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Some Rotational Effects in Black Hole Spacetimes

Abstract:

We study some of the rotational effects such as gyroscopic precession, the general
relativistic analogues of inertial forces and to gravito-electromagnetism in black hole
spacetimes and establish interrclations among them. The phencmenon of gyroscopic
precession is not only important from the conceptual point of view but also it has
been proposed as a test to the general theory of relativity itself. We use the covariant
Frenet-Serret formalism for gyroscopic precession as given by Iyer and Vishveshwara.
Recently, there has been considerable interest in the general relativistic analogues
of inertial forces, especially the centrifugal force and its reversal. We study inertial
forces using the covariant formalism given by Abramowicz, Nurowski and Wex. The
similarity between gravity and electromagnetism allows one to define the concept of
gravito-electromagnetism. We use the properties of Killing vectors in order to define
gravito-electromagnetic fields. We define gravito-electric and gravito-magnetic fields
with respect to the irrotational congruence in an axially symmetric stationary space-
time. We establish the direct covariant relations between these rotational effects in an
axially symmetric stationary spacetime. One of the important results which emerged
from these relations is that of the simultaneous reversal of gyroscopic precession and
centrifugal force in general static spacetimes. Previous studies indicated this by com-
puting the centrifugal force and gyroscopic precession for specific examples. From
direct relations we also show that neither centrifugal force nor gyroscopic precession
reversal occurs at the photon orbits in stationary spacetimes. In order to get more
physical insight, we also apply this formalism to the black hole spacetimes such as

the Kerr-Newman and the Ernst spacetimes. In static spacetimes such as the Ernst,



Reissner-Nordstrom and Schwarzschild spacetimes we observe that reversal of both
gyroscopic precession and centrifugal force occurs at the circular photon orbits. In
case of stationary spacetimes such as the Kerr-Newman and Kerr spacetimes rever-
sal of gyroscopic precession and centrifugal force occurs at different points in the

spacetime.

The concept of inertial forces from Newtonian mechanics was generalized to the
general theory of relativity in order to study the motion of test particles. In Newtonian
mechanics the concept of potential which defines the force is used to express the
gravitational field through the Laplace or the Poisson equations. If the fiducial test
particle is moving along the Killing trajectories such as a circular orbit in axially
symmetric stationary spacetimes, one observe the fact that the inertial forces are
proportional to the gradient of a scalar function. We express the Einstein equations
in axially symmetric stationary spacetimes in terms of inertial forces. For source
free axially symmetric stationary spacetimes, we use the formalism given by Geroch
in order to express field equations in terms of inertial forces. Hansen and Winicour
extended the Geroch formalism for field equations with source terms. We use this

formalism for expressing the field equations in terms of inertial forces.
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Chapter 1

Introduction

1.1 Introduction

The existence of black holes is one of the most interesting predictions of the gen-
eral] theory of relativity. In contrast to the Newtonian solution to the gravitation
field of a point mass, the Schwarzschild solution to the Einstein equations exhibits
novel physical effects such as the existence of the event horizon and the circular null
geodesic. Physical phenomena in the strong gravitational fields of black holes are
not only interesting from the conceptual point of view but are also of astrophysical
importance. There has been considerable amount of studies in the area of black hole
physics over the past three decades. These include, mainly, the geometric structure
and physical properties of black holes. In addition, rotation induces interesting as well
as intriguing physical effects both in Newtonian mechanics and the general theory of
relativity. In relativity, these effects are built into the structure of spacetime, such as
that of the rotating black hole. In the case of the Kerr black hole, rotation separates
the stationary limit from the event horizon and gives rise to the ergo-region. This
leads to several interesting effects such as the Penrose process and super-radiance.

In this thesis we study some of the rotational effects in stationary, axially symmetric
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spacetimes, in particular those of black holes. These are gyroscopic precession, the
general relativistic analogues of inertial forces and gravito-electromagnetism. We in-
vestigate these effects in the general case of axially symmetric, stationary spacetimes
and apply them to the black hole spacetimes as specific examples. We also establish
the interrelations among these rotational effects. These formalisis are also applicable
to the case of ultra compact objects whose radii are very close to the event horizon.

We shall now give a brief outline of these effects.

1.2 Inertial Forces

Inertial forces give very simple physical descriptions of dynamical systems involv-
ing non-inertial frames in Newtonian mechanics. In order to apply Newton’s laws
within non-inertial frames such as rotating frames, one needs to add suitable force
terms. These forces are called pseudo-forces or inertial forces. Inertial force terms
are generated when Newton's laws are transformed from a global inertial frame to a
non-inertial frame. Newtonian dynamics can be fully described using inertial frames.
However, non-inertial frames, hence inertial forces cannot be avoided in many appli-
cations. The well known example of an inertial force is the centrifugal force, which
one experiences in day-to-day life. In order to gain further insight, we consider a
rotating frame as an example of non-inertial frames. The equation of motion of a test
particle in a non-inertial frame can be decomposed into the following terms,

dv d'l)o

m— = m— + mrxa + 2mu xw+m{w X)X w.

where w is the angular velocity of the frame. The first term on the right is the
acceleration of the test particle in the rotating frame. Other terms correspond to
pseudo-forces or inertial forces called, Euler force, Coriolis force, and centrifugal force

respectively. The Euler force arises because of the change in the angular velocity of
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the rotating frame itself and vanishes in the case of uniformly rotating frames. The
Coriolis force arises because of the relative motion of the test particle with respect to
the rotating frame. When one considers the earth as an example of a rotating frame,
the Coriolis force give rise to several interesting physical effects. These effects are
important when the relative velocity of test particles are significant, such as in the
case of ocean currents and wind flows. For a test particle moving along a meridian of
the earth with a constant angular velocity, it can be shown that the Coriolis force acts
along the eastward direction in the northern hemisphere, along the western direction
in the southern hemisphere and vanishes on the equator. This phenomenon manifests
itself in the case of an imaginary river flowing from the south pole to the north pole
by exerting more pressure on the eastern bank in the northern hemisphere and on
the western bank in the southern hemisphere. In the case of wind flow one of the
effects of Coriolis force is known as Buys-Ballot law, according to which the direction
of wind velocity is not along the pressure gradient but is deviated considerably to
the right in the northern, to the left in the southern hemispheres respectively. The
Coriolis force vanishes if the particle is at rest with respect to the accelerated frame.
These are some of the physical effects which can be explained using the concept of
inertial forces. However, since these forces are merely due to the reference system,
by choosing suitably a generalized coordinate system one can avoid referring to these

inertial forces.

One of the very important properties of inertial forces is that they are always
proportional to the mass of the particle . The same is true of gravitational force as
well. This striking similarity of the two gave rise to the equivalence principle, which
states that the properties of the motion in a non-inertial system are the same as those
in an inertial svstem in the presence of a gravitational field. Hence, in a local inertial

frame the gravitational and inertial forces are indistinguishable. In the general theory
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of relativity, all forces are replaced by the curvature effects of the spacetime. However,

the concept of forces is a very useful tool for analyzing the rotational effects in the

general theory of relativity.

The general theory of relativity is a fully covariant theory, which remains invariant
under arbitrary coordinate transformations. Because of this, it does not in allow
general any global inertial frames in order to define the inertial forces. However, one
can generalize the concept of Newtonian global rest frames even in general relativity
in special cases. The concept of a global rest frame is associated with the existence of
a timelike vector, which is hypersurface orthogonal. The three surface orthogonal to
this timelike vector defines the space of simultaneity. This hypersurface orthogonal
timelike vector along with the three-surface orthogonal to it defines the generalized
Newtonian rest frame. For the case of an axially symmetric stationary spacetime,
Greene, Schiicking and Vishveshwara showed that such global rest frames can be

uniquely defined[35].

Abramowicz, Carter and Lasota [1] first formulated the concept of inertial forces
in static and stationary spacetimes using the optical reference frame. The optical
reference geometry can be constructed by conformally rescaling the spacetime metric
with a suitable conformal factor. The important result that emerged from their studies
is the reversal of centrifugal force in static spacetimes at the photon orbits if such
orbits exist, whereas in the case of Newtonian mechanics the direction of centrifugal
force is always away from the axis. Abramowicz and Prasanna showed that this occurs
at r = 3m in the Schwarzschild spacetime. This paradoxical behavior at r = 3m in the
Schwarzschild spacetime was first observed by Abramowicz and Lasota[10, 11]. They
pointed out that, at r = 3m, the thrust needed to keep a test particle in a circular
orbit is independent of the velocity of the particle. Abramowicz, Nurowski and Wex

[2] have presented a general formalism for inertial forces in an arbitrary spacetime.
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They decomposed the acceleration of the test particle with respect to a global rest
frame defined by the timelike hypersurface orthogonal vector field provided such a
vector field exists. The details of this formalism are given in the second chapter.
We adopt this covariant formalism for our study. In an arbitrary spacetime the
three-space and time splitting is non-unique. However, one may note that all such
splittings may not represent the generalized Newtonian global rest frame. Hence, 2
totally arbitrary decomposition is not useful for defining inertial forces. As mentioned
before, in the case of an axially symmetric stationary spacetime, the global rest frame
can be defined uniquely{35]. However, the splitting and identifving the various terms
in the acceleration might differ depending on the physical nature of the problem or
depending on the observers’ frame. Various such possible splitting schemes have been
discussed by Bini, Carini and Jantzen[16]. They have also studied these formalisms

in the case of an axially symmetric stationary spacetime as an example[17}.

De Felice has criticized the decomposition of spacetime into spatial and temporal
parts. He has argued that the paradoxical behavior of the test particle below the
radius of circular null geodesic in the Schwarzschild spacetime is due to more gravi-
tational attraction than the centrifugal force reversal{24]. He has also defined what is
called pre-horizon regime, a region in spacetime in which, when an increase in the an-
gular velocity of the test particle orbiting on timelike non-geodesic spatially circular
trajectories, causes more gravitational attraction than centrifugal repulsion[24, 25].
In static, spherically symmetric spacetimes, the pre-horizon regime occurs below the
circular null geodesic. In the case of Kerr spacetime, the situation is more complex
due to the existence of co- and counter- rotating null geodesics. This causes a shrink-
age in the pre-horizon regime{26]. De Felice and Usseglio-Tomasset have investigated
various definitions of inward and outward dircctions with respect to the center in the

Schwarzschild spacetimes and the possibility of inferring the direction using a gyro-
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compass[27]. As mentioned before, in static spacetimes, for spatially circular orbits
with radius less than the circular null geodesics, have the property that an increase in
the angular velocity corresponds to an increase in the thrust in the outward direction.
In the case of the Schwarzschild spacetime this occurs for radii which are too small
(r < 3m) for direct observations. However, De Felice has suggested that, In the case
of the Kerr spacetime, the above effect not only holds at small coordinate distances
from the event horizon for co-rotating circular orbits, but also holds arbitrarily far
away from the source on counter-rotating circular orbits with angular velocities which
tend asymptotically to zero. Since this behavior has no Newtonian analogue, it can

be taken as a possible test for the general theory of relativity[28].

An alternative scheme for decomposing the acceleration has been proposed by
Semerak[64]-[70]. In this approach also, the observers following timelike hypersurface
orthogonal vector fields are used as fundamental observers. The transport law for
such fundamental observer’s tetrad is decomposed into a Fermi-Walker part and a
spatial rotation part. The acceleration of a test particle as observed by a fundamen-
tal observer can be split into terms consisting of the gravitational (gravito-electric)
part, the dragging (gravito-magnetic or Lense-Thirring) part, the Coriolis part, the
centrifugal part (minus normal component of the particle’s specific inertial resistance)
and the tangent component of the particles’ specific inertial resistance[64]. Thus de-
fined, centrifugal force is always repulsive as in the case of Newtonian mechanics and
in contrast to the definition given by Abramowicz et. al. {1, 2]. Semerak has also re-

lated inertial forces to the concept to gravito-electro magnetism and of the gyroscopic

precession|[65).

Despite the fact that the general theory of relativity does not allow the concept
of forces, the generalization of the Newtonian concept nf firces is a useful tool for

understanding the motion of test particles as well as for understanding the spacetime
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structure. Many of the advantages of inertial forces are described by Abramow-
icz et. al [6]-[9]. Alternative definitions of inertial forces and interrelations among
them also helps to gain more insight into the physical phenomena. In an attempt
to understand the connection between the general theory of relativity and the Mach
principle, Prasanna and Iyer have introduced a new parameter called cumulative drag
index[61, 62]. This parameter is defined for a particle in a circular orbit in an axially
symmetric stationary spacetime. It was also shown that the behavior of this param-
eter is similar for both co- and counter- rotating orbits[61]. Initialy this parameter
was defined on circular orbits on which the centrifugal force vanishes and later it was

generalized to all circular orbits[62].

In the next section we introduce another important rotational effect,the concept

of gravito-electromagnetism.

1.3 Gravito-electromagnetic Fields

Another important tool for investigating the rotational effects in the general theory of
relativity is gravito-electromagnetism. The concept of gravito-electromagnetism arose
due to the similarity between the general theory of relativity and the Maxwell theory
of electrodynamics. The analogy between the electrostatic force and the gravitational
force is well known as both the forces follow the inverse square law. If one compares
the motion of a charged test particle with a test particle in a uniformly rotating
frame, one can further identify the siinilarity between the magnetic field and inertial
forces. This comparison becomes straight forward if one writes the Lagrangian for
both motion of a charged test particle in an electromagnetic field and a test particle

in a uniformly rotating frame. The generalized potential for a charged test particle
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in an electromagnetic field may be written as,

Uy = gp— ~A- 7. (1.1)

o 1

In the above, ¢ and Aare electric(scalar) and magnetic(vector) potentials respectively.
The charge of the test particle is represented by ¢ and 7 is its spatial velocity. Similarly
the effective potential for a test particle in a uniformly rotating frame may be written
as,

Uror =V ~ -;—m{di x 2 —mi - (J x 7). (1.2)

—

Here & is the angular velocity of the rotating frame, and 7 is the velocity of the
test particle with respect to the rotating frame. The function V' is the potential in
the rotating frame. From the above effective potentials, one can draw the following
analogies. The term V — im|J x 712 is similar to the electromagnetic scalar potential
# and the term (& x 7) is similar to the electromagnetic vector potential A The
magnetic force acting on the charged test particle is similar to the Coriolis force
(¥ % &), acting on the test particle in a rotating frame. The above example illustrates
the similarity between electromagnetism and inertial forces within the framework of

Newtonian mechanics.

Faraday unified the concept of electric and magnetic fields, finally giving rise to the
Maxwell theory of electromagnetism. The equivalence principle proposed by Einstein
does not allow one to distinguish between the gravitational and the inertial forces lo-
cally. From the point of view of structure of the equations, both Einstein's equations
and Maxwell’s equations constitute a set of hyperbolic partial differential equations.
Using the suitable gauge condition, Maxwell's equations can be written in the form of
a wave equation. Similarly, in the linearized theory of gravity, the Einstein equations
can also be cast in the form of a wave equation. The important implication of this

is the existence of gravitational waves, which was predicted by Einstein. When the
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linearized field equations are applied to a slowly rotating mass configuration, one ob-
tains several interesting results. The gravitational field produced by a massive sphere
in the general theory of relativity is analogous to the electric field produced by an
electrically charged sphere. When rotation is induced, in addition to the electric field,
one also has the magnetic field generated whose strength is determined by the angular
velocity. When a massive sphere is slowly rotated in the general theory of relativity, it
generate a field similar to a magnetic field known as the gravito-magnetic field. This
solution was first obtained by Lense and Thirring[51, 52, 53, 54]. In this case also,
the strength of the gravito-magnetic field depends on the angular momentum of the
rotating mass. In this example the g4 component of the metric tensor is the vector
potential for the gravito-magnetic field. The details of this approach may be found
in reference(23, 74]. As in the case of a charged spinning test particle in a magnetic
filed, a spinning gyroscope would experience a torque when subjected to the gravito-
magnetic fleld. Therefore, the gyroscopic would precess with a frequency proportional
to the gravito-magnetic field. This phenomenon is known as the dragging of inertial
frames and the precession is known as the Lense-Thirring precession. In this manner,
gyroscopes can be used as a probe to investigate the gravito-electromagnetic fields.
Several authors have discussed gravito-electromagnetism and its effect on gyroscopic

precession within similar formalism[23, 74, 64, 29, 46].

Our approach to the gravito-magnetism is not based on the weak field or linearized
fleld equations. Striking similarity between a constant electromagnetic field and the
Killing vector field was demonstrated by Honing, Schiicking and Vishveshwara[42].
We cxtend this analogy and define the gravito-electric and gravito-magnetic ficlds
with respect to irrotational observers in an axially symmetric stationary spacetime.
In similar fashion it is possible to define clectric and magnetic fields for a given

electromagnetic ficld tensor{13]. In the case of the gravito-electromagnetic field the
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derivative of the timelike Killing vector plays the role of the anti-symimetric field
tensor[42, 43, 39]. The details of the formalism are given in chapter 3. In the next

section we shall describe the gyroscopic precession.

1.4 Gyroscopic Precession

The phenomenon of gyroscopic precession is of interest in various situations in physics.
In the context of Newtonian mechanics, a gyroscope can be idealized by a rapidly spin-
ning rigid body, for example, a rapidly rotating svmmetrical top. When subjected
to the external torque or gravitational field, the gyroscope undergoes precession and
nutation. One of the natural examples of gyroscopic precession is the precession of
equinox. In this particular case the Earth itself acts like a gyroscope and precesses
because of the torque exerted by the solar system. The Larmor precession is an-
other example of the precession in the framework of electromagnetic theory. Here,
a magnetic dipole of the charged particle acts like a gyroscope and precesses when
subjected to a uniform magnetic fleld. The frequency of precession is proportional to
the strength of the magnetic field. From the conservation of angular momentum one

can show that, in Newtonian mechanics, precession can occur only in the presence of

a torque.

In the special theory of relativity, the Thomas precession refers to the precession
of the inertial compass along an arbitrary world line of an accelerated particle in
the Minkowski space. When two successive pure Lorentz transformations are applied
on an inertial frame it induces a spatial rotation of the frame. This is referred to
as Thomas precession. One can show that the Thomas precession frequency can he

written asw = %( axuv ), where a is the acceleration of the particle and v is its spatial

velocity. This indicates that the Thomas precession occurs only when the acceleration
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is non-zero. In other words when the trajectories are along geodesics precession is zero.
This is also true for accelerated straight line motion as the precession frequency is the
cross product of the acceleration and velocity. Thomas precession plays an important

role in atomic physics, where this effect was first experimentally verified[73].

In the context of the general theory of relativity, gyroscopic precession involves
kinematic effects, contributions from spacetime curvature and the effect of inertial
frame dragging when the spacetime possesses inherent rotation. The gyroscopic pre-
cession has been proposed as a test of the theory itself. Since in curved spacetimes,
the geodesics are in general not straight lines, the precession along the geodesics
is non-zero. In the general theory of relativity the gyroscopes are mathematically
idealized as spatial triads of Fermi-Walker transported tetrads transported along a
worldline[56]. Precession of the Fermi-Walker frame with respect to any other frame
transported along the same trajectory is physically realized as the gyroscopic pre-
cession. We adapt the Frenet-Serret formalism for gyroscopic precession developed
by Iyer and Vishveshwara[43]. In this formalism, the precession of the Fermi-Walker
frame is realized with respect to a Frenet-Serret tetrad. The Frenet-Serret frame is one
of the most natural and intrinsic frames associated with an arbitrary curve[71, 76, 15].
Here a curve is associated at every point with the orthonormal Frenet-Serret tetrad.
The members of the tetrad, of which the first is the unit tangent to the trajectory,
satisfv the Frenet-Serret equations. Furthermore, the intrinsic geometry of the curve
is uniquely determined by the Frenet-Serret scalars, namely the curvature (x) and the
first and second torsions {7, and 7 respectively) defined along the trajectory. Such
a description proves to be quite clegant when the world lines follow the directions of
spacetime symmetries, or Killing vector fields, provided of course that the spacetime
admits such symmetries. Honig, Schiicking and Vishveshwara used the Frenet-Serret

formalism to describe the motion of a charged test particle in a constant electromag-
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netic field[42]. In this case they showed that the Frenet-Serret parameters «, 7y and 7
are constants along the trajectory. It was shown that the components of the Frenet-
Serret triad satisfy a Lorentz like equation and can be expressed uniquely in terms of
the applied field and four velocity of the test particle. Furthermore, they also showed
that the Frenet-Serret formalism when applied to a timelike Killing trajectory in Rie-
mannian spacetimes, yields similar results to that of the trajectory of a charged test
particle in a homogeneous electromagnetic field. The vorticity of the Killing congru-
ence, which represents the rotation of the connecting vector, was expressed in terms of
the Frenet-Serret parameters. In the case of axially symmetric stationary spacetimes,
Rindler and Perlick showed that the vorticity of the Killing congruence describes the
gyroscopic precession[63]. They also observed that the gyroscopic precession reversal
occurs at 7 = 3m in the Schwarzschild spacetime. The Frenet-Serret formalism for
gyroscopic precession was developed by Iyer and Vishveshwara[43]. In this elegant
formalism the precession of a Fermi-Walker tetrad is computed with respect to a
Frenet-Serret tetrad, when both are transported along a given trajectory. They have
given a comprehensive treatment of gyroscopic precession in axially symmetric sta-
tionary spacetimes making use of the Frenet-Serret formalism. In this case, two of
the Frenet-Serret parameters, namely the torsions 71 and 72, are directly related to
the precession. Several interesting results emerge when the above considerations are

applied to black hole spacetimes.

1.5 Plan of the Thesis

The main objective of the present thesis is to study the rotational effects such as iner-
tial forces, gravito-electromagnetism and gyroscopic precession within the framework

of the general theory of relativity. We investigate these rotational effects and establish
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interrelations among them in general, stationary, axially symmetric spacetimes. We
take black hole spacetimes such as the Kerr-Newman and Ernst solutions as specific

examples to study these rotational effects.

In the second chapter we briefly describe the necessary formalism needed for our
studies. First we describe the Frenet-Serret description for gyroscopic precession
which was formulated by Iyer and Vishveshwara[43]. For inertial forces we use the
covariant formalism given by Abramowicz, Nurowski and Wex[2]. As mentioned be-
fore, for gravito-electromagnetism we use the formalism given by Honig Schiicking
and Vishveshwara[42]. In the second chapter we show how the acceleration of a test
particle can be decomposed into electric and magnetic force terms using the example

given by Landau and Lifshitz{50].

In the third chapter, we apply these formalisms to circular quasi-Killing trajecto-
ries, which we shall define later, in an axially symmetric stationary spacetime. We
also establish direct relations between the gyroscopic precession and inertial forces
by expressing the Frenet-Serrct parameters 7, and 7 in terms of inertial forces. We
also prove an important theorem concerning the simultaneous reversal of gyroscopic
precession and centrifugal force at the circular null geodesics in static spacetimes. In
the case of stationary spacetimes we show that the reversal of neither centrifugal force

nor gyroscopic precession occurs at the photon orbits.

We define the gravito-electric and gravito-magnetic fields with respect to a global
rest frame. This definition is very useful in establishing the direct relations between
inertial forces and gravito-electromagnetic fields. We also define gravito-electric and
gravito-magnetic fields with respect to the comoving frame of the test particle. Us-
ing this definition one observes the one-to-one correspondence between a constant

electromagnetic field[42] and the gravito-electromagnetic field.

In the fourth chapter we apply these formalisms to some of the black hole space-
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times. In the case of Ernst spacetime, which represents a Schwarzschild black hole in
a constant magnetic field, we show that gyroscopic precession and centrifugal force
reversal occurs at both of the circular null geodesics, which in fact, is the generic
property of all static spacetimes. The Schwarzschild solution and Melvin universe are
treated as special cases of the Ernst solution. We take the Kerr-Newman spacetime
as a typical example of a stationary, axially symmetric spacetime, which represents a
charged Kerr black hole. In this case we show that the reversal of neither centrifugal
force nor the gyroscopic precession occurs at the circular null geodesics. The Kerr

and Reissner-Nordstrom solutions are treated as special cases of the Kerr-Newman

solution.

In the fifth chapter, we relate inertial forces and gravito-electromagnetic flelds
to the Einstein equations. For this purpose, we project Einstien's equations on to
the two-manifold orthogonal to the two-surface formed by the Killing vector fields,
using the Geroch formalism{32, 33]. We recast the Geroch formalism in terms of
potential functions whose gradients are proportional to inertial forces. In the case of
field equations with the source term we use the formalism developed by Hansen and

Winicour(38]. Finally we end the thesis with the sixth chapter which comprises a few

concluding remarks.



Chapter 2

Gyroscopic Precession, Inertial
Forces, and

Gravito-electromagnetism

2.1 Introduction

In the first chapter we outlined general considerations about the rotational effects such
as the phenomenon of gyroscopic precession, inertial forces and gravito-electromagnetism.
In the present chapter, we study these effects within the frame work of the general
theory of relativity. In section 2 we present the Frenct-Serret description of gyroscopic
precession as given by Iyer and Vishveshwara[43]. In a previous approach, Rindler
and Perlick estimated gyroscopic precession in the Schwarzschild and the Kerr space-
times by computing the vorticity of the congruence along which the gyroscopes are
transported[63]. But in the Frenet-Serret formalism, the geometric properties of a
curve defined by the Frenet-Serret parameters are related to physical phenomenon

such as the precession of a gyroscope in a covariant manner. In the gencral theory

15
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of relativity, a gyroscope is mathematically idealized as a frame obeying the Fermi-
Walker transport law[56, 72]. In section 2.2.1 we give a brief description of Fermi-
Walker transport and its physical significance as a set of gyroscopes and we also
compute the precession of a gyroscope with respect to an arbitrary frame transported
along the same trajectory. In section 2.2.2 we describe the Frenet-Serret formalism in
three and four dimensions. In the Frenet-Serret formalism the geometric properties
of a curve are described by scalar parameters such as « the curvature and 7y, and
75 the torsions. Considerable simplification occurs when the formalism is applied to
the Killing trajectories, as these trajectories are of great importance in the case of
black hole spacetimes[42]. In section 2.2.3 we show that the Frenet-Serret parame-
ters k,7; and 7, are constant along the quasi-Killing trajectories. In section 2.2.4,
we compute the precession of a Frenet-Serret triad with respect to a Fermi-Walker
triad, which gives the Frenet-Serret description of gyroscopic precession. We show
that the phenomenon of gyroscopic precession is described essentially by the Frenet-
Serret parameters 7, and 7. In section 2.2.5 we relate the Frenet-Serret description
of gyroscopic precession to the vorticity of the quasi-Killing congruence. In the case
of the Killing trajectories, one can show that the Frenet-Serret precession is equal to

the vorticity of the congruence.

Abramowicz, Carter and Lasota for the first time, formulated the concept of iner-
tial forces in static and stationary spacetimes[l]. In this formalism, they adapted so
called optical reference geometry, by multiplying the spacetime metric with a suitable
conformal factor. In optical reference geometry, the acceleration of a test particle can
be decomposed into various inertial force terms. One of their important results is that
the centrifugal force reversal occurs at the photon orbits in the case of static space-
times. In the optical reference geometry formalism, the tlree-space is constructed

orthogonal to the timelike Killing vector, which is in general not hyper surface or-
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thogonal. As mentioned in the last chapter, in order to define the inertial forces. one
needs global Newtonian-like rest frames. In section 2.3.2 we discuss the concept of
a global rest frame in the general theory of relativity. Abramowicz, Nurowski and
Wex generalized the optical reference geometry by incorporating the concept of a
global rest frame, to give a covariant description of inertial forces in an arbitrary
spacetime([2].
In section 2.4 we briefly outline the formalism for describing the gravito-electromagneti

by showing the similarities between the forces acting on a test particle in a stationary
spacetime and a charged test particle in an electromagnetic field. We end the chapter

with section 2.5 comprising the concluding remarks

2.2 Gyroscopic Precession

2.2.1 Fermi-Walker Frame and Gyroscopic Precession

In this section we describe the Fermi-walker transported frame and its importance in
the rotational effects such as gyroscopic precession. In order to study the rotational
effects inherent to a spacetime, one needs to construct a reference frame, which does
not have any intrinsic rotation of its own. Since the general theory of relativity does
not allow, in general, any global inertial frames as in the Newtonian theory, one
needs to construct a system of tetrads along a worldline. These frames can then
be related to each other by successive Lorentz transformations along the trajectory.
Since Lorentz transformation on a frame is equivalent to rotation in spacetime, when
one constructs a system of tetrads along a worldline with an arbitrary acccleration,
it implies rotation of the tangent vector in spacctime. This rotation of the tangent
vector is inevitable. One defines the concept of a non-rotating frame of reference by a

frame which allows pscudo-rotation only in the timelike plane spanned by the velocity
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and the acceleration vectors, and does not allow any rotation in the three-space. The

Fermi-Walker frame is one of such frames of reference and it can be constructed as

follows.

In Newtonian mechanics, a rotating vector »* is represented by the following equa-
tion

d
Ve = (Wxv)y = eapPv?, (2.1)

where w is the angular velocity. Similarly, in a four dimensional spacetime, rotation

of a vector can be expressed by

D
Dl = Qapv’ (2.2)
where 5y = —(y, which would take the form €;;xw’ in the non-relativistic case.

Here, we define the rotation in a plane orthogonal to the vector w’. We adopt the

convention that Latin indices a,b,... = 0~3 and Greek indices ¢, 3,... = 1—3and

the metric signature is (+, —, —, —). Geometrized units with ¢ = G =1 are chosen.
In our case, we would like to confine rotation to the timelike plane spanned by

the velocity and the acceleration. In this case, the {2y, can be uniquely expressed as,
Whwy = a?u? — uPa? (2.3)

where, u? is the four velocity and a? is the four acceleration along the trajectory.
One can easily show that the velocity vector trivially satisfies the transport equations

(2.2) and (2.3). Also, rotation vanishes for a spacelike vector, if it is orthogonal to

both acceleration and velocity, i.e
Z;(u“ =0,if whu =" w, =0 (2.4)
A vector which satisfies the following equation

qu = (wa? — vPal)w, (

[A]
ot
=
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is said to be Fermi-Walker transported. A frame or a tetrad { f(;}, whose components
follow the Fermi-Walker transport law, with [, along the four velocity of the world-
line, is referred to as the Fermi-Walker frame. The spatial triad of a Fermi-walker
frame does not undergo any rotation. This can be physically realized as a set of three
gyroscopes each of which is aligned to a basis vector of the Fermi-Walker triad. If an
observer chooses an arbitrary frame different from that of a Fermi-Walker frame along
an arbitrary worldline, then his spatial triad will undergo precession with respect to
the Fermi-Walker frame[536]. Let us assume that the transport law for an arbitrary

observer is given by,
d

E(e&)) = Qabel(i) (2.6)
where Qg = =, which can be uniquely decomposed into a Fermi-Walker part

and a spatial rotation part as follows,

Q= Qfrwy + Qe (2.7)
E‘gw) = a®u’ —abul (2.8)
Qpy = Ucwge®® (2.9)

In the above, w?® is a vector orthogonal to the four velocity u®. i.e.
Wiy = 0. (2.10)

From the above equations it is straightforward to show that the precession frequency

w® can be expressed as,

1
Wp = 5V —gqunbﬂﬂb u? (2.11)
If { fiy} is the Fermi-Walker triad, then,
d .
—f = %f (2.12)

From equation (2.6) and {2.12) we get,

d a a ab
P (o((.) - f(u)) = Q(émqn)b (2.13)
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or
d
77 (8@ ~ fla)) = w X eqa)- (2.14)

This can be physically interpreted to as the spatial triad {e(a)} precessing with respect
to the Fermi-Walker triad, with a frequency w. In the Frenet-Serret description of
gyroscopic precession, one uses the Frenet-Serret transported frame {e;)} in order
to compute the precession frequency given by equation (2.11). The Frenet-Serret

formalism is described in the next section.

2.2.2 TFrenet-Serret Formalism

The Frenet-Serret(FS) formalism is one of the elegant methods for investigating the
geometric properties of curves. In this formalism, curves are studied by assigning an
orthonormal frame called the ‘Frenet-Serret frame’ at each point. Rates of changes of
these frames are expressed by the Frenet-Serret formulae in term of scalar parameters
called the Frenet-Serret parameters. These parameters along with the Frenet-Serret

frames describe the fundamental geometric properties of the curve.

We shall first illustrate the Frenet-Serret formalism in three-dimensional space[71,
76, 15]. Let y(s) be a three curve in space with unit tangent &,y = 7'(s). If the
acceleration v"(s) is not zero along the curve, one can construct a unique circle at
each point on the curve with radius 1/]y"(s)]. This circle is called the osculating
circle. The center of the circle lies along the vector ”(s) which is orthogonal to the

tangent vector. The unit vector &gy along v"(s) is called the principle normal of the
curve, which satisfies the equation

-

de - .
—-d;—l) = K€ (210)

where « is called the curvature. The plane described by the vectors €1y and &g is

called the osculating plane.
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The unit vector &3) normal to the osculating plane, called the binormal vector, is
given by
€ = € % &y (2.16)
One defines the torsion 7(s) at each point on the curve as from the equation

déy) -
—d;-— = ——ﬁ@(l) =+ T€(3). (2.17)
Further, the binormal vector satisfies the equation

gg(si) = —TEp). (2.18)
Equations (2.15), (2.17) and (2.18) are called the Frenet-Serret equations, which
describe the geometry of the curve in space. In this case the geometry of a curve is
described by an orthonormal frame consisting of unit vectors &(), &9) and &3y, and

the scalar parameters «, the curvature and 7 the torsion.

From the above equations one can clearly see that for all curves confined to a
plane, the torsion 7 is identically zero. When 7 = 0 and & = constant, the curve
represents a circle with radius 1/k. A helix is characterized by 7 = constant and

K = constant

The Frencet-Serret formalism can be extended to four dimensional spacetime[42,
72). If ¢(y is the unit timelike tangent vector along a trajectory, the Frenet-Serret

equations in general are given by

€oy = refyy,s (2.19)
6ty = Kefy T ety (2.20)
€y = =Tl + mely, (2.21)
€ = —Tatly. (2.22)

The parameters <,7 and 7, are the curvature, the first and the second torsion while

ey form an orthonormal tetrad. These six quantities not only describe the geometry
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of the worldline completely, but also elucidate the interlink between the physical

quantities and geometric properties. If one specifies that the unit vector e is the

four velocity of a test particle, then we have
P b
&oy = Eloety = (2.23)
Where a? is the four acceleration of the test particle. The Frenet-Serret parameter &
can be expressed as,
K= =yl = ~a”rap (2.24)

Which clearly shows that the parameter x is the magnitude of the four accelera-

tion. Next we shall show that the parameters 7; and 7 are directly related to the

phenomenon of gyroscopic precession.

2.2.3 The Frenet-Serret Parameters and Gyroscopic Preces-
sion

In the last section we have seen that the Frenet-Serret parameter x is the magnitude of

the four-acceleration along the trajectory. In this section, we shall give the physical

interpretation of the Frenet-Serret parameters 7, and 7, by relating them to the

phenomenon of gyroscopic precession.

Let us consider a Fermi-Walker tetrad {f§,} and a Frenet-Serret tetrad {ef,)} are
being transported along an arbitrary trajectory. Let u® be the four velocity and a®

be the four-acceleration along the trajectory. Then we have the following,
ey = [y = u° (2.25)
Since the four-velocity u® is an unit vector, without loss of generality, we can take

d Q a a
(—i;f(o) = a4 = ;{f“) {2.26)
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Where « is the magnitude of the four-acceleration along the trajectory. Using the
above, the Fermi-Walker transport law, as given in the equation (2.3) takes the fol-

lowing form

Wk = w1258 = o f) (2.27)
and we have ,
_(1_ |- — Q (J) ra 2 28
de(i)  HEW(E) f(j) ( -28)
In the above,
0 « 00
. & 0 00
Q(FW)(;‘()J) = (2.29)
0000
10 00 0]

Here, (7)---(j) are tetrad indices. We take the orthonormality condition for tetrad
components[22),

€BeEun = M) (2-30)
where

Mayp) = Diag[l, -1, -1,-1] (2.31)

In a similar fashion, the Frenet-Serret transport law given by the equations (2.19-2.22)

can be written as,

d N — (J) a
artw = sy €l (2.32)
where
0 K 0 90
) k0 T 0

Qs (2.33)

L 0 0 —Te 0
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We now decompose the gy into a Fermi-Walker term Qrw) and a spatial rotation
term Q(sp)y as given in equation (2.7),

@ _ () &)}
Qsry” = Urmye + Qs

(2.34)
where
(0 0 o0 0
. 0 0 T1 0
Q(snxi)m = (2:39)
0 -n 0 T2
(0 0 -m O]

From the above, for the Frenet-Serret frame, the equation (2.14) can be written as,

E;(e(cx)_ FO) = @O ey (2.36)

= (w xe)® (2.37)

where 7(®} 8" are the tetrad components of the completely antisymmetric tensor.

The tetrad components of the precession frequency can be obtained from the
equations (2.13) and (2.35) and can be written as[34],

(2.38)

Wa) = [—Tz, 0, —Tl] (239)

The components of the precession frequency in the coordinate basis. can be ex-
pressed as,

w® = w(i)e'(li) (2.40)
Tie(s + Taefy (2.41)
As mentioned before, w® represents the precession frequency of the Frenet-Serret

triad with respect to a Fermi-Walker triad. Since a Fermi-Walker transported frame
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is physically realized as a set of gyroscopes, the precession frequency w® represents the
precession of the Frenet-Serret triad with respect to a set of gyroscopes. In other words
a gyroscope would precess with a frequency —w? with respect to a Frenet-Serret frame.
Here we have shown that the Frenet-Serret parameters 7 and 75 are directly related
to the phenomenon of gyroscopic precession. Considerable simplification occurs when
the trajectories involved are along the Killing vector fields. Next, we shall ‘apply the

Frenet-Serret formalism to the Killing trajectory in four dimensional spacetimes.

2.2.4 Application to Quasi-Killing Trajectories

In this section, we apply the Frenet-Serret formalism to the case of a spacetime ad-
mitting Killing vector fields. For example, an axially symmetric stationary spacetime
such as tHe Kerr spacetime, admits a timelike Killing vector field £* and a space-
like Killing vector field 7%, which generate closed circular orbits around the axis of
symmetry. Furthermore, the static spherically symmetric Schwarzschild spacetime
admits a timelike Killing vector £* and three rotational Killing vectors corresponding

to spherical symmetry. These Killing vectors satisfy the Killing equation,
Legab = apy = 0. (2.42)

When the Frenect-Serret formalism is applied to the Killing trajectories of space-
times, many interesting features emerge. These considerations apply to a single tra-
jectory in any specific example. However, additional geometric insight may be gained
by identifying the trajectory as a member of one or more congruences generated by
combining different Killing vectors. For this purpose, the Frenet-Serret formalism is
applied to quasi-Killing trajectories. In the discussion given below we closely follow

the reference [43].

Consider a spacetime that admits a timelike Killing vector £€% and a set of spacelike
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Killing vectors 7g4) (A=1,2,...m). Then a quasi-Killing vector may be defined as
X" =€ + wnay: (2.43)
where (A) is summed over. The Lie derivative of the functions w4 with respect to
X" is assumed to vanish,
Lywesy = 0. (2.44)
A congruence of quasi-Killing trajectories is generated by the integral curves of x*.

As a special case, we obtain a Killing congruence when w4 are constants. Assuming

x° to be timelike, we may define the four velocity of a particle following x* by

ey = ut = X (2.45)
so that
€ = xXa; Yax*=0 (2.46)
and
) = ehyely = Fiely: (2.47)

it follows from equation (2.42) that

Fpp = ¢ (fa;b + w(A)TI(A)a;b) . (2.48)
The derivative of w4y drops out of the equation. The Killing equation (2.42) and the
equation &g = Rpea€? satisfied by any Killing vector lead to

Fy=~F, and Fgu=0. (2.49)

When the Frenet-Serret formalism is applied to a quasi-Killing congruence important
simplifications occur. It can be shown that x, 7, and T, are constants and that each

of ef;, satisfies a Lorentz-like equation(42], which can be summarized as follows,

From equation(2.47) and (2.19) we have.

. b "
€y = Fep, = Key {2.30)
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Taking the derivative on both sides and using equation (2.49), we get

. . b
Kelyy + kel = kFye(y (2.

N
(93]
—
~—

Contracting the above equation with e(),, gives

k = 0, (2.52)
since, ey, being a unit vector
élnema = 0 (2.53)
and
Fapelyyeyy = 0 (2.54)

by the antisymmetry of Fi;. From equations (2.52) and (2.51) we have,
ey = Fie, (2.53)

which shows that ef}, also satisfies the Lorentz like equation(2.47). Similarly it is
easy to show that the Frenet-Serret parameters 7, and 7, are also constant along the
worldline and that efy), efy) also satisfy the Lorentz like equation (2.47)( for more

details see reference[42]). To summarize,
k=1 =17 =0 (2.56)

and

&y = Fiehy. (2.57)

Further, 5, 7y, 7 and c‘(’“) can be expressed in terms of "‘(10) and

n  — al a ..,
ab ~ *a Fa\ Fa,-.-;b-

K= Faelyel (2.58)
) ) F (,n.

o= WP -——-":; ) (2.59)
2 F:( '72—‘ 2) ¢

2 o= 60 (0)€ 0) (% )7'1) (2.60)

KT T
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e 2.61

e?l) = ;Fbelgo) ( )
s L[ _ 2500 2.62
6(2) = 7{,—.7; [F 01.7 - K 515} e(o) ( )
1 3 P 2\ pal b 2.63

e?3> = P [F b + (Tl - K )Fb] 6(0) ( )

The above equations were first derived by Honig, Schiicking and Vishveshwara [42]
to describe charged particle motion in 2 homogeneous electromagnetic field. Interest-
ingly, they are identical to those that arise in the case of quasi-Killing trajectories43].
In the next section we shall compute the precession of the Frenet-Serret frame efy

with respect to the Fermi-Walker frame.

2.2.5 Frenet-Serret Description of Gyroscopic Precession:

Along Killing Trajectories

The Frenet-Serret formalism offers a covariant method for treating gyroscopic pre-
cession. It turns out to be a convenient and elegant description of the phenomenon
when the worldlines along which the gyroscopes are transported, follow spacetime
symmetry directions or Killing vector fields. In fact, in most cases of interest, orbits
corresponding to such worldlines are considered for simplicity. For instance, this is
the case when one studies circular orbits in black hole spacetimes. As we have al-
ready shown that, the torsions 7; and 7, are directly related to gyroscopic precession,
transported along an arbitrary worldline. Here we shall prove some of the identities

corresponding to the Killing trajectories.

Let us consider an inertial tetrad (e;‘o), f("a)) which undergoes Fermi-Walker trans-
port along the worldline. The triad f(4), as we have mentioned hefore, may be phys-
ically realized by a set of three mutually orthogonal gyroscopes. Here we show that
the angular velocity of the Frenet-Serret triad els) With respect to the Fermi-Walker

triad f{,, can be directly related to the Frenct-Serret parameters 7, and 7,. This



chapter2 29

result has been pointed out by Honig, Schiicking and Vishveshwara[42]. We briefly

outline the details of the derivation.
As given in the section 2.2.1, the precession frequency of an arbitrary spatial triad
with respect to a Fermi-Walker triad is given by equation(2.11) i.e.

1
[ abcd 2.64
———2\/_—96 Qequs (2.64)

Considering equation (2.47) and (2.48) for a Killing trajectory we have,
Qus = Fap = €¥(Eap+wiayily) (2.65)

The tensor F,,, which is the dual of F,, is defined by

Fo %\/""gfabchCd (2.66)

and

Fob = %fﬂbcdﬂﬂ. (2.67)

We define the scalar parameters
— 1 a b
o = EFbFa (268)
n = FR (2.69)

The following identities are useful for simplifying the expression for the parameters

7y and 7, from equations (2.59) and (2.60).

(F3) — aFp - BEF = 0 (2.70)
(F9)s = a(F*)ja - g% = 0 (2.71)
(F®) — (0 + B FHE — B = 0 (2.72)

These equations are valid for any arbitrary second rank anti-symmetric tensor F,lb[‘-l2].
From cquation (2.59) and (2.71) we have

2
o= R —a— /-57 (2.73)
K
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the equation (2.60) can be simplified using the identity (2.72) and we obtain

222 @2.74)

K2
Using the above equation, equation (2.73) can be rewritten as

52 — 7-12 — 7-22 = (275)

From equations (2.63), (2.71), (2.74) and (2.75) we can show that
wt = Fabel(’o) = Tpefyy + TiE(y)- (2.76)
This establishes the important physical formula which directly relates the Frenet-

Serret parameters 77 and 7, to the phenomenon of gyroscopic precession.

In other words the gyroscopes precess with respect to the Frenet-Serret frame at
a rate given by Q;) = ~wpg. Furthermore, in case of the Killing congruence, wpg is

identical to the vorticity of the congruence, which will be shown next.

2.2.6 Vorticity and Gyroscopic Precession

The concept of vorticity is another important geometrical notion associated with a
trajectory as a member of a suitably chosen congruence of curves. It measures the
twisting of the congruence. In this section, we study the relation between gyroscopic
precession and vorticity. Here we show that the Frenet-Serret precession for a trajec-

tory belonging to a Killing congruence is equal to the vorticity of the congruence.

As it was shown earlier (2.76), the precession frequency is given by

wt = Foby, (2.77)

where
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From equation (2.47) and (2.48), we have

= & cobed N o 2.79
2\/_—9C (fc;d + w(.—l)nc;d ) b ( { )
since w is constant from equation (2.46), we have
¢ = -—i—e“b‘duc;dub (2.80)
2y/-9

which is the vorticity of the congruence. Therefore, the gyroscopic precession for a
Killing trajectory is determined by the vorticity of the Killing congruence. This is not

true in the case of quasi-Killing trajectories. The vorticity of a congruence is defined

as
0 = ———e®enen (2.81)
== 2\/_—9 (0)5€(0)cid -
1
= 2\/__g€ab6d8(o)b[ch + e"’w(,i),dn(,t)c} (2.82)
= wirg + D%y (2.83)
where
~ 1
ab  __ abed
D = ‘—2 _.g'f ¢
Dcd = eww(,g)[,d‘I)S]A) (284)
1
Ay = ‘2'(-4(;1;"‘41;(;)

As is well known, physically, vorticity Q% represents the angular velocity of the con-
necting vector with respect to an orthonormal spatial frame Fermi-Walker transported
along the congruence. On the other hand, Frenct-Serret rotation w(ps) represents the
precession of the intrinsic Frenet-Serret frame with respect to the non-rotating Fermi-
Walker frame. In general, for example in the quasi-IKilling case, the two arc not the
same. Therefore the gyroscopic precession along a quasi-IKilling trajectory differs from

the rotation of the connecting vector of the corresponding quasi-Killing congruence.
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2.3 Inertial Forces

2.3.1 Optical Reference Geometry

Abramowicz, Cater and Lasota(ACL) formulated the optical reference geometry to
study the dynamics of test particles in stationary and static spacetimes[l]. In this
formalism, the three-geometry orthogonal to the timelike Killing vector is conformaily

rescaled. Here we briefly describe this approach.

The metric for a stationary spacetime can be written as
ds’ = ¥(dt — 20,dz*)? - di? (2.85)

Here, dI? is the line element on the quotient space orthogonal to the timelike Killing

vector £% and is given by,

d? = y,detds’ = (=g, +48a,0,) (2.86)
where,
g0 = &, (2.87)
gou = —20a, (2.88)
Y = —gu.,+4<I>auoz,,. (289)

The dynamics of a test particle with four momentum P¢ is described by the

equation

mfa Pa;be (290)

1
PasP’ = = grcaP°P° (2.91)

where f, is the force acting on the test particle. The mass of the test particle m is

given by

m? = guP°P’. (2.92)
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The energy of the test particle can be defined as,
£ = P& = B = &P —2Pq,) (2.93)

where £% is timelike Killing vector. The energy £ is conserved along a geodesic. In
order to study the equation of motion in the quotient space, we define the three-

momentunl components p; in the quotient space as follows,
Pu = YwP (2.94)
The equation of motion projected on the quotient space can be decomposed as follows,
mfy = P*0,E (2.95)

and

2

1 1 /€
m(f, - 2foc,) = P (8,,1)“ - -2-P"8“~,f,,,,> +98 P (By00) + 5 ((-5) 5,8 (2.96)

In order to identify the above projected acceleration into various inertial force

terms, ACL have introduced a new conformally modified metric.
d’ = §dztde” (2.97)

on the quotient space,

dr = odl’. (2.98)

With the above conformal modification, the spacetime metric takes the form

ds? = ®[(dt — 20v,dz*)? — dl’) (2.99)

The three-momentum of the test particle in the optical reference frame is given

Pu = G’ (2.100)
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and the contravariant three-momentum can be written as
P = OP* (2.101)

With the above definitions the four acceleration of test particles, when projected onto

the conformal spacetime, splits into terms that may be identified as inertial forces.

1., . 1 v -
m® (fll — 20#f0) = pu (Bup” - §p”3pgup> + -2~m28#(1> + 2& D (3,,05., a,_,au) ’

(2.102)
which can be written as
m® (f, — 20u.f0) = Pueupy + %mga,,(b +2& pPwy, (2.103)
where
Wop = Opt, — Ouy. (2.104)

Here, V, is the covariant derivative operator in the optical reference geometry. In
the above equation, the term p” ?.,p,, represents centrifugal acceleration in the three-
space. The velocity independent second term 1m?29,®, can be identified with Newto-
nian gravitational force. The last term 2£ p*w,, is the Lense-Thirring-Coriolis force

which is a manifestation of frame dragging in stationary spacetimes.

In the case of static spacetimes, one can show that
Wy = 0, (2.105)
because of the fact that the timelike Killing vector £2 is hypersurface orthogonal or
& = 0. (2.106)

In which case the equation of motion simplifies to

mbfy = p'Vip,+2m?d,0. (2.107)
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The important result emerging from the above formalism is that, in the case of static

spacetimes, the four-dimensional null geodesic, which is characterized by
m=0, f, =0 (2.108)
satisfies the quotient-space geodesic equation,
?Vop, = 0. (2.109)

In other words, the centrifugal force reversal occurs when the four-dimensional tra-

jectories are null geodesics.

As we have seen in this formalism, the quotient-three-space is defined with respect
to the timelike Killing vector £* which in general, does not define the surface of
simultaneity. In the next section, we define the concept of global rest frames in
the general theory of relativity, which are close to the Newtonian global inertial
frames. This formalism was followed by the covariant definition of inertial forces, by

Abramowicz, Nurowski and Wexi[2], which is described later in this chapter.

2.3.2 The Global Rest Frame

In this section, we describe the concept of global rest frames in the general the-
ory of relativity. The general theory of relativity does not allow the construction of
global inertial frames, as in the case of the Newtonian theory. However, one can con-
struct spatial frame of reference, which are possible generalizations of the Newtonian
non-rotating rest frames. The concept of a rest frame is closely connected with the
existence of time symmetry, since all the rest observer clocks are synchronized with
respect to a world-time. A consideration of rest frames is given in [75], which we shall

outline below.

The rest frame in a flat spacetime is adapted to the inertial observer following a

worldline along time t. This is the direction of the timelike Killing vector £2. The four
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velocity of the observers at different spatial points are orthogonal to the hyperspace

t = constant. The four velocity is given by,

ut = ewfa; i, = 1; ¥ = (fafa)' (2.110)

And

€ =6 and L=t (2.111)
Therefore ‘¢’ is the synchronous time for the rest observers. As in the case of New-
tonian inertial frames, all the rest observers with four-velocity u®, follow geodesic
motion. These rest observers constitute an irrotational congruence. If we define the
vorticity of this congruence, or that of the vector field £% by

1
V=g

wg = R T TS (2.112)

then
W = 0. (2.113)
The concept of a global rest frame is directly extended to a static spacetime, which

admits a hypersurface orthogonal timelike Killing vector field £2. The four velocity

u® given in equation(2.110) which defines the rest observers, no longer follow geodesic

motion. However the vorticity,

we = 0 = e ¥, (2.114)

Therefore, the four velocities form an irrotational congruence. Once again ¢’ is the

common synchronous time for the rest observers in the static spacetime.

In the case of stationary axially symmetric spacetimes, such as those of the Kerr

spacetime, the timelike Killing vector field is no longer irrotational and hence the

Killing observers following £ a no longer define the global rest frame. Nevertheless,

considering the vector field

Rl /i (2.115)
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We notice,
¢Cne =0 (2.116)

so that ¢ is the projection of £* orthogonal to n°. Furthermore, it is easy to show

that the vorticity of the {* - congruence
wf =0 (2.117)

This was first noticed by Bardeen(14], who called the frames adapted to ¢* as locally
non-rotating frames (LNRF). It was recognized that the physical phenomena in the
Kerr spacetime could be studied in a significant manner when referred to LNRF. The
observers with four velocity

ut = ((°G)THC (2.118)
are in fact the ‘rest’ observers and the frames adapted to them form the global rest

frame since (, is in fact hypersurface orthogonal :

G = [é"ft,—m] o
(ncnc)

As before 't’ is the synchronous time for these observers.

(2.119)

Properties of the global rest frames were studied in detail and generalized to arbi-
trary stationary, axisymmetric spacetimes by Greene, Schucking and Vishveshwara[35).
They showed that if the Killing fields £€* and #* satisfied orthogonal transitivity, as
in the Kerr spacetime, x® became null on the event horizon similar to £* in the
Schwarzschild spacetime. Furthermore, t = constant can be shown to be maximal
surfaces. Physical phenomena can be studied meaningfully in the global rest frames,
especially since extended systems can be defined only on spatial surfaces of simul-
taneity, like ¢+ = constant. These global rest frames are used to define the inertial

forces in the general theory of relativity.
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2.3.3 Covariant Definition of Inertial Forces

In the previous section, we have described how the optical reference geometry can be
used to identify the inertial forces in stationary and static spacetimes. As mentioned
earlier, the three-surface orthogonal to the timelike Killing vector £ in stationary
spacetimes, in not hypersurface orthogonal. In this section we discusse the general
covariant formalism given by Abramowicz et. al. {2] in which the general relativis-
tic analogies of inertial forces are defined with respect to a global rest frame in an

arbitrary spacetime.

An arbitrary spacetime metric can be expressed as

WL 8y /[ a . 8 2 :
o= (a) (@) (F) o () () e

with ¢ satisfying the condition,
Vip = ¢'"V;9 = 0. (2.121)

One can define the one form
ndr' = e4dt. (2.122)

The above equations suggest that,
A=l ngVing =0, fg =iV = Vg (2.123)

The vector field n® defines the global rest frame. As one can see, when the spacetime
is static the vector field n® is a unit vector along the timelike Killing vector £2. In
the case of stationary axially symmetric spacetimes, the vector field n* is along the
irrotational congruence (®. In an arbitrary spacetime, the vector ficld n° can be
defined uniquely from equation (2123). However, locally, each particular choice of
nt uniquely defines a foliation of the spacetime into slices, each of which represents

three-space at a particular instant of time. The metric for the three-space orthogonal
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to n® is defined as

hik = gy — myny,  hi = 8% — ning (2.124)
Similar to the optical reference geometry given by Abramowicz, Carter and Lasota,
the metric Ay, is conformally adjusted to define hqy as

R = e hy (2.125)

Let 7 and 7; denote the contravariant and covariant components of the unit vector
b

along 7 in the conformal geometry f_lik, which are given by
7= efr , = e (2126)

The dynamics of a test particle with an arbitrary four velocity can be studied as
follows. First the four velocity u® is split uniquely with respect to the unit timelike

vector n® as.

a

u® =y (n®* +v7r*) (2.127)

Here 7° is the unit vector orthogonal to n,, along which the spatial three velocity v

of the particle is aligned and -y is the normalization factor that makes u®u, = 1.
The acceleration of the test particle with the above four-velocity u® (2.127)
= U’ = u'Viuy (2.128)
can be expressed as,
ay = ngy -+ T6(70) = V2V + 7Pv (TiviTk + Tl.iV,'TL-) + VT (2.129)

We define the quantity

£ = ey (2.130)
which is the energy of the test particle when the spacetime is stationary. Then we
have,

¥ o= vpnt (2.131)
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and,

['y'u) (yw) gt

]

e~ulV (Ev) = YV (2.132)

If ﬁ,- is the covariant derivative operator in the space orthogonal to n% then one can

show that
PV = 1'Vn — PV — Vid (2.133)

Substituting the above expressions in equation (2.129), the expression for the accel-

eration can be written as
ar = my+ 7Vl + 4% (TiV,»'rzk + nivirk) + YV - Vg (2.134)
Using the fact that
Vi = —1'Vin, — 7'nnt Ven; (2.135)
we obtain,
;o= . L 4 iV D S | I S S . 2,,2517 7.
a; = V;¢+gn; + HuV(Ev) — Yon* (Viry — Vim) — Y urngn Ving + 7" VT ViT;
(2.136)

Projecting this equation on to the space orthogonal to n® with the projection operator,
K = 8%~ nin (2.137)
we get,

af = hlo;

—Vid + Fu'Vi(Ev) — Y2un!(Virg = Vir) + Y2027 Vife  (2.138)

The various terms of the equation (2.138) can be identified with the inertial forces as

follows,

at = Ge+Zp +Cp + B (2.139)
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where,

Gravitational force

Gy = ¢u {2.140)
Centrifugal force
Zi = — () FViF (2.141)
Euler force
E, = -V#& (2.142)
Coriolis-Lense-Thirring force
Cr = YuXy (2.143)

with,

Vo= (vety)ud
Xe = 0 (T — Tie) (2.144)

br = —ning

This is the covariant formalism of inertial forces.

In the next chapter, we shall apply this formalism to a particle moving in a circular
trajectory in stationary spacetimes. Though this formalisn is general and applicable
to an arbitrary spacetime, we shall not apply it to a general stationary spacetime but
to the special case of stationary spacetimes with axial symmetry. The prime reason
for this is that the vector field n® is non-unique in a general stationary spacetime.
Greene, Schiicking and Vishveshwara showed that the irrotational congruence which
defines the vector fickd n® is unique in a stationary axially symmetric spacetimef35].

The details of these results are presented in the next chapter.
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2.4 Gravito-electromagnetism

In the last chapter we have seen the strong analogy between gravitation and electro-
magnetism. In this section we shall highlight this striking similarity in the case of
stationary spacetimes. We follow the example given by Landau and Lifshitz[50] to
illustrate the electromagnetic analogy in a stationary spacetime. Here, we show that
the acceleration of a test particle in a stationary spacetime can be split into terms

analogous to forces acting on a charged test particle in an external electromagnetic

field.

As given in section 2.3.1 we shall split a stationary metric with respect to the

timelike Killing vector £2. In this case we write the metric as follows

ds® = h(dt — godx®)® — di? (2.145)
where
dl? = yopdzdz® (2.146)
- (—gaﬁ-f-gn"g“ﬁ)
goo
and
A = gu (2.147)
go = L= (2.148)
oo

We study the motion of a test particle moving with a four velocity 1* by splitting
the acceleration into various gravito-electromagnetic terms. The four velocity of a

test particle given by the equation

; d !
e 2.149
T (2.149)

can be decomposed into spatial and temporal parts as follows.
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where,
1 GaU® -
u® = + 2 2.151
VEVI=Z 12 ( )
a
u = e (2.152)

V1-u2
Here, v® is the spatial three-velocity in the three-space orthogonal to the timelike
Killing vector field and is defined by the metric v.s as given in the equation (2.146).

Also we have,

Vo = Yopt? (2.153)

v o= et (2.154)

In order to compute the acceleration of the test particle, we split the Christoffel
symbols I'?, as given in reference(30).

1

6 = M (2.155)
P

133 h (3] H>1 1 He1

o T 3 (9 8 H'ﬁ) - §guh' (2.156)
«a D , N o« 1 .a -

S = Ayt (00 (05— 0%) + o (05— 9%)] + 3009, (2.157)

where g, are the three-dimensional Christoffel symbols defined by the metric vap.
The equation of motion can be now written as,

du® .
- = =Ig(u®)? = 2T ulw — T ufu. (2.158)
b

Using the expression for the velocity from equation(2.150) we get

b el g
ds\/l -yt n 2/L(1 - Uz) (1 - 1}2) (1 - U“!). -

One can simplify the above equation to

1 a T Ags 000\
o = e { e I VI VI [~ 22 ) 2.160
(T 1_‘”2{ 5o ln z+\/ﬁ<(,m 5 | v (2.160)
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where a, is the spatial acceleration of the test particle. In the three-dimensional

notation one can write

a = ﬁ {-V\/E + Vhy x (curlg)} . (2.161)

We compare the above equation with the Lorentz force equation acting on a test

particle in an electromagnetic field.
Fpp = qE+V xB. (2.162)
Here,E is the electric field given by
E = ~V®aeciric (2.163)
and B is the magnetic field given by vector potential 4,
B = curlA. (2.164)

From the above comparison one can define gravito-electric force as,

VVh
Ep = — e 2.165)
¢ V1 —u? (
and the gravito-magnetic force as,
Mg = %’u x curlg. (2.166)

In the above the three-vector g, acts as a vector potential for the gravito-magnetic
field. In the next chapter we shall define the gravito-electric and gravito-magnetic
field in a simpler and covariant manner. In the formalism given above the gravito-
electromagnetic fields are defined with respect to the timelike Killing vector in sta-
tionary spacetimes. In order to relate these fields to inertial forces one needs to define

these fields with respect to the vector field n® as in the case of inertial forces which

will be considered in the next chapter.
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2.5 Conclusions

In the present chapter we have considered the formalism necessary to establish the
relations among gyroscopic precession, inertial forces and gravito-electromagnetism.
In the next chapter we apply this formalism to circular trajectories in axially sym-
metric stationary spacetimes and establish interrelations among th.em. As mentioned
earlier, Abramowicz, Carter and Lasota[l] showed that the centrifugal force reversal
occurs at the photon orbits in static spacetimes, which was also shown by taking
specific examples[3, 4, 60]. It was observed that the gyroscopic precession reversal
also takes place at the photon orbits in static spacetimes, by taking specific examples
such as the Schwarzschild spacetime[63, 43]. This simultaneous reversal of gyroscopic
precession and centrifugal force[57] seems to indicate the possibility of direct relations

between the two. These and other related questions are answered in the next chapter.



Chapter 3

Gyroscopic Precession, Inertial
Forces and
Gravito-electromagnetism:

Covariant Connections

3.1 Introduction

In the last chapter we have given the covariant formalisms for gyroscopic precession,
inertial forces and gravito-electromagnetism. When these formalisms are applied
to specific examples, several interesting results emerge. Such examples would be
of interest not only from the conceptual point of view but also for astrophysical
applications. One of such interesting observations, is the reversal of the centrifugal
force in static spacetimes. In their earlier studies, Abratnowicz and coworkers indicate
that the centrifugal force reversal occurs at the photon orbits in static spacetimes(3,
4]. This occurs in the Schwarzschild spacetime at r = 3Af where the circular null

geodesic exists. It was noticed that the gyroscopic precession reversal also occurs in

46
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the Schwarzschild spacetime at r = 3M. This raises several interesting questions such
as the existence of a direct relation between the phenomenon of gyroscopic precession
and the centrifugal force in static spacetimes. In this chapter we try to answer these
questions. We establish a covariant connection between these two phenomena and
show that the reversal of both the gyroscopic precession and the centrifugal force,
occur at the photon orbits in the case of static spacetimes. In the case of stationary
spacetimes, the physical situation alters completely. Additional inertial forces such as
the Coriolis-Lense-Thirring force and Euler force, can also exist. We therefore have,
on the one hand, gyroscopic precession which is infiuenced not only by spacetime
curvature but also by the rotation of spacetime itself. On the other hand, rotational
effects enter also into the description of the general relativistic equivalent of inertial
forces. Under these circumstances, we would like to study the possible reversal of both
gyroscopic precession and inertial forces in stationary spacetimes. For this purpose,
we also establish the direct relation between the phenomena of gyroscopic precession
and inertial forces, ie. centrifugal and Coriolis forces. From this we also prove
the result that, in general, the simultaneous reversal of gyroscopic precession and

centrifugal force does not occur in a stationary spacetime at the photon orbits.

This chapter is organized in the following manner. In section 3.2 we discuss the
important properties of axially symmetric stationary spacetimes, which includes a
brief study of global rest frames. In section 3.3 we compute the Frenet-Serret param-
eters &, 7y and 7, and tetrad components for stationary observers. These results are
extended to the circular orbits, using a rotating coordinate system. This approach
is much simpler compared to the direct computation of Frenet-Serret parameters for
circular quasi-Killing trajectories. These results can be specialized to static space-
times by setting £*n, = 0. In section 3.4 we compute the inertial forces for a particle

following a circular quasi-Killing trajectory. The Euler force is identically zero along a
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quasi-Killing trajectory. In the case of static spacetimes, which does not incorporate
inertial frame dragging, the Coriolis-Lense-Thirring force is zero. In section 3.5 we
establish covariant relations between inertial forces and Frenet-Serret parameters. In
the case of simpler static spacetimes we show that the parameter 7, is proportional
to the scalar product of the acceleration and the centrifugal force. The parameter
T2 is also directly related to the centrifugal force. In the case of stationary space-
times, the Coriolis-Lense-Thirring force is non zero and the centrifugal force in the
expression for the parameters 7, and 7, is replaced by a combination of centrifugal
and Coriolis-Lense-Thirring forces. In section 3.6 we establish direct relations be-
tween the phenomenon of gyroscopic precession and inertial forces, without using the
Frenet-Serret formalism. Since the precession frequency is equal to the vorticity for
Killing congruence, this establishes the relation between the vorticity of the Killing
congruence and inertial forces. In section 3.7 we study the reversal of gyroscopic pre-
cession and the centrifugal force. We prove that, in the case of static spacetimes, the
simultaneous reversal of gyroscopic precession and centrifugal forces takes place at
the circular null geodesics. In the case of stationary spacetimes this does not happen.
We also study the reversal of gyroscopic precession and centrifugal force, and their
relation to the null geodesics. Abramowicz, Carter and Lasota[l] for the first time
used optical reference geometry to study the motion of test particles in the general
theory of relativity, where the three space orthogonal to the vector field n® is con-
formally adjusted. We study gyroscopic precession and inertial forces in spacetimes
which are conformal static spacetimes with the conformal factor corresponding to
the optical reference geometry. In this conformal spacetime, the gravitational force
is effectively removed. This gives rise to several interesting results, which are dis-
cussed in section 3.8. In section 3.9 we study the gravito-electromaguetic fields with
respect to two different observers. First we define the gravito-electromagnetic fields

with respect to the global rest observers and relate them to inertial forces. We also
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define the gravito-electromagnetic fields with respect to the four velocity (u®) of a
test particle and relate them to the Frenet-Serret parameters 1 and 5. Interestiugly,
these results are exactly similar to those pertaining to the of motion of a charged test
particle moving in a constant electromagnetic field[42]. Finallv we end the chapter

with a brief concluding section.

3.2 Axially Symmetric Stationary Spacetimes

In this section we summarize some of the important properties of axially symmet-
Tic stationary spacetimes, relevant to our studies. An axially symmetric stationary
spacetime admits a timelike Killing vector £* and a spacelike Killing vector n° which
generates closed circular orbits around the axis of symmetry. If the spacetime is
asymptotically flat, £ is a timelike unit vector at infinity and (£%n,}/(n*ms)¥ goes to

zero at infinity. Furthermore, the Killing vectors & and n* commute[19],

& = L

_fné‘ﬂ

]

il

Eng ~n'éy =0, (3.1)

where £¢7° is the Lie derivative of the vector field £* with respect to the vector field
n°. Assuming orthogonal transitivity, in coordinates (z°=t, z° = ¢) adapted to the

Killing vectors £ and 72 respectively, the metric takes on its canonical form

ds* = godt? + 2guudtdé + g33dd® + gndr? + gpdd? (3.2)
with go, functions of 2! = r and 22 = § only. In this case, the spacetime is foliated

by a two-parameter family of two-surfaces which are everywhere orthogonal to the

two surfaces formed by the Killing vectors € and n°. The condition for orthogo-

nal transitivity is characterized by the Killing vector fields £ and 7* satisfying the
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equation[49, 48],
5abcd‘rla£bgc;d =0 = eabcdganbnc;d (33)
As we have mentioned in the last chapter, such a spacetime admits a globally hyper-
surface orthogonal timelike vector field(14, 35],
¢* =& +won®, (3.4)
with
gaga = Eafa + wofaﬂa-

The fundamental angular speed of the irrotational congruence is

wo = —(&"1a)/(n"ms)- (3:3)

The vector field ¢* is the projection of the timelike Killing vector £* orthogonal to
7°. Since wy is not a constant, (* is not a Killing vector. However, since £ewg = 0,

the vector field ¢° forms a quasi-Killing congruence. The vorticity,

1
Ldz = \/_—geﬂdeCD;ch = 0 (36)

for this congruence, which implies that ¢* is a locally irrotational congruence. Further
more , observers who follow the worldlines along ¢* do not rotate with respect to the
ncighbouring ones belonging to this congruence[14]. Thus, the dragging of inertial
frames is eliminated. Irrotation is equivalent to local hypersurface orthogonality, i.e.
in some neighbourhood about each point, the infinitesimal three surfaces orthogonal
to ° are surface- forming. But Greene, Schiicking and Vishveshwara[35] showed that
¢* is actually globally hypersurface orthogonal. Since ¢* is a timelike global hyper-
surface orthogonal vector field, it defines a surface of simultaneity with cach of the
observers along ¢%; their world-time clocks are synchronized by the hypersurface. The

¢* frame is a generalization of the Newtonian non-rotating rest frame. In reference
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{35], Greene, Schiicking and Vishveshwara, show that for the existence and uniqueness
of irrotational congruence, orthogonal transitivity is a sufficient but not a necessary

condition. A weaker condition in comparison with equation (3.3),

(e = 0 (3.7)

is a sufficient condition for the existence and uniqueness of i (°. They also prove
some of the important properties of irrotational congruence; it was shown that the ¢¢
frame is well behaved down to the event horizon, where (* becomes null. In the case
of orthogonal transitivity ¢ (if not zero) coincides with a Killing vector on the event
horizon, This result also holds for the spacetime satisfying the weaker condition, viz.

equation (3.7). In the case of static spacetimes where %, = 0 the vector fleld ¢*

coincides with the timelike Killing vector filed £°.

In the following sections, we compute gyroscopic precession and inertial forces in
the case of axially symumetric stationary spacetimes. For simplicity, we assume that
the spacetime satisfies the orthogonal transitivity conditions as given in equation
(3.3). As we have seen in chapter 2, in order to define the inertial forces in the
general theory of relativity, one uses a rest frame which is hypersurface orthogonal.

We use the observers along (® in order to define the inertial forces.

3.3 Gyroscopic Precession in Axially Symmetric

Stationary Spacetimes

In this section we compute the Frenet-Serret parameters and tetrads for a trajectory
along the timelike Killing vector £* in a stationary axially symmetric spacetime. These
trajectories represent the worldlines of stationary observers; in the case of black hole

spacetimes these observers are at rest with respect to the black hole. The four velocity
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for such observers is given by
ut = e¥es, (3.8)
where
e = g, = A (3.9)
The above four velocity represents the stationary observer in the spacetime.

After straight forward but long calculations, the expressions for the Frenet-Serret

parameters can be expressed as[43],

K = —g%a.a (3.10)

2 ab 2

no= [9 aadb] (3.11)
= i NaTsQcd, ’ (3.12)
2 T Tl

and the Frenet-Serret basis vectors can be written as,

a 1
e(O) = \/j(lvov 010)
a 1
€y = _;(0»91101,9220%0)

1
@ = o (B.0,0,—A 3.13
€(y) ’_A\/TAg( .0, ) (3.13)

a v (.
8(3) = %—-(0,—-02,&1,0)
In the above,
I, = _B_ )& Aﬂ} = B [ba — aq}
Ga = 2\/—/_\:#(. B .A - —'_\:;A'. “ *
- A
4 = 2%
Bﬂ
b = 3B

A = (£a£a>v B = (TIH{:-(L)
(3.14)
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As = (E&)a By = (0°6)s a=1,2.

AS = (Eafa)(nbnb) ‘(U“Eo)z (3'15)

where n® is the unit vector along the irrotational congruence defined by ¢¢ and 7
is the unit vector along the rotational Killing vector n®. We may note that all the
above equations can be specialized to a static spacetime by setting £°n, = 0 and
¢® = €°. Since the quantity d, in equation (3.14) is zero for static spacetimes, the
gyroscopic precession is zero for static observers. But, for stationary observers the
gyroscopic precession is non-zero. This is due to the effect of inertial frame dragging

in stationary spacetimes.

The expressions for the Frenet-Serret parameters computed in this section for
stationary observers can be easily generalized to the circular trajectories using the
rotating coordinate systems. The rotating coordinate system approach was adapted
by Rindler and Perlick[63] in order to compute the gyroscopic preccsion along circular
tajectories. This method is far simpler than the actual computation of the Frenet-
Serret parameters for circular trajectories. We discuss the rotating coordinate system
approach to compute the Frenet-Serret parameters for circular orbits in the next

section.

3.3.1 Gyroscopic Precession for Circular Orbits

In the last section, we have computed the Frenct-Serret parameters and the tetrad
components for stationary observers. In the present section, we extend the computa-
tion for a test particle moving in a circular orbit. The circular orbits around the axis

of symmetry can be represented by Killing trajectories

X' = twn® (3.16)
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where w is constant along each orbit. The four velocity of a particle along these

trajectories can be written as follows,
ut = eyt = ef (f +wr?). (3.17)

In order to compute the Frenet-Serret parameters for circular orbits given by the
above four velocity, we adapt a rotating coordinate system appraoch given by Rindler
and Perlick[63]. A stationary axially symmetric metric of the form (3.2), adapted to

the Killing vector £ and 7 is form invariant under the coordinate transformation,
¢ = ¢'+uwty t =1t (3.18)

where w is a constant. In the rotating coordinate system, the line element can be

expressed as[43],

ds* = gyodi® + 2gpydt'dd + gyydd? + gudr® + gndd® (319)

where

goo = go+ 2wos +wios
oy = Go3+ Wesa

g3z = gs33. (3.20)

Under the coordinate transformation (3.18), we note that £% + wn® is also a Killing
vector, provided w is a constant. The metric (3.19) is given for a coordinate system
adapted to the Killing vector field £ = £* +wn® and 5 = 1. The Killing vector £ =
(1,0,0,0) is timelike (for timelike circular orbits in the original coordinate system)
and we can use equations (3.10), (3.11) and (3.12) to obtain k, 7, and 7 along this

worldline. However, & corresponds to £ + wn in the unprimed coordinates so that

we can compute K, T and 7» along trajectories £ + wn by replacing £°¢, and £°7, in
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(3

equations (3.10), (3.11) and (3.12) by A and B. More importantly the prescription

also works in the case where w is not a constant but only satisfies Lyw=0.

Thus along trajectories of £ +wn, we have,

5 = —g%a.a (3.21)
T = [g‘”’audb]2 (3.22)
2 Eabcd 2
Ty = li\/-_gnaﬂ,acdd] (323)
In the above,
d =( 5 )[gi_ﬁ]_ B [be — a,]
. W=t B Al T \ Vo) 2T %
- A
% = 54
B(l
be = %
= (%) + 2w (1°6) + W* (7"ma)
B = (%) + w () (3.24)

= (£%) + w (n*t)
Ao = (€8)a +20(1°6)0 + w0 (P’ m)a; a=1,2.
B, = (1°)s+w@m)e b=12
Az = (£6)n'm) — (1°6)°
The Frenet-Serret tetrad is obtained by a vector transformation and can be written

as,

1

el(lo) = \/:Z(LO’ 0,w)
a 1 .
ey = —;(O,g“al,glzag,())
1
ey = —m(B,0,0,~C) (3.25)
@ = VA,

Vollg®

" (0, —ag, @1, 0)

N
3 =
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Ore can also check explicitly that the same expressions for x, 7; and ™ are obtained
by direct calculations for the four velocity along § + wi- As mentioned before, the
above result can be specialized to static spacetimes by setting £°7, = 0.

The above equations for the Frenet-Serret parameters are presented in a ditferent
form than those given in reference [43] in such a way, that it is convenient to establish
direct relations with inertial forces. In the next section, we compute the inertial forces

for a test particle moving in a circular orbit.

3.4 Inertial Forces in Axially Symmetric Station-

ary Spacetimes

In the last chapter, we have described the formalism for inertial forces in the general
theory of relativity. In this section, we compute the inertial forces for a test particle

in a circular orbit, described by the quasi-Killing trajectory
Ut = V(g fwn®) (3.26)

As given in chapter 2, we decompose the velocity with respect to the rest frame

described by the irrotational congruence,

U= et wn?) = 4(n® + ur®) (3.27)

here n¢ is a unit vector along the irrotational vector field given in equation (3.4},
b
n® = e—-d><n = g™¢ (f“ - Lcnb 7. (3.28)
1
These form the fundamental global rest observers in an axially symmetric stationary

spacetime. Then w ; : . .
P n we have that 7% is a unit vector orthogonal to n® or r* is a unit

vector along the three-velocity of the particle,

a

T = et (3.29)
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The spatial speed v and the normalizing factor v can be expressed as,

v e¥te (3.30)

y = g ¢tc (OJ - tg)

where ¢, o and 1) can be written as follows

¢ = (), (3.31)
@ = Zin(~rfn.), (3.32)
b= 3G (3:33)

From the above relations, we can write down the inertial forces from their definition

as follows.

Gravitational force

Ge = ¢x (3.34)
Centrifugal force
1 -2 (1°0
7, = —g2¥+d) g2 ( A _°> 3.35
=1 ), (3.35)
Coriolis-Lense-Thirring force
Ci = e2¥+e)g (Ea—"> (3.36)
Py &
where
@ = (w — wy) (3.37)

In the case of quasi-Killing trajectories, it is easy to show that ¥ = 0 and hence the

Euler force does not exist,

E =0 (3.38)

As in the case of Newtonian gravity, in the general theory of relativity also, the
gravitational force can be expressed as the gradient of a scalar potential. For a particle
following a quasi-ISilling trajectory, imertial forces arc proportional to gradients of

functions.
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3.4.1 Specialization to Static Spacetimes:

In a static spacetime, the global timelike Killing vector €% is itself hypersurface or-
thogonal. The unit vector 7 is now aligned along ¢,
nt = e%c. (3.39)

Then we have the inertial forces as follows:

Gravitational force

Ge = ¢k (3.40)
where ¢ = %ln(f"{,,)
Centrifugal force
w? 7'
7 = ——gura) — A1
k 7 € {ln (EJEJ')] . (3 )

And the Coriolis-Lense-Thirring force is identically zero,
C, =0, (3.42)

this is because of the fact that &7, = 0 in static spacetimes, which detcrmines the

dragging of inertial frames.

3.5 Covariant Connections

In the preceding section, we have derived expressions for r; and 7 which give the
gyroscopic precession rate in terms of the Killing vectors. Similarly, inertial forces
in an arbitraty axisymmetric stationary spacetime have also been written down in
terms of the Killing vectors. All these quantities have been defined in a completely
covariant manner. We shall now proceed to establish covariant connections between

the gyroscopi ion, 1 :
gyroscopic precession, i.e. the Frenet-Serret torsions 7y and 75, on the one hand
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and the inertial forces on the other. First, we shall consider the simpler case of static

spacetimes.

3.5.1 Static Spacetimes

In the present section, we establish the relation between the Frenet-Serret parameters
7, and 7, with the centrifugal force. As shown earlier, the Coriolis-Lense-Thirring

force is identically zero in static spacetimes.

We have derived in equations (3.22) and (3.23), the Frenet-Serret torsions 71 and

1, for a stationary spacetime. As has been me.ntioned earlier, for a static spacetime

&%, = 0 and ¢* = £° in the above equations, as well as in the expressions for the

inertial forces. With this specialization, the centrifugal force can be written from
equation (3.41) as

Zy = e -9 ykd, (3.43)

Substituting equation (3.43) in equations (3.22) and (3.23) we arrive at the relations

2 2
2 = %[a"Zb] (3.44)
and )
2 abed
2 Be 5
= L/__gnﬂrbaczd] (3.45)
where
el4=)
g = — (3.46)
K

The equations above relate the gyroscopic precession directly to the centrifugal force.
The two torsions 7y and 7, equivalent to the two components of the precession, are
respectively proportional to the scalar and cross products of the acceleratsion and the
centrifugal force. We shall discuss the consequences of these relations later on. In the

next section, we cerive similar relations in axially synumetric stationary spacetimes.
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3.5.2 Stationary Spacetimes

In order to establish direct relations between the Frenet-Serret parameters and inertial
forces in axially symmetric stationary spacetimes, we decompose all the parameters

with respect to the irrotational congruence. From equation (3.14) we have

A = (£6) + 2w (°6) + o (7°na)

B = (%) + w(r'n)

fl

We decompose the angular speed w with reference to the fundamental angular speed
of the irrotational congruence wo = —{ﬁ:—’:‘j,

w =‘:J+Ldo. (3.47)

Then 4 and B simplifies to,

s
|

= (G + & 7°n,

Il

@1, (3.48)

Similarly, their derivatives also can be written as,

A = ((G)a + 20C, + & (Pn) 0

B, = Ci+ @(1'my), (3.49)
where
C = (Ebﬂb),a + wy (an]b),a. (3.50)
or equivalently,
Ca = —(Emwo, (3.51)

From equations {3.14),(3.48) and {3.49) we can show that
Palaih
5 CG)C + DUCG) )0 ~ (PRp)(COC)
- @ (PG} (3:52)

dy = e
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Further, it is is easy to see that C, is directly proportional to the Coriolis force,
Co =—e a7, (3.53)

where C,, is the Coriolis-Lense-Thirring force. Then equation (3.52) takes on the form

(¢—a}
d = = {za — 2L+ ateen9] ca} (3.54)
WK 2

Where Z, is the centrifugal force.

Substituting this in equation(3.22) for 72 we get the relation,

2 B2 2
T = -Q_J—z[g a, (Zb + ,Blcb)] (355)
where
P
K
. -2,2(c—6)
gy = —§[l+w e ] (3-56)

Again, from equation (3.23) and (3.52), we obtain the expression

62 Eab-:d 2
: @2 [\/—:gnmac(zd + /3104)] (3.57)

These relations are more complicated than those we have derived in the static case.
Nevertheless, they closely resemble the latter with the centrifugal force replaced by
the combination of the centrifugal and Coriolis forces (Z, + 51C,). The static case
formulae are obtained from those of the stationary case by setting the Coriolis force

to zero.

In this method we have directly expressed the Frenet-Scrret parameters 7 and 7y,

which determine the gyroscopic precession, in terms of the inertial forces.



chapter3 62

3.6 Gyroscopic Precession, Vorticity and Inertial

Forces

In the last section, we have related the gyroscopic precession and inertial forces us-
ing the Frenet-Serret formalism. In other words, we have related the Frenet-Serret
parameters 7; and 7; to the inertial forces. In this section we shall directly relate
the gyroscopic precession and inertial forces yvielding vector relations, whereas the
relations derived in the last section were scalar. The vorticity is another important
geometrical quantity of a trajectory which is embedded in a congruence. We have
seen in the last chapter, that for a Killing congruence, the vorticity and the gyroscopic
precession frequency are identical. By setting the parameter w constant, we abtain

direct relations between the vorticity and the inertial forces.

In the last chapter, we have seen that, for a quasi-Killing trajectory, the gyroscopie

precession frequency can be written as,
Wl = Foby,, (3.58)

In order to relate the above equation and the inertial forces, we define the following

quantities, following the notation by Geroch([33],

yt = e, (3.59)

[ 1 aded Qg
[(;IJ = 56 (Ebnc;d + ﬂbfa;d) ('5()0)
w' = €. (3.61)

We also define the following scalar parameters

/\00 = Eaé-a

An = £, (3.62)
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A= 1,

4
1l

2 2(22, — Noo)

From equation (3.39) and using the properties of Killing vectors, the derivatives of

the Killing vector can be expressed in terms of its vorticity, as follows,
)

Spg = Tqursfr ggs + /\Ealf[p/\oo.q] (3~63)

Similarly from equation (3.61) we get

ARt _
Mg = —;—qurm’ i—‘i” + ’\11177[p’\00,q] (3-64)

From equations (3.63) and (3.64), we express the vorticity gg“, we and w® in terms

of the scalar parameters defined in equation (3.63) as follows.

é“;‘ﬂ = QT-zfaqbcfbnc(/\ow\m,q - /\01/\00,q) (3.65)
g{" = 772 n: (Moo — AooAilg) (3.66)
w® = 2777 %Gn, (Andane ~ Andisg) (3.67)

The gyroscopic precession frequency along a quasi-Killing trajectory is given by
wt = Feby, {3.68)

From equation (3.59, 3.60 and 3.61) we can express w? as,
a e'z’ib

_ [ a 2, a
Wt = [33 2w+ ﬁ)] (3.69)

Decomposing w with respect to the irrotational congruence,
w o= w + wp

where wy is —£%11,/7°m, we get

. e

4 - 2 5 - It
wh = —— [( w® + Qg w + wh w“) + 20 ( W+ wy w“) + & u“] (8.70)
2 00 o1 i1 01 11 1



chapter3 64

i 2 Ao T )2 222 ) -
o Z__polab (L o232 20 —_ bl 23 . 3.(1)
W \/.2_1' € 5 +w A T , +w 53 ) . (

Using the fact that,

or

-2¢
(Am) = ¢ (3.72)
Au & @Ay
2 —29
2>‘l1 - Qem v 2)\11) Zk7 (373)
72 N R 72
we can express w® in terms of the inertial forces as follows,

2 ,\2
ot = Vi (1_) 1 [Zb +% (1 . 512?_;2&1, ) Cb}; (3.74)

t

2/\11 [54
We have
T2 =62¢ 820 :All
2211 '
so that we get
(@~c) 1 -
W= e {Zb + = (1 + et cbl (3.75)
w 2
or
W = Bt (204 O (3.76)

This is the direct relation between the gyroscopic precession and inertial forces, in
contrast to the Frenet-Serret approach given in the preceding sections.

In the last two sections, we have established the relationship between inertial
forces and gyroscopic precession for circular orbits in stationary axially'symmetric
spacetimes. One of the important consequences of these relations is to show the
simultaneous reversal of the gyroscopic precession and the centrifugal force in static
spacetimes, which we shall carry out in the next section. We shall also prove that,

in general neither centrifugal force nor gyroscopic precession reversal occurs at the

photon orbits in the stationary spacetimes.
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3.7 Reversal of Gyroscopic Precession and Inertial

Forces

In this section, we study the reversal of the gyroscopic precession and the centrifugal
force. Abramowicz, Carter and Lasota[l] first proved that the centrifugal force rever-
sal occurs at the photon orbits in static spacetimes. In this section, we shall show

that the gyroscopic precession reversal also occurs at the photon orbits.

The condition for the reversal of the gyroscopic precession is given by
Wrs = Tiefyy + mely = 0 (3.77)

Since e}y and ef;, are linearly independent vector fields at cach point, this condition
is the same as requiring

=T o=0 (3.78)

By considering the actual structure of 7, it is easy to show that 1, becomes zero on
a plane about which the metric components are reflcction invariant. The equatorial

plane in the black hole spacetime is an example of this.

We shall now examine the vanishing of the Frenet-Serret torsions in relation to

the inertial forces.

3.7.1 Static Spacetimes

In what follows, we shall prove a theorem that relates the simultancous reversal of
the centrifugal force and the gyroscopic precession to the existence of a null circular
orbit. First we shall prove that the gyroscopic precession reversal occurs if and only if
the gyroscope is transported along a timelike trajectory whose spatial orbit coincides

with a null geodesic.
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We start from the condition for gyroscopic precession reversal, i.e. 1 = 12 = 0,
and show that at the point where this occurs a null circular geodesic must exist. In the

second part we take a circular null geodesic and show that the gyroscopic precession

reversal occurs at such orbits.

Setting 7» = 0 in equation (3.23) and noting that the only non vanishing compo-

nents of n, and 7, are respectively, ny and T3, we arrive at the condition
AiB; = AB (3.79)

Further setting 7; = 0 in equation (3.22), we obtain

AB A? AxB A2
1t 121 Il 22 202 21 —~0. 3.80
g ( B A) g ( B .A) 0 ( )

We shall now assume that the gyroscope is transported along a circular orbit which
is not a geodesic, i.e. k # 0. This we do in anticipation of the result that a null
geodesic - not a timelike one, - exists with its spatial trajectory identical to that of
this timelike orbit. Now % # 0 implies A; # 0 and 4, # 0 from equation (3.14).

Then from equations (3.79) and (3.80) we arrive at

AB, — BA; = 0 (3.81)
and
ABy ~ BA; = 0 (3.82)
" Combining the above two equations,
AB, - BA, =0
Then, equation (3.14) reduces this condition to
(&) () e ~ (€%6)alnn) = 0 (3.83)

With the help of this equation, we can show that, if a circular geodesic exists where

precession reverses, then it has to be null, as follows.
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The condition for circular geodesics is
(€%6) .0 + W (7P m)e = 0 (3.84)
This can be proved from the geodesic equation, assuming that the four velocity u® is

proportional to £* + wn®. Using condition (3.83), this reduces to

(fbc ).ll a 2
”(’5%5" [(5 ) +w (n"na)] =0 (3.85)

Since % is the gravitational force, which is assumed to be nonzero, this is equiv-

alent to
(€%4) + ’(n%na) = O (3.86)

This means that the geodesic, if one exists, is null. Now we shall show that in fact a

geodesic must exist at the point of precession reversal.

If a geodesic does not exist at the point of reversal, then

(%) + W n’m)a # O (3.87)

for all values of w. However, equation (3.83) may be recast as

(&) — e (1*m)e = 0. (3.88)
' 7T “
This shows that the geodesic condition is satisfied for w? = -— (f}:—i‘:) Therefore

there does exist a geodesic and we have alrecady shown that it has to be null. We
shall now prove the converse, i.e. if a circular null geodesic exists, then m and , are

zero at the null geodesic.

The condition for a circular null geodesic is given by equation (3.83). Dividing this
equation by (£%6,)(7°m), we see that it reduces to [ln (1{%&)] R which is proportional
to Z, from equation (3.41) and is equal to zero. Further, from the dependence of ry

and 7, on Z,, from equations (3.44) and (3.45) we sce that i = 7. = (. We may
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note the fact that both the gyroscopic precession and the centrifugal force the reverse

simultaneously, as is evident from equations (3.44) and (3.43). We have therefore

proved the following theorem.

Theorem: In the case of circular orbits in static spacetimes reversal of gyroscopic

precession and centrifugal force takes place at some poiat, if and only if a nuil geodesic

exists at that point.

In the next section we study the reversal of the gyroscopic precession and the

centrifugal force in stationary spacetimes.

3.7.2 Stationary Spacetimes

In section 3.5 we have derived expressions for 7 and 7», that embody gyroscopic
precession, in terms of inertial forces, namely the centrifugal force Z, and Coriolis-
Lense-Thirring force C,. These are complicated expressions and w does not stand
out as an overall multiplicative coefficient. Consequently, the reversal of gyroscopic
precession is not related directly to that of these forces individually. As has been
discussed in reference {58], these reversals occur at different places and also not at
the null geodesic. Nevertheless, one can see from equation (3.55) and (3.57) that the

gYroscopic precession reverses at a point where the combination of the centrifugal and

the Coriolis forces given by (Z, + 81C.), goes to zero.
We shall derive the angular velocity of a timelike orbit whose three dimensional

trajectory coincides with a null geodesic in terms of inertial forces. Although there

are no reversals at the nuil geodesic, this should give an idea of how these forces are

structured along the null trajectory.
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Conditions for the existence of circular null geodesic are
A= (£%) + 20 (n°6) + &F (1) =0 (3.89)
and
As = (6%)0 + 20(0°G) 0 + @ ()0 = 0 (3.90)
The expression for A can also be written as
A= (G + 0 (3.91)
where
b
5 =5- (3.92)
NN
Then A = 0 implies
5= xS (3.93)
17%7a
Further, from cquation (3.90)
¢*Ch

(Cbe)(nq"?q).u} E NS

1
As = n—pi{(n"nq)(c"m,a C.=0  (394)

n%7q

This has to be zero for a null geodesic. For a timelike curve with the same spatial

orbit, but having angular velocity & with respect to n®,we have from equations (3.35)
and (3.53)

29

Z = %“ (w —wp)® C“lCa

C, =—~e" 5 'C, (3.96)

[ (s = (rPmw) (€°60).4] (3.95)

Substituting in cquation (3.94), we get

L (og-29(¢rc. )02 _% g\ =
e G R {2 e ReT0g =0 (390

oz zac, =0 (3.98)
n97]

which gives @ in terms of centrifugal and Coriolis forces.

This reduces to the equation
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3.8 Gyroscopic Precession and Inertial Forces in

Conformal Static Spacetimes

Some further insight into the gyroscopic precession and the inertial forces may be
gained by considering them in a space conformal to the original one, as given in

Abramowicz, Carter and Lasota [1]. In the case of the static metric, we carry out the

conformal transformation

dab = € gn (3.99)
If we choose
TR S (3.100)
900 ¢

then, dop = 9% = 1. The spatial part of metric g, corresponds to optical geometry
defined in reference [1], for identifying inertial forces in such geometry. Purely in the

conformal space, without referring to the original gq, we have

@V, =0 (3.101)

for a stationary observer with four velocity 4* = (1,0,0, 0}, where V, is the covariant
derivative with respect to the conformal metric g;,. The two four velocities u® and
4 are related by u® = e~*1i®. Equation (3.101) indicates that because of dilation,
%® follows a geodesic trajectory in the conformal metric. This is equivalent to the
statement that the only force acting on a particle at rest in the original space is the
gravitational force which is not felt in the conformal space. Since the gravitational
force is independent of the velocity, no particle will experience it in the conformal
space. In other words, the gravitational force is effectively removed to some extent by
dilation given in equation (3.100). Consequently, if a particle is moving in a circular

trajectory, then the only force acting on it is the centrifugal force.

If £ is a Killing vector in the original space, then £2 is also a Killing vector in the
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conformal space if
Led=0 (3.102)

This is trivially true in coordinates adapted to the Killing vector £2. Then the Killing
vectors, in the original spacetime are also Killing vectors in the conformal spacetime.
Therefore, £2 = (1,0,0,0) is the timelike Killing vector and 7® = (0,0,0, 1) is the
spacelike Killiug vector which generates circular orbits in the conformal spacetime.
The quasi-Killing trajectories

o=+ we (3.103)
generate circular orbits and the only force acting on these particles is the centrifugal
force. It is easy to prove that the expression for the centrifugal force is now
Za = @Vt (3.104)
where

fe = %% and e = {i® (3.105)

3.8.1 Gyroscopic Precession in the Conformal Space

The gyroscopic precession in the conformal spacetime can be computed cxactly as

before. The Frenet-Serret parameters for circular quasi-Killing trajectorics can be

written as
All A2 4 222 A2
R = L (9_"411_"_'_9_&) (3.106)
4 Az
32
7 = . B |-
44, (g1 AL + 52 A43)
(3B A8y A AR 3.107)
B A
PR A a2
‘ 9% (ABy ~ AB
o= 29 (ABy )] (3.108)

&, (08 + )
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where
A= 86 + s = 5
= a WMy = %
¢
B = with, = 5;_ (3.109)
Ay = (828" (3.110)
and
Ao = (@) . ja=1,2
Ba = w(#*fp)a ja=1,2 (3.111)
One can then show that
A, = SA-Ade
452
B, = 98B0 _ A (3.112)
o w

With the help of the above equations, &2 can be related to 2. After some simplifica-

tion we have,

B = - 6?6 B) (07 A b (3113
From the definition of & and the expression for the centrifugal force as in (3.104), it
is clear that the two are one and the same. This is because the contribution from
the gravitational force has been removed and the acceleration that appears is due to
the centrifugal force alone. We can relate 72 to 4* by using the expression for 72 to
obtain

k?
L p— (3.114)
Azw?

The above equation is similar to equation(3.44) which relates =, to the centrifugal

force. It can also be shown that

# =0 (3.115)
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everywhere in the conformal spacetime.

From equations (3.114) and (3.115) it is clear that the gyroscopic precession also
reverses when & = 0 and that in turn corresponds to the centrifugal force reversal.
Also & = 0 corresponds to the geodesic condition in the conformal space, which

represents the null geodesics in the original space as given in reference [1].

To sum up, we have factored out the contribution due to the gravitational force
by conformal transformation and have shown in a simple manner the simultaneous
reversal of both the gyroscopic precession and the centrifugal force at the photon

orbit.

3.9 Gravito-electric and Gravito-magnetic Fields

In the last chapter we have defined the gravito-electromagnetic fields in stationary
spacetimes. In this section we shall define these fields in a covariant manner. Here
we shall make use of the properties of a Killing vector, i.e., that the derivative of
a Killing vector &, is an antisymmetric tensor. We take the analogy between the
Maxwell field tensor for electromagnetic field F,, and F,; for a Killing vector field.
Using the above analogy one can define the gravito-electric and gravito-magnetic field
with respect to any timelike vector field. In order to establish relations between the
inertial forces and gravito-electromagnetic fields, we define these fields with respect
to the global rest observers n®. These fields with respect to observers following the
integral curves of n%, can be defined as follows.

Gravito-electric field:

E® = Fp, (3.116)
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Gravito-magnetic field:
H = Fép, (3.117)
where £ is the dual of Feb,
Fo o= -;—(\/—_g)“IE“dech (3.118)
In the above, as before, F® = e¥ (£, + wyp). The equation of mation is
W = Fu, (3.119)

Projecting onto the space orthogonal to n® with Ra = gas — Nen and decomposing

uq as given in (2.127), we get
bl = 7 [Fn + o(Fer® = ngFpnlre)] (3.120)
where +y is the normalizatjon factor. This equation can be written in the form

Ule = [Facnc' + vy ~_.’]Eab::danCH-d] ’ (3121)
or
B = Y[E + vx H] (3.122)

We can thercfore define

Gravito-electric force:
foge = yFoen® (3.123)

Gravito-magnetic force:
fore = 10V=Geaean®m H® = yu(Fyet® ~ nyFpen’r?) (3.129)

These define the gravito-electromagnetic fields. We have also split the force acting
on a test particle in terms of gravito-electric and gravito-magnetic forces. In the next

section we relate these forces to the inertial forces.
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3.9.1 Relations Among Gravito-electric, Gravito-magnetic and

Inertial Forces
3.9.1.1 Static Case

We have defined the gravito-electric field E, by
YEe = YFpen
If we substitute for Fu = €¥(&,p + wnyp), we get
foEa = VEa = YFuen = -1, (3.125)

So,
E, = ~e®+g, (3.126)

Here G, is the gravitational force. Similarly, we have for the gravito-magnetic field
feta = Vv(FacTc - naanbcTc)

The second term in this equation is identically zero because the Killing vector fields

£ and 7* commute and we get

b_cppd
fera = TUV=gEapan T°H

o F,,7°

= [eZ("‘*”)sz’a - Za] (3.127)

The above relation clearly shows the connection between the gravito-magnetic force

on the one hand and the gravitational and centrifugal forces on the other.

3.9.1.2 Stationary Case

In the stationary case, n® is given by equation (3.30). As before we decompose

w = & + wq, where wy is given by (3.5). Then a straightforward computation gives
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the expression for the gravito-electric field.
B, = —eW¥t9q, + ~WHC, (3.128)
and the gravito-electric force,
foga =B, = 299G, + C, (3.129)

This shows the relation of gravito-electric field or force to both the gravitational and

centrifugal forces. In the stationary case also we have,
nan’Fyer® = 0 (3.130)
Then it follows

_ dcprd
ferra = YUV—gEabean T H

il

Yo Foet*

i

[% + G — g, (3.131)

Hence gravito-magnetic force is related to all the three inertial forces ~ gravitational,

centrifugal and Coriolis.

3.9.2 Gravito-electric and Gravito-magnetic Fields with Re-

spect to Comoving Frame

In the previous section, we have defined gravito-electric and gravito-magnetic fields
with respect to the irrotational congruence. Similarly these fields can be defined with
respect to the four velocity u® of the particle as follows.

Gravito-electric field:

Es = Foy, (3.132)
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Gravito-magnetic field:
H® = Féy, (3.133)
Where £ is dual to F® as before. The equation of motion takes the form
o = E° (3.134)
The precession frequency can be written simply as
W= He (3.135)

Following Honig, Schiicking and Vishveshwara [42], the Frenet-Serret parameters &, 7y

and 7, can be expressed in terms of gravito-electric and gravito-magnetic fields.

k = |E| (3.136)
where
|B| = V-EeE, (3.137)
o= :i: (3.138)
where
Bt o= MEHu, = E xH (3.139)
|B| = /-PeP, (3.140)
and o
H°E,
= (3.141)

the Frenet-Serret tetrad components can also be expressed in terms of B, He and

Pe,

Ea
‘o T TE
. po
ey = ﬁ (3.142)
o Eabcd E!: }5’ Uy

PrE,
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In reference [42], these expressions had been derived for charged particle motion in a
constant electrcmagnetic field. We have now demonstrated the exact analogue in the
case of gravito-electric and gravito-magnetic fields. The one-to-one correspondence is

indeed remarkabie.

3.10 Conclusions

The main purpose of the present chapter was to establish a covariant connection
between the gyroscopic precession on the one hand and the analogies of inertial forces
on the other. This has been accomplished in the case of axially symmetric stationary
spacetimes for circular orbits. In the special case of static spacetimes the gyroscopic
precession can be directly related to the centrifugal force. From this we have been able
to prove that both precession and centrifugal force reverse at a photon orbit, provided
the latter exists. In the case of stationary spacetimes, the corresponding relations are
more complicated. The place of centrifugal force is now taken by a combination of
centrifugal and Coriolis-Lense-Thirring forces. As a result, the gyroscopic precession
and the centrifugal force do not reverse, in general, at the photon orbit. We have also
studied some of the above aspects in the spacetime conformal to the original static
spacetime. In this approach, part of the gravitational effect is factored out thereby
achieving a certain degree of simplicity and transparency in displaying interrclations
and the reversal phenomenon. Closely related to these considerations is the idea
of gravito-electric and gravito-magnetic fields. We have covariantly defined these
with respect to the globally hypersurface orthogonal vector field, that constitutes
the general relativistic equivalent of a Newtonian rest frame. In this instance, these
fields can be related to the inertial forces. When these fields are formulated with

respect to the orbit under consideration, they lead to a striking similarity in the
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corresponding physical quantities that arise for a charge moving in an actual, constant
electromagnetic fleld. We have thus established connections and correspondences
among several interesting general relativistic phenomena. In the next chapter, we
shall compute the gyroscopic precession and inertial forces in some of the black hole

spacetimes.



Chapter 4

Application to Black Hole

Spacetimes

4.1 Introduction

In the last two chapters we have presented the formalisms for the phenomena of gyro-
scopic precession and inertial forces. We have also established interrelations between
them. In order to get further physical insight, we apply these formalisms to spe-
cific examples. These include static spacetimes - in which both gyroscopic precession
and centrifugal force reversals occur at the null geodesics - and stationary spacetimes
where this does not occur. The simultaneous reversal of gyroscopic precession and
centrifugal force occurs in the Schwarzschild spacetime at r = 3M, where a circular
null geodesic exists[1, 4, 57, 60]. We take the Ernst spacetime as a typical exam-
ple for a static axially symmetric spacetime in order to illustrate the simultaneous
reversal. In addition, the Schwarzschild spacetime and the Melvin universe can be
treated as special cases of the Ernst spacetime. As has been shown in the last chap-
ter neither centrifugal force nor gyroscopic precession reversal occurs at the circular

null geodesics in stationary spacetimes. In this chapter we take the Kerr-Newman

80



spacetime as an example of axially symmetric stationary spacetimes.

In this chapter we first study gyroscoic precession in static spacetimes using the
Frenet-Serret formalism. In section 4.2.1 we give the general expressions for circular
quasi-Killing trajectories. These results take a simple form cn the equatorial plane. In
section 4.2.1.2 we study the precession along a circular geodesic and show that in the
limit & — 0, the Frenet-Serret parameter 7 is well defined. We may also note that
the Frenet-Serret parameter r2 = u,:fp,e,, where the Wkeper is the Keplerian orbital
frequency. In section 4.2.2 we study inertial forces in the Ernst spacetime. As we
have seen earlier, the Euler force is zero for quasi-Killing trajectories and the Coriolis-
Lense-Thirring force is zero in static spacetimes, so that we have only centrifugal force
in addition to the gravitational force in static spacetimes. By setting the magnetic
field parameter B = 0, we obtain the Schwarzschild solution as a special case of
the Ernst spacetime. In section 4.2.3 we study gyroscopic precession and centrifugal
force in the Schwarzschild spacetime. The Melvin universe can also be treated as a
special case of the Ernst spacetime by setting the mass parameter M = 0. These are
considered in section 4.2.4. One of the main motivations is to investigate the reversal
of gyroscopic precession and centrifugal force in the Ernst spacetime. In section 4.2.5
we show that both gyroscopic precession and céntrifugal force reversal occurs at the
circular null geodesics in the Ernst spacetime as expected. Similar studies can be

carried out in the case of the Schwarzschild spacetime and the Melvin universe as

special cases.

In section 4.3 we take Kerr-Newman spacetime as an example of stationary ax-
ially symmetric spacetimes. One of the aims is to highlight the differences in the
phenomenon of gyroscopic precession and inertial forces, as observed in a stationary
spacetimei in constrast to a static one. The general expression for the Frenet-Serret

parameters along circular orbit is given in section 4.3.1. These results are special-
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ized to the case of equatorial plane and to circular geodesics in section 4.3.1.1 and
4.3.1.2. In the case of a stationary spacetime, we see that ro direct relation between
7y for circular gecdesics and Keplerian angular velocity exists as in the case of a static
spacetime. In section 4.3.2 we compute inertial forces in the Kerr-Newman spacetime
using the formalism given by Abramowicz, Nurowski and Wex[2]. In section 4.4 we
study gyroscopic precession and inertial forces in the Kerr spacetime as a special case
of the Kerr-Newman solution by setting the charge parameter @ = 0. Gyroscopic
precession in the Kerr spacetime was studied by Iyer and Vishveshwara[43]. In sec-
tion 4.4.1 we present the expression for gyroscopic precession as a special case of the
Kerr-Newman solution. The expressions for inertial forces in the Kerr spacetime was
given in section 4.4.2. Chakrabarti, Prasanna and Sai Iyer[45, 20] computed inertial
forces in the Kerr spacetime using the formalism given in the reference[l], where the
inertial forces are defined in the three-space orthogonal to the timelike Killing vector
£°. We utilize the covariant formalism given by Abramowicz, Nurowski and Wex, in
which inertial forces are defined with respect to an irrotational congruence which is
the generalization of a Newtonian global rest frame[35, 75]. By setting the angular
momentum parameter a = 0 we obtain the Reissner-Nordstrom spacetime as a spe-
cial case of the Kerr-Newman solution. In section 4.5 we study gyroscopic precession
and inertial forces in the Reissner-Nordstrom spacetime. As the Reissner-Nordstrom
spacetime is a static spacetime, we observer that the simultaneous reversal of gyro-
scopic precession and centrifugal force occurs at the circular photon orbits. In section
4.6 we study where the reversal of gyroscopic precession and centrifugal force in the
Kerr-Newman spacetime occur. From the condition for reversal, one can clearly no-
tice that the reversal of gyroscopic precession and centrifugal force occurs at different

points in the spacetime.
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4.2 Gyroscopic Precession and Inertial Forces in

the Ernst Spacetime

In this section we compute the gyroscopic precession frequency and the inertial forces
in the Ernst spacetime{30]. The Ernst spacetime is a typical example of static axially
symmetric spacetime. The previous study by Prasanna indicated that the centrifugal
force reversal occurs in the Ernst spacetime at the photon orbits. Here we show that
gyroscopic precession reversal also occurs at the photon orbits. As has been shown
in the last chapter the simultaneous reversal of gyroscopic precession and centrifugal
force at the photon orbits is in fact a generic property of all static spacetimes. The
Ernst spacetime allows two eircular null geodesics and in this section we show that

the reversal occurs at both the orbits.

The Ernst metric can be written in the form
2 2 ¢in?
ds? = X2 (1 - 232) = e - 2gg f-i;’;—gd& (4.1
T

-

with
A = 1+ B?%?sin4. (4.2}

Here M and B are respectively the mass and the magnetic field in geometrized units.
The Ernst spacetime represents a Schwarzschild black hole immersed in an axially
symmetric magnetic field which becomes uniform asymptotically. When the magnetic
field is zero(B = 0), the solution reduces to the Schwarzschild spacetime as a special
case. If the mass parameter Af = (, the Ernst solution becomes the Melvin universe,
which is an empty universe with a constant magnetic field B. Next we compute the

gyroscopic precession and inertial forces for a particle moving in a circular orbits

around the black hole.
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4.2.1 Gyroscopic Precession in the Ernst Spacetime

In this section we use the Frenet-Serret formalism as described in the second chapter
in order to compute the gyroscopic precession. The Frenet-Se-ret parameters &, 7; and
7, and the Frenet-Serret tetrad components are computed for the circular trajectories
around the black hole. These circular orbits can be represented by the quasi-Killing

congruence, with the four velocity,
u® = e¥(¢% 4+ wn?) (4.3)

here w is a function of r and 6, and ¥ is the normalizing factor as mentioned before.

The Frenet-Serret parameters for circular orbits can be written as follows,

K
2= 4.4
/\2T2K2 ( )
2M
, _ -2k, 45
T = ST w* sin® @ (4.5)
MK
2 4
Ty = m—wz (.‘.OS2 8 (4 6)
where
2M .
K, = (1 - —-—) = {iz [M + B*2(2r - 3M)sin? 6]
T r
wrsin®§ [2B%r2sin? § 2
+ - -1
pY A
2 2,2 02 2
+ rlcos®@sin?g{28B%) (1 - ———QM) 2 WBrsinf 1
r Py A
. WIMY  wir? :
_ 2 (&8 wWT Lo
Ky, = [A (1 - ) o sin 0]
A .
Ky = [{;—3 [M + B%r?sin® 9(2r — 34\1)}
w?rsin®f [2B%r? sin’ 0 -

{ ( ‘ZM) {ZBzr2 sin® ¢ ]
Rl P o AL
r A
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% M + B2 sin?9(2r — 301)] }

. 2 [2B%2sin” 6
+ r2cos’f{2 1——-—22” /\Bz+w"ﬁ — 1y
r |7

2.2 .2 2
{[—-—-—23 r/\sm b 1} +2B%? sin20H
2
Ky = (2B2r2 sin?8 — 1)2 (1 + B*r?sin? 9)
(4.8)
The components of the bases are given as
a — 1 0
5(0) = ﬁ(lv Oa 1w)
1
ey = —m(oagll-/t(l),gnA(z),O)
1
ey = TA\/—T(B’ 0,0, ~goo) (4.9)
—a3
o VigZ
€y = %i 0, =A@, A, 0)
where
2M wir?
- o)
A . 2 sin 8
2) 2uw?rsin? 8 [2B%r?sin® @
Aw = T [M+ e o(or - 3an) + 25 [ - 1]
. 2M . w? [2B%*?sin?6
Ay = 2rfcosfsing {2 (1 - —r—> A\B? + ¥ [———/\——— - 1} }
2 26
B = _‘*’T_:.;“_ (4.10)

These results are general. However, considerable simplification occurs in the above ex-

pressions when we specialize to orbits in the equatorial plane and, further, to circular

geodesics.
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4.2.1.1 Equatorial Plane

The black hole spacetimes have reflection symmetry about the equatorial plane, which
is represented by § = 7. By setting § = /2 in equations (4.4, 4.5 and 4.6) we

obtain,

(1 - 20 {A (s + B22(2r — 300)] + £ [28222 — 1]}

Ii2 = 2
he(-2) -
P (e LR R Wiy
Nr2 (32 (1 - ) o]
7 =0
e = L (1,0,0,)
T feay e
8?1) = (1 - g) %(0) 1107 D)
. 1 _E_T‘i _ 2( _ ?ﬁ{))
€2y T\/zl = QT—A’—’-) [/\2 (1 = %) — w;;-?] ( 2 ,0,0,-A° (1 - (4.12)

1
ety = 5= (0.0,1,0

One observes that 7, = 0 on the equatorial plane. This is in fact true for any plane
about which the spacetime has as reflection symmetry. Since 7 = 0, the gyroscope
precesses about e(3), ¢.¢. about an axis orthogonal to the orbital plane at a rate given

by 7.

4.2.1.2 Circular Geodesic Motion

In chapter 2 we have shown that the Frenet-Serret parameters s represents the mag-
nitude of the four acceleration of the particle. One can clearly see the fact that the
Frenet-Serret equations are not well defined for geodesics as a single curve. However,

one can define the geodesics as a member of a congruence for which the Frenet-Serret
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parameters are smooth functions on the spacetime. In such a case, geodesics are
defined as a limiting case & — 0; also, the corresponding Freret-Serret parameters 7
and 7, are well defined as it was shown in reference [43]. Here we study the circular
geodesics in the Erast spacetime. We consider the circular gecdesics as a member of 2
quasi-Killing congruence with suitable w. In such a case, circular geodesic motion can
be obtained as the limiting case when x vanishes. The Keplerian orbital frequency in

this case is given by

2 X

Y EA B

[M + B (2r - 3u)] (4.13)

As a liming case, since the ratio %l goes to zero as k — 0 indicates that m =0 for

geodesics and the ratio Ay /  is well defined in this limit, one can determine 7y and
it is given by

, _ (1-B¥Y)

T Taa

(M + B (2r - 3p1) (4.14)

As has been discussed in reference [43], we can now compute the total angle of gy-
roscopic precession A¢ with respect to a fiducial direction fixed in space, when the

gyroscope is transported along the orbit in one full revolution. This angle is

2
Ad = :;nf\/i +or

1 B2y ap [M + B2r2(2r — 3M)] ;
o [(‘T) J (-5 - ey e

l

In the next section we compute the inertial forces for circular trajectories in the
Ernst spacetime.
4.2.2 Inertial Forces in the Ernst Spacetime

Prasanna[G0] first computed the centrifugal force in the Ernst spacetime in order

to demonstrate the reversal of centrifugal force at photon orbits in the case of the
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Schwarzschild spacetime. Here we give the general expressions for the centrifugal

force and the gravitational forces for circular quasi-Killing trajectories in the Ernst

spacetime. For the sake of brevity, we shall leave out the intermediate steps and give

the final results. The gravitational force is given by

1 2MN\"?
Ge=-3 (1 - —T-> (0,91, 92,0)

where

I

A
o = [M + B¥?sin? (2r — 301)]

72
g = 2 (1 - %{> AB?r2cosfsinf
T

Similarly the centrifugal force is given by

Wt
Zy = m (0,21, 22,0)
where
sin? 8 2.2 52
a = - [(r ~ 31) = B**sin?6(3r — 51M)]
2
B = (l - ?—f_l{) %sinf)cos& (3B’r*sin? 0 — 1)

On the equatorial plane ( 8 = 7/2 ) these expressions reduce to

A .
no=5 [M + B*r*(2r - 381)]
g =0
so that
2N\t 1 2.2 .
Gi=— (1 - __> 7 [ M+ B¥2(2r - 301)] (0.1,0,0).
Similarly,
1 2,21 4
no= -5 [(r =381 = B**(3r = 541)]
L = 0

(4.16)

(4.18)

(4.19)
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so that \
2,.2(31 _ 3 M
2z = _[(r~3M) - B3 (3r 5M)]w (0,1.0,0) (4.23)
Ax (1-21)

In the following sections we obtain the gyroscopic precession and the inertial forces in

the Schwarzschild spacetime and in the Melvin universe as special cases of the Ernst

spacetime.

4.2.3 Gyroscopic Precession and Inertial Forces in the

Schwarzschild Spacetime

In this section we compute gyroscopic precession and inertial forces in the Schwarzschild
spacetime as a special case of the Ernst spacetime, by setting parameter B = 0. The
metric for the Schwarzschild spacetime can be written as,
. 21 .
ds® = (1 - J) as? — (—l—dﬁ — r2df? — r¥sin® 9dg>. (4.24)
T

1—w)

P

Where M is the mass parameter.

The Frenet-Serret parameters &, 1y, and 7, for circular orbits can be deduced form

equations (4.4, 4.5 and 4.6), by setting B=0or A = 1.

K
2 1

= 4.25
2K, (4.25)
2 (1—2¥) Ks 22
o= W;—Lu sin* 8 (4.26)
A2
T = mc—luﬂcoszﬁ (4.27)
where
2MN 1M, 9
Ky = (1 - —) r° [—2 — wrsin* g
r r

+  wirtcos® Psin 9 (4.28)
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2
Ky = [(1 - g) —w?r?sin® 9]

A " 5 12
Ky = [(—- — w?rsin? 0) (3M — 1) + rPuw?cos® 6] (4.29)

r2

In the equatorial plane, the above equation can be simplified and written as,

. o=

K (1 ST r2w2)2 (4.30)
1 — 3y’

’)“12 = wz(l—v(z—ﬂf:%;? (431)

% =0 (4.32)

The expressions for inertial forces in Schwarzschild spacetime can also be obtained

as a special case of the Ernst spacetime and are given by,

gravitational force

2MN\7TH, 1
o (1o L 4.
G = -(1-22) (0,500 (4.33)
and the centrifugal force is given by
z G (0,51, ,0 4.34
kK = A<l_¥)(1~17~27 ) ( )
where,
z = =—sin®8(r — 3M) (4.35)
= — <1 - 2—1?——[-) r?sing cos @ (4.36)
A = (1 - 27# — w?r?sin? 6) (4.37)

On the equatorial plane (§ = m/2) the centrifugal force reduces to
(r—3M)w?
(=% =) (-3

r

Z = - (0.1,0,0) (4.38)

From the above equation it is clear that both gyroscopic precession and centrifugal
force reversal occurs at r = 3A[. A more detailed study of reversal of gyroscopic

precession and centrifugal force is given in section 4.2.5.
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4.2.4 Gyroscopic Precession and Inertial Forces in the Melvin

Universe

The Melvin universe may be treated as a special case of the Ernst spacetime by setting

M = 0 and the spacetime metric is given by
ds* = \?[df? — dr® - r*(d6" +sin’ bdg?)] (4.39)
with,
A = 1+ B*?sin?9 (4.40)
As mentioned earlier, the Melvin universe represents a flat spacetime with constant
magnetic field.

All the relevant quantities can be read off from the formulae already given for the
Ernst spacetime by setting the mass parameter A = 0. We note that, because of the

inherent cylindrical symmetry, one finds 7, = O for all values of the angle 4.
Specializing to the equatorial plane 8§ = =/2, we have
2
. (2B (282 1))

X[y - egt)®

, _ wi(3BM2-1)

E
|

i - (4.41)
1 e = w2
©? =0
Further, for geodesic motion with x = 0 we get
2B2)\¢
2 4.42
Y T AT (4.42)
and
2B? .
= Y (l - B2r2) {4.43)
The gyroscopic precession for a full orbital revolution turns out to be

A = F2r {’\15 (1~ B%2) (1 - 3B%2) — 1} (4.44)
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Gravitational and centrifugal forces in the Melvin Universe are found by setting,

as before, A/ = 0. So,

2.
Gy = —~:\-Bzrsin 8(0,1,rcos8,0)
w? sin §
Z. . wsmy
k AN — w2r2sin 6]
(0, [r ~ 3B%*r%sin? 6] ,rlcosf [‘.ZBZT2 sin® 6 — 1] ,O) (4.45)

On the equatorial plane, these reduce to

2
Gr = -Qir(o,ho,m
w? (r — 3B%r%)
Z, = W\ ToBT 0 4.46
k /\(/\4—0.)27'2) (O’ 17 ,0) ( )

In the next section we study the reversal of centrifugal force and gyroscopic pre-

cession in the Ernst spacetime.

4.2.5 Reversal of Centrifugal Force and Gyroscopic Preces-

sion in the Ernst Spacetime

One of the interesting results that emerged from the generalization of inertial forces to
the gencral theory of relativity is the reversal of centrifugal force. In the last chapter
we have proved the theorem on the simultaneous reversal of gyroscopic precession
and centrifugal force in static spacetimes. In this section we shall demonstrate this

interesting result in the case of the Ernst spacetime.

4.2.5.1 Centrifugal Force
In order to study the reversal we write the centrifugal force as follows,

Zx = CrZi, (4.47)
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where Z is the unit vector in the conformal space with the metric hi. On the
equatorial plane, to which earlier calculations by other authors have been confined
to, this reduces to

7= (1 - 31}{)—1 (0,1,0,0) (4.48)

and
Cr = 5{(1-21) - B2 (3—%)%,2
S R PR

This agrees with the expression derived by Prasanna in reference [60] making use of

(4.49)

a formalism developed earlier than the one presented in [2] which we have followed.
Reversal of centrifugal force in the Ernst spacetime has been discussed in detail in
reference [60]. As in the case of the Schwarzschild spacetime, this reversal occurs
where there is a circular photon orbit. In the Ernst spacetime, depending upon
the value of BM, there can be one, two or no circular photon orbits. Accordingly,

centrifugal force can also reverse at these circular null geodesics. The condition for

the existence of such a null geodesic is given by
3(BM)R® - 5(BM)*R* - R+3=0, (4.50)

where R = r/M. It can be shown that this equation gives the location of centrifugal

reversal as well.

By setting the parameter B = 0 we get the reversal condition for the Schwarzschild

spacetime. The magnitude of centrifugal force takes the form,

- 3M)w? -
[( (i Z_mg _)wz,.z] ’ (4.51)

T

Cr =
Also, the condition for circular null geodesics is given by,
r=3M (4.52)

The reversal in the Melvin universe can also be studied by setting 3 = 0. We

find that centrifugal force reverses in the Melvin Universe at r = —

V3B®
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Figure 4.1: Plot of 77 and C7 as functions of R for BA = 0.05 and 0.095 in the Ernst

spacetime.

4.2.5.2 Gyroscopic Precession

Gyroscopic precession along the equatorial orbits in the Ernst spacetime is given by
7y of equation (4.23). The orbit at which the precession reverses sign can be located
by equating 7, to zero. With some algebra it can be shown that this yields exactly
the condition (4.50). Gyroscopic precession therefore reverses at the cireular photon
orbits as in the case of the centrifugal force. We note that this reversal is independent
of the value of w. Figure 4.1 shows plots of functions 7} and Cp which are equivalent

respectively to 7; and Cg with the w dependence factored out. Thus,
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Figure 4.2: Plot of 7} and C} as functions of R for B = 0.05 and 0.095 In the Melvin

universe.
T o= amn
! 2\ (2B*M2R? 1 2 rr2 2
= /\R{l E)(——X————I)R—X[lJf-BMR@R—:})]
Cr = (WM)'aCr (4.53)
— _Ii _ 3 2822 5
- ,\3{(1 R)_BMR (3"1?5)}
where,

o= (w,\z)—l [/\4 (1 - ?;:£> - erQ} (4.54)
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Agalin, in the special case of Melvin Universe (M = 0) the above formulae reduce

to,
o= Bn
= (3B**-1)
Cr = w'BCr (4.55)
= (B -1)
where,

B=w (A - w¥?) (4.56)

Gyroscopic precession, as in the case of centrifugal force, reverses at r = 7%—

Figure 4.2 shows examples of this phenomenon for some values of B.

So far in this section we have emphasized the simultaneous reversal of gyroscopic
precession and centrifugal force in static spacetimes. As we have seen in the last chap-
ter, the description becornes more complicated in the case of stationary spacetimes.
Neither centrifugal force nor gyroscopic precession reversal occurs at the circular null
geodesics. Also, there are two circular null geodesics corresponding to co-rotating and
counter-rotating orbits. In the next section we study the phenomena of gyroscopic
precession and inertial forces in stationary spacetimes, by taking specific examples

such as the Kerr-Newman spacetime.

4.3 Gyroscopic Precession and Inertial Forces in

the Kerr-Newman Spacetime

In the case of a stationary spacetime, the inherent rotation of the spacetime man-

ifests as inertial frame dragging and plays an immportant role in the phenomena of
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gyroscopic precession and the general relativistic analogues of inertial forces. As
has been shown in the last chapter, due to the effect of frame dragging a gyro-
scope transported along the stationary observers undergoes precession. Similarly,
Coriolis-Lense-Thirring force is non-zero in a stationary spacetime, which gives ri_se
to interesting results. In the last chapter we have seen that, in the case of stationary
spacetimes, the gyroscopic precession is related to a combination of centrifugal and
Coriolis-Lense-Thirring force. This leads to the fact that the simultaneous reversal of
gyroscopic precession and centrifugal force does not occur in stationary spacetimes.
In this section we study the gyroscopic precession and inertial forces for circular

quasi-Killing trajectories in the Kerr-Newman spacetime as an example of stationary

axially symmetric spacetimes.

The Kerr-Newman metric represents a charged Kerr solution. When the charge @,
is set to zero, we obtain the Kerr spacetime as a special case. The Reissner-Nordstrom

solution is a special case of the Kerr-Newman solution when the angular momentum

parameter a is zero.
The spacetime metric for the Kerr-Newman solution can be written in the form,
ds* = (1 - E) df? + Elgin? fdid¢ (4.57)
2 b))
9 pa? . 5 z ;
- a® + 7% + —=-sin? 9) sin? 8d¢® — Zdr? - Sd¢?
= A
with Af and @ being mass and charge respectively, and
o= 2Mr-@?
A = rr-2Mr+add+@? (4.58)
= r’+a*cos’h
The black hole or the null surface in the case of Kerr-Newman solution is repre-
sented by the equation,

r2—2MrLa?+Q? = 0 (4.59)
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on which the irrotational congruence defined by the equation,

Ca - €a - fbr)b na
NNe

becomes null. The stationary limit is defined by the surface on which the timelike

Killing vector £* becomes null, which is given by the condition,
T2 = 2Mr +a? cos?0+Q? = 0. (4.60)

Next we compute the gyroscopic precession and inertial forces in the Kerr-Newman

spacetime.

4.3.1 Gyroscopic Precession

By making use of the formulae given in the last chapter we can compute the Frenet-
Serret quantities for a given circular orbit of fixed but arbitrary values of 7,0 and w.

Thus

K
: 1
i TK,
'rf = Ei’f}éz sin® @ (4.61)
K .
o= N;'Cl cos® @
where
A ot 2 o)
K= Al (l — wa sin’ 9) ~ wrsin® 4
912
+ sin’@cos?d [wZA + % {(1'2 + az) w - a}z} (4.62)
12
K = [1 - sin® 0 (7 4+ @) - £ (1= wasin? 0) l] (4.63)
A 5\ . ”
Ky = HE (1 - wa sin? 9)2 — w?rsin® 0} .

{wr - %T— (l — wasin® 0) - E:}ﬁ (1 — wasin® 0) [(7-2 +(L2)L/J - (L]}
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+ cos’é {w'zA + E#Z- [(rz +a?)w- a]z}
{%% (1 — wasin? 9)2 - w}r (4.64)
Ky = [wua'f sin? 4 {(az + rz) w— a} — Aw (1 ~ wasin® 9) (7‘2 + a2)
+ u_;\:a (l — wasin? 9)2}2 (4.63)
and

e=r2—qa’cos?ld, X=Me—Q (4.66)

The components of the bases are given by,

N 1

6(0) = ﬁ(l,0,0,w)
. 1
ey = ~570 g Aqy, 9% A, 0)
1 -
ey = ——————(B,0,0,-C) (4.67)
@ 7 VAR,
a Voig?
el = gnA (0, A2y, Ay, 0)

where Ay, A2, B and C given as

~
1l

1 —w?sin®g <r2 +a2) - % (1 — wasin® 9)2

A
Ay = 25 (1 ~ wasin® 9)2 — wrsin® 8

)

Ap) = —2cosfsind [sz + % {(F+at)w- a}z] (4.68)
B = ﬂglﬁ (1 — wasin? 9) —wsin®8 (rz + az)
C =

1——;—(1—wasm29)

The above formulae simplify when we specialize to trajectories lying in the equa-

torial plane, especially, to geodesic orbits.
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4.3.1.1 Equatorial Plane

We take # = m/2 so that the Frenet-Serret scalar simplifies to,
, A B -Q)(1-wa?-wtr)
r? [ —w?(r? 4+ q?) — (%{—Cz—;) (1 —wa)2]2
o e () (#52) e (-
2 {1 —w? (r? + a?) - (2—1‘—%}‘2) (1- wa)g}

2 =0 (4.71)

(4.69)

2

The base components can be written as,
1
eoy = (1,0,0,w)

\/[1 — w2 (r? 4 g2) ~ (m:..gz) (1- wa)z]

A
ey = 150,100

([(-——J—z”:; 2) (1-wa)a—w(r®+ az)] ,0,0— [1 - (M) (1- WG)D

2

o= \/{A [1 —w?(a? +r?) - (2—2—9—“:7 2) (1- wa)z}}
dy = =(0,0,1,0) (4.72)

Since 7, = 0, the gyroscope precesses about the vector egs), that is, about the axis

orthogonal to the orbital plane, at a rate given by 1.

4.3.1.2 Circular Geodesics

The special case of circular geodesic motion results in the limit of vanishing x. The

geodetic orbital frequency w is given by,

T
-1 7 '
W=k —— 4.73
Mr—Q? ( )
The precession rate 7, which is finite in this limit, is,
. Mr—Q?
= M= (4.74)

rd
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As has been outlined in reference[43] the total angle of gyroscopic precession A¢
can be computed relative to a fiducial direction fixed in space when the gyroscope is

transported around the orbit in one full circle. This angle is given by

Ad

2
?n—}ﬂ +or

F2m Hl +% ﬂTT_:Qz_ — (3pr - 2Q7%) %} - 1} (4.75)

it

4.3.2 Inertial Forces in the Kerr-Newman Spacetime

The formalism developed in reference {2] and summarized in the previous subsection
can be applied to the Kerr-Newman spacetime in a straightforward manner. Results
pertaining to the Kerr and the Reissner-Nordstrom spacetimes may be deduced by
setting Q = 0 and a = 0 respectively. The forces in the Kerr-Newman spacetime for

circular orbits with fixed but arbitrary values of r,8 and w are as follows.

Gravitational force

1
Gk = _‘K (0’ 91, 92, 0) (476)

where,

A {r ~ Zra’sin’ 9}
{(r2 +a?) + £a?sin’ 9}
ula? (r? + a?) sin cos §

= - (4.77)
g E{(ﬂ +a) T + uasinza}

qg = (T—M)—

Coriolis-Lense-Thirring force

w -
Cv=-2G. (0,1, ¢2,0) (4.78)
where,

W = w- pa -
[Z (2 + a?) + pa?sin” 9}
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Gy = (1‘2 + az) + %az sin?@ (4.79)
- Ao, s HT in?
6 = 2{§§(r +a)+-§ asin®f
A
c = —2—E~é£a3 sin® @ cos ¢
Centrifugal force
W2
Zy = v {0,21,2,0) (4.80)
where,
in’# A
2 = sn; [(r - M) {('r2 + a2) + %az sin? 9} —2A {r - Eaz sin® 0}}
zy = —sinfcosd {(r2 + a2) + %az sin® 6 [2 (r2 + az) + E]} (4.81)

As usual, on the equatorial plane (@ = 7/2) these expressions simplify to

_ (T - A{) {(7-2 +a2) 2 + (2]”7‘ - Q2) 0.2} _ %{TA _ (AIT _ Qz) ag}
G = A{(r? +a?) 2 + M1 - Q*) a?} (0,-1,0,0)

(4.82)
20 W Mr - Q2 Mr — Q2
Ch = Sg {( rrsQ )a2+ (i‘_’ir_i)}(o,—m,m (4.83)
2
Zy = —yﬁ—(O,:l,0,0) (4.84)

where,

7= $ [(r -M)r {(r"2 + a2> 24 (2Mr - Q2> a.'l} —2A {r‘1 - (Mr — Q2> az}]
(4.85)
As mentioned carlier, by setting the charge paramecter @ to zero in the Kerr-
Newman solution, one obtains the Kerr solution. In the next section we obtain
the gyroscopic precession and inertial forces in the Kerr spacetime by setting the

parameter ) = 0 in the above results.
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4.4 Gyroscopic Precession and Inertial Forces in

the Kerr Spacetime

The Kerr metric is one of the most important solutions to the Einstein equations from
the astrophysical point of view[47]. It represents a vacuum solution with a rotating

black hole. The spacetime metric for the Kerr solution in Boyer-Lindquist form can

be written as[18],

ds? <l _ 2Mr 2Mra

5 sin? fdtds (4.86)

)dt" +

Mra® T
(a2 2T 20 n? gt~ Zar? — Dde?
z A
with M and a being mass and angular momentum parameter respectively, and

A 2 — 2Mr +a® (4.87)

= 7%+ g?cos?f

The gyroscopic precession in the Kerr spacetime was studied in detail by Iyer and
Vishveshwara[43]. Here we obtain these result as a special case of the Kerr-Newman
spacetime by setting the parameter @ = 0. We also study the inertial forces in the

Kerr spacetime using the formalism given in reference[2].

4.4.1 Gyroscopic Precession

By setting the parameter Q = 0 one gets the values of x, 7, and 7 for the Kerr

solution from the Kerr-Newman case which can be written as,

wo= Elfcl
2
AK

2 3 -2

= sin” 6 .

‘r1 TR, sin (4.88)
K 2

r§ = ! cos®h

5K,
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where
Ky = A [E/\; (1 — wasin? 9)2 — w?rsin? 9] 2
+ sin®@cos?8 [sz + 22? {(r2 + az) w— a}q2 (4.89)
Ky = {1 —w?sin® g (r2 + az) - 21_12_1_[ (1 — wasin® 9)2]2 (4.90)
Ks = [{-;\—Z (1 — wasin? 0)2 -w2rsin29}-
{wr - ZA.{EWTZ (1 — wasin® 9) - :2/\—2 (1 — wasin? 9) [(TZ + a2) w~ a]}
+ cos?d {wQ\ + Qgr [(r2 + az) w— a]z}
{2]:_{,:0' (1 — wasin® 6)2 —w}r (4.91)
Ky = {211[war2 sin® @ {(a2 + 7_2) w— a} —dw (1 — wasin? 6) ('r2 + ag)
2
+ 2‘”\:/\{1 (1 — wasin® 6)2]
and

e=1%2—a’cos?8, A= Me. (4.92)

The components of the bases are given by,

where A,

: 1
o = 77(1,0,0.0)
1 "
ey = —m(o,g“A(l),g”A(g),o)
1
ety = —=——=—(B,0,0,~C) (4.03)
(2) \/71 /_AB
" ValgZ
€y oA (0, = Ay, Ay, 0)

, A2y, B and C given as

2*1” (1 — wasin? 6’)2‘

P

A = l—wzsin29(7'2+n,2) -
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Ay = 2% (1 — wasin® 9)2 - 2w?rsin®0

A@y = —2cosfsinf [wZA + %r_ {(T2 + az) W= 0}2} (4.94)
B = 2Ma1;in2 é (1 — wasin? 9) — wsin?f (7.2 + az)
C = 1- 211,17— (1 — wasin® 6’)

As usual, the above formulae assume simpler forms when we specialize to trajec-

tories lying in the equatorial plane, especially, to geodesic orbits.

4.4.1.1 Equatorial Plane

We take § = 7/2 so that

fc2 - Al‘]z {(aw - 1)2 - r_x.‘!’.::}z > (495)
™ {1-wt(r? +a?) - (1 - wa)’}
2
e {wr - 2M (1 —wa)w ~ (f—f) (1 Twa) {r* + GZ):J - a}} (4.96)
2 {1 —w?(r?+a?) - (Z—f-’-) (1- wa)z}
7w =0

- L (1,0,0,w)

A \/[1 —w?(r?+a?) - (%{) - ua)z]

5l

et =(0,1,0,0)

o - ((B)a-waa-wira 00-1- ()0 -wa)

€ = \/{A [1 —w? (@ +r?) — (Z—fi) (1- wa)z}}
; (0,0,1,0)

I

el

As before, since 7, = 0, the gyroscope precesses about the vector e@), that is,

about the axis orthogonal to the orbital plane, at a rate given by r.
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4.4.1.2 Circular Geodesics

The special case of circular geodesic motion results in the limit >f vanishing «. The

geodetic orbital frequency w is given by

-1 r3
wl=ax T (4.98)

The precession rate 71, which is finite in this limit, is

T = — (4.99)

As has been outlined in reference[43], the total angle of gyroscopic precession A¢
can be computed relative to a fiducial direction fixed in space, when the gyroscope is

transported around the orbit in one full circle. This angle is given by

A¢

2
:FTerr\/-/_‘t + 27

i

For (1—§£i2a 5—5—) -1 (4.100)
T Ia

4.4.2 Inertial Forces in the Kerr Spacetime

Forces in the Kerr spacetime can be read off from the formulae given for the Kerr-
Newman metric by setting (2 = 0. For the sake of simplicity we shall consider only
the equatorial orbits (§ = m/2). Chakrabarti, Prasanna and Sai Iyer have discussed
centrifugal force in the Kerr spacetime {45, 20]. They have made use of an earlier
formalism developed by Abramowicz, Carter and Lasota (1], which considers the
forces in the quotient space orthogonal to the timelike Killing vector £2. On the other
hand the formalism of reference[2], which we are employing, defines the quotient space
orthogonal to the irrotational vector ficld nf. The advantage of the latter formalism is
that n! is timelike all the way down to the event horizon and the n! congruence, being

globally hypersurface orthogonal, defines observers who measure and synchronize the



chapterd 107

global time ¢. They are the general relativistic analogues of the Newtonian rest
observers [35]. Thus in the present formalism the forces in the Kerr spacetime for

equatorial orbits are given by

G = (r— M) {(r* +a®) r +2Ma*} - 2{r® - Md®}
* A {(r? +a?) r + 20 a?}

(0,-1,0,0) (4.101)

o oW M o, 4102
G = Agg{r2a +3M}(0,-1,0,0) (4.102)
. 2
Zk = WT(O’ZL’O’O) (4103)

where

A = rt4a?-2Mr

A = 1—-w2(r2+a2)—¥(1—-wa)2

G = (P+a)+ My (4.104)

-
_ 2Ma
(r? + a?)r + 2Ma?

P 31;5 [(r - M) {(*+ )’ + 2Mra’} - 28 {r* - Maz}]

2
|

Another important special case of the Kerr-Newman solution is the Reissner-
Nordstrom spacetime. In the next section we present the expression for gyroscopic

precession and inertial forces in the Reissner-Nordstrom spacetime as a special case

of the Kerr-Newman spacetime.

4.5 Gyroscopic Precession and Inertial Forces in

the Reissner-Nordstrom Spacetime

The Reissner-Nordstrom solution is a spherically symmetric static solution with a

charge @. It reduces to the Schwarzschild spacetime when the charge is zero. It is
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a special case of the Kerr-Newman solution, where a — 0. The Reissner-Nordstrom

metric can be written as,

20 Q2 AN ,
ds? = {1-"" 4 -Q— d2—{1- M + Q— dr? =72 (dr? +sin? 0d¢?) (4.105)
T 2 r re

Here, we study the gyroscopic precession and the inertial forces in the Reissner-

Nordstrom spacetime.

4.5.1 Gyroscopic Precession in the Reissner-Nordstrom Space-

time

Gyroscopic precession in the Reissner-Nordstrom spacetime can be deduced directly
by setting a = 0 in the result derived in the case of the Kerr-Newman metric. For
the sake of brevity we shall confine ourselves to the equatorial plane and specialize

to geodesic circular orbits. In the equatorial plane, § = 7/2 , we have

-2 ) {2 (30 2) -]
[1—w+%2-—w2r2]2
M 2072
o= -2 +5) S (4.106)
(1—-2—2’—-{-%2—w2r2)

T; = 0

w = (M - 91) L (4.107)

In this limit the gyroscopic precession rate about the axis perpendicular to the orbital
plane simplifies to

n=uw (4.108)
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the Keplerian orbital frequency. The gyroscopic precession angle for a complete or-

bital motion is then
1
A 2Q%\
Ad=—2r {(1 M _Q_> _ 1} (4.109)
T

4.5.2 Inertial Forces in the Reissner-Nordstrom Spacetime

When the Kerr-Newman angular momentum parameter a is made zero, we get the
results for the Reissner-Nordstrom spacetime. In a static spacetime the Coriolis force
reduces identically to zero so that we are left with only the gravitational and the

centrifugal forces. Once again, we confine ourselves to the equatorial orbits and write

down these forces:

_ r=mir-A 4110)
Gy = A (0,~1,0,0) (
w? T 5
Z = ———————-—(0.— —r2 4 3Mr 42 ,o,o) (4.111)
k 1__21:_’_'_%3_&]2,.2 'A[T Q}

In the next section we study the reversal of gyroscopic precession and centrifugal force

in the Kerr-Newman spacetimes.

4.6 Reversal of Gyroscopic Precession and Cen-

trifugal Force in the Kerr-Newman Spacetime

As has been shown in the last chapter, in stationary spacetimes the simultaneous
reversal of gyroscopic precession and centrifugal force does not takes place. This
is because of the fact that the gyroscopic precession depends on both centrifugal
force and Coriolis-Lense-Thirring force. In this section we study these phenomena

in the Kerr-Newman spacetime as a typical example of stationary axially symmetric

spacetimes.
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Figure 4.3: Plot of 1, Ck, G¢ and Z; as functions of R in the Reissner-Nordstrom

spacetime.

In the casc of the equatorial orbits, gyroscopic precession reverses when 7y changes
its sign. This orbit can be located by the condition 7 = 0. From equation (4.70) for

¢ we get then
wrt — (207 - QI (1 - wa)wr? = (AMr — Q*)(1 - wa) {(7'2 +a?)w — a} =0 (4.112)

The roots of this equation depend on the value of w. This is so in the case of Kerr
spacetime as well when @ = 0. In the case of Reissner-Nordstrom metric (a = 0) the
root is independent of w. From equation(4.84) we may locate the orbit for which the

centrifugal force reverses by the condition C, = 0. This leads to an equation which
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7,.6,.C, and 2,

Figure 4.4: Plot of 71, Ci, Gx and Z; as functions of R in the Kerr spacetime for the

angular momentum parameter @ = 0.1 and w == 0.1.

is independent of w:
(r = M) {( + a2+ 2Mr - Q1a} — 28 {r' = (Mr - Q%a?} =0 (4113)

Thus, whereas the centrifugal force reversal is independent of w, reversal of gyroscopic
precession is not. The orbits where these two reversals occur do not coincide in
general. Nevertheless, in the case of Reissner-Nordstrom metric both gyroscopic
precession and centrifugal force reverse at the same location, namely at the circular

photon orbit. as they should in an axisymmetric static spacetime{537]. This orbit
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s
o
T
1

“gE
04 —
b ) Lo —
0 0.2 0.4 0.6 a.B 1

Figure 4.5: Variation of 7y, Ck, Gi and Z; as functions of angular momentum param-

eter a in the Kerr-Newman spacetime with 2 = 3M, @ = 0.1 and w =0.1.

oceurs at
__ 3M £ JOITT 8P

5 (4.114)

The above considerations are reflected in the plots of 7 and Cy, in the figures(d.3-

4.6).
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Figure 4.6: Variation of 7, Ci, G¢ and Zg as functions of angular charge @ in the

Kerr-Newman spacetime with R = 3M, ¢ = 0.1 and w = 0.1.

4.7 Conclusions

Based on the detailed derivations of reference [57] we have discussed gyroscopic pre-
cession in the Ernst spacetime for circular orbits. We have also considered the general
relativistic equivalent of centrifugal force as defined in reference [2]. These results are
quite general in the sense that orbits need not be confined to the equatorial plane
and the angular spced of the orbiting particle is arbitrary. By setting the mass pa-
rameter of the Ernst spacetime equal to zero, the Melvin universe can also be treated

as a special case. Substantial simplification occurs if the orbits are taken to be in the



chapterd 114

equatorial plane and even more so if they are geodesics. Centrifugal force in the Ernst
spacetime has been studied in reference [60] utilizing an earlier formalism. Our results
agree with those presented in [60]. The main interest of [0} was the centrifugal force
reversal at the photon orbits. In the context of the Schwarzschild spacetime, it had
been argued on qualitative grounds that gyroscopic precession must also reverse at
the photon orbits. Quantitative calculations have borne out this conclusion. Once
again, in the Ernst spacetime we show explicitly that gyroscopic precession, just like
centrifugal force, reverses at the photon orbits. We may note that, since such null
geodesics are confined to the equatorial plane, reversal cannot occur elsewhere. This
fact can easily be ascertained from the formulae we have derived for the orbits that
are off the cquatorial plane. Depending on the magnitude of the product of the mag-
netic field and the mass parameter, there can be one, two or no photon orbits in
the Ernst spacctime. Gyroscopic precession and centrifugal force have been plotted
in some typical cases. The Melvin universe, a special case of the Ernst spacetime,
admits a single photon orbit the location of which is inversely proportional to the

magnetic field. Reversal of the two effects have been considered in this case as well.

We have derived detailed formulae describing gyroscopic precession along the cir-
cular orbits in the Kerr-Newman spacetime. The Kerr and the Reissner-Nordstrom
metrics have been treated as special cases by setting ¢ and a equal to zero respec-
tively. These forrnulae simplify significantly for orbits in the equatorial plane, es-
pecially when they are geodesics. We have also cousidered the general relativistic
equivalents of inertial forces as defined in reference[2]. They are with reference to
observers following a timelike globally hypersurface orthogonal congruence. As has
been pointed out in reference [35], they form the general relativistic analogues of New-
tonian rest observers. Further, as has been discussed in reference [43], the connecting

vector of this congruence undergoes Fermi-Walker transport and hence is locked on to
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a gyroscope. Consequently, it is natural to study the precession of gyroscopes as seen
by a Frenet-Serret frame using such a congruence. The dependence of gyroscopic
precession and the inertial forces on a and Q has also teen studied. As has been
discussed in reference(57], in static spacetimes, e.g. Reissner-Nordstrom, only gravi-
tational and centrifugal forces exist. Both gyroscopic precession and centrifugal force
reverse at the photon orbits simultaneously. In the case of stationary metrics, e.g.
Kerr-Newman, the situation is more complicated. Coriolis force is also present now.
Whereas in the case of these two inertial forces, w stands as an overall multiplicative
factor, it. enters into the precession formulae in a more complicated way. Therefore,

the reversal of centrifugal force is independent of w but it is not so in the case of

gyroscopic precession.



Chapter 5

Inertial Forces and Einstein’s

Equations

5.1 Introduction

In the last chapter we have established direct relations between the phenomena of
gyroscopic precession and inertial forces. It has also been shown that, both gyroscopic
precession and centrifugal force reverse at circular null geodesics in static spacetimes.
For example, this occurs at R = 3M in the case of the Schwarzschild spacectime.
Therefore, these phenomena are important in the case of black hole solutions and
compact objects whose radii lie within the circular null geodesics. Iyer, Vishveshwara
and Dhurandhar{44] in fact showed that such ultra compact configurations are possi-
ble and are stable within the framework of general theory of relativity. The centrifugal
force reversal might influence the equilibrium configurations of such ultra compact
objects. Equilibrium configurations of relativistic fluids is of considerable importance
in astrophysics, since they represent compact objects such as neutron stars. The ro-
tation induces interesting as well as intriguing effects on equilibrium configurations

of relativistic fluids. One such interesting effect in the case of slowly rotating con-
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figurations was first observed by Chandrashekar and Miller{21, 35]. Their studies
showed that the ellipticity of a slowly rotating configuraticn increases to a maximum
value and then decreases with the decreasing radius, whereas in Newtonian grav-
ity the ellipticity is a monotonic function of the radius of the star. Abramowicz and
Miller[12] suggested that this is due to the reversal of the general relativistic analogue
of centrifugal force. Using the centrifugally corrected Newtonian equations they re-
produced the phenomenon of reversal of ellipticity behavior of relativistic Maclaurin
ellipsoids. Gupta, Iyer and Prasanna[36, 37} investigated the behavior of ellipticity
and centrifugal reversal for slowly rotating perfect fluids with various equations of
state. They used the formalism developed by Hartle and Thorne[39, 40], where rota-
tion is treated to the first order. In order to understand the influence of centrifugal
force and its reversal on such compact objects, it would be advantageous to have a
general treatment, in which we express Einstein’s equations for an axially symmetric
stationary system in terms of inertial forces. In this chapter we establish direct co-
variant relations between inertial forces and Einstein’s equations with a perfect fluid
as the source term. This formalism might be useful in understating the existing axi-
ally symmetric stationary solutions in terms of relativistic analogues of inertial forces.
Also, in particular, one might be able to study the equilibrium configuration of slowly

as well as rapidly rotating ultra compact objects.

In oder to establish direct relations between inertial forces and Einstein's equa-
tions, we use the Geroch formalism. It is well known that for a spacetime admitting
Killing vectors the Einstein equations can be simplified by projecting the field equa-
tions on the lower dimensional manifold defined by the space of trajectories along
the Killing vector fields. We use the field equations in the Geroch formalism[32, 33].
If the spacetime admits one Killing vector, the field equations can be projected on

to a three-dimensional manifold. The details of the formalism for cne Killing vector
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case(general stationary spacetimes) are given in appendiz A. In this formalism the
vacuum field equations are expressed in terms of the norm and the twist(vorticity)
of the Killing vector field. In section 5.2 we describe the Geroch formalism for the
case of two Killing vectors[33]. In this case the Einstein equations are simplified on
the two-manifold S, defined by the infinetisimal two-surfaces which are everywhere
orthogonal to the two-surface formed by the commuting Killing vectors. In this case
the field equations are further simplified in terms of scalar products of the Killing
vector fields €2 and n°. In section 5.2.1 we specialize this formalism to the case of
axially Sym;netric stationary spacetimes. .In this case, the elements of S are surface
forming and the two-manifold § can be represented by one of such surfaces. The Ge-
roch formalism has been extended for gravitational fields with matter field by Hansen
and Wincour{38]. Their formalism is outlined in appendiz B. In section 5.3.1, we spe-
cialize this formalism to the case where the source is described by a perfect fluid. We
establish direct relations between inertial forces and Einstein’s equations in section
5.4. In order to establish these relations, we first express the Einstein equations in
terms of scalar potentials which define the inertial forces. We also show that inertial
forces are also vector fields on the two-manifold S on which the field equations are
defined. In section 5.4.2 we express the field equations for source free spacetimes
in term of inertial forces. The field equations with a perfect fluid source in terms
of inertial forces are given in section 5.4.3. Finally we end the chapter with a few

concluding remarks.

5.2 Einstein’s Equations with Two Killing Vectors

For a spacetime admitting Killing vectors, the field equations can be simplified in

terms of the norm and the twist of the Killing vectors. The formalism given by
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Geroch for spacetimes admitting one Killing vector is described in appendiz A. The
formalism given in the last section can be further simplified for spacetimes with two
Killing vectors. In this section we briefly describe the Geroch formalism with two
Killing vectors. First we outline the general formalism ar.d then specialize to the case
of axially symmetric stationary spacetimes where the convection is assumed to be

Zero.

. . _free
Let M be a four-dimensional manifold with metric g satisfying the source-fre

Einstein’s equation represented by,
Ry = 0.
Let the metric g, admit a pair of Killing vectors £* and 7°, which commute:
£Vt — PV = 0, (5.1)

where V, is the covariant derivative on spacetime manifold M. In this chapter we use
the (~, +, +, +) signature for the metric tensor. Since the Killing vectors commute,
0ne can construct the canonical coordinate system in which the metric depends on
only two independent variables. If one constructs a two-manifold S, with independent
variable, then the metric and the Killing vector can completely describe the manifold
S. Asin the case of one Killing vector, here also one can express the field equations on

the two-manifold S. The formalism was given by Geroch(33]. We briefly summarize

the general formalism as given in reference {33] and apply it to axially symmetric

stationary vacuum fields.

Since the Killing vector fields, £* and n° are commuting, one can construct two-

surfaces spanned by these Killing vector fields. The two-manifold S is generated by

the infinitesimal two-surface which is orthogonal to the surface formed by the Killing

vector fields £ and n° at egch point in the spacetime. As in the case of one Killing
vector field here al

80 we define the tensor field T“'j,'f_d on S which has one-to-one
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correspondence with the tensor field T7%;¢, on M. A tensor field T*;¢, on M can be

related to a tensor field 7%;°, on & which satisfies the conditions

T = 0, - £T%%, = 0,

1T = 0, - niT%%, = 0, o2
LT = 0
£,T%% = 0

Also, [ is a scalar field on S which has one-to-one correspondence with a scalar u on
M if,
‘{‘17)# = ff# = 0’ (53)

‘We write the inner product of Killing vectors as,

A = £, (5.4
0); = £ (5.5)
A= 7", (5.6)

It is easy to show that the scalars 6\0, 6\1 and ;\1 are functions on &. If we assume

that the surface spanned by the Killing vectors &% and #° is timelike, then we have
the scalar

2 = 2 -

= 2]\ AA] >0 (5.7)

The metric on the two-manifold § can be expressed in terms of the Killing vector

fields €% and 1%, and their scalar products as follows,
hap = Gab + 2772 (\‘ Euby + 2772 (Il\() Nellb — 4r7? (’)\‘ f(arlb) (58)
and the antisymmetric tensor in this case is given by,

1 .
€ap = 25T—1€nbcd£c7)d' (59)
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The derivative operator DE, on S can be defined using the two-metric and the

covariant derivative V, on M as,

DT, = hih2,---higp -~ RV TS0 (5-10)

n

The derivative operator satisfies all the conditions for the derivative operator listed

in Appendir A. In particular one can see that
Dyhy =0 (5.11)

The source free field equations are expressed in terms of the twist and norms of

the Killing vectors. The twist fields for the Killing vectors can be defined as,

é‘Djn - fadefchfd (512)
1

Wt = §Eabm (&6Vema + mVLa) (513)

g}‘1):1 = éandﬂchTld (514)

In a general spacetime with two Killing vector fields, the twists defined above need
not satisfy the conditions (5.2). This indicates the fact that w, w and w are in
general not vector fields in the two-manifold S. By projecting these twists using the

operator (5.8), one can obtain the corresponding vector fields on S. We define the

projections of twists on to S as,

o= R (5.15)
o b6

Vo= pe b {5.16)
01 b o1

Vo= hg b (5.17)
11 i1

In addition. we also define two constants Cy and C, as,

CO = Eadefanbvcfd (518)

Ci = V. (5.19)
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For spacetimes which satisfy the source free field equations, one can show that Cy and
C are constant. These constants represents convective flows. One can show that the
vanishing of both constants Cy and C| is a necessary and sufficient condition that the
infinitesimal two-surface orthogonal to the two-surface formed by the Killing vectors

are surface forming{35], i.e. the Killing vector fields satisfv orthogonal transitivity.

The vector fields v, v and v are defined on the two-dimensional manifold S.
00 133 11

Their derivatives with respect to D, can we simplified to,

Dle ;”1 = 278 [Cga\ — CoCr )] e® (5.20)
1., ‘ ,
[e 6] _ Zo-3. -1 2 _ 2 ab
Dl = samir [Cia - C2a]e (5.21)
[a Bl . 9-1,-1 2 ab
ple ) = 27ir [cgclz\l C? o\]f (5.22)

One can also show that the divergence of the twists are zero in the case of source

free field equations(RRe, = 0),t.¢,

D*y, = D*v, = D*v, = Q. (5.23)
11

00 o1

The derivatives of the Killing vectors now can be expressed in terms of their twists

and norms as follows,

1 -1 ¢, ,d -
Vb = 55\0 €acal® W + A lflbDal;\u (5.24)
1, . - .
Vo = A beaea® W'+ AT Dy ) (5.25)

Here we use the fact that the Killing vector €% and 5* are commuting, hence we
have the identity,

D) = EVan = 1V (5.26)
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Using the equations (5.24) and (5.25) one can write the vector fields ;{)“, 5“ and ﬁ“

in terms of the scalar products of the Killing vectors as,

= 9%5.~1ab ;
o= 2t aan )+ AD )]
e o= lobiew [FAD A+ ADs Al (5.27)
o1 2 i1 00 Q0 11

Vo= Q%T—lﬁab[—)\Dbx\ + ADb)\],
11 oL 01

u 1

Taking the derivatives of the v’s from equation (5.27) and multiplying with € we

get,
6 _ ol bT.~1 _ bl ~1 .28
o DPv* = 28 ADY[rIDy )] - A DP[TDs ) (5.28)
and using the equation (5.22), we obtain the identity,
a | _~1 a | =1 = =i 25— A
APt 0y - y0f 0] = 5[0y~ ]
Similar results can be proved for v and »*. Now we have,
o1 11
a -1 a - —-— -1 2 — .
AD [ DAL= AD [ DA ] = rCE A= GG ] (529)
a [ ~1 a [ _~1 _ ~l[m2 2 5
AD [ D A= AD [ D] = ek a-cty] (630)

a -1 @ - -1 2 =
AP DA - A0 [ by = -GGy ] A
Clearly the above equations are linearly dependent and one cannot solve them to

obtain expressions for D* [‘r‘l D, A ], De [T’l D, ,\] and D*® [-r'l D, \ ] To obtain
a0 00 11

the field equations we compute the divergence of the scalar products as follows,

i

D*D. ) = KV, (hVm A )

il

2k Vo (E"Vikn)

i

WPE™ VoVl + 20 (Vol™)(Vibrn) (5.32)
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from the fact that

VaVele = Rgpea &°

and R,y = 0, we simplify the equation (5.32) to,
DDy ) =272 A [D*ADa A=D* ADy A | + 77t Dur D* A + 2r7C3 (5.33)
00 00 00 11 01 oL 00

Similarly one can write for 6\ and A,
1 11

DDy ) = 272 ) [D*AD, A= D" A D, )| (5.34)
01 [+}] 00 11 o1 o1
+ 7' D,r D® u)\ + 2772C,C,
DDy A = 277 A [D*AD, A= D* A D, )] (5.35)
11 11 00 11 01 al

+ 77 Dy D* A+ 2070
1

The equations (5.33), (5.35) and (5.36) can be simplified to,

Dt Dy A 273 A [D*AD, A= D* A D, |
00 00 aa 11 0% 01

+ 2773¢? (5.36)

Dr™ Do A

oL

il

2778 ) [D“ ,\Da/\—D“)\Da)\l
[i}% 00 11 3% ol
+ 2r7%C,Cy (5.37)

Dr i D, A = 2770 A [D“ AD, A\—D* )\ D, ,\}
1 00 11 01 o1

i1

+ 2773C (5.38)

Using the derivative operator one can define the Riemann tensor on the two-
dimensional space S. If k, is an arbitrary vector field on & then,

1
3 Raupeak”

i

D[(LDb]kr

I o {1 | (5.39)
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Expanding the above equation and using the fact that k, is arbitrary we get,

1 3
Rkt = ATAIE SRy + 7 Un Uiy + 770 Y Vo
- - .40
~ 1AV Vo = 770 4 Vil Vi (540)
~ TEA V& Vol ~ 770 A Yty Vil

+ 772X Vi Tty + 777 ) Vil Vil

Contracting the equation (5.40) and taking the field equation (Ray = 0) we can

write the two-dimensional scalar curvature in terms of A’s as,

R = 72[D*AD.A - D*AD.A] (541)
00 11 01 01

- 2 2
+ 6720 A~ CEA-CEA]

Equations (5.36), (5.37), (5.38) and (5.41) are equivalent to the Einstein field
equations with two Killing vectors. From this two-dimensional formalism one can
retrieve the four-dimensional equations[32, 33]. This formalism simplifies considerably

when applied to stationary axially symmetric spacetimes with orthogonal transitivity,

which we describe next.

5.2.1 Axially Symmetric Stationary Spacetimes

In this section we specialize the formalism for the Einstein equations to an axially
symmetric stationary spacetime with orthogonal transitivity. As has been mentioned
in chapter 3, if the orthogonal transitivity conditions are satisfied, the infinitesimal
two-surfaces orthogonal to the two-surface formed by the Killing vectors §* and 7* are
also surface forming. These two families of two surfaces are everywhere orthogonal to
each other in the spacetime, In this case the two-manifold & can be represented by

one of such surfaces which are orthogonal to the surfaces formed by the commuting

Killing vectors.
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The necessary and sufficient conditions for the orthogonal transitivity are given

by,

Cy = e, Vey = 0 (5.42)
and

Cr = ¥, Veng = 0 (5.43)

With the above conditions Einstein’s field equations are given by equations (5.36),

(5.37) and (5.38) can be simplified to,

DU D] = w0y [ aDy- Dty Dy] s
] 00 (i1t} 11 01 ol

DYr Do Al = 277 A [D*A DA~ D" A D, )] (5.45)
01 o1 Q0 11 01 01

D' Dy A} = 2r A [D*AD,\-D*\ D, A (5.46)
11 11 o0a 1k ol o1

and the 2-dimensional scalar curvature (5.41) can be expressed as,
— -2 a _ @
R = r72[D* A Dy A — D* ) Da ] (5.47)

We use this formalism to obtain direct relations between inertial forces and the
Einstein equations. In a more realistic model one would like to establish the relation
between the Einstein equations with source terms to inertial forces. In the next

section we outline the field equations with the source term.

5.3 The Einstein Equations with Source

The source free formalism developed by Geroch [32, 33) for spacetimes admitting two
Killing vector fields has been generalized to the equations with sources by Hansen and
Wincour{38]. The details of the formalism is given in appendiz B. Below we specialize

to the case where the source is described by a perfeet fluid.
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5.3.0.1 Perfect Fluid
The energy momentum tensor for a perfect fluid source can be written as

T = (5+p)uatie + garP (548)
where u° is the four velocity of the fiuid. We decompose the four velocity u® s

4= ung™ (5.49)
I (5.50)

The field equations given in equations (B.22), (B.23) and (B.24) in the appendiz B

are simplified to the following form,

D™Dy, M = 257 ) (o™ ADp A=D™ A D ) (5.51)

a1 1

1
+ 2r7CE - 1677 [(u+p) vy + 5(e—p) &]

D*[r D A] = 277t ) [D™ A Dy A= D™ A Dy, A (5.52)
01 01 Q0 11 [+ 01 1
+ 2r73C,C; — 16mwr7t [(;H—p) uu + 5(/1—1-’) g\l]
D" [rDaA] = 2 A [D"ADn A= D™ A D A ] (5.53)
11 11 o0 11 a1 ot

1
+ 2r73CY - 16n77 [(u-{-p) uy + —2-(;1——11) {\,]

The Cp and C, are scalar functions on the two-space S, in the case of the non-vacuum
spacetimes. As mentioned before these functions represent the convective circulation

of the matter in the spacetime. They satisfy the equations,

D,Cy = —8V2r(p+p)r U € Um (5.54)

D.Cy = ~8Vialu+p)T U € U, (5.53)
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The two-dimensional Ricci scalar is given by the equation,

R

72 [D™ A D A~ D™ \ Dpy 5 |
0o 11 2% 2%
_ -4 2 2 _ >
st A0t + yci-2) 6]
+ 87 (u+p). (5.56)

We also have the hydrostatic support in the direction perpendicular and parallel to

the flow of convective circulation as,

T i +p) [ ADal uw) + =2 ADa( % ¥) + ADa(w w)] =—r(hT +v9™Dpp +

(1 + p)evm (7€ Doy — 2v/2772 [ ACE = 2 \GoC + ACICL]) (5.57)
(u+ p)v™ Dy = —w"Dnp, (5.58)
(6 +PW" Dy = ~ "Dy (5:59)
The conservation of convective lux can be expressed as,
D™(rpvm) = —pD™(run) (5.60)

We shall now specialize to the case of a fluid with vanishing convective circulation,

i.e., v* = 0. The four-velocity for such systems can be written as,
u? = e¥(£° 4+ (%) (5.61)
where, ¢¥ is normalizing factor. We assume Q is a scalar function on 8. i.e.
L£e = £, =0 (5.62)

The field equations can be written as,

D [riDu g} = 27 4 [Py Duy - D7y D] (559

433

+ 270G+ 16w [ 3p) ) - (n )]
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D™[rDa A} = 2 A [D"ADn A=D" A Dm )] (684

01

-+ 27'._30901 + 87|'T_1 [([J+3P) U\l + (# +P)7'262“’Q]

1 . ~3 5.63
D™ tDn A = o <\l{Dmuxﬂpm‘Al—D'"UAles\l] (5.65)
+ 273G 4 fmrt {(p+3p) A= (#+P)7’25w]'
Since the convective flows are zero, we have,
DyCo = D,C, = 0 (5.66)
The two-dimensional Ricci scalar R on S can we written as,
- 2 5.67
R =7 [D’"é\anf\l——D’“é\leé\l] (5.67)
674 [ ACE+ ACT —2 ACYCi] +8n(u + )
(p+p) [Duw — e ( AQ+ /\) DZ,Q] = D,p (5.68)
1l o1
L 5.69
DuDsr + 577 [Da) Do)+ DajDi = 202} Ds )] (5.69)

1 ~1 m ™
- 5 hay [D™ A D A = D™ A D )]
+ 770 R ( ACH+ ACE - ACoCy) + 8mpr hay = 0
Equations {5.70) to (5.69) represents the Einstein equations with the source term.

Now we shall apply this formalism to the case of an axially symmetric stationary
spacetime. In axially symmetric stationary spacetimes the Killing vectors &° and 7°
are linearly independent. The scalar functions Cy and C; can be shown to be zero for

a non-convective fluid source[19, 38]. The field equations can now be written as.
m -1 — -3 m F
O R Y Y R Lok VI

+ 87 [(u+1’:p} A= (;L+[J)T2€2wQ2]
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D™ [r'Dm A] = 202 ) [D™ A D A= D™ A D )] (5-71)

+  8nr! [(y+3p) A+ (/z+p)7’2e2"’9]

D [T"Dm A}

il

2772 A [D™ A D A= D™ A D A | (5.72)
11 Q0 11 01 (133

+ 8rr! [(y+3p) A= (u +p)7'262’”].
R = r7*[Dm ADn) = D™ A Da Al +8m(u + p) (5.73)

(u+0) [Dapp— e (A2 + A) D0 = Dap (5.74)

These form the field equations in an axially symmetric stationary spacetime with a
perfect fluid as source. In the next section we express these field equations in terms
of new scalar functions. In this new form Einstein’s field equations can be directly

related to the inertial forces in a covariant manner.

5.4 The Einstein Equations and Inertial Forces in

Axially Symmetric Stationary Spacetimes

In the preceding sections we have given the formalisms in which Einstein’s equations
are in terms of norms and twists of the Killing vectors. On the other hand, in chapter 3
we have established the direct relation between vorticity and inertial forces in axially
symmetric stationary spacetimes. In this section we shall establish a direct relation
between inertial forces and Einstein’s equations. As has becn shown in chapter 3,
inertial forces are defined with respect to a global rest frame. In the case of axially
syvmmetric stationary spacetimes with orthogonal transitivity, the global rest frames
are uniquely determined by the irrotational congruence[35]. Also, in the case of axially

symmetric stationary spacetimes, the Einstein equations arc represented on one of the
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surfaces in the family of surfaces S, which are orthogonal to the two-surface formed
by the commuting Killing vectors £° and n?. We represent this surface as our two-
manifold S. Also, one can show that for a fiducial test particles following quasi-Killing
trajectories, inertial forces are tensor fields on two-manifold S. We recast the Geroch
formalism tn terms of a set of new scalar functions, whose gradients are proportional

to the inertial forces. The Einstein field equations in this new form can be directly

related to the inertial forces.

The two-surfaces spanned by the Killing vectors £ and 7® are the same as the
two surfaces spanned by the irrotational vector field (¢ defined by the equation (3.4},
and the Killing vector 7°{35]. The two-metric on the surface S which is orthogonal

to the surface formed by the Killing vectors is given by equation (5.8),

hab = Gap + 27'_2 1Ax EaEb + 27_2 &qa"lb - 4T—2 o/\x f(ﬂnb) (575)

and can be written in terms of the vector field ¢* and 7* as,

hay = gab + Nalb ~ ToTi- (5.76)
In the above
n” = e—¢cn
= ¢ Eﬂ__u)‘znﬂ (5.77)
A
o= e (5.78)
where,
6 _ T 5.79)
i 2 (
e = )\ (5.80)
11

The vector fields ¢* and #* are both linearly independent and orthogonal to each

other whereas the Killing vectors £° and 7* are only linearly independent to each
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other. However, it is important to notice the fact that the vector field ¢° is not a
Killing vector field, it is only a quasi-Killing vector field as Las been defined earlier.
We formulate the Geroch formalism for axially symmetric stationary spacetime in

terms of the new scalar functions, which are defined below.

AT — A 2

_ al 041 — .
4= A 2 A (5.81)
11 11
A
= —u—la, = Uy (582)
0 A
11
X 2y <
=5 - (553)
oL 00 11

The functions 6\0, é\land ,l\‘ also can be expressed in terms of the functions f, f, and f
o0 0 11

uniquely. This allow one to rewrite the field equations in term of f, f, and f. In
00 0L 11
order to do so we write the equations (5.44), (5.45) and (5.46) as,
D™Dy A = 2172 ) [D’" ADnA=D™)\ D, '\.] (5.84)
00 00 00 11 a1 Q

+ 77'D™r D, S\u

D™Dy A = 2772\ [D™ADn A=D™ A Dp, /\l] (5.85)
o1 o1 00 11 1% [

+ 77D™r Dy )
D™Dy A = 2r72 )\ [D™ A D A= D™ A Dy )| (5.86)
11 11 00 1 01 oL
+ 77'D™r Dy, I\x

Using the above equations one can express the field equation in terms of f, f, and f
0o at 1

as follows,

o R Y Ry b IV B
DmDm u'}: = (Dm Dm f) (Dm f)(Dm q.() (588)

,ff

OU
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DD f = =2 (D" D f)+3 fO" D) B8

(D™ $)(Dn ).

845.] —

The two-dimensional Ricci scalar given in the equation (5.47) takes the form,

1 1
R T, 2(D™ (D 5.90)
5 fL{(D (D )+ ‘{(D DD f (

+§ {07 f)on )|

The Einstein equations in the above form can be written in terms of inertial

forces, since, gradients of the functions f, f, and f are proportional to inertial
00 ol 11

forces acting on the test particle.

5.4.1 Inertial Forces on the Two Surface S

In this section we define the inertial forces for a test particle following a quasi-Killing
trajectory. If the spacetime is a source free solution to the Einstein equations then
we assume that the four velocity corresponds to a fictitious test particle following 2
quasi-Killing trajectory. If the spacetime is described by a perfect fluid, then the four
velocity u® corresponds to the velocity of a fluid clement. The four velocity of such 2
system can be written as,

u® = e¥ (€% + Q") (5.91)

As we defined in chapter 3, we compute the inertial forces using the formalism given
by Abramowicz, Nurowski and Wex[2]. The various inertial forces acting on the test

particle can be written as follows.

Gravitational force:

Gy = _E}F(Dkujg), (5.92)

o
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Centrifugal force:
LR
Ze = S0 [ (Dx ) (5.93)
00 11
where

Q=0+ f (5.94)

Coriolis-Lense-Thirring force:
Cr = e [ fQ(Dx ) (5.95)
00 11 Qi

It is easy to show that the scalars f, f, and f are functions on the two-manifold
00 a1 11
8. The inertial forces Gk, Z and Cyx are also vector fields on &, since they are
proportional to the gradients of the functions f, f, and f. One also verifies that
00 01 i1

the inertial forces satisfy the conditions (5.2).

In the next section we express the vacuum field equations given in the last section

in terms of the inertial forces.

5.4.2 Vacuum Field Equations in Terms of Inertial Forces

In this section we directly relate inertial forces acting on a fictitious test particle
whose four-velocity is along a quasi-Killing trajectory in a source free axially sym-
metric stationary spacetime. The functions DJ:, ij‘, and 1)1‘ are like potentials of
the gravitational, Coriolis-Lense-Thirring and centrifugal forces respectively. The
Coriolis-Lense-Thirring and centrifugal forces are proportional to the gradients of the
potential functions. Using these potential functions one can write the ficld equations

directly in terms of inertial forces.

Using the equation (5.87) and the expressions for inertial forces one obtain the

cdivergence of the gravitational force as

e 22 lemvQ2
D"G.,. = 26™G,, — Gz, ~ —— C"Cm 596)
£ 2 2 f (

00 i1 [ §



135
chapterd 3

Similarly form (5.88) and (5.90) we get,

. B —w -

0{ 00

e 2¥)-2 1 =~
m = m 2Dm — Zm + = DmQ (5.98)

Dme, C [ ¥ I ) J

Q0 11
-2 -4y
= - 4£G"G, — 45— 02 27G + S -2 cmC,| . (5.99)
L { {4

The above equations represent the field equations for a source free axially sym-

metric stationary spacetime in terms of inertial forces.

5.4.2.1 Static Spacetime

The general results given for the stationary spacetimes can be specialized to static
Spacetimes by setting £°p, = A= 0. As has been shown in chapter 3 the Coriolis-

Lense-Thirring force Cy is identically zero in static spacetimes. The field equations
take the form,

—2y (-2
G, = g7, ~ 4

amz, (5.100)

00 11

D"z, = Z'"[2me + %DMQ - e—wg—zi Zm] (5‘101)
4
1 -2
R = -~ m € A= ™
) [4050 Gm — 479 tz G,,,J (5.102)
oo 11

in the next section we derive these relations for feld equations witly
as source.

a perfect fluid
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5.4.3 Field Equations With Source in Terms of Inertial Forces

In this section we establish direct relations between inertial forces and field equations

with a perfect fluid source. The field equations are given by
1
Ry — iRgﬂ,, = 87T yp- (5.103)
The energy momentum tensor Ty, is described by a perfect fluid,
T* = (p+puv’ +pg® (5.104)

We assume that the four-velocity of a fluid element is along the quasi-Killing trajec-

tory and can be written as,
ut = e¥ (£ + Q). (5.105)

Where w satisfies the condition,
£l = £, 0 =0, (5.106)

1.e. §) is constant along each orbits.

In this case also we rewrite the field equations given by Hansen and Wincour([38]
in terms of potential functions f, f, and f. First we write the field equations given
00 o1 i1

in equations (B.22), (B.23) and (B.24) as

D™D ) = 27722 [D™ ADn A= D™ A Dy, ) (5.107)
0o oo 00 11 01 0

+ 77ID™r D )= 2Rmn€™E"

D™D, A 202\ [D™ A D,y A= D™ A D,y ,\] (5.108)
ot 01 00 1 [+28 [1)?

+ 77ID™T Dy A~ 2Rpnf™"

pm Dm by
1

212\ [D™ A D A= D™ A Dy A (5.109)
i1 Qo it 333 01 .

+ riDp™r D ;\1 - ZRanmU"
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Now the field equations in terms of f, f, and f can be written as,
o 1
: 1
D™Dy f = [ f(D™ f) (D f) = 55(D™ f)(Dm f) (5.110)
o o 11 o o 2 1_): 6o i
+ 2 f Rpan™n
00
1
DDnf = —55 (D" (Dn f) = (D" HDa ) BID
o1 & 53 ol Qo o1
11 o0
2 m,n
- f f Rmn( 1
00 11
D"‘Dmlj: = =2 f2(D"‘ f)(D f)+%“(D"‘ lj:)(Dm 1{) (5.112)
*-(D"‘ HPm f+2f [Rmant™n" 4 R 7] -
Also the two-dimensional Ricei scalar on S can be written as
1
= m — 5.113)
R o= -5 [ (D™ DD )+ (D™ (D | (
00 00

1

+ J JD7 DD )] + BB+ Bl = BT 7"
As in the case of vacuum field equations these equations can also be directly

written in terms of forces instead of potential functions. The field equations in terms
of inertial forces take the following form

e 2Q2 Lem (-2
DG = 2G™Co — GrZ, ~ 2 ome,  (5114)
" 00 l.lf 2 fz f

L= Y
-  Ru.n™n”

) L
D"z, = 7" [wmw + & Daft = B 2, (5.115)
-2

0o

7 C™Cm + €22 f F(Rmn n"n'"-i-Rm,,T"' ™)

00 11
oo
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-2 (=2 .
D"Cpm = C™|2Dnv — —F Zm + = D (5.116)
_ 00 L1
- 2e¥FereQp  nmrht
R = - lafomG, - 450 a7 zrGn+ C 72 omey| (017
= Tpp MO0 A ~ Y | 10
00 11 11 00

+ B By + Rt = R ™"

In order to decompose the energy-momentum tensor with respect to the vector

fields n® and 12, we split the four-velocity u® as follows,

ut=e¥ (4 Q) = v(n® +vr?). (5.118)

where,
v = evte (5.119)
v = e (5.120)

From the above and using the energy-momentum tensor given in the equation (5.104)

we get,
Ran®n® = 8rx ['yz(u +p) + %(p —V/L)] (5.121)
Ran®t® = —8nv*v(u+p) (5.122)
Rgret® = 8r¢ [72U2(# +p) - %(P - l‘)] (5.123)

Using the above equations the field equations given in (5.114) to (5.117) can be

written as,

e U 1702
D"Gp = 2G"Gm = == G~ 57— C"Cn (5.124)
4 R
1

- & P ep)+ 5 -
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DrZ, = Z™|2Dn¢ + 3Dm() _ WO 7 (5.125)
" & 4
e—Zlb . 5 2 ‘ 1
- C™Cn + 87 f f [7 Vg +p) = 5p-4
00 11
00
e~2()? 1 . o« o6
"C = C™12Dn9 — Zm + = Dufd {5.126)
R T
+ 16702y + p)
- -4 _ . _ .
R = -t lij6ma, - 4Tt znG, + S G cmcm} (5.127)
2f1 w ff
00 11 11 00
+ 8m{u+p)

In addition we also have,
(5.128)

(4+9) [Dagy - QDA = Dap

Equations (5.124) to (5.128) represent the field equations for a stationary axially

symmetric spacetime in terms of the inertial forces.
Next we relate the gravito-electromagnetic fields to the Einstein field equations in

stationary spacetime.
5.5 Gravito-electromagnetic Fields and the Ein-

stein Field Equations

In this section we shall express the Einstein feld equations in terms of gravito-

electromagnetic fields.
Let £° be a timelike Killing vector in a stationary spacetime. The four velocity of

an observer following along the Killing vector is given by
(5.129)

ut = e"”f“
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As described in third chapter we define the gravito-electric and gravito-magnetic
fields with respect to the comoving frame of the observer moving with four velocity

u®. We have, gravito-electric filed,
E, = Fyu® (5.130)

and the gravito-magnetic filed

B, = Fuu, (5.131)
where Fab is dual of Fy.

Using the properties of Killing vector fields we have,
1 -1 ced -l¢
Eap = 5/\ €abeaw ET + A S[an}’\- (5.132)

Here X is the norm and w is the twist of the the Killing vector £2, which are given by

the equations {A.15) and (A.16)i respectively.
A= e, (5.133)
We = Eabcdfbfd;c (5134)

Using the above definition we have

w® = AB® (5.135)
and
1
E, = 2—/\Da,\ (5.136)

The Einstein filed equations with one Killing vector can be reduce to following set

of equations using the Geroch[32] formalism. the details are given in appendiz A.

Db, = g/\-lme"’,\ (5.137)

DDA = %/\‘ID’“/\ DA = A ™y, — A (1 — 3p) (5.138)
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5.139)
D[awb] = O (

m Ly 5.140)
Rab = %/\_2 [wa.wb —habwmw l+ -2-/\ Dan’\ (

K
- %/\_QDQ/\ DA + 3(#—p)hab

i i ’ ntum
In the above, source term js assumed to be a perfect fluid with energy mome:
tensor
5.141
Tub = (u +P)Uaub + PYas ( )
iven i i .129).
where u® is four velocity along the Killing vector £ as given in the equation (5 )

i i i { tain the
Using the definition of gravito-electric and gravito-magnetic fields, we ob

Einstein field equation as,

D*B, = E,B° (5.142)
DBy = —2E,By, (5.143)
D°E, = —E“Ea—%B"Ba—%n(u—&;) (5.144)
Rep = %[BaBb—h,,meB'"] (5.145)

= +D.By - 2E,E, + g (=) hay

These equations represents the Einstein field equations in terms of gravito-electromagns
fields.

In the case of source free field equations we have,

#=p=0 (5.146)

The equations {5.142)- (5.130) reduces to the form,

D°B, = E,B° (5.147)
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DBy = —2EBy (3.148)
D°E, = -E°E, - %B“Ba (5.149)
1
Rab = ';2' [BuBb - hameBm} + Du.Eb - 2Ea.Eb (5-150)

These presents the source free Einstein field equations with one Killing vector field,
in terms of gravito-electric and gravito-magnetic fields. In the case of two Killing
vector fields such as in the case of axially symmetric stationary spacetimes, we have
seen that fleld equations can be written only in terms of the scalar products of the
Killing vector ficlds. The twists @, W and w do not represent independent equations.
Because of this fact one can not write the Einstein field equations completely in terms

of gravito-electric and gravito-magnetic fields as defined by the co-moving frame.

5.6 Conclusions

In this chapter we have directly connected the Einstein field equations to the inertial
forces. The inertial force concept was first developed in order to get better insight into
the motion of test particles in the general theory of relativity. When the formalism
is applied to the trajectories along the directions of spacetime symmetries, one can
also use incrtial forces to understand the spacetime structure. This goal has been
achiceved in this chapter by directly expressing Einstein's equations in terms of inertial
forces. This formalism may be useful in understanding the geometry and the physical
significance of axially symmetric stationary spacetimes. Also, as mentioned earlier,
several studics have been carried out relating the centrifugal force reversal to the
equilibrium configurations of ultra compact objects. The present chapter does not,

deal with this problem directly. However, we hope that more insight into this problem
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can be gained using the formalism developed in this chapter and the discussions

extended to include fast rotations.



Chapter 6

Concluding Remarks

In the present thesis we have examined some of the rotational effects in the general
theory of relativity. These effects include the phenomenon of gyroscopic precession,
the general relativistic analogues of inertial forces and gravito-electromagnetic fields.
The phenomenon of gyroscopic precession is an effective tool to probe the rotational
effects and can be used as a test for general relativistic rotational effects. Because
of this reason onc would like to relate any rotational effect to the phenomenon of

gyroscopic precession. This is one of the main themes of the present thesis.

In our present study we have related the gencral relativistic analogues of inertial
forces and gravito-clectromagnetic fields to the precession frequency. Also we have
established the relation between the inertial forces and the gravito-electromagnetic
fields. We have carried out our investigation in general axially symmetric stationary
spacetimes so that the formalisms arc applicable to the case of black hole solutions as
well as to compact objects. We have infact applied these formalisms to several black

hole solutions in order to demonstrate some of the interesting effects.

For investigating gyroscopic precession we have used the Frenet-Serret formalism
g g

developed by Iver and Vishveshwara[43]. In the second chapter we have shown that

14
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the precession frequency of a gyroscope transported along an arbitrary trajectory can
be related to two of the Frenet-Serret parameters namely, 7, and 7. Interesting results
emerge when the trajectories are along a tirielike Killing vector field in spacetimes.
Along a Killing trajectory not only is the precession frequency expressible in terms
of the Frenet-Serret parameters, in addition one can show that all the Frenet-Serret
scalars are conserved along the trajectory. Furthermore, all the basis vector fields of

the Frenet-Serret frame satisfy Lorentz like equation of motion[43, 35].

The covariant formalism given by Abramowicz, Nurowski and Wex forms the ba-
sis for our study of the general relativistic inertial forces[2], We apply this formalism
to a particle moving along a quasi-Killing trajectory in axially symmetric stationary
spacetimes. In this case we show that the forces are proportional to gradients of
scalar potentials. We have established relation between inertial forces and gyroscopic
precession using two approaches. In the first approach we have related the Frenet-
Serret parameters 7; and T, which represent the gyroscopic precession in terms of
inertial forces. In a second approach we directly relate the gyroscopic precession fre-
quency to the inertial forces yielding vector relations. Using these expressions we
show that in static spacetimes, for circular trajectories, the simultaneous reversal
of gyroscopic precession and centrifugal force reversal occurs only at circular null
geodesics. The reversal of centrifugal force at the photon orbits was first shown by
Abramowicz Carter and Lasota{l]. We have shown the general properties of simul-
taneous reversal of gyroscopic precession and centrifugal force at the circular photon
orbits in static spacetimes. By applying this formalism in the Ernst spacetime we
have explicitly demonstrated this phenomenon. In the case of the Ernst spacetime,
there exists two circular null geodesics and simultancous reversal of gyroscopic pre-
cession and centrifugal force occurs at both the photon orbits. We obtain similar

results for the Schwaraschild spacetime and the Melvin universe as special cases of
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the Ernst spacetime by setting the parameter B and M zero respectively.

Contrary to the case of static spacetimes. in the case of stationary axially symmet-
ric spacetimes, we have shown that neither centrifugal force nor gyroscopic precession
reversal occurs at the circular null geodesics. In general, centrifugal force and gy-
roscopic precession reversals occur at different points in the spacetime. Using the
Kerr-Newman spacetime as an example for axially symmetric stationary spacetime
we study the reversal of gyroscopic precession and centrifugal force. We also inves-
tigated forces as functions of angular momentum parameter and charge parameter
in the Kerr-Newman spacetime. Kerr solution is treated as a special case of the
Kerr-Newman spacetime by setting the charge parameter Q to be zero. By setting
angular momentum parameter a as zero in the Kerr-Newman spacetime one obtains
the Reissner-Nordstrom solution which is a static spacetime. As expected, we observe
that in the Reissner-Nordstrom spacetime both gyroscopic precession and centrifugal

force reversals occur at the circular photon orbits.

We have used a different approach for treating the gravito-electromagnetic fields
in contrast to conventional weak field approximation{23]. We use the properties of
Killing vector fields in order to define the gravito-electromagnetic fields. The advan-
tage of our approach is that one can define the gravito-electric and gravito-magnetic
fields with respect to any given observer. By defining the gravito-electric and gravito-
magnetic fields with respect to the global rest frame, we relate them to inertial forces.
If one defines the gravito-electric and gravito-magnetic fields with respect to the co-
moving frame of the particle, we show that one can obtain simple relations between

gravito-electromagnetic fields and the Frenet-Serret parameters.
In the fifth chapter we have established the direct relation hetween the inertial
forces and the Einstein fleld cquations. As we have shown that the inertial forces

are proportional to gradients of scalar potentials, we express the Einstein equations
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in terms of these potentials using the Geroch formalism[32, 33]. In the case of field
equations with a perfect fluid source terms we use the formalism given by Hansen and
Winicour(38]. The concept of inertial force was first developed to study the dynamics
of the test particles in a given spacetime. Since we have established relations between
inertial forces and the Einstein field equations, this formalism can be used for physical
interpretations of exact solution in terms of inertial forces. This can be expected to be
useful in studying the equilibrium configurations of relativistic rotating ultra compact

objects.



Appendix A

Einsteins’s Equations in Stationary

Spacetimes

In this appendix we introduce the Geroch formalism which simplifies the Einstein
equations for a source free stationary spacetime[32]. In this formalism the Einstein
equations are represented on the three-space orthogonal to the Killing vector £2. The
field equations are completely expressed in terms of the magnitude and the vorticity
of the Killing vector field £€*. Though the formalism is applicable with one arbitrary
Killing vector, we assume that the spacetime is stationary, i.e., the Killing vector
field €% is timelike at each point. The detailed derivation of the formalism is given in

reference[32]. We briefly summarize the formalism for a stationary spacetime.

Let M be a stationary spacetime with metric g, and timelike Killing vector field
£¢. We construct spacetime foliations at each point, which are orthogonal to the
timelike Killing vector field £2 and are represented by &. The projection operator for

the quotient space can be defined as follows,
hay = gap— (fmfm)-lfa\tb (Al)
I e (4.2)
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By = &)= (M) 6l (A.3)

If the Killing vector £° were hypersurface orthogonal, then it is possible to represent
S as one of the hy; »rsurfaces in M which is everywhere orthogonal to £%. In the
non-hypersurface orihogonal case, however, there is no natural way of introducing

such a surface in M.

The tensor field kg as given in equation (A.1), defines the metric on the three-
quotient space orthogonal to the Killing vector £2. The geometry on S is induced
by the spacetime M with induced metric hy,. Any tensor field on M projected on
to the quotient space using the operator hg, is a tensor field on S. But we consider
certain tensor fields T,"7¢ on & which have a one-to-one correspondence with the
tensor fields 7,%7¢ on M. In order to have such a one-to-one correspondence the

tensor field T,%:% on M must obey the following conditions{32],
ETh A =0 -T2 =0 (Ad)
and
Le T,h% = 0. (A.5)

A scalar field 7 on the quotient space S represents a scalar field 4 on M if it satisfies
the equation,

Lep = 0. (A.6)
The above results are proved in reference[32]. The conditions (A.4), (A.5) and (A.6)

define the scalar and tensor fields on S. The antisymmetric permutation tensor e

on S can be defined as
Eabe = (£m£m)_%€ub"d§d (AT)
with

€apct™® = 6. (A.8)



appendix A 150

Since the tensor fields satisfving the conditions (A.4) and (A.5) have one-to-one cor-
respondence with the tensor field on S, we drcp the tilde: we shall represent the tensor
fields on S merely as fields satisfying the coadition (A.4) and (A.5). The covariant

derivative D, on the quotient space S can be defined as follows,

DT = RPRT .. pPRE . ROV T TS (A.9)

m-n

where V, is the covariant derivative on M. One can clearly see that the derivative
operator D, satisfies the conditions (A.4) and (A.5). In addition, it also satisfies the

following conditions(32].
1. The derivative operator satisfies the Leibnitz rule, .e.,
Do(Ty x B.) = Ty x DyB. + DTy x Be, (A.10)
where x is the outer product operator.

2. The contraction of the derivative of any tensor field on S equals the deriva-

tive of its contraction.
3. If pis any scalar field on S, the D,y is the gradient of i1, and Dy, Dy = 0

4. The derivative of the sum of two tensors on § is the sum of their deriva-

tives.
5. The derivative of the metric is zero.

Using the properties of the covariant derivative (A.9), one can define the Riemann
tensor on the three dimensional quotient space S. If k, is an arbitrary vector ficld on

S one can show that,

DuDsk, = hBRINV,(hShiV k)

Hi

REREHEV V ke — (E78n) T RERINT (V06 )6V kv (A.11)

~  (E"Gm) T RRRINL (V6 )6 Y ok
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Antisymmetrizing over the indices @ and b we get ,
DDike = AN, Ugk, + (E™6n) REMIHL(V,E) (V0K (3.12)
€ En) R RRRL(VLE ) (VR

Here we use the fact that £¢ k- = 0 and 'k, = 0. Taking k, to be an arbitrary vector

field, the Riemann tensor Rgp.q of S is related to the Riemann tensor Rgpes 0f M by,
Rases = WEAGATRY [Bars + 2E™6m) (V) (V16) (A.13)
+2EmEn) (V6 ) (V6]
The equation representing a source free stationary spacetime is given by
Ry =0 (A.14)

where Ry, is the Ricci tensor. We express the above source free field cquations in
terms of the norm and the twist of the Killing vector €% and the metric hy on the

quotient space S. The norm A and twist w of the Killing vector £% are given by,
A= (A.15)
Wy = egpea"VoE? (A.16)

One can easily see that ) is a scalar and W, 18 2 tensor on S. From cquation (A.15)

and (A.16) one can express the covariant derivative of the Killing vector as,
1.
Vb = A eapal A7, Dy (A.17)

Since w*® is a tensor on S, the derivative of W, On S can be related to the Ricei tensor
Rg as follows,
D[awb] = —'fabmnme;fp (AlS)

In the above we use the identity which is valid for a Killing vector £°,

vuvbfc = Rabcdfd (Alf))
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The trace of the derivative of w® can be simplified to the form,
a 3 -1 m
D Weq = 3,\ me /\ (‘A'20)

Taking the covariant derivative of the equation (A.17) and using the identity (A.19)

we get,
DDy = %/\“‘D"‘,\ D = A" ™ = 2Rmn&™E™. (A.21)

By contracting equation (A.13) and using the identities given above we get the ex-

pression for the Ricci tensor on the three-quotient space as,

R = }Q-A—2 [wawb - habwmwm] + %)\_lDan/\ (A22)

- i,\—zpa,\ Doh + hTAERonn

In the source-free case (i.e. Rq = 0), the equation (A.18) implies that w, is a gradient

of a scalar w, i.e.,

wy = Dw (A23)

The source free field equations takes the form,

Rap = %,\-2 [Dow Dy — hap D™w D] (A.24)

+ -;-,\—lDan,\ - %,\"‘Da,\ Dy

D™D\ = %,\-ID'",\ Do) — A~'D"™y Doy (A.25)

D"Dyw = %/\"D’”,\ D,,w (A.26)

The above equations represent Einstein’s equations for a source free stationary

spacetime. The field equations with the source function is given by,

1 -
Rev = [T = 5T (a27)
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where T, is the energy momentum tensor.

Equation (A.18) now can be written as,
D[awb] = —NfabmnfnTpmfp (A.28)

and the trace of this equation remains the same as is given in equation (A.20). Equa-

tion (A.21) combined with the equation (A.27) can simplified to,
1
DD\ = EA“D"‘A Do = A ™y, — 26T mnE™E™ + kAT (A.20)
The three-dimensional Ricci tensor given in the equation (A.22) takes the form,

1
Rab = 5‘/\-2 [quJb - habwmwm] + %A-lpan/\ (A30)

{
= PATDADM + shTH [Tab ~ %gabT]

The equations (A.28), (A.29) and (A.38) presents the Einstein's equations with

matter.

If the source is assumed to be described by a perfect fluid the energy-momentum

tensor is given by,
T% = (+put® + pgos- (A.31)

Here, u* is the four-velocity of the fluid element. In the case of stationary spacetimes

the fluid element is moving along the time like Killing vector &% and the four-velocity

can be written as,
Ut = e e = (<a)7h (A.32)

The equations (A.28), {A.20), (A.29) and (A.36) now can written as

a, - 3 ~1 m
Dowe = A7, D" (A.33)

a —_ 1 -1 -
DEDA = SA7'DPA Did = Mt — k(- 3p) (A.34)
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D[awb] = 0

1 1
Rab = —/\_2 {wawb - /zabumwm] + 3/\_1DGD5,\

2

2 _
— MDA DA + g(u—p)hab

This formalism can be easily extended to the case of spacetimes with two Killing

vectors. The case of an axially symmetric stationary spacetimes is an example which

is described in chapter 5.
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Einsteins’s Equations with Source

In this appendix we briefly outline the formalism given by Hansen and Wincor(38].
In this formalism Einstein’s field equations with a perfect fluid source are simplified
for spacetimes admitting two Killing vectors. The detailed derivation is presented in
reference[38]. We briefly summarize the main results. Following the notations given

in the chapter 5, the field equations can written as follows[3§]

Der! D, Al

27 A [D* A Do A= D* A D, ) ]
00 a0 11 01 0.
+ 2717°CF — 2rT R T (B.1)
Dr D, N = 2777 ) [D“ A Dy A=D* A D, )]
a1 o1 00 11 01 ['}%
+ 2r7CC, — 2rT i RnE™ (B.2)
DY r™' Do Al = 20 A [D*ADy A~ D* A D, )|
it 1893 00 11 01 01
+ 27-_-36"12 - 27_1Rvnn’}m77" (Bs)
In this case Cy and C| are functions on the two-manifold &. For the source free case

(Rw = 0) one can show that Co and C| are constants. The functions Cy and C

satisfy the equations,

Dnc() = _\/2—7"“ mRmnfmv (B'L)
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D.Cy = —V2re, "Run?™ (B.3)
The two-dimensional Ricci tensor can be written as.,
-2 -1 -
R = 772 [DaADy A= Do A Dy )] + 77 DDy
+ 277 hay [260C1 A= G A=CEA | + A7 Rone. (B.6)

where Ry is the Ricci tensor on M. We express two-dimensional Ricei tensor in

terms of the trace and the trace free part as follows,

R = % [D*AD,A-D*2D. )] (B.7)
00 11 ot L
~4 2 2 mn
+ 6774 [2C0Cy A~ CEA=CIA] + W7 R
- = 772 B3
Ras = 3haR = 7 [DADy ) - D ADs A (B.)

1 .

- 57 [D“é\oDal); - D é\Dag\}

+ 771 D Dyr — —12-7'“1 hay D™Dyt

1
+ h‘;nhZRmn - 'z‘h'ab hmanm
In order to simplify the equation (B.7) further, we compute,

D™Dnr = 4[ChCi A= CEA-C? 2] (B.9)
. 01 1 oo

-1 LT men mo.n

+ 477 [2 ) Rn™" = ) Bna€™€" = X R ™"

Substituting into equation (B.7) we get,

R

1

772 [D*AD, A= D" A D, A | (B.10)
oo 11 01 ot
— -4 2y mn
6r* 2000 A~ CE A~ CE A + K™ R
+ 2077 2 ) R0 = A R™€ = A Brnnt™ "]

The left-hand side of equation (B.8) vanishes identically; then we have

DDyt ~ %}zabD"'Dm‘r +
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~!

|

1 -1 5
577 [De § Do+ Du )y Dy =20 4 Ds ) |

1 -1 ™ ™m
57 e [D7 ADn A= D" ADn ] +
T {h’amhbann - %hab hm"Rmn} =0 (Bll)
Now we consider the Bianchi identity,
m 1
v (Rm - Ehm@ =0 (B.12)

By projecting on to two-manifold § and simplifying, the Bianchi identity takes the

following form,

l

D™ (rhy, RnpéP)

D™ (rh3, Rupr?)

0, (B.13)

0, (B.14)

1
D" [r (KB Ry = Zhamd™ Bap)| + 50" Ram Dt +
7'—1 [ 1\1 Da (-an‘fmfn) -2 s\l Da (an&-m,]n) + 0/\ODa. (annmnn)]
2\/-2-7-—2 [ (\1 COGTRmﬂ‘En - u’\‘ C()EZII{,""T)"' -

+

A CLel Bonn™ + A Crel R 0(B.15)

Now we split the energy momentum tensor into terms on the two-manifold S and

along the Killing vectors £* and n* as follows,

(:—{: = ’TmnEmEn (BlG)
& = ’Tmnfml]n (B17)
;l: = D™ (B.18)
(;-)ﬂ = h:xn’-z.'mnfm (Blg)
Q0 = WlTumn™ (B.20)

tw = R T (B.21)
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With the above, the Einstein equations take the form.
m -1 — -3 Tl — g p B.22
Dn[riDny] = 2y [p7yDny - DRy DAL B
1
—3 o~ ~1 =
+ 2r7%CE - 16wT [%"——26\0T}
D' Dn ] = 2773\ [DPADR A = D" AD Al (B2
oL o1 0o 11 o1 o1
1
+ 273G, ¢, — 16w77! [07: -3 (/!\XT}
-1 = 9,3 m _ pnm 24
D" [r'Dp )] = 200 A [D"ADm ) = D" ADn )] (B2Y)
- 1
+ 2r73C? - 16mrt [T -z ,\T}
11 2u
D,Co = —8V27mr e Om (B.25)
DGy = -8V2nr €l On (B.26)
R = r2[D"ADn ) ~ D™ ) Dn )|
00 11 Qo1 ot
-4 2 2
- 6 [ACE + Act - 26\16‘001]
+ 8T+ a2 (AT + AT - 2)T) (B.27)
11 00 oo 1 o3 S N
m -2
D (Ttam)—r{g;Da(r ;\1) -
~2 -2
2P D (") + 70 (r )] +
2V2r 2 [ A Coel Om— )\ Coel Om -
ACIET O + ALl O] = 0 (B.28)
N1 o o8 1

1
DyDyr + =771 [Da A Dg +
2 00 11
DoADy ) =~ 2D, ADs M| =
1 [ o1 ot
1
ST hay (D" ADm A = D™ ADn ] +
2 00 1 o1 ot
-3 2 5
T hsb[{\lC'D+ OI\UC?—_ZD/\COCJ +

BT(Ttab = 0

(B.29)
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where

o= Ay — 277 [A T2\ T+ A T]

11 oo o1 o1 o i (B.30)
These form the Einstein equations with two Killing vector fields. In chapter 3,

this formalism is specialized for a perfect fluid source in axially symmetric stationary
spacetimes.
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