: we shall represent the tensor 

fields on S merely as fields satisfying the c01dition (AA) and (A.5). The covariant 

derivative Da on the quotient space S can be defined as follows, 

(A.9) 

where vp is the covariant derivative on M. One can clearly see that the derivative 

operator Da satisfies the conditions (AA) and (A.5). In addition, it also satisfies the 

following conditions[32]. 

1. The derivative operator satisfies the Leibnitz rule, i.e., 

(A.lO) 

where x is the outer product operator. 

2. The contraction of the derivative of any tensor field on S equals the deriva­

tive of its contraction. 

3. If IL is any scalar field on S, the DalL is the gradient of I~, and D[aDb)I~ == 0 

4. The derivative of the Sllm of two tensors on S is the sum of their deriva­

tives. 

5. The derivative of the metric is zero. 

Using the properties of the covariant derivative (A.9), one can define the Riemann 

tensor on the three dimensional quotient space S. If k. is an arbitrary vector field on 

S one can show that, 

D.Dbkc _ h~hZh~vp(h;h~Vskt) 

h~h~h~;vpv.,kt - (~rnE,rn)-lh~hZh~Cvpc,q)E;'v"kr 

(c,'nc,m)-l h~hgh~(v pc'r )E,tv"kt 

(A.ll) 
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Antisymmetrizing over the indices a and b we get , 

h~hih~V'[p V'q]kr + (E,m(m)-I h~hih~ (V' p~q)(V' r(,)/,;9 

+ (~m(mrl hfahi]h~(V'p~r)(V' q(t)/,;t. 
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(A.12) 

Here we use the fact that £~ k,. '" 0 and ekt '" O. Taking /,;a to be an arbitrary vector 

field, the Riemann tensor Rabed of S is related to the Riemann tensor Rabed of ,\..1 by, 

Rabed hfahi]hfehd] [Rpqrs + 2(C~m)-I(V'p(q)(V'r(s) (A.13) 

+ 2(~m(m)-1(V'p~r)(V'q~s)1· 

The equation representing a source free stationary spacetime is given by 

Rab = 0 (A.14) 

where Rab is the Ricci tensor. We express the above source free field equations in 

terms of the norm and the twist of the Killing vector (a and the metric hab on the 

quotient space S. The norm A and twist W of the Killing vector ~a are given by, 

(A.15) 

(A.16) 

One can easily see that A is a scalar and Wa is a tensor on S. From equation (A.15) 

and (A.16) one can express the covariant derivative of the Killing vector as, 

\""I < _ 1 \ -I <e d \ -I D \ 
. Va,b - "2A 'abed, W + A ~[b alA. (A.17) 

Since wa is a tensor on S, the derivative of Wa on S can be related to the Ricci tensor 

Rg as follows, 

D[aWb] = -£abmn~m R~e (A.18) 

In the above we use the identity which is valid for a Killing vector E,a, 

(A.19) 
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The trace of the derivative of wa can be simplified to the form, 

(A.20) 

Taking the covariant derivative of the equation (.'1..17) and using the identity (A.19) 

we get, 

DaDa). = ~).-lDm,\ Dm'\ - ,\-lWmwm - 2Rmnt;'"C. (A.21) 

By contracting equation (A.13) and using the identities given above we get the ex-

pression for the Ricci tensor on the three-quotient space as, 

1'_2[ m] l>.-lDD 2"" WoWb - hobW,"W + 2" 0 b). (A.22) 

~ ,-2D 'D' hm /"R 4" a A bA + 0 tb mn 

In the source-frce case (i.e. Rob = 0), the equation (A.18) implies that Wo is it gradient 

of a scalar w, i.e., 

The source free field equations takes the form, 

+ 

DmDm,\ 

- habDmw Dmw] 

1 -2 4'\ Do'\ D"A 

(A.23) 

(A.24) 

(A.25) 

(A.26) 

The above equations represent Einstein's equations for a Houree free st.ationary 

spacetime. The field equations with the source function is given hy, 

(.'1..27) 
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where Tab is the energy momentum tensor. 

Equation (A.18) now can be written as, 

(A.28) 

and the trace of this equation remains the same as is given in equation (A.20). Equa­

tion (A.21) combined with the equation (A.27) can simplified to, 

(A.29) 

The three-dimensional Ricci tensor given in the equation (A.22) takes the form, 

n.b ~A-2(W.Wb - hobWmWm] + ~A-1DaDbA (A.30) 

- ~A-2D.A DbA + r;.h':h~ [Tab - ~9'bTl 

The equations (A.28), (A.29) and (A.36) presents the Einstein's equlltions with 

matter. 

If the source is assumed to be described by a perfect fluid the energy-momentum 

tensor is given by, 

(A.31) 

Here, u' is the four-velocity of the fluid element. In the case of stationary spacctimes 

the fluid element is moving along the time like Killing vector ~a and the four-velocity 

can be written as, 

(A.32) 

The equations (A.28), (A.20), (A.29) and (A.36) now can written as 

(A.33) 

DaD.A 
(A.3oi) 
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o (A.35) 

(A.36) 

This formalism can be easily extended to the case of spacetimes with two Killing 

vectors. The case of an axially symmetric stationary spacetimes is an example which 

is described in chapter 5. 



Appendix B 

Einsteins's Equations with Source 

In this appendix we briefly outline the form"lism given by H"nscn "nd Wincor[38]. 

In this formalism Ein8tein's field equations with a perfect fluid source are simplified 

for spacctim~s admitting two Killing vectors. The detailed derivation is presented in 

reference[38]. We briefly summarize the main results. Following the notations given 

in the chapter 5, the field equ"tions can written as follows(38] 

(B.l) 

2T-3 J\ [Do J\ D J\ - DO ,\ Do ,\ 1 
01 00 a 11 01 01 

(B.2) 

2T-:1 ,\ [D°'\ Du J\ - DO ,\ Do ,\ 1 
1l 00 n 01 01 

(B.3) 

In t.his case Co and C 1 arc fUllctions on t.he two-manifold S. For the source free case 

(Rub = 0) one cun show that Co and C 1 are constants. The funetioIlS Co and C 1 

satisfy t.he "'Illations, 

(B.4) 
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(B.5) 

The two-dimensional Ricci tensor can be written as" 

where R.b is the Ricci tensor on M. We express two-dimensional Ricci t.ensor in 

terms of the trace and the trace free part as follows, 

n r- 2 [D· AD), - D· A D. A 1 
00 a. 11 01 01 

(B.7) 

+ 4 [ 2 2 \ J 6r- 2COC1 A - Co ,\ - C1 A 
01 ,1 00 

(B.8) 

~r-2 [Da A D A - Da A Da A 1 2 00 a \1 01 OL 

+ -lDD 1-11Dm D T a bT - 2'7 tab roT 

+ h';'h'bRmn - ~h.b hmnRnm 

In order to simplify the equation (B. 7) further, we compute, 

4 [COC1 ). - cg A - C~ A 1 
01 11 00 

(B.0) 

Substituting into equation (B.7) we get, 

r- 2 [Da A D. A - Da ), D ), 1 
00 11 at a. at 

(B.10) 

6r-4 [2COC1 A - C2 \ - C2 \ 1 + hm"R 
01 oil l~ rnn 

+ 

The left-hand side of equation (B.8) vanishes identically; then we haw 
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[Dm ,\ Dm ,\ - Dm ,\ Dm A] + 
00 11 01 01 

r [hamhbnR",n -- ~hab hmnR",n] o (B.ll) 

Now we consider the Bianchi identity, 

(B.12) 

By projecting on to two-manifold S and simplifying, the Bianchi identity takes the 

following form, 

Dm (rh;:' Rnpe) 
DTn (rh;:' R"prf) 

0, 

0, 

Dm [r (h~h~n Rnp - ~hamhnp Rn,,)] + ~hnm Rnm Dar + 

r-1 [), D. (Rmn.;men) - 2), Do (Rnmem,!,,) + ADa (Rnmrrrl")] + 
11 01 00 

(B.13) 

(B.14) 

Now we split the energy momentum tensor into terms on the two-manifold Sand 

along the Killing veetors eo and rIa as follows, 

T 
00 

T 
01 

T 
II 

(-:l 
0· 

fla 

tab 

Tmn~rn.;n 

Tmn~rn"n 

T,nn,r" n 

h;:'Tmn~rn 

h;:'T,nn"rn 

= h~n hb T,/l1l 

(B.16) 

(B.17) 

(B.18) 

(B.19) 

(B.20) 

(B.21) 
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With the above, the Einstein equations take the form, 

2r-3 ..\ [D"' A Dm..\ - Dm ..\ Dm A 1 
00 00 11 01 01 

+ 2T-3C5 - 1671"r-1 [To - ~ ~1 T] 
2r-3 A [Dm..\ Dm..\ - Dm ..\ Dm ,\ ] 

01 00 11 01 01 

+ 2r-3CoC1 - 1671"r-1 [T - -21 ..\ T] 
01 01 

2r-3 ..\ [Dm..\ Dm..\ - Dm ..\ Dm >.] 
11 00 11 01 In 

+ 2r-3C~ - 1671"r-1 [T - -21 >. T] 
II 11 

n r-2 [Dm >. Dm >. - Dm ..\ Dm >.] 
00 11 01 01 

6r-4 [>. c~ + A C~ 2 >. COCI] 
11 00 01 

+ 87r [T + 4r-2 (..\ T + >. T - 2 >. T)] 
11 00 00 11 01 01 

D m (rt .. m ) - r [To D. (r-2 ;\) 
2 T D. (r-2 ..\ ) + T D. (r-2 ..\)] + 

01 01 11 11 

~ C1!;;' ~m + A Clf;;' 8 m ] 0 
00 1 

DaDbr + ~r-l [D. A Db..\ + 2 00 11 

Do. >. Db >. - 2Da >. Db >.J 
11 00 01 01 

1 _I 
[Dm >. Dm ..\ - Dm ..\ Dm ..\ ] 2:r hab + 00 11 01 at 

r-3 hsb [..\C~ + ~C? - 2..\ COCI] + 11 01 

8 71" r tab 0 
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(B.22) 

(B.23) 

(B.24) 

(B.25) 

(B.26) 

(B.27) 

(B.28) 

(B.29) 
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where 

T == T:;: = hmntnm - 2r-2 [,\ T - 2,\ T + ,\ T] 
11 00 01 01 00 I1 

(B.30) 

These form the Einstein equations with two Killing vector fields. In chapter 5, 

this formalism is specialized for a perfect fluid source in axially symmetric stationary 

spacetimes. 
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