Stochastic polarized line formation
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Abstract. This paper considers the effect of a random magnetic field on Zeeman line transfer, assuming that
the scales of fluctuations of the random field are much smaller than photon mean free paths associated to the
line formation (micro-turbulent limit). The mean absorption and anomalous dispersion coefficients are calculated
for random fields with a given mean value, isotropic or anisotropic Gaussian distributions azimuthally invariant
about the direction of the mean field. Following Domke and Pavlov (1979), the averaging process is carried out
in a reference frame defined by the direction of the mean field. The main steps are described in detail. They
involve the writing of the Zeeman matrix in the polarization matrix representation of the radiation field and a
rotation of the line of sight reference frame. Three types of fluctuations are considered: fluctuations along the
direction of the mean field, fluctuations perpendicular to the mean field, and isotropic fluctuations. In each case,
the averaging method is described in detail and fairly explicit expressions for the mean coefficients are established,
most of which were given in Dolginov and Pavlov (1972) or Domke and Pavlov (1979). They include the effect of
a microturbulent velocity field with zero mean and a Gaussian distribution.

A detailed numerical investigation of the mean coefficients illustrates the two effects of magnetic field fluctua-
tions : broadening of the o-components by fluctuations of the magnetic field intensity, leaving the m-components
unchanged, and averaging over the angular dependence of the m and o components. For longitudinal fluctuations
only the first effect is at play. For isotropic and perpendicular fluctuations, angular averaging can modify the
frequency profiles of the mean coefficients quite drastically with the appearance of an unpolarized central compo-
nent in the diagonal absorption coefficient, even when the mean field is in direction of the line of sight. A detailed
comparison of the effects of the three types of fluctuation coefficients is performed. In general the magnetic field
fluctuations induce a broadening of the absorption and anomalous dispersion coefficients together with a decrease
of their values. Two different regimes can be distinguished depending on whether the broadening is larger or
smaller than the Zeeman shift by the mean magnetic field.

For isotropic fluctuations, the mean coefficients can be expressed in terms of generalized Voigt and Faraday-Voigt
functions H™ and F™ introduced by Dolginov and Pavlov (1972). These functions are related to the derivatives
of the Voigt and Faraday-Voigt functions. A recursion relation is given in an Appendix for their calculation. A
detailed analysis is carried out of the dependence of the mean coefficients on the intensity and direction of the
mean magnetic field, on its root mean square fluctuations and on the Landé factor and damping parameter of the
line.
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1. Introduction

Observations of the solar magnetic field and numerical
simulations of solar magneto-hydrodynamical processes all
converge to a magnetic field which is highly variable on all
scales, certainly in the horizontal direction and probably
also in the vertical one. Solving radiative transfer equa-
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tions for polarized radiation in a random magnetic field,
is thus an important but not a simple problem since one
is faced with a transfer equation with stochastic coefli-
cients (Landi Degl’Innocenti, 2003; Landi Degl’Innocenti
& Landolfi 2004, henceforth LLO04). In principle the mean
radiation field can be found by numerical averaging over
a large number of realizations of the magnetic field and
other relevant random physical parameters like velocity
and temperature. A more appealing approach is to con-



struct, with chosen magnetic neld models, closed I1orm
equations or expressions for the mean Stokes parameters.
Landi Degl’Innocenti (2003) has given a nice and compre-
hensive review of the few models that have been proposed.

The problem of obtaining mean Stokes parameters
simplifies if one can single out fluctuations with scales
much smaller than the photon mean free paths. The radia-
tive transfer equation has the same form as in the deter-
ministic case, except that the coefficients in the equation,
in particular the absorption matrix, are replaced by aver-
ages over the distribution of the magnetic field vector and
other relevant physical parameters. This microturbulent
approximation is currently being used for diagnostic pur-
poses in the frame work of the MISMA (Micro Structured
Magnetic Atmospheres) hypothesis (Sdnchez Almeida et
al. 1996; Sdnchez Almeida 1997; Sianchez Almeida & Lites
2000) and commonly observed features like Stokes V
asymmetries and broad-band circular polarization could
be correctly reproduced. In the MISMA modeling the
mean Zeeman absorption matrix is actually a weighted
sum of two or three absorption matrices, each correspond-
ing to a different constituent of the atmosphere character-
ized by its physical parameters (filling factor, magnetic
field intensity and direction, velocity field, etc.).

The problem simplifies also when the scales of fluctu-
ations is much larger than the photon mean free-paths.
The magnetic field can then be taken constant over the
line forming region and the transfer equation for polarized
radiation is the standard deterministic one. Mean Stokes
parameters can be obtained by averaging its solution over
the magnetic field distribution. For magnetic fields with a
finite correlation length, i.e. comparable to photons mean
free paths, the macroturbulent and microtubulent limits
are recovered when the correlation scales go to infinity or
Zero.

The microturbulent limit is certainly a rough approxi-
mation to describe the effects of a random magnetic field,
but as the small scale limit of more general models, it is
interesting to study somewhat systematically the effect of
a random magnetic field on the Zeeman absorption ma-
trix. This is the main purpose of this paper. The problem
has actually been addressed fairly early by Dolginov &
Pavlov (1972, henceforth DP72) and by Domke & Pavlov
(1979, henceforth DP79), with anisotropic Gaussian dis-
tributions of the magnetic field vector. These two papers
have attracted very little attention, although they con-
tain quite a few interesting results showing the drastic
effects of isotropic or anisotropic magnetic field distribu-
tions with a non zero mean field. More simple distribution
have been introduced for diagnostic purposes, in partic-
ular in relation with the Hanle effect. For example, fol-
lowing Stenflo (1982), a single-valued magnetic field with
isotropic distribution is commonly used to infer turbulent
magnetic fields from the linear polarization of Hanle sen-
sitive lines (Stenflo 1994. Faurobert-Scholl 1996, and ref-
erences therein). A somewhat more sophisticated model is
worked out in detail in LL04 for the case of the Zeeman
effect. The angular distribution is still isotropic, but the

neld modulus has a (raussian distribution with zero mean.
The two models predict zero polarization for the Zeeman
effect since all the off diagonal elements of the absorption
matrix are zero. Recently, measurements of the fractal di-
mensions of magnetic structures in high-resolution magne-
tograms and numerical simulations of magneto-convection
have suggested that the distribution of the modulus of
the magnetic and of the vertical component could be de-
scribed by stretched exponentials (Cattaneo 1999; Stenflo
& Holzreuter 2002; Cattaneo et al. 2003; Janflen et al.
2003). Such distributions are now considered for diag-
nostic purposes (Socas-Navarro & Sanchez Almeida 2003;
Trujillo Bueno et al. 2004) Actually not so much is known
on the small scale distribution of the magnetic field vector
and on the correlations between the magnetic field and ve-
locity field fluctuations. For isotropic turbulence, symme-
try arguments give that they are zero when the magnetic
field is treated as a pseudovector (DP79).

Here we concentrate on the effects of Gaussian mag-
netic field fluctuations. We believe that a good under-
standing of the sole action of a random magnetic field
is important before considering more complex situations
with anisotropic random velocity fields and correlations
between velocity field and magnetic field fluctuations, al-
though they seem to be needed to explain circular po-
larization asymmetries. One can find in LL04 (Chapter
9) a simple example showing the effects of such correla-
tions. So here we assume, as in DP79, that there is no
correlation between the magnetic field and velocity field
fluctuations and that the latter behave like thermal ve-
locity field fluctuations. They can thus be incorporated in
the line Doppler width. We assume that the medium is
permeated by a mean magnetic field H, with anisotropic
Gaussian fluctuations. We write the random field distri-
bution function in the form

1
P(H)dH = @n) P2y
H2 Hi — Ho)?
expl- g blespl- Tt )
Here Ht and Hp, are the components of the random field
in the directions perpendicular and parallel to the mean
field. The coefficient o1, and or are proportional to the
root mean square (rms) fluctuations of the longitudinal
and transverse components. With the above definition
((Hr — Ho)?) = o and (H2) = 20%. We will also con-
sider the case of isotropic fluctuations with o = o1, = 7.
In that case ((H —H,)?) = 302. The distribution written
in Eq. (1) is invariant under a rotation about the direction
of the mean field and is normalized to unity. The choice
of the factor 2 in the exponential is arbitrary. Changing
it will modify the normalization constant and the relation
between the rms fluctuations and the coefficients o and
oL, -

The distribution written in Eq. (1) is the most gen-
eral azimuthally symmetric Gaussian distribution. Here
we consider three specific types of fluctuations : (i) lon-
gitudinal fluctuations in the direction of the mean field,

|d®Hr dHy.
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Fig. 1. Definition of  and ¢, the polar and azimuthal angles
of the random magnetic field vector H, and of 8, and ¢,, the
corresponding angles for the mean magnetic field H,.

also referred to as 1D fluctuations; they correspond to the
case o = 0. (ii) isotropic fluctuations, also referred to as
3D fluctuations; they correspond to o1 = oy, (iii) fluctu-
ations perpendicular to the mean field which we refer to
as 2D fluctuations; they correspond to the case o, = 0.
In cases (i) and (iii) the fluctuations are anisotropic. They
are isotropic by construction in case (ii). In case (i), only
the magnitude of ‘H is random but in cases (ii) and (iii),
both the amplitude and the direction of the magnetic field
are random.

For these three types of distribution we give expres-
sions, as explicit as possible, of the mean absorption and
anomalous dispersion coefficients. Many of them can be
found also in DP72 and DP79 where they are often stated
with only a few hints at how they may be obtained. Here
we give fairly detailed proofs. Some of them can be easily
transposed to non-Gaussian distribution functions. Also
we perform a much more extended numerical analysis of
the mean coefficients and in particular carry out a detailed
comparison of the frequency profiles produced by the lon-
gitudinal, perpendicular and isotropic distributions. This
comparison is quite useful for building a physical insight
into the averaging effects.

This paper is organized as follows In Section 2. we
establish a general expression for the calculation of the
mean Zeeman absorption matrix which holds for any az-
imuthally invariant magnetic field vector distributions. In
Sections 3., 4. and 5. we consider in detail the three spe-
cific distributions listed above. Section 6. is devoted to a
summary of the main results and contains also some com-
ments on possible generalizations.

<. 1he Zeeman propagation matrix

We are interested in the calculation of

(@) = [ b) PRy ar @)
where & is the propagation matrix in the transfer equation
for polarized radiation. It depends on the modulus of the
magnetic field |#| = H and on the angle between the line
of sight (LOS) and the direction of the magnetic field. In
the line LOS reference frame shown in Fig. 1 where the
z-axis is toward the observer, ® depends on the polar and
azimuthal angles 8 and ¢ of the random magnetic field.
In contrast, the magnetic field distribution introduced in
Eq. (1) is defined with respect to the direction of the mean
field #H,. In terms of ©® and ¥, the polar and azimuthal
angles of H with respect to H,, the distribution function
has the form

H?%sin? ©
P(H)dH = @ oZor exp[— T ]
_ 2
exp[— M] H?sin © dH d© d¥. (3)
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To carry out the averaging process, one must either ex-
press P(H)dH in terms of 6 and ¢ or the matrix & in
terms of ©® and ¥. The second option is actually simpler
to work out. As pointed out in DP79, the angular depen-
dence of the elements of ® can be written in terms of the
spherical harmonics Y;,,(6, ¢). This comes out naturally
when the radiation field is represented by means of the
polarization matrix rather than with the Stokes param-
eters. The Y},,, because they are tensors of rank [, obey
well known transformations laws under a rotation of the
reference frame. A rotation of the LOS reference frame to
anew frame defined by the direction of the mean magnetic
field will thus yield the elements of ® in terms of © and
¥. The averaging process can then be carried out fairly
easily.

In Section 2.1. we recall the standard expressions of
the elements of the 4 x 4 Zeeman absorption matrix in
the Stokes parameters representation and in Section 2.2.
we give their expression in the polarization matrix repre-
sentation. In Section 2.3. we explain in detail the trans-
formation of the Y}, and in Section 2.4. establish general
expressions for the mean coefficients.

2.1. Absorption and anomalous dispersion coefficients

We consider for simplicity a normal Zeeman triplet but our
results are easily generalized to the anomalous Zeeman ef-
fect (see Section 6.). For a normal Zeeman triplet, the line
absorption matrix can be written as (Landi Degl’Innocenti
1976, Rees 1987, Stenflo 1994, LL04)

Y1 PQ  PU PV

é — YQ ¥I1 Xv —Xu (4)
Yu —XvV Y1 XQ
Vv Xu —XQ @I



1he absorption coetiicients, ¢ qQ,u,v and the anomalous
dispersion coefficients xq,u,v may be written as

1 ) 1
50 sin® 6 + Z(<P+1 +¢1)(1+cos ),

P =
1 1 .2

0q = 5[(’00 - §(<P+1 + ¢_1)]sin® 6 cos 2¢,
1 1

YU = E[CPO — 5(90-1-1 +¢_1)] sin? @ sin 2¢,
1

oy = §(<p+1 —¢_1)cosb,
1 1

xqQ = jlfo—5(fr1 + f-1)] sin® 0 cos 26,
1 1

xu = Slfo=5(fr + f-1)] sin® 0 sin 2,
1

v = §(f+1 — f-1)cosé. (5)

Here ¢, (¢ = 0, £1) are Voigt functions and f, Faraday-
Voigt functions defined below.

We introduce a Doppler width Ap and measure all the
independent variables appearing in ¢, and f, in Doppler
width units. We thus write

(pq(.’L',a,H) = H(:L. - qAH7a)
a +oo e v
~ w3/2 /700 (x — qAH — u)? + a? du,  (6)
and
fq(.’lf,a,H) = F(.’E—QAH,O,)

_ 1 o (g gAH —u)e ¥
- =m/ du, (1)

w3/2 x — qAH — u)? + a?

where z = (v — v,)/Ap is the frequency measured from
the line center, in units of Ap, a the damping parameter
and AH the Zeeman displacement by the random field
with

e 1
A=g -—. (8)

4me Ap

Here g is the Landé factor, ¢ the velocity of light, m and
e, the mass and charge of the electron.

We use here Voigt functions which are normalized to
unity when integrated over the dimensionless frequency
z, and the associated Faraday-Voigt functions (a factor
1/4/7 is added to the usual definition of H and a factor
2/4/m to the usual definition of F'). With this definition
the Voigt function is exactly the convolution product of a
Lorentzian describing the natural width of the line and of
a Gaussian. The latter can describe pure thermal Doppler
broadening, or a combination of thermal and microturbu-
lent velocity broadening, provided the velocity field has
an isotropic Maxwellian distribution. What we call here
the Doppler width and denote by Ap is actually the to-
tal broadening parameter, including the microturbulent
velocity field. Thus, with standard notations,

Ao =2 (uf + 2)"”, (9)

where v, 18 the line center irequency, vsn = (2KL /1M )"/~
and v, are the root-mean-square thermal and turbulent
velocities, respectively.

If the frequency z is measured in units of thermal
Doppler width Ap = v,vm/c, then ¢q(z,a)dr become
Ga(@/ v, a/1)doly, with v = (1 + 2, /v,)"/% The
change of variables z/7y, — z and a/y, — a and the
definition of Ap as in Eq. (9) lead back to Egs. (6) and

(7).
2.2. A different form for the Zeeman matrix elements

For the calculation of the mean Zeeman propagation ma-
trix, it is convenient to rewrite the elements as in DP79,
namely in the form

1
Ao — §A2(300526 -1),

Y1 =
pv = Ajcosb,
0q = A sin’ 0 cos 26,
oy = Agsin® §sin 24, (10)
with
K=
A0=—Zcpqa:a’H qg=0,%x1
g=-1
1
Al = 5 Z qsoq(mvaﬁf}{%
g==%1
1 a=t1
A2 = Z Z (2 - 3(]2)(,0[](1',@,7{), q= 07i1 (11)
g=-1

The anomalous dispersion coefficients have similar expres-
sions with the ¢, replaced by the f;. It is straightforward
to verify that the expressions given above are identical
to those given in Eq. (5). We note here that they appear
automatically when the polarized radiation field is rep-
resented by the time averaged polarization tensor rather
than by the Stokes vector (DP72; DP79; Dolginov et al.
1995).

The main interest of this formulation, in addition to
the fact that the A;, (i = 0,1,2) depend only on the in-
tensity of the random magnetic field, is that the functions
which contain the angular dependence can be expressed
in terms of spherical harmonics Y; ,,,(6, ¢) and Legendre
polynomials P;(cos§) which obey simple transformation
laws in a rotation of the reference frame. In terms of these
special functions,

2
pr = Ap — §A2P2(C059)

APy (cos 0)

ou = (312; )" A0k 5,20, 6) ~ Yo 206, 9))

v

(12)



1'ne Legendre polynomials [;(COSU) are special cases Or
Yim (0, @), corresponding to m = 0 (see Appendix A).!

2.3. Rotation of the reference frame

We now perform a rotation of the reference frame to ob-
tain the absorption coefficients in a reference frame con-
nected to the mean magnetic field where the averaging
process is easily carried out. The initial reference frame is
the (zyz) frame, also referred as the LOS reference frame
(see Fig. 1). We perform on this reference frame a rotation
defined by the Euler angles a = ¢,, 8 = 6, and v = 0. This
rotation is realized by performing a rotation by an angle
8, around the y axis and a rotation by an angle ¢, around
the initial z-axis. Since the random field is invariant under
a rotation about the direction of the mean field, we have
taken v = 0. Rotational transformations and Euler angles
are described in many textbooks (Brink & Satchler 1968;
Varshalovich et al. 1988; LL04).
The spherical harmonics Y}, are irreducible tensors
of rank [. They are particular cases of the Wigner
Z)m, (e, B, 7) functions corresponding tom = 0orm/ =0
(see Appendix A). In a rotation of the reference frame, de-
fined by the Euler angles a, 3, v, they transform according
to (Varsha.lovich et al, 1988, p. 141, Eq. 1)

where 6 and ¢ are the polar angles in the initial LOS
coordinate system and © and ¥ the polar angles in the
final mean magnetic coordinate system. Thus © and ¥
define the direction of the random field H in the new
reference frame.

Actually, we need the inverse transformation which
will give us the Y;,,(6,¢) in terms of the Y}, (0, ¥). The
inverse transformation is (Varshalovich et al., 1988, p. 74,
Eq. 13)

Yim (6, 0) = ZYW (0, )DL (0, ~8,, — o) (14)
The inverse transformation is obtained by performing the
three elementary rotations in the reverse order and with
the opposite rotation angles. Explicit expressions of the
Y and ng),m are given in Appendix A.

To calculate the mean coefficients (¢r,q,u,v) we have
to integrate Eq. (12) over W. Since the distribution func-
tion P(H) and the A;, (i = 0,1,2) are independent of ¥
(see Egs. (3) and (11)), only the Y, have to be integrated
over U. When Eq. (14) is integrated over ¥, only the term

with m' = 0 will remain. For m' = 0 the Dfn)m reduce
to Y, and the Yjy to Legendre polynomials. Thus after
integration, Eq. (14) reduces to

% / Vi (8, $)dT = Py(cos ©)Yim (=0, — o). (15)

! This article contains four appendices which are pub-
lished in the electronic version of A&A available at
http://www.edpsciences.org/aa.

We are now 1n the position to average rq. (12)

2.4. Mean coefficients

Using Eq. (15) with I =2, m =0 for ¢1, I =1, m =0 for
pv and | = 2, m = %2 for pq and ¢y, we obtain the very
compact expressions

(p1) = Ag — %A2(3C0S2 6, — 1),

(py) = Ajcosb,,

(pq) = Aysin’® 6, cos2¢,,

(pu) = (pq) tan2¢,, (16)
where

1‘[0 = <A0(.CE,CI,H)),

Ay = (Ai(z,a,H) cos ©),

Ay = (Ag(:c,a,’H)%(Z& cos? © — 1)). (17)

The notation ( ) represents an integration over © and H
weighted by the azimuthal average of the magnetic field
distribution. This result is quite general and can be used
for any random field distribution, provided it is invariant
in rotations about the mean magnetic field direction. We
have similar expressions for the xqu,v with the ¢, re-
placed by the f;. Since (pu) is simply related to (pq),
(see Eq. (16)) we do not consider it in the following.

With the distribution functions considered here (see
Egs. (1) or (3)), the mean coefficients have the same sym-
metry properties as the non random coefficients, namely
(1) and (pq) are symmetric with respect to the line cen-
ter £ = 0 (they are even functions of z) and (pv) is an-
tisymmetric (odd function of x). We stress also that the
integrals of (pr1) and (pq) over frequency are not affected
by turbulence. Hence if one consider only the integration
over z > 0, the integral of (pq) is zero and the integral of
(p1) equal to 1/2.

3. Longitudinal fluctuations (1D turbulence)

When fluctuations are along the direction of the mean field
H,, the distribution function for the random field can be
written

1 exp|— (H —H,)?
(2m)1/20 P 202

where # is the 1D random magnetic field which varies
between —co and +oo and o = [((H — H,)*)]Y/? =
[(H2) —H2]'/2 is the square-root of the dispersion (or vari-
ance) around the mean field #,, also known as the stan-
dard deviation or rms fluctuations. The factor 2 ensures
that o is exactly the rms fluctuation defined as above. This
distribution is normalized to unity. It can be obtained from
Eq. (1) by integrating over the transverse component of
the magnetic field. To simplify the notation, we have set
o1, = 0. We note that the Gaussian tends to a Dirac dis-
tribution when o — 0. Thus for ¢ = 0, the magnetic field
is non-random and equal to the mean field #,;.

PL(H) dH = |dH, (18)



We Introduce the new dimensionless variable y and the
parameters y, and 3 defined by

— H . _— 7_{0 .
y \/ig’ yO \/io”

where the constant A is defined in Eq. (8). These dimen-
sionless quantities will also be used in the case of isotropic
and 2D turbulence. The variable y and the parameter y,
measure the random field and mean field in units of the
standard deviation. The random Zeeman displacement is
AH = yvyy and the Zeeman shift by the mean field is
AH, = yo, vy In these new variables, ¢, can be written

T = AV20, (19)

as
+o0 —u?
a e
— d 20
#u(®0:9) = o /_oo c—gmy—wrra ™ @
and the distribution function becomes
1 2
P dH = ——e W) ¢ 21
L(H) H \/7_1' € Y, ( )

with y varying from —oo to +oo.

To calculate the mean absorption coeflicients it suffices
to take the average of the A; over H in Eq. (11) since the
random field is along the direction 8,, ¢,. This procedure
is equivalent to set cos® = 1 in Eq. (17). The averaging
over the magnetic field distribution amounts to the convo-
lution product of a Voigt function with a Gaussian coming
from the distribution of the magnetic field modulus. The
effect is similar to a broadening by a Gaussian turbulent
velocity field, except that it does not affect the g term
(the m-component) since the latter does not depend on the
modulus of the magnetic field. One obtains (see Appendix

C)

) L=

Ag = 3 Z H(Z,,aq), gq=0,%1,
q*—l

A = = Z q qu,aq)
q +1 Tq

_ q +1

Ay = 3 Zl (2 —3¢*)—H(z4,a,), q=0,%1, (22)
—

where H is the Voigt function introduced in Eq. (6),
—qA

g, = LA A (23)
Ya Yq

and

Yo =y/1+¢7; ¢=0+1 (24)

We see that v; is a broadening parameter which com-
bines the Doppler and magnetic field effects. Note that
Yo =1, Tg = x and ag = a. The g term is not modified
as already mentioned above. Note also that the functions
H(Z4,a,)/7, are normalized to unity (their integral over
x is unity).

The broadening of the o-components can be described
in terms of a total Doppler width A¢ that combines the

errects or thermal, velocity and magnetic 1ield broadening.
It can be written as

Ag = /A2 2 2202 2
0=\ [Ab + (e, (25)
where Ap is the Doppler width defined in Eq. (9).
When the Zeeman shift by the mean magnetic field
A?H, is smaller than the combined Doppler and magnetic
broadening (AH, < 71), a situation referred to as the

weak field limit, as in DP72, one has, to the leading order

- a

Ay ~ =[H + H — —

o = S[H(z,a) ~HC )

_ 2A”HO a T a

A ~ sH(—,—) —aF(—,—)],

! ’Y% [ (’71 ’71) 7 ’71)]

_ 1 1 T a

Ay ~ —[H(x, —H(—,— 26
s > 5lH@E.0) - ~H( )] (26)

When the mean field H, is zero, the circular polarization
is zero but not the linear polarization unless the random
field fluctuations are along the LOS (6, = 0°). The mean
diagonal absorption coefficient is given by

;H(x a)sin” 6, +LH(£,£)(1+005260).(27)

(p1) = o Ao

To summarize, in the case of longitudinal fluctuations,
the mean absorption coefficients have the same form as
the original coefficients given in Egs. (5) or (10) but the o-
components are broadened by the random magnetic field
while the m-components are not affected. Mean coeflicients
for longitudinal fluctuations are shown in Section 5. and
compared to the mean coefficients for 2D and 3D turbu-
lence.

4. Isotropic fluctuations (3D turbulence)

We now assume that the fluctuations of the magnetic field
are isotropically distributed. This implies that o1, = oT in
Eq. (1). The distribution function takes the form

1
exp[— %] H? sin © d dO d¥. (28)

Here H, the modulus of the magnetic field, varies from 0
to oo The rms fluctuations are [((H —H.,)?)]}/? = [(H?) -
H2]*/? = /30. In terms of the dimensionless parameters
introduced in Eq. (19), the distribution function becomes

1
AH)dH = —5

32 e~ Wet”) 200y c0s© 42 gy gin @ 4O d,(29)
o

where y varies from 0 to oo, the angle © from 0 to 7 and
¥ from 0 to 27r. The azimuthal average of this distribution
is simply given by the rhs of Eq. (29) without the d¥.



4.1. £XacCt and approximate expressions for the mean
coefficients

We now calculate the A; defined in Eq. (17). Introducing
the variable p = cos ©, we can write

— 2 b 2 2
Ai = _/ ei(ya+y )A’l z,a, \/in y2
7 o ( :
+1
/ €290 cy(1) dpu dy, (30)

-1

where
1

o) =1, c(w)=p, cu) =50 1) (31)

The integration over pu can be carried out explicitly.
Regrouping the exponential terms e~Wa+v”) and e2%¥ and
then taking advantage of the symmetries with respect to
a change y into —y, one obtains

i 9 1

0= 7=
3T £ 2y,

+oo 2
/ e*(y*yO) H(x_quﬂy,a)y dya(32)

_ 1 1 [t 2
A =— q / e WV H(x — qyny,a
) ﬁq:z_;l o | (z — qyny,a)
1
- dy, 33
(y 2yo) y (33)
]. 11=+1 ]. -‘rOO ( )2
A=—— S (2-3¢ ~(v=ve
2 2y/m qgl( 5 )2yo ~/—oo ¢
3
H(x - -2 +-" 4 34
(x — gy, a)(y o + 4ygy) Yy (34)

These equations, which are of the convolution type, were
first given in DP79. Note that y varies from —oo to +o0.
For the anomalous dispersion coefficients we have similar
relations where the Voigt functions H are replaced by the
Faraday-Voigt functions F'.

As shown in Appendix C, the A; can be expressed in
terms of the generalized Voigt and Faraday-Voigt func-
tions H™ and F(™ defined by

+oo n,—u?
(n) -2 _we
H'"™ (x,a) 5 [m T-witr @ du, (35)
1 +o0 (g — e v’
(n) - ot o o? A
F"(@,a) = 73/2 /, (x —u)? + a? du. (36)

They were introduced in DP72 were the F(") are denoted
G™ (in DP79 they are denoted Q(™). For n = 0, one re-
covers the usual Voigt and Faraday-Voigt functions. The
functions H™ and F(" are plotted in Fig. 2 for a = 0,
n = 0,1,2. They can be calculated with recurrence rela-
tions given in Appendix D which take particularly simple
forms for a = 0. In particular

2

H™ (z,0) = %x”e‘m . (37)

H™ (a = 0, )

F((a =0, x)

Frequency x

Fig. 2. The H™ and F™ functions for several orders n. The
damping parameter a = 0. The H () are even functions when n
is even and odd when n is odd. For the F™ it is the opposite.

We also note that the H(™ and F(™ functions are simply
related to the derivatives of the Voigt and Faraday-Voigt
functions (see Appendix D).

The functions Ag and A; have closed form (i.e. exact)
expressions in terms of the H(™ but not A, for which only
approximate expressions can be given because of the term
with 1/y (see Eq. (34)). The exact expressions for Ag and
Ay are

g=+1

do=3 Y

1
OG0 + 0 T HO @8], (39
g=—1 "1

YoYq

1
(1-55)H (z,,a,)
2 — 'yq[ 2y2 e

(39)

where Z, and @, have been defined in Eq. (23).

For A,, approximate expressions can be constructed
in the limiting cases y, > 1 and y, < 1, which we refer
to respectively as the strong mean field and weak mean
field limits for reasons explained now. We discuss these
two cases separately.



4.1.1. otrong mean tield IImit

When the mean field intensity H, is much larger than the
rms fluctuations, i.e. when H, > /20, one has y, > 1. In
this case the Zeeman shift AH, by the mean magnetic field
is much larger than the broadening v = Av/20 by the
random magnetic field fluctuations. We call this situation
the strong mean field limit but it can also be viewed as a
weak turbulence limit. When y, > 1, one can neglect the
term 3/4y2y in Eq. (34) and thus obtain

q+1

A2st 4 Z

q——l

3)[(1 - 5 T @,.)

o

+ g2 g >(a:q,aq)] (40)

Z/o'Yq
where the superscript “st” stands for strong.
We remark here that if we keep v finite but let y, —
00, we recover the longitudinal turbulence case discussed

in the preceding section. This can be checked on Egs. (38)
o (40).

4.1.2. Weak mean field limit

We now consider the case where y, < 1. This means that
the Zeeman shift by the mean field satisfies AH, < 4.
Since vy < 71, this condition automatically implies that
the mean Zeeman shift is smaller than the combined
Doppler and Zeeman broadening. Thus in this limit, which
we refer to as weak mean field limit, the mean magnetic
field is too weak for the o-components to be resolved. The
best method to obtain the mean absorption coefficients
is to start from Eq. (30) and expand the exponentials
exp(—y2) and exp(2y,y) in powers of y,. Using the change
of variables described in Appendix C with y, = 0, one
obtains at the leading order,

_ 1 x
A ~ 22 |HO (2,0 HO
2" = y2=[HO (2,a) - 71[ (7171
+ 22 HO(Z Ly 4 ZA4 g , 41
HO ) + S HO )] (41)
where the superscrlpt “w” stands for weak. The important

point is that A," is of order y2. This point has already
been made in DP72 and DP79 but the full expression was
not given.

For the functions Ay and A;, the expansion in powers
of y, yields

1=
A" =~ HOZ L)
3q;1'7q[ Ya Vg
+ 2¢°~2, H® , 42
HHE ) (42)
o W [ (G
A HWY 2, H®) . (43
e IO (24 2O L)

Note that A;" is proportional to y,y3, i.e. to the shift
A%, by the mean magnetic field.

In this weak neld limit the mean value oI the absorp-
tion coefficient ¢y is s1mp1y given by {(p1) ~ /IOW since the
contribution from A,", which is of order y2, can be ne-
glected. Thus (1) is independent of the direction of the
mean field. This property holds also when the mean field
is constant. The proof given here is an alternative to the
standard method which relies on a Taylor series expansion
of the Voigt function (Jefferies et al. 1989; Stenflo 1994;
LL0O4).

When the total broadening of the line is controlled by
Doppler broadening, i.e. when v = Av/20 < 1, one can
set 1 = 1. Equations (42) and (43) lead to the stan-
dard results ¢; ~ H(z,a) and ¢y ~ 2AH,HD (z,a) =
—AH,0HO) (z,a)/0x.

4.1.3. Zero mean field

When the mean magnetic field is zero, the angular aver-
aging over © and ¥ (or § and ¢ in the original variables)
becomes independent of the averaging over the magnitude
of the magnetic field. Because of the isotropy assump-
tion, A; = A5 = 0 and the polarization is zero, namely
(pqQ,u,v) = 0 and (xq,u,v) = 0. The dlagonal absorption
coefficient is given by (p1) = Ag" with Ag" equal to the
rhs of Eq. (42). One can verify that our result is identical
to the last equation in Section 9.25. of LL04. There (pr)
is written in terms of the second order derivative of the
Voigt function.

4.2. Profiles of the mean opacity coefficients in the
weak and strong mean field limits

In Figs. 3 to 5 we show the effects of an isotropic distri-
bution with a non zero mean field on the absorption and
anomalous dispersion coefficients ¢r1,q,v and xq,v. We dis-
cuss separately the weak and strong field limits. The re-
sults are presented for the damping parameter a = 0.

4.2.1. Weak mean field profiles

In the weak mean field limit, (1) = A", up to terms of
order y2, {py) = A;" cosb,, up to terms of order y3, and
(¢q) which is order of y2 can be neglected. As already
mentioned above, (¢1) is independent of the mean field
direction. We show in Fig. 3 the profiles of {¢1) and (pv)
for §, = 0° calculated with AH, = 10~! and v, = 1,2, 3.
With this choice of parameters, we satisfy the weak mean
field condition since y, = AH,/yn stays smaller than
unity. As can be observed in Fig. 3a the increase of vy
produces two different effects on (p1). There is a global
decrease in amplitude due to the factor 1/ in front of
the square bracket in Eq. (42) and the appearance of two
shoulders created by the increasing contribution of the
term with H® . They are clearly visible for v = 3. The
position and amplitude of these shoulders can be deduced
from the behavior of H(®). Equation (37) shows that the

() +4/n/2. A rescaling of

H®™ have maxima at Tmax =
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Fig.3. Weak mean field limit. Isotropic fluctuations.
Absorption coeflicients (1) and {pv) for a longitudinal mean
magnetic field are shown. Mean Zeeman shift AH, = 10°%;
Voigt parameter a = 0. The curve vy = 0 corresponds to a
constant magnetic field equal to H,.

frequency by the factor 71, predicts that the position of
these shoulders is around |z| ~ v, and their amplitude
around (v3,/7})(4/3e/), in agreement with the numer-
ical results. These shoulders are a manifestation of the
o-components which appear with increasing probability
when ~y, i.e. the dispersion o of the random magnetic
field, increases.

4.2.2. Strong mean field profiles

In this limit (¢1,q,v) are given by Eq. (16) with Ao, A;
given by the exact expressions in Egs. (38), (39) and A,
given by the approximate relation (40). Thus errors that
can be created by this approximation will all come from
A, and affect only (pq) and to a lesser extent than (pr).
For (¢v) we are using an exact expression. Figures 4 and
5 illustrate the variations of (1), (pq) and (pv) with
the parameter 4. To satisfy the strong field condition
(yo = AH,/v3 > 1), we have chosen AH, = 3 and kept
~3, smaller than 1.5. The variations of (1) are more easy
to understand if we expand the sums over ¢ in Egs. (38)

bU’Oﬂg

rield q
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Fig.4. Strong mean field limit. Isotropic fluctuations.
Absorption coefficients {¢1) and (pv) for a longitudinal mean
magnetic field (6, = 0°) are shown. Mean Zeeman shift AH, =
3; Voigt parameter a = 0.The curve 7 = 0 corresponds to a
constant magnetic field equal to Ho.

o) = %H(”C’“) [1- %(3 cos? 6, — 1)(1 - 23?)]

1 _ o
+ 3 [H(a:+1,a) + H(w_l,a)]
1. 3
1+ (3cos?6, — 1)(1 - ng)}
L% g0z, a8 - HO (. g
+ 35072 [H (Z41,a) — H (x_l,a)]
1
1+ £ (3050, - 1)] (44)

To simplify the notation we have used H©)(z,a) =
H(z,a), a+; = a and G = a.

The term containing H (z,a) creates a central compo-
nent even when the mean field is longitudinal (6, = 0°).
The existence of this central component, which has no
polarization counterpart, was pointed out in DP72. It
is created by the averaging of the w-component opacity
o sin” /2 over the isotropic random magnetic field distri-
bution. When 6, = 0°, this central component behaves as
H(z,a)/2y?. It becomes clearly visible when y3; = 1.5 (i.e.



(o (x))

0.2F

0.1F

<¢Q (x)>

0.0 =

yu = 0
E e e e e 4
-6 -4 -2 0 2 4 6
Frequency x

Fig. 5. Strong mean field limit. Isotropic fluctuations. Mean
values of {(¢1) and {pq) for a transverse mean magnetic field
(6o = 90°). Same parameters as in Fig. 4 (AH, = 3; a =0).

Yo = 2). In Fig. 4 it increases with 3 because we are keep-
ing the product y,y4 = AH, constant. When 6, = 90°,
this component behaves as (1 — 1/2y2)H(z,a)/2. As can
be seen in Fig 5, it is not very sensitive to the value of y4.

The o-components come mainly from the second term
in Eq. (44). They vary like (1 — 1/2y2)H(Z+1,a)/2v for
6, = 0° and as (1 + 1/2y2)H(Z+1,a)/4y: for 6, = 90°.
Thus, an increase in 4 produces a broadening of the com-
ponents and a decrease in intensity. There is also a shift
away from line center more specifically due to the increase
of the relative importance of the H®) terms with respect
to the H terms.

The mean coeflicients {(pv) and (pq) are given by
(pv) = Ajcosf, and (pq) ~ A,*'sin?6,cos2¢, with
A; and A" given in Eqgs. (39) and (40). The profiles
shown in Figs. 4 and 5 are easy to understand. The domi-
nant contributions come from the terms with H((z,,a,),
g =0,=x1. For {py), the o-components behave essentially
as (1 —1/2y2)H)(Z4,,a)/2v1, i.e as the o-components
of {p1). Hence their amplitude decreases and their width
increases when vy, increases. For (pq), the o-components
behave as —(1 — 3/2y2)H®)(Z4,,a)/4y, and the central
component as (1 — 3/2y2)H® (z,a)/2, to be compared
to (1 —1/2y2)H©)(z,a)/2 for {¢1). Hence as observed in

Fi1g. o, the central component of {(¢g) 1S more sensitive to
the value of v3; than the central component of {¢r).

4.3. General case. Numerical evaluations

We now discuss the behavior of the mean opacity coeffi-
cients when y, = H,/+v/20 is of order unity. For 4y and
A, we have exact expressions given in Egs. (38) and (39)
but there is nothing similar for A,. Roughly, the weak
field limit is valid for y, < 0.1 to 0.2 and the strong field
limit for y, > 2. Hence for y, of order unity, neither the
weak nor the strong mean field approximation holds and
(1) and {pq) must be calculated numerically. For the nu-
merical calculations it is preferable to return to Eq. (30).
The integration over u can be carried out explicitly. One
obtains, for the mean absorption profile,

4 1 2 [ 2 ™
= ¢ Y% =Y~ 2
(rl,a) =5 oz [ ey o
1
{112 y09) = 3152299 (3 cos? 6, = 1)] H(z,a)

1
+ [T1 /2 (2y0y) + 115/2(22102/)(3 cos’ 6, — 1)]

[H(z — yny,a) + H(x + vy, a)] } dy,

(45)
for the mean linear polarization profile

(¢ (@, a)) = sin 6, cos 24,
2

2 * 2 e
= e Y e Y y2 / I5 5 (2y,y
ﬁ 0 4yoy 5/2( 0o )

{H(z,0) = 5[H(x ~ 1y, @) + H( + 1y, )]} dy (46)

and for the mean circular polarization,

4 2 o 2 o
= e Y% -y 2
(pv(z,a)) = cos 00\/7? e /0 e Vy 1/—4yoy1'3/2(23/03/)

CH (e~ 0y,0) ~ H( + v, 0)] dy. (47)
The I, 1 are the modified spherical Bessel functions of
fractional order (Abramovitz & Stegun 1964, p. 443).
They have explicit expressions in terms of hyperbolic func-
tions (see Appendix B). In (yr) the terms with I /5 come
from Ay and the terms with I5/, from A,. These expres-
sions are a bit bulky but clearly show the coefficients of
the m and o-components and how they differ from the
coefficients in Eq. (5).

The integration over y is performed numerically us-
ing a Gauss-Legendre quadrature formula. The integrand
varies essentially as e~V" €2¥+¥, with the factor 2<% com-
ing from the Bessel function. The maximum of the inte-
grand is around y = y,. With 10 to 30 points in the range
[0,2y,] we can calculate the integrals with a very good
accuracy (errors around 10~6). The averaging process in-
creases the overall frequency spread of the mean coefli-
cients. A total band width zna.x ~ 4AH, is adequate to
represent the full profiles.



In the 1ollowing sections we Alscuss the dependence or
(¢1) on the intensity of the mean field, on its rms fluc-
tuations and on the damping parameter a. A full section
is devoted to (1) which has the most complex behavior.
Then we discuss the dependence of all the mean coeffi-
cients, including the anomalous dispersion coefficients, on
the Landé factor for a given random magnetic field. All the
calculations have been carried out with a damping param-
eter a = 0, except when we consider the dependence on
a.

4.4. The mean coefficient (1)

Equation (45) shows that {p;) has a central component
around x = 0 which corresponds to the m-component.
It is of the form H(z,a) times a factor which depends
on y, and on the orientation §, of the mean magnetic
field. When y, is small, the Bessel functions can be re-
placed by their asymptotic expansions around the origin
(see Appendix B) and the central component has the ap-
proximate expression

(orhe = e[ Yo (3008260 — D] H(z,a)
PI)r = 3 15 0 ) .
For y, = 0 and a = 0 we recover the weak field limit
{o1)r =~ e_:”2/3\/7_r. The two other terms in Eq. (45) cor-
respond to the two o-components, averaged over the ran-
dom magnetic field. They depend on y, and 4, and also

on vy = AV20.

(48)

4.4.1. Dependence on the mean magnetic field
intensity

We show (¢1) in Fig. 6 for different values of y,. We keep
v = 1, hence AH, = y,. We cover all the regimes of
magnetic splitting from the weak field regime for y, < 0.1
to the strong field regime for y, > 2. These two regimes
have been discussed in Sections 4.1. and 4.2.. For y, < 0.1
there is a single central peak described by the H(® terms
in Eq. (42). There is essentially no contribution from the
term with H®). For y, = 1, one is in the intermediate
regime described by Eq. (45). There is still a single peak
because the Zeeman shift AH, = 1 is smaller than the
broadening parameter y; = v/2. Once y, > 2, one enters in
the strong field regime, with well separated o-components
at ¢ = £AH, = ty,, discussed in detail in Section 4.2.2..
When y, — oo while ~y3 is kept finite, the isotropic distri-
bution goes to the 1D distribution. In the longitudinal case
(8o = 0°), the central component goes then to zero and the
o-components to H(Z11,ad)/2v:1, while in the transverse
case (8, = 90°), they go to H(z,a)/2 and H(Z11,a)/4v,
respectively.

4.4.2. Dependence on the magnetic field dispersion

Figure 7 shows (p;) for a fairly strong mean magnetic
splitting AH, = 2 and several values of vy varying from
0 to 6. For 4y = 0 we are in the deterministic case with

(@1 (I)>

(¢1 (90)>

—10

Frequency x«

Fig. 6. Dependence of (¢1) on the mean magnetic field inten-
sity measured by the parameter y,. Isotropic fluctuations. The
parameters employed are : @ = 0, 734 = 1. The curves for
Yo = 1072 and 0.1 coincide. The panels (a) and (b) correspond
to the longitudinal (6, = 0°) and transverse (6, = 90°) cases,
respectively.

two well separated o-components at z = +AH, = +2.
Their amplitudes are H(AH,,a)/2 and H(AH,,a)/4 for
0, = 0° and 0, = 90°, respectively. The mw-component
for 8, = 90° has an amplitude H(0,a)/2 = 1/2\/7 since
a = 0. For vy = 1, we are still in the strong field regime
(yo = 2) with o-components still roughly at z = £AH,
but the peaks have smaller intensity because of the factor
1/ in Eq. (44). For vy = 3, one starts entering into
the weak field regime which has been discussed in Section
4.2.1. since the corresponding value of y, is 2/3.

4.4.3. Dependence on the damping parameter

Figure 8 shows (¢r) for the longitudinal Zeeman effect.
Panel (a) is devoted to the strong mean field regime (see
also Fig. 4) and panel (b) to the weak field regime (see
also Fig. 3). As long as a < 1072, there are no observable
effects on the mean value of ;. The effects of the damp-
ing parameter on {(pr) become noticeable when a > 0.1.
As expected, the intensity of the 7 and o-components de-
crease and Lorentzian wings appear. When a > 0.5, the
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Fig. 7. Dependence of (¢1) on the magnetic field dispersion
measured by vy. Isotropic fluctuations. The parameters em-
ployed are : a = 0, AH, = 2. The panels (a) and (b) corre-
spond to longitudinal (f, = 0°) and transverse (6, = 90°) cases
respectively. Notice the saturation of the central m-component
for vy > 3.

central component in the strong field case almost disap-
pears. Thus for values of a ~ 1072 to 0.1, the 7 and o-
components are insensitive to changes in a and the effects
of turbulence discussed in this paper for a = 0 survive.
In the solar case, this situation will hold except for very
strong lines.

4.5. Dependence on the Landé factor

We now consider the effect of a given random magnetic
field on lines with different Zeeman sensitivities. We give
‘H, and the dispersion o, but let the Landé parameter g
vary. Thus y, = Ho/ V20 is constant, but vy = Av/20 and
AH, = y,y are varying with g (see Eq. (8)). The mean
coeflicients have been calculated with y, =1 and vy =1
to 6. For this choice of y, we are in an intermediate field
regime and the mean coefficients are given by Eqgs. (45),
(46) and (47).

Figure 9 shows (). For vy = 1 the Zeeman compo-
nents are not resolved (the same curve is shown in Fig. 6a,
yo = 1). For 8, = 0°, the central peak is quite broad (Full
Width at Half Maximum FWHM=5) because of the su-
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Fig. 8. Dependence of (¢1) on the damping parameter a in the
8, = 0° case. Isotropic fluctuations. Panel (a) shows the strong
field case (AH, = 3 and % = 1.5) and panel (b) the weak field
case (AHo, = 1072 and 43 = 3). For large values of a, the w
and o-components decrease in strength.

perposition of the central m-component coming from the
first term in Eq. (45) (responsible for the narrow tip) with
the two o-components given by the two other terms in the
same equation. For §, = 90°, the central peak is more nar-
row (FWHM = 3), because the contribution from the o-
components is smaller. As can be observed in Eq. (45), the
coefficient of H (z+vyy, a) is (I1 j2+ 115 5) for 6, = 0° but
only (I1/2 — 315/2) for 6, = 90°. We recall that the mod-
ified Bessel functions are positive functions. When ~yy is
large enough, the m-component is given by the first term
in Eq. (45). It is independent of v and its FWHM is
around 2. Its amplitude is larger in the transverse than in
the longitudinal case since the coefficients of H (z, a) in the
integrand are respectively (112 + 315 2) and (I /5 — I5 2).
If it were not for the isotropic distribution, there would
be no w-component when 8, = 0°.

The o-components have essentially the same behavior
in the longitudinal and transverse case. The positions of
the peaks depend little on 6, and can be deduced from
the position of the maximum of the integrand in Eq. (45).
Ignoring the shifted H functions, keeping only the Bessel
function of order 1/2 and the positive exponential in the
sinh function (see Eq. (B.1)), we find that the maximum
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Fig. 9. Dependence of {p1) on the Zeeman sensitivity (the
Landé g factor) introduced through the y3 parameter (see the
text for details) Isotropic fluctuations. The parameters em-
ployed are a = 0, and yo = 1. Notice the saturation of the
m-component at the line center. The panels (a) and (b) cor-
respond to longitudinal (, = 0°) and transverse (6, = 90°)
cases respectively.

is at Ymax ~ (Yo + /Y2 + 2)/2. For y, = 1, we get Tmax =~
YmaxTH =~ 1.357yy in fair agreement with the numerical
results. The height of the peaks is somewhat larger in
the longitudinal than in the transverse case, because the
coeflicients of the shifted H functions are larger in the first
case, as pointed out above.

Figure 10 shows the mean absorption coefficient {pv)
divided by cosf, and {pq) divided by sin® 8, cos 24, (see
Eqgs. (47) and (46)). The profile of {pv) is quite standard.
As with (1) the positions of the peaks increase linearly
with the Landé factor g and are around 1.35vyy. For {pq),
the central peak, given by term with H(z,a) is indepen-
dent of 74, hence it goes to a constant value when the
two o-components are sufficiently far away from line cen-
ter. This constant value will of course depend on y,.

Finally, in Fig. 11 we have plotted the mean anoma-
lous dispersion coefficients {xq}, divided by sin® 8, cos 2¢,,
and (xv), divided by cosf,. They are given by Egs. (46)
and (47) with the Voigt function H(z,a) replaced by
the Faraday-Voigt function F(z,a). The coefficient {xq),
which has the same symmetry as (¢v), keeps more or less
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Fig. 10. Same as Fig. 9, but for {¢q) and (pv). The panels
(a) and (b) correspond to {pq)/sin’8, cos2¢, and {pv)/cosb,
respectively

the same shape as the Landé factor increases, except for
a small broadening long ward of the peaks. This can be
explained by considering Eq. (46). The overall shape is
controlled by the first term which is independent of 4.
The two other terms are responsible for the broadening
of the peaks but since they more or less compensate each
other around x = 0, they do not affect the central part of
the profile.

The coefficient (xv), has the same symmetries as (pq)
but the opposite sign Because it involves the difference
F(z — yny,a) — F(xz + vy, a) (see Eq. (47)), it is very
sensitive to the value of 73 and hence to the Landé fac-
tor. For v > 3, one clearly recognizes the shapes of two
shifted Dawson integrals with opposite signs in Fig. 11b.

5. Fluctuations perpendicular to the mean field
(2D turbulence)

We now assume that the fluctuations of the magnetic field
are confined to a plane perpendicular to the direction of
the mean field H,. Integrating over the longitudinal com-
ponent in Eq. (1), we get the distribution function

1 H2
702 exp[—ﬁ] Hr dHr d¥,

(49)
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Fig. 11. Dependence of the magneto-optical coefficients (xq)
and (xv) on the Landé factor. Same model as Fig. 9. Notice
the similarity between (xq) and {pv) as well as (xv) and (pq).

where Hr is the amplitude of the magnetic field in the
plane perpendicular to H, and ¥ its azimuthal angle in
this plane. To simplify the notation we have set o = o.
We recall that (H%) = 202. The random field # is the
sum of the mean field #, and the fluctuations Hr. Its
amplitude satisfies

H? = HE + H2. (50)

Using Eq. (50) and introducing the dimensionless variables
defined in Eq. (19), we can rewrite the 2D distribution
function as

Pr(H)dH = le*(ykyg)ydy v, (51)
T

where y varies from y, to +00. Equation (17) with cos © =
Ho/H = yo/y leads to

q+1

=3 Z/ W) H (2 — qyny, a)y dy, (52)
q=-—1

Ai=yo) q / WD H(z — qyny, a) dy, (53)
q+1

q =+1
2 2
Ay = Z 2 — 3¢ / e”W V) H(z — gy, a)

q=-—1

(35—; — Dy dy. (54)

When y, — 0, i.e. when the mean magnetic field is zero,
A; = 0 and thus (py) is also zero. In contrast, A, and
hence the mean linear polarization coefficients (goQ) and
(pu) are not zero.

5.1. Exact and approximate expressions for the mean
coefficients

As shown in DP79, closed form expressions of Ay and A;
can be obtained in terms of the error function when the
damping parameter a = 0 For A, approximate expressions
can be obtained for y, > 1 and y, < 1. These different
expressions are easily deduced from Egs. (52) to (54). We
give them below together with the weak mean field limits
for Ag and A;. They will be used to analyze the effects of
2D turbulence. Equations (52) and (53) lead to

_ 1r1 2
— _($_qAH0)
0=
O DI
+ 23:7—’;—,41], (55)
" Yo
with
- 1
A= yogeyge*”ﬁ/"’f Z gerfe(yoyg — qx:—ﬂ), (56)
1

g==+1 q

where erfc is the standard complementary error function
(Abramovitz & Stegun 1964). If the erfc function is ap-
proximated by a Gaussian, one can regroup the exponen-
tials, and their product behaves as exp[—(z — ¢AH,)?],
i.e. as a shifted Gaussian (we have used y,yg = AH,).
Thus in contrast with 3D and 1D turbulence, there is lit-
tle broadening of the o-components by the turbulent mag-
netic field and the positions of the o-components will be
almost independent of vy.
When y, > 1, one has the approximation

2

T str e~ ” 3
~ 1—-—
SR
Yo evse=a"/1i erfc T
YoVq — 4T 57
- 3 el —as 67)

The first term is obtained by an asymptotic expansion for
large z, of the the integrand in Eq. (54) and the second one
by assuming y ~ y, in the term (3y2/y* — 1)y. The factor

3/2y2 is not present in the expansion given in DP79. This
factor is needed to explain the m-component observed in
Fig. 15.

The combination of Egs. (55), (56) and (57) with
Eq. (16), yields an expression of {p1) for large values of
Yo- It contains a term proportional to e*zz, which yields
the central component, and terms which are exactly or
approximately of the form e~ (#—7AH. )* which determine
the o-components.
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Fig. 12. Dependence of {(¢1) and (pv) on the magnetic field
distribution in the weak mean field limit for the longitudinal
Zeeman effect (6, = 0°). The model parameters are a = 0,
AHo, = 0.1 and 4 = 1 (hence yo = 0.1). The curves with
v3 = 0 correspond to a constant magnetic field equal to H,.

In the weak mean field limit, i.e. when y, € 1, we
have, to leading order,

0 ~ _

3

— W 1[2—{—’7% ]. —$2 ’)/H 27,2 ’)/'H
- e + 2z e % Merf (g2t ], 58
ioVvT 7 ( 71) (58)

AV~ &e*zZ/"’ferf(wv—H), (59)
gst Y1
- W 1 1 2 YH _2/~2 YH
A -y —em —p e Merf(z2)]. (60
R [77“\/77 " e ) ©)

The corrections are O(y?2) for Ay and Ay and O(y3) for
A;. If the erf function is approximated by a Gaussian,
its product with e~ /71 yields e~". This implies that
broadening by 2D turbulence will be weak.

When the mean field is zero, 41 = 0 and Ay and A,
are given by the rhs in Egs. (58) and (60) which become
exact results.

5.2. Mean absorption profiles for 1D, 3D and 2D
turbulence

We compare in Figs. 12 to 15, the mean absorption co-
efficients corresponding to 1D, 2D and 3D turbulence.
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Fig. 13. Dependence of (1) on the magnetic field distribution.
The model parameters are a = 0, AH, = 1, v = 1 (hence
Yo = 1). The curves with vy = 0 correspond to a constant
magnetic field equal to #£,. Panels (a) and (b) correspond to
longitudinal (6, = 0°) and tranverse (f, = 90°) cases, respec-
tively.

Figure 12 corresponds to a weak mean field limit and the
other figures to an intermediate regime, neither weak nor
strong, with y, = 1. In each figure we also show the ab-
sorption coefficients corresponding to a non-random field
equal to the mean field H,. It will be seen that the fre-
quency profiles of the mean coefficients are very sensitive
to the nature of the turbulent fluctuations. However there
are a few common features linked to the invariance of the
frequency integrated mean coefficients (see Section 2.4.).
In particular a broadening (narrowing) of the profile is
associated to a decrease (increase) in the peak intensity.

In Fig. 12, y, = AH, /v = 0.1 is much smaller than
the broadening parameter v; = (1 +12,)'/? = v/2 Hence
(1) shows a single central peak. The random fluctuations
produce a decrease in the peak intensity and an associated
broadening. The decrease in peak intensity is the largest
for 3D turbulence and the smallest for 2D turbulence. This
can be explained with equations established in the previ-
ous sections.
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For 1D fluctuations and 6, = 0, we have (see Eq. (27)),

1 T a
p~—H(—,—). 61
(on)ip = - H(, ) (61)

For 2D turbulence,

w 2-}-’7’?{ 1 .-
<(101>2D — 27% \/7_1'6 )
around the line center (see Egs. (58) and (60)). For
isotropic turbulence (see Eq. (42)) we can neglect the

contribution of Ay, which is O(y2). Hence, {@r)™ reduces
to Ap, and we have

(62)

1 2 T a
¥y~ = [HO(z,a) + —HO(=, =
ontp = 5[HO@,0) + —HOC,
r a
+ 47;@H<2)(? - ] (63)

The contribution of the term with H(®) is negligible when
v = 1, but becomes relevant when v = 2, creating
pseudo o-components at |z| ~ 7; as in Fig. 3. One can ver-
ify that the above expressions correctly predict the profiles
shown in Fig. 12.

(g1 (2))

(o1 ()

Frequency x

Fig. 15. Dependence of (¢1) on the magnetic field distribution.
The model parameters are a = 0, AH, = 2, v = 2 (hence
Yo = 1). The curves with vy = 0 correspond to a constant
magnetic field equal to #,. Panels (a) and (b) correspond to
longitudinal (6, = 0°) and tranverse (f, = 90°) cases, respec-
tively.

For circular polarization, {pv) = Ay, with A} given
in Eqgs. (26), (43) and (59) for 1D, 3D and 2D turbu-
lence, respectively. The peak intensity is the largest for 2D
turbulence and the smallest for isotropic turbulence (see
Fig. 12b), exactly as observed for (1) . The frequencies
of the {pv) peaks are at |z| = 1/+/2 for zero turbulence,
around |z| ~ v;/v/2 = 1 for 1D turbulence and further
away from line center for isotropic turbulence because of
the contribution of the term with H®) (see the discussion
in Section 4.2.1.) For 2D turbulence, numerical simula-
tions show that the maxima are around |z| ~ 1 with not
much dependence on the value of v . This result is sug-
gested in Section 5.1..

We now discuss Figs. 13 and 14 where AH, = 1 and
v = 1. In the non-random case, the two o-components
of the 1 profile are partially separated when 6, = 0° but
form a single peak with the m-component when 6, = 90°.
Panel (a) shows that the central frequencies are quite
sensitive to the angular distribution of the random field.
For 1D turbulence there is a strong broadening of the o-
components which fill up the depression at line center. For
2D turbulence, the o-components are still well marked but



have a smaller intensity. As pointed out above, the broad-
ening of the o-components is small in the 2D case. For
isotropic turbulence, there is also a single broad peak (the
same profile is shown in Fig 9, panel (a)). Panel (b), in
Fig. 13, corresponds to 6, = 90°. We note that 2D and 3D
turbulence have essentially the same effects. The decrease
in the central peak intensity comes from the angular av-
eraging over sin? 6 In contrast, the profile is left almost
unaffected in the 1D case because the main contribution
to the central peak comes from the m-component which is
insensitive to the fluctuations of the random field inten-
sity.

Figure 14, panels (a) and (b) show (pq) and (pv) re-
spectively. We see that (q)/ sin” 6, cos 2¢, = A, behaves
in much the same way as (1) for 8, = 90°. For 1D tur-
bulence, the central peak is not significantly affected for
the reason given above. The o-components on the other
hand suffer some broadening, which goes together with
a decrease in intensity. For 2D and 3D turbulence there
is a sharp drop in the central peak and also in the o-
components, but the broadening with 2D turbulence is,
as already pointed out, much smaller than with 3D turbu-
lence For {pv)(= Aj), the fluctuations of the magnetic
field produce a decrease in the peak intensity, a small
shift away from line center and a broadening which has
its largest value for 3D and its smallest value for 2D. The
strongest effect is produced by isotropic fluctuations. The
decrease in the peak intensity can be explained by the
factor (1 — 1/2y2) in Eq. (39).

When the rms fluctuations increase, i.e. when 7y in-
creases, the profiles (pq) and (pv) keep essentially the
same shape but the effects are amplified. All the peaks
have a smaller intensity and for 2D and 3D turbulence
the o-components are moved away further from line cen-
ter. One also observes a significant decrease in the slope
of (pv) at line center.

In Figs. 15 we still have y, = 1, (rms fluctuations equal
to the mean field intensity) but AH, = 2 and vy = 2.
Hence the o-components are well separated as can be ob-
served. Panel (a) of this figure clearly shows the central
component created by the averaging of m-component over
the random directions of the magnetic field for 2D and
3D turbulence. For 2D turbulence, the o-components are
significantly more intense and more narrow than for 3D
turbulence. The central peak on the other hand is shal-
lower. For 1D turbulence, there is no central component
but a strong broadening of the o-components. The de-
crease in the intensity of the o-components is controlled
by the factor 1/y; ~ 1/v/5 ~ 0.44 (see Eq. (22)). For
the transverse case (panel (b)), the o-components disap-
pear for 1D turbulence because they are multiplied by
1/ but the central peak increases due to the contribu-
tion of the broadened o-components. This increase of the
central peak can also be understood in terms of the con-
stancy of the frequency integral of {¢r). For 2D and 3D
turbulence, the o-components are still well marked but
they are somewhat shifted away from line center with the
3D components being broader and shallower than the 2D

components. lhe decrease oI the central peak 1S due to
the averaging over the ¢, sin? §/2 term.

6. Summary and concluding remarks

In this paper we have examined the effects of a random
magnetic field on the Zeeman line transfer propagation
matrix. We have considered a fairly general case where
the magnetic field has anisotropic but azimuthally invari-
ant Gaussian fluctuations about a given mean magnetic
field H, which can be set to zero. We have examined in
detail three types of random fluctuations: (i) longitudinal
fluctuations which take place along the direction of the
mean field; referred to as 1D or longitudinal turbulence;
(ii) fluctuations which are distributed isotropically around
the direction of the mean field referred to as isotropic or
3D turbulence; (iii) fluctuations isotropically distributed
in a plane perpendicular to the mean field, referred to as
2D turbulence; the total random field (sum of the fluctu-
ating part and of the mean field) does not lie in this plane
unless the mean field is zero. In all three cases, the random
field depends on two parameters, the mean field H, and
the dispersion o? around the mean field (see Egs. (18),
(28), (49)).

First we give a fairly compact and simple expression for
the mean coefficients of the propagation matrix. It is valid
for any random field invariant in a rotation around the
mean field direction (Eq. (16)). This general expression is
obtained by taking advantage of the fact that the angular
dependence of the Zeeman matrix elements can be written
in terms of the spherical harmonics Y, (6, ¢), where 6 and
¢ are the polar and azimuthal angles of the random field
with respect to direction of the line of sight.

The random fluctuations of the magnetic field have
two types of effects. The fluctuations of the magnetic field
strength (modulus) produce random Zeeman shifts which
lead to a broadening of the o-components. It is impor-
tant to note that the m-component is not affected by this
phenomenon. The second effect, which occurs only for 2D
and 3D turbulence, is the averaging over the angular de-
pendence of the coefficients which affects both the 7 and
o-components. As a result, the frequency profiles of the
mean coefficients can look quite different from the stan-
dard profiles created by a constant magnetic field. The
physically relevant parameters for the analysis of the mean
profiles are the dimensionless parameters y,, which mea-
sures the intensity of the mean magnetic field H, in units
of the rms fluctuations o, and <4, the Zeeman shift by
the rms fluctuations. The Zeeman shift by the mean mag-
netic field is A|H,| = yoy2. The broadening by the mag-
netic field intensity fluctuations combined with the stan-
dard Doppler broadening (by thermal and/or microtur-
bulent velocity fluctuations) is described by a parame-
ter y1 = (1 + 12)/2. There are two interesting limit-
ing regimes. A weak mean field regime corresponding to
AlH,| € m1, i.e. to a Zeeman shift by the mean mag-
netic field smaller than the combined Doppler and mag-
netic broadening. The other interesting limit, referred to



as the strong mean jiela or wear turbuience regime, COr-
responds to y, > 1. In this limit, the o-components stay
well separated in spite of the random field fluctuations,
provided 7; stays smaller than y,. We now briefly sum-
marize the main effects for the three types of fluctuations
that we have considered.

For 1D turbulence, the direction of the random mag-
netic field remains constant and same as the direction (6,,
¢o) of the mean magnetic field. The only effect is a broad-
ening and a decrease in intensity by a factor -; of the
o-components (see Section 3. and Figs. 12 to 15). For the
transverse Zeeman effect (6, = 90°) and when y, ~ 1,
a consequence of this broadening is that the central 7-
component can be enhanced by the magnetic field fluctu-
ations while the o-components almost entirely disappear
(see Fig. 15). When the intensity of the mean magnetic
field is zero, the coefficient of circular polarization (pv)
(and (xv)) are zero but not the mean linear polarization
coefficients (pq) and {py). Circular polarization is de-
stroyed by fields of opposite directions but not linear po-
larization which has a quadratic dependence on the polar
angle of the magnetic field.

For isotropic (3D) turbulence, the two effects namely,
magnetic broadening of the o-components and angular av-
eraging are at work. The dependence of the absorption and
anomalous dispersion coeflicient profiles on the magnetic
field parameters and on the Landé factor is discussed in
detail in Section 4.. One striking effect in the case of the
longitudinal Zeeman effect (, = 0°) is the formation in
(1) of a central component with no polarization counter-
part created by the averaging of ¢g sin” §/2. This compo-
nent is particularly noticeable when y, ~ 1 (see Figs. 9
and 15). The circular polarization coefficients {py) (and
(xv)) can be expressed in terms of generalized Voigt and
Faraday-Voigt functions H(™ and F("). The other mean
coeflicients can also be expressed in terms of these gener-
alized functions but only in weak mean field and strong
mean field regimes. When the mean magnetic field is zero,
the random field H is strictly isotropic (there is no pre-
ferred direction) and both circular {pv) and linear (pq)
and (pu) polarization coefficients are zero. The same is
true of course for the anomalous dispersion coeflicients.

For 2D turbulence the mean profiles resemble the mean
profiles for isotropic turbulence. One can observe in par-
ticular the formation of a non-polarized central compo-
nent due to the averaging of ¢, sin? 8 /2 over the directions
of the random field, but in contrast to isotropic turbu-
lence, there is very little broadening of the o-components
because the magnitude of the random field is more cen-
tered around the magnitude of the mean field. The o-
components are not only more narrow they are also
stronger than with 1D or 3D turbulence (see the figures
in Section 5.). When the mean magnetic field is zero, the
mean circular polarization coefficient {pv) is zero but not
the linear coefficients {¢q) and {pyu). So even if the mean
magnetic field is zero, anisotropic turbulence like 1D or
2D turbulence will produce linear polarization.

In this work we have considered Ior Simplicity a nor-
mal Zeeman triplet. In the anomalous Zeeman splitting
case, each elementary component ¢, (¢ = 0,£1) must be
replaced by a weighted average of the form

Pq = ZHq(wq,a)Sq(Ml, M), q= M;— M,, (64)
M,

where S, is the strength of the transition between the
lower and upper levels of magnetic quantum numbers M;
and M, and z; = © — (9 M; — g, M,)AH, with H the
intensity of the random magnetic field (Stenflo 1994). The
absorption and anomalous dispersion coeflicients can still
be written as in Eqs. (10) and (11) with the ¢, replaced
by ¢, and the summation now over M,. Similarly, the
mean coefficients are given by Eq. (16) where the A; are
now calculated with the @,. The exact and approximate
expressions given for 1D, 2D and 3D turbulence can thus
be carried over to the anomalous Zeeman splitting.

Here we have considered only Gaussian distributions
but it is clear that the averaging method and the main ef-
fects that we have described will carry over to other types
of distributions. Such effects as the broadening of the o-
components by random Zeeman shifts or the appearance
of unpolarized central components due to angular averag-
ing should persist. The assumption that the random fields
are azimuthally symmetric plays an important role in the
averaging method, but is a fairly realistic assumption for
small scale fluctuations. As for correlations between mag-
netic and velocity fluctuations, they can certainly be in-
corporated in the averaging method without major diffi-
culties.

For weak lines (optical depth small compared to unity),
the opacity coeflicients give a fair approximation to the
observable Stokes parameters and a comparison between
observations and mean coefficient profiles could provide
informations on the statistical properties of the magnetic
field. For example, the intensity of the mean magnetic field
could be obtained with the center-of-gravity method (see
e.g. LL04, p. 640). This method is based on the measure-
ments of the center of gravity wavelength .. For weak
lines, they can be written as

oy = J () £ {pv))z da
J{pr) £{pv)) da’

where the frequency integration is extended to the full
line profile. As (pvy) is antisymmetric with respect to line
center, (¢r1) symmetric and normalized to unity, Eq. (65)
reduces to

(65)

Ty = :i:/(cpv)a: dz. (66)
Using Eqgs. (11), (16) and (17), one obtains
T4+ = £ cos GOA/’HCOS OP(H)dH, (67)

where © is the angle between the random field # and the
mean field H,. Hence H cos © is the longitudinal compo-



nent or the ranaom field. L'he integration over the mag-
netic field distribution given in Eq. (1) leads to

T4 = +cos0,AH,, (68)

hence to a measure of the longitudinal component
H, cos b, of the mean magnetic field.

A detailed analysis of Stokes profiles for lines with dif-
ferent Zeeman sensitivity (Landé factors) would be a way
to evaluate the dispersion of the random fluctuations. The
detection of an unpolarized central component in Stokes
I would indicate strong variations in the direction of the
magnetic field. However, specific observations at high res-
olution would be required to verify this fact, because a
central unpolarized component may also be produced by
a non-magnetic region within the resolution element.

For spectral lines with moderate to large optical
depths, radiative transfer effects must be taken into ac-
count. The Unno-Rachkovsky solution shows very large
differences in the observable Stokes parameters, depend-
ing on whether the magnetic field is random or not. This
topic will be addressed in subsequent papers where we
consider random magnetic fields with a finite correlation
length.
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Appendix A: Some properties of the Wigner

9 , and spherical

rotation matrices Dmm

harmonics Y,

The properties that are needed here can be found in Brink
& Satchler (1968, Appendix IV), Varshalovich et al. (1988)
or in LL0O4. We reproduce them here for convenience.
The Wigner matrices D%)m,(a,ﬂ,fy) (@ >0, -1 <
m,m' < +l[) are the transformation matrices for irre-
ducible tensors of rank [ in rotations of the reference
frame. The angles «, 3,7 are the Euler angle of the ro-
tation. The Dg,b)m, have an explicit representation:

— e—imad(l)

DY O (B)e~im™, (A.1)

where d;?m, (B) is real. Tables of dsfl)m, can be found in the
above references.

The Y}, are special cases of Dgl)m,
m' =0 (or m =0):

corresponding to

DY(,6,7) = Y (6, 9)




1I'ne Legendre polynomial [7(¢) are specilal cases Of Wigner
matrices corresponding to m = 0 and m' = 0, or in other
words, special cases of Y}, corresponding to m = 0:

4n
P(cost) = Dig(9,6,7) = |/ 5771 Yio (6,9).

The first Legendre polynomials are

(A.3)

1
Py(0) =1; P (0) =cosl; P(0) = 5(3 cos?0—1).(A.4)
The Y}, for small I can be found in many reference books
(e.g. Brink and Satchler 1968; Varshalovich et al. 1988;

Dolginov et al. 1995). In particular

15 \1/2
Y10 = <E) sin? § e*%?,
The angular dependence of 1, ¢q,u and ¢y can thus be
expressed in terms of the Yi,, (see Eq. (10)). This property
is used to calculate their average values over the magnetic
field distribution.

(A.5)

Appendix B: Madified spherical Bessel functions

The functions of order 0, 1 and 2 introduced in
Eqs. (45),(46) and (47) can be obtained by performing
the integration over p in Eq. (30) (see also Abramovitz &
Stegun, 1964, p. 443). They may be written as

™ 1
— = —gi B.1
\3=Tia(2) = - simhz, (B.1)
[ 1 . 1
5.[3/2(2:) = —g SlnhZ + E COShZ, (BZ)
T 3 1, 3
1/515/2(,2) = (2_3 + ;) sinh z — = cosh z. (B.3)
For small values of z, one has at leading order,
m m z
\/ 5—71/2(2) ~1 y/ 5—73/2(3) =3 (B.4)
T goge(s) = (B.5)
9, 3/2\¥) = 15 ‘

All the functions \/m/22I;,1/2(2), for 2 real and positive,
have positive values and go to oo as z — 0.

Appendix C: Integration over Gaussian
distributions

The mean values A; are given by the averages, over the
magnetic field distributions, of Voigt or Faraday-Voigt
functions, multiplied by some polynomials (see Eq. (17)).
Explicit expressions for the average values are given in
Eq. (22) for 1D turbulence, in Egs. (38), (39), (40), (41),
(42),(43), for 3D turbulence. We show here how to obtain
these expressions which for 3D turbulence involve the gen-
eralized H™ (and F(™) functions introduced in Section

4.1. and discussed In Appendix D. deveral methods are
available to carry out the integration. One can consider
the Fourier transforms of the quantities to be averaged.
One can write the functions H® and F(® as real and
imaginary parts of the function W) (%), with z complex
(see Appendix D) and then do contour integrations in the
complex plane. Here we describe a direct method based
on simple changes of variables.
The integrals we want to transform are of the form
e v’

4o p+oo
B, =2
“omr /m /ﬂ,o (x —u—qyny)? +a?
e—(yo—y)gp(y) dy du,

(C.1)

where P(y) is a polynomial in y. For 1D turbulence,
P(y) =1 (see Section 3.). The weak field limit corresponds
to ¥y, = 0.

First we transform the integral over u. We write

T—u—qyRy =t—s, (C.2)
with ¢ and s defined by
t=2—qmyo; s=u+qvnu(y—yo) (C.3)

Note that ¢ = 0 gives the positions of the o-components
corresponding to the mean magnetic field H,. We thus get

oo p+oo o—[s—grn(y—yo)]?
Bq = 7r3/2\/_/ / C(t—s)2+a®

L P(y) dy ds. (C.4)
Regrouping the two exponentials, we rewrite
[s —av(y — yo)* + (yo — y)* =
2 2,2 2 ¢
5+ (Y —Yo) i — 287y —Yo) = 5 + 5, (C.5)
q q
with
2 YH
C=7(y—vo) —a—s]. (C.6)
Ta
Thus Eq. (C.4) becomes
oo ptoo 6732/’7‘1
B, Wmf/ [. ere
e~/ —2P(yo + i +q 2 g) d¢ ds. (C.7)
Ta " e

Since P is a polynomial in ¢, the Gaussian integral over
¢ can be calculated explicitely and one obtains a polyno-
mial in s. It is easy to see that the integral over s can
be expressed as a combination of H(™ functions. When
P(y) = 1, the integral over ¢, divided by /7, gives a fac-
tor v, and one obtains B, = H(Z4,a4)/7,, where Z4, a4
and v, are defined in Eqgs. (23) and (24).



Appendix D: 1 ne runctons 1%V anda 4"

The functions H(™ and F(™ introduced in Egs. (35) and
(36) of the text are the real and imaginary part of the
function

1 ure=v’

+oo
W) = / du, (D.1)

Z—U

where z = z 4+ 4a is a complex number and n a posi-
tive integer. The usual Voigt and Faraday-Voigt functions
correspond to n = 0. The function W (% (2) is the com-
plex probability function (Abramovitz and Stegun 1964)
also known as the Faddeeva function. We also note that
W (iw) = D(w), where D(w) is the complex Dawson func-
tion introduced in Heinzel (1978).

The W (™) satisfy a recurrence formula which leads to
simple recurrence relations for H(™ and F(™ and thus to
a method of calculation. In the numerator of Eq. (D.1),
we write 4™ = v !(u — z + 2) and immediately obtain

i [t

373 ule=v" du. (D.2)
™ —0oQ

WM (2) = WV (2) -
Separating the real and imaginary parts, we find the two
recurrence relations,

H™ (2, a) = tH™ (2, a) — aF " Y (z,q), (D.3)

F™(z,a) = cF™ Y (z,a) + aH™ V) (z,q)

1 [+ >
—3—/2/ u" e " du. (D.4)
T —oo

When n is even, the integral in Eq. (D.4) is zero.

The recurrence relations take very simple forms when
the Voigt parameter a = 0. For H(™, they lead to Eq. (37)
of the text. For F(®) | with n > 1 one has

_113...(2k-1)

F™(z,0) = 2F" Y (z,0) -
s 2

(D.5)
The constant term, where k = (n — 1)/2, comes from the
integral in Eq. (D.4). It is zero for even values of n. For n =
0, FO(z,0) = 2D(z)/m, with D(x) the Dawson integral.
To calculate this integral we have used the algorithm by
Hui et al. (1978).

When a is not zero, H© and F(© have been calcu-
lated with the algorithm of Hui et al. (1978) which is more
accurate than the algorithm of Matta & Reichel (1971),
especially for F(©),

We note that the derivatives of the Voigt and Faraday-
Voigt functions can be expressed in terms of the functions
H(™ and F()_ For example

OH (z,a)

o = —2HW (z,a), (D.6)
2
Q%%%EEZ‘QHWVLa)+4H@N%aL (D.7)

with identical relations for F(z, a).



